UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Modelling the health and economic impacts of different testing and tracing strategies for COVID-19 in the UK [version 1; peer review: awaiting peer review]

Colbourn, T; Waites, W; Manheim, D; Foster, D; Sturniolo, S; Sculpher, M; Kerr, CC; ... Raine, R; + view all (2020) Modelling the health and economic impacts of different testing and tracing strategies for COVID-19 in the UK [version 1; peer review: awaiting peer review]. F1000Research , 9 , Article 1454. 10.12688/f1000research.27980.1. Green open access

[thumbnail of 3984d8d5-f934-407c-af49-a5977fef8f04_27980_-_tim_colbourn.pdf]
Preview
Text
3984d8d5-f934-407c-af49-a5977fef8f04_27980_-_tim_colbourn.pdf - Published Version

Download (1MB) | Preview

Abstract

Background: Coronavirus disease 2019 (COVID-19) is resurgent in the UK and health and economic costs of the epidemic continue to rise. There is a need to understand the health and economic costs of different courses of action. / Methods: We combine modelling, economic analysis and a user-friendly interface to contrast the impact and costs of different testing strategies: two levels of testing within the current test-trace-isolate (TTI) strategy (testing symptomatic people, tracing and isolating everyone) and a strategy where TTI is combined with universal testing (UT; i.e. additional population testing to identify asymptomatic cases). We also model effective coverage of face masks. / Results: Increased testing is necessary to suppress the virus after lockdown. Partial reopening accompanied by scaled-up TTI (at 50% test and trace levels), full isolation and moderately effective coverage of masks (30% reduction in overall transmission) can reduce the current resurgence of the virus and protect the economy in the UK. Additional UT from December 2020 reduces the epidemic dramatically by Jan 2021 when combined with enhanced TTI (70% test-trace levels) and full isolation. UT could then be stopped; continued TTI would prevent rapid recurrence. This TTI+UT combination can suppress the virus further to save ~20,000 more lives and avoid ~£90bn economic losses, though costs ~£8bn more to deliver. We assume that all traced and lab-confirmed cases are isolated. The flexible interface we have developed allows exploration of additional scenarios, including different levels of reopening of society after the second lockdown in England as well as different levels of effective mask coverage. / Conclusions: Our findings suggest that increased TTI is necessary to suppress the virus and protect the economy after the second lockdown in England. Additional UT from December 2020 reduces the epidemic dramatically by Jan 2021 and could then be stopped, as continued TTI would prevent rapid recurrence.

Type: Article
Title: Modelling the health and economic impacts of different testing and tracing strategies for COVID-19 in the UK [version 1; peer review: awaiting peer review]
Open access status: An open access version is available from UCL Discovery
DOI: 10.12688/f1000research.27980.1
Publisher version: http://dx.doi.org/10.12688/f1000research.27980.1
Language: English
Additional information: Copyright: © 2020 Colbourn T et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords: COVID-19, Test, Trace, Isolate, UK, Health, Economic, Impacts, Mathematical Model
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute for Global Health
URI: https://discovery.ucl.ac.uk/id/eprint/10117735
Downloads since deposit
59Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item