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Abstract—Few-shot learning for fine-grained image classifi-
cation has gained recent attention in computer vision. Among
the approaches for few-shot learning, due to the simplicity and
effectiveness, metric-based methods are favorably state-of-the-
art on many tasks. Most of the metric-based methods assume a
single similarity measure and thus obtain a single feature space.
However, if samples can simultaneously be well classified via
two distinct similarity measures, the samples within a class can
distribute more compactly in a smaller feature space, producing
more discriminative feature maps. Motivated by this, we propose
a so-called Bi-Similarity Network (BSNet) that consists of a
single embedding module and a bi-similarity module of two
similarity measures. After the support images and the query
images pass through the convolution-based embedding module,
the bi-similarity module learns feature maps according to two
similarity measures of diverse characteristics. In this way, the
model is enabled to learn more discriminative and less similarity-
biased features from few shots of fine-grained images, such that
the model generalization ability can be significantly improved.
Through extensive experiments by slightly modifying established
metric/similarity based networks, we show that the proposed
approach produces a substantial improvement on several fine-
grained image benchmark datasets.

Codes are available at: https://github.com/spraise/BSNet

Index Terms—Fine-grained image classification, Deep neural
network, Few-shot learning, Metric learning

I. INTRODUCTION

Deep learning models have achieved great success in visual
recognition [1]–[3]. These enormous neural networks often
require a large number of labeled instances to learn their
parameters [4]–[6]. However, it is hard to obtain labeled image
in many cases [7]. Furthermore, human can adapt fast based
on transferable knowledge from previous experience and learn
new concepts from only few observations [8]. Thus, it is of
great importance to design deep learning algorithms to have
such abilities [9]. Few-shot learning [10], [11] rises in response
to these urgent demands, which aims to learn latent patterns
from few labeled images [12].

Many few-shot classification algorithms can be grouped
into two branches: meta-learning based methods [13]–[19]
and metric-based methods [20]–[22]. Meta-learning based
methods focus on how to learn good initializations [14],
optimizers [23], or parameters. metric-based methods focus
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on how to learn good feature embeddings, similarity mea-
sures [24], or both of them [11]. Due to their simplicity and
effectiveness, metric-based methods have achieved the state-
of-the-art performance on fine-grained images [22], [23].

Fine-grained image datasets are often used to evaluate
the performance of few-shot classification algorithms [22],
[23], [25]–[28], because they generally contain many sub-
categories and each sub-category includes only a small amount
of data [29]. Due to the similarity between these small sub-
categories, a key consideration in few-shot fine-grained image
classification is how to learn discriminative features from few
labeled images [30]–[32].

Metric-based methods in few-shot classification are mostly
built on a single similarity measure [22], [23], [25]–[28].
Intuitively, features obtained by adapting a single similarity
metric are only discriminative in a single feature space. That
is, using one single similarity measure may induce certain
similarity bias that lowers the generalization ability of the
model, in particular when the amount of training data is small.
Thus, as illustrated in Figure 1, if the obtained features can
simultaneously adapt two similarity measures of diverse char-
acteristics, the samples within one class can be mapped more
compactly into a smaller feature space. This will result in a
model embedding two diverse similarity measures, generating
more discriminative features than using a single measure.

Motivated by this, we develop a Bi-Similarity Network
(BSNet). Within each task generated from a meta-training
dataset, the proposed BSNet employs two similarity mea-
sures, e.g., the Euclidean distance and the cosine distance. To
be more specific, the proposed BSNet contains two modules
as illustrated in Figure 2. The first module is a convolution-
based embedding module, generating representations of query
and support images. The learned representations are then fed
forward to the second module, i.e. our bi-similarity module,
producing two similarity measurements between a query im-
age and each class. During meta-training process, the total loss
is the summation of the losses of both heads, which is used for
back-propagating the network’s parameters jointly. We evalu-
ate the proposed method on several fine-grained benchmark
datasets. Extensive experiments demonstrate the state-of-the-
art performance of the proposed BSNet. Our contributions are
three-fold:

1) We propose a BSNet that leverages two similarity
measures and significantly improves the performance
of four state-of-the-art few-shot classification meth-
ods [11], [20]–[22] on four benchmark fine-grained
image datasets.
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Figure 1. Motivation of the proposed Bi-Similarity Network (BSNet). Here we use the Euclidean distance and the cosine distance as the similarity measures in
feature spaces. The Euclidean distance and the cosine distance are for Similarity I and Similarity II, respectively. Different colors indicate different predicted
labels; larger balls are class prototypes.

2) We demonstrate that the model complexity of BSNet is
less than the mean value of model complexities of two
single-similarity networks, even though BSNet contains
more model parameters.

3) We demonstrate that the proposed BSNet learns discrim-
inative areas of the input images via visualization.

II. RELATED WORK

Recently, deep neural networks have been carefully re-
designed to solve few-shot learning problems. In this work, we
are particularly interested in metric-based few-shot learning
models as they are most relevant to the proposed BSNet.
Existing metric-based few-shot learning methods roughly fall
into the following three groups according to their innovation:

a) Learning feature embedding given a metric: Koch et
al. [33] used a Siamese convolutional neural network for one-
shot leaning, in which convolution layers are of VGG [34]
styled structure and L1 distance is used to compute the
distance between image features. Matching Network [20]
introduced attention mechanisms along with the cosine metric
on deep features of images. Most of existing methods, for
instance [11], [21], [35], [36], have benefited from the episodic
meta-training strategy proposed in [20], learning transferable
knowledge from labeled support images to query images
through this strategy. Wu et al. [37] added a deformed fea-
ture extractor and dual correlation attention module into the
Relation Network [11], and proposed position-aware relation
network (or PARN, for short). As a result, PARN outperformed
the Relation Network on the Omniglot and Mini-ImageNet
datasets. This group of methods mainly learn a feature rep-
resentation that adapts to a fixed metric. Unlike them, the
proposed BSNet learns metrics and a feature representation
simultaneously.

b) Learning a prototype: Despite of similar meta-
training procedures, these methods are built on different
hypotheses. [21] proposed the Prototype Network that used
the Euclidean distance as metric to classify query images to
class-specific prototypes, producing linear decision boundaries
in the learned embedding space as it implicitly assumed
identical covariance matrices for all class-specific Gaussian
distributions. Allen et al. [35] further extended the Prototype
Network [21] by allowing multiple clusters for each class, and

hence proposed infinite mixture prototype networks. Unlike
these methods, the proposed BSNet does not learn a prototype,
but introduces the bi-similarity idea into the metric-based few-
shot learning models.

c) Learning a distance (or similarity) metric: Instead
of using an existing metric, Sung et al. [11] proposed the
Relation Network to compute similarity scores to measure
the similarity between each query image and support images
from each class. Li et al. [22] constructed an image-to-class
module after a CNN-based embedding module to compute
the cosine similarity between deep local descriptors of a
query image and its neighbors in each class, known as Deep
Nearest Neighbor Neural Network (or DN4 in short). Zhang
et al. [38] learned Gaussian distributions for each class via
incorporating evidence lower bound into the design of loss
function and used the posterior densities of query images as the
criterion, which produced quadratic decision boundaries as it
allowed class-specific covariance matrices. It can be viewed as
learning the Mahalanobis distance in deep feature space. The
proposed BSNet is closely related to this group of methods.
To the best of our knowledge, most current studies in few-shot
learning only focus on a single similarity measure. However,
the proposed work constructs a network leveraging one module
with two similarity measures.

III. THE PROPOSED BI-SIMILARITY NETWORK

A. Problem Formulation

Few-shot classification problems are often formalized as C-
way K-shot classification problems, in which models are given
K labeled images from each of C classes, and required to
correctly classify unlabeled images. Unlike traditional classi-
fication problems where the label set in training set is identical
to those in the validation and test sets, few-shot classification
requires to classify novel classes after training. This requires
that images used for training, validation and testing should
come from disjoint label sets. To be more specific, given
a dataset D = {(xi, yi), yi ∈ L}Ni=1, we divide it into
three parts, namely Dtrain = {(xi, yi), yi ∈ Ltrain}Ntrain

i=1 ,
Dval = {(x̃i, ỹi), ỹi ∈ Lval}Nval

i=1 , Dtest = {(x∗i , y∗i ), y∗i ∈
Ltest}Ntest

i=1 , where (xi, yi) represents the raw feature vector
and label information for the ith image. The label sets, Ltrain
and Lval and Ltest, are disjoint and their union is L.
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Figure 2. Illustration of the proposed Bi-Similarity Network (BSNet). It consists of one embedding module fφ, followed by a bi-similarity module which
outputs two similarity scores between a query image and C class prototypes in C-way K-shot problems. Sk

(q,c)
denotes the kth similarity score between the

qth query image xq and the cth class in a task.

Following recent works [11], [20]–[23], we organized our
experiments in an episodic meta-training setting. To form a
task Ti each time during episodic meta-training, we randomly
select C classes from Ltrain, and randomly select M images
within each of these C classes from Dtrain. Within each of
these selected classes, M images are further separated into two
sets with K and M−K images respectively, namely a support
set Si and a query set Qi. Similarly, we can define tasks
T̃j and T ∗k on Dval and Dtest for meta-validation and meta-
testing scenarios. We aim to train our neural networks to learn
transferable deep bi-similarity knowledge from those meta-
learning tasks, tune hyper-parameters through meta-validation,
and report the generalization accuracy by taking the average
of model’s accuracy in meta-testing.

B. Bi-Similarity Network

1) An Overview: Our Bi-Similarity Network (BSNet) has
one embedding module fφ, followed by a bi-similarity module
consisting of two similarity measurement branches, gϕ and hγ ,
as shown in Figure 2.

Although we further generalize the proposed BSNet by
equipping it with other similarity measurements, i.e. [20]–
[22], we only demonstrate the structure of the proposed
neural network here to avoid redundant contents. The meta-
training procedure of the proposed BSNet is summarized in
Algorithm 1. Note that in Algorithm 1, 1(a == b) = 1 if
and only if all elements of a and b are identical since we are
using one-hot vectors for true/predicted labeling information
for every image. A similar procedure, with the exception of
updating parameters, is also used for calculating the validation
and test accuracy.

For each task Ti, images {x(i)k }Mk=1 from support set Si
and query set Qi are fed into fφ, generating fφ(x

(i)
k ) for all

images in task Ti. Then images’ representations are further fed
forward to our bi-similarity module. Let x(i)s,c and x(i)q denote

the sth support image from class c and the qth query image
in task Ti, respectively.

2) The Training Procedure: During the meta-training pro-
cess, we assign the qth query image in task Ti according
to each of the two similarity scores, S1

(q,c) and S2
(q,c). Then

we obtain two one-hot vectors, ŷ(i,1)q and ŷ
(i,2)
q , as two

predictions. Here, S1
(q,c) and S2

(q,c) refer to the two similarity

scores between x
(i)
q and the cth class, generated by the

proposed BSNet. The ŷ
(i,1)
q and ŷ

(i,2)
q only have element 1

at argmaxc S
d
(q,c), d ∈ {1, 2}, for c ∈ {1, · · · , C}. That is,

ŷ(i,1)q = [0, · · · , 1︸︷︷︸
argmaxc S

1
(q,c), c ∈ {1, · · · , C}

, · · · , 0] ,

ŷ(i,2)q = [0, · · · , 1︸︷︷︸
argmaxc S

2
(q,c), c ∈ {1, · · · , C}

, · · · , 0] .
(1)

Then we compute two loss values of the query image x(i)q by
comparing the two assignments ŷ(i,1)q and ŷ(i,2)q with the one-
hot vector y(i)q representing its ground-truth label, and take the
average of the two values for back-propagation. The two loss
values are given by

l(i,1)q =

C∑
j

(ŷ
(i,1)
q,j − y

(i)
q,j)

2, q = 1, · · · , |Qi| ,

l(i,2)q =

C∑
j

(ŷ
(i,2)
q,j − y

(i)
q,j)

2, q = 1, · · · , |Qi| ,

l(i)q = (l(i,1)q + l(i,2)q ) ,

(2)

where |Qi| denotes the total number of query images in Qi.
3) The Validation/Testing Procedure: During the valida-

tion/test process, we assign the query image to the class
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with the maximum average similarity score and generate a
corresponding one-hot vector ŷ(i)q . That is,

ŷ(i)q = [0, · · · , 1︸︷︷︸
argmaxc

1
2

(
S1
(q,c) + S2

(q,c)

)
, c ∈ {1, · · · , C}

, · · · , 0] .

(3)

Algorithm 1 Meta-Training procedure for BSNet under C-
way K-shot scenarios
Require: Input ModelM, Optimizer, Number of episodes B,
Dtrain, C, K.

1: for i from 1 to B do
2: Generate a task Ti from Dtrain . Details in

Sec. III-A
3: Further split Ti into Si and Qi . C ×K images for
Si, C × (M −K) images for Qi

4: L(i) ← 0 . Initializing loss for the ith task
5: A(i) ← 0 . Initializing accuracy for the ith task
6: for x(i)q in Qi do . x(i)q is the qth query sample in Qi
7: Compute the C × 2 similarity scores for x(i)q , i.e.
Sd(q,c), for d = 1, 2 and c = 1, · · · , C.

8: Compute two class assignments for x
(i)
q :

argmaxc S
1
(q,c) and argmaxc S

2
(q,c)

9: Generate two corresponding one-hot vectors ŷ(i,1)q

and ŷ(i,2)q according to Equation (1).
10: Compute the loss of M for Si and x(i)q according

to Equation (2), denoted by l(i)q .
11: L(i) ← L(i) + l

(i)
q

12: A(i) ← A(i) + 1(ŷ
(i)
q == y

(i)
q ) . ŷ

(i)
q is M’s

prediction for x(i)q
13: L(i) ← L(i)

C×|Qi|

14: A(i) ← A(i)

|Qi|
15: Use L(i) to update M’s parameters according to the

optimizer . e.g Adam optimizer
16: Stop training M. Output mean accuracy 1

B

∑B
i=1A

(i).

C. The Design of BSNet

In the proposed BSNet, the feature embedding module
and the bi-similarity module are key parts that affect overall
performance. In terms of the feature embedding module fφ,
we adopt convolution-based architecture, and will introduce
the detailed design in Sec. IV-B.

For the design of bi-similarity module, both of the two
chosen similarity measurements should have good fitting abil-
ity. We take the relation module as an example. The relation
module was proposed in [11], in which a query image’s rep-
resentation fφ(x

(i)
q ) is concatenated to every support image’s

representation fφ(x
(i)
s,c). In terms of C-way 1-shot scenario

(|Si| = 1), for each query image x
(i)
q , C × 1 concatenated

features are directly fed forward into two further convolution
blocks and two fully connected layers to get C similarity
scores:

S1
(q,c) = gϕ

(
[fφ(x

(i)
1,c)||fφ(x(i)q ]

)
, c = 1, · · ·C, (4)

where || denotes the concatenation operator. While for the K-
shot scenario, we take the mean of support images’ feature
maps from each class to act as C prototypes and concatenate
them ahead of the query image’s feature map, and still obtain
C similarity scores for this query image:

S1
(q,c) = gϕ

(
[
1

K

K∑
s=1

fφ(x
(i)
s,c)||fφ(x(i)q ]

)
, c = 1, · · ·C. (5)

In addition, we also introduce a cosine similarity module
designed by our own (details in Sec. IV-B). Actually, many
previous studies in few-shot classification have adopted the
cosine distance [22], [23]. In this work, we combine the self-
designed cosine similarity module with the similarity modules
of Matching Network [20], Prototype Network [21], DN4 [22]
in order to justify effectiveness of the proposed BSNet. The
details of these similarity modules are present in Sec. IV-B.

Our cosine similarity module contains two convolution
blocks (hemγ ) and a cosine similarity layer (hcosγ ). The cosine
similarity between a query image x

(i)
q and the cth class,

conditioned on the support images from class c, is given as

S2
(q,c) =h

cos
γ

(
hemγ

( 1
K

K∑
s=1

fφ(x
(i)
s,c)
)
, hemγ

(
fφ(x

(i)
q )
))

.

(6)
Note that a convolution block in our experiments refers to
a convolution layer, a batch norm layer, a ReLU layer and
with or without a pooling layer. After the model computes
two similarity scores between the query image and each
class, we have two strategies for training and validation/testing
processes, respectively, which have already been demonstrated
in Sec. III-B.

D. The Empirical Rademacher Complexity of BSNet

We start by introducing some notation. We define a
single similarity network as a network consisting of a
feature embedding module and a similarity module. Let
I (x;Wem1,Ws1) ∈ I, and J (x;Wem2,Ws2) ∈ J denote
two different similarity networks which contain the feature
embedding module with the same structure, where Wem1,
Wem2 are the parameters of the feature embeddings of I and
J , respectively, and Ws1 and Ws2 are the parameters of the
similarity modules of I and J , respectively. We define the
BSNet as learning a common feature embedding for I and
J and adopting their similarity modules. Therefore, the Bi-
similarity can be denoted as Z (x;Ws1,Ws2,Wem) ∈ Z ,
where Wem is the parameter of the common feature embed-
ding. The Rademacher complexity measures the richness of a
family of functions which is defined as follows:

Definition 1. [39] Let I denote a family of real valued func-
tion and S = {x1, x2, . . . , xM} be a fixed sample of size M .
Then, the empirical Rademacher complexity of I with respect
to S is defined as R̂S (I) = Eσ

[
supI∈I

1
M

∑M
i=1 σiI(xi)

]
,

where σ = {σ1, σ2, . . . , σM} with σi independently dis-
tributed according to P (σi = 1) = P (σi = −1) = 1

2 .

Theorem 1. Let R̂S (I), R̂S (J ), and R̂S (Z) denote the
Rademacher complexities of the single similarity network
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family I, the single similarity network family J , and
the Bi-similarity network family Z . We have R̂S (Z) ≤
1
2

(
R̂S (I) + R̂S (J )

)
.

Proof. Here, we introduce a network family P , P (x) =
1
2 (I(x) + J(x)) ∈ P , then P (x) can be denoted
by P (x;Ws1,Ws2,Wem1,Wem2). Following the notation
above, for ∀Z ∈ Z , ∃P ∈ P subject to Z(x) = P (x), so we
have Z ⊂ P . Thus, we have

R̂S (Z) = Eσ

[
sup
Z∈Z

1

M

M∑
i=1

σiZ(xi)

]

≤ Eσ

[
sup
P∈P

1

M

M∑
i=1

σiP (xi)

]

= Eσ

[
sup

I∈I,J∈J

1

M

M∑
i=1

σi

(
1

2
I (xi) +

1

2
J (xi)

)]

=
1

2
Eσ

[
sup
I∈I

1

M

M∑
i=1

σiI (xi)

]
+

1

2
Eσ

[
sup
J∈J

1

M

M∑
i=1

σiJ (xi)

]
=

1

2

(
R̂S (I) + R̂S (J )

)
.

(7)

This theorem states that even though BSNet has more model
parameters, the Rademacher complexity of the proposed BSNet
is no more than the average of the Rademacher complexities
of two individual networks.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

We evaluate the proposed approach on few-shot classifica-
tion tasks. This evaluation serves four purposes:
• To compare the proposed BSNet with the state-of-

the-art methods on few-shot fine-grained classification
(Sec. IV-C);

• To investigate the generalization ability of BSNet by
changing the backbone network (Sec. IV-D);

• To study the effectiveness of each similarity module in
the proposed BSNet (Sec. IV-E);

• To demonstrate that the proposed BSNet can learn
a reduced number of class-discriminative features
(Sec. IV-F);

• To investigate the effect of changing similarity modules
on BSNet (Sec. IV-G).

A. Datasets

We conducted all the experiments on four benchmark
fine-grained datasets, FGVC-Aircraft, Stanford-Cars, Stanford-
Dogs and CUB-200-2011. For each dataset, we divided them
into meta-training set Dtrain, meta-validation set Dval and
meta-test set Dtest in a ratio of 2 : 1 : 1. All images in the
four datasets are resized to 84× 84. We did not use boundary
boxes for all the images.

FGVC-Aircraft [40] is a classic dataset in fine-grained
image classification and recognition research. It contains four-
level hierarchical notations: model, variant, family and man-
ufacturer. According to the variant level, it can be divided

into 100 categories (classification annotation commonly used
in fine-grained image classification), which are the annota-
tion level we used. Stanford-Cars [41] is also a benchmark
dataset for fine-grained classification, which contains 16,185
images of 196 classes of cars, and categories of this dataset
are mainly divided based on the brand, model, and year
of the car. Stanford-Dogs [42] is a challenging and large-
scale dataset that aims at fine-grained image categorization,
including 20,580 annotated images of 120 breeds of dogs from
around the world. CUB-200-2011 [43] contains 11,788 images
from 200 bird species. This dataset is also a classic benchmark
for fine-grained image classification.

B. Implementation Details
In order to prove the effectiveness of the proposed method,

we choose several metric/similarity based few-shot classi-
fication networks, Matching Network [20], Prototype Net-
work [21], Relation Network [11], Deep Nearest Neighbor
Neural Network (or DN4, for short) [22], to be the baseline
of the proposed method. At the same time, we combine these
diverse similarity measurement modules with a self-designed
cosine module to construct the proposed BSNet. We present
details of our experiments in this section, which include in-
formation about experiment parameters, the matching module,
the prototype module, the relation module, the image-to-class
module and the bi-similarity module. Together with Table I,
it provides a detailed summary for all implementations in our
experiments.

All methods are trained from scratch. Some important pa-
rameters during training are shown in Table I. In particular, for
the optimizer of DN4 and bi-similarity experiments involved
DN4, the learning rate is reduced by half every 100, 000
episodes, while the other methods do not adopt this strategy.
In all experiments, we use the meta-validation set to select
the optimal setting. At the meta-testing stage, we report the
mean accuracy of 600 randomly generated testing episodes as
well as 95% confidence intervals. i.e., Mean ± 1.96 × Std√

600
.

Particularly, in terms of DN4, the above test procedure is
repeated five times, and the mean accuracy with 95% confi-
dence intervals are reported. We will introduce the embedding
module and several similarity measurement modules used in
our experiments in detail below, as well as the self-defined
Cosine module and Bi-similarity module proposed by us.

Embedding module: We construct four convolution blocks
to be our embedding module fφ to learn a shared represen-
tation in the proposed BSNet. Following [23], we used the
embedding module Conv4 for Matching Network, Prototype
Network, Relation Network and Cosine Network. Specifically,
each convolution block of Conv4 has 3 × 3 convolution
of 64 filters, followed by batch normalization and a ReLU
activation function. Following [22], we used the embedding
module Conv64F for DN4. In Conv64F, each convolution
block employs 64 3 × 3 convolution filters without padding,
followed by batch normalization and a Leaky ReLU activation
function. The 2 × 2 max-pooling layer is used in the first
two blocks. After passing through the Conv64F module, a
3×84×84 input image is now represented by a 64×21×21
feature map.
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Table I
EXPERIMENT CONFIGURATION (SHOWN IN COLUMNS).

Experiment Configuration
Matching Network [20] Prototype Network [21] Relation Network [11] Cosine Network DN4 [22]

Input size 3× 84× 84
Embedding module fφ Conv4 Con64F

Feature map size 64× 19× 19 64× 21× 21
Similarity module Matching module Prototype module Relation module Cosine module Image-to-Class module

Optimizer Adam (initial learning rate = 10−3, weight decay = 0)
Loss function NLL Loss Cross Entropy Loss MSE Loss Cross Entropy Loss
Data augment Random Sized Crop, Image Jitter, Random Horizontal Flip

Training episodes 1-shot: 60, 000, 5-shot: 40, 000 300, 000
Training query sample size 16 1-shot: 15, 5-shot: 10

Table II
FIVE-WAY FEW-SHOT CLASSIFICATION PERFORMANCE ON THE Stanford-Cars (CARS), Stanford-Dogs (DOGS), FGVC-Aircraft (AIRCRAFT) AND

CUB-200-2011 (CUB) DATASETS. THE METHODS INCLUDE: Matching Network (MATCHING), Prototype Network (PROTOTYPE), Relation Network
(RELATION) AND Deep Nearest Neighbor Neural Network (DN4) AND THE PROPOSED BSNet. WE REPORT THE MEAN ACCURACY FOR EACH METHOD,

ALONG WITH ITS 95% CONFIDENCE INTERVAL.

Model
5-Way 5-shot Accuracy (%) 5-Way 1-shot Accuracy (%)

Cars Dogs Aircraft CUB Cars Dogs Aircraft CUB

Matching [20] 64.74 ± 0.72 59.79 ± 0.72 73.75 ± 0.69 74.57 ± 0.73 44.73 ± 0.77 46.10 ± 0.86 56.74 ± 0.87 60.06 ± 0.88
BSNet (M&C) 63.58 ± 0.75 61.61 ± 0.69 75.92 ± 0.76 74.68 ± 0.71 44.93 ± 0.80 45.91 ± 0.81 56.53 ± 0.81 60.73 ± 0.94

Prototype [21] 62.14 ± 0.76 61.58 ± 0.71 71.27 ± 0.67 75.06 ± 0.67 36.54 ± 0.74 40.81 ± 0.83 46.68 ± 0.81 50.67 ± 0.88
BSNet (P&C) 63.72 ± 0.78 62.61 ± 0.73 77.35 ± 0.68 76.34 ± 0.65 44.56 ± 0.83 43.13 ± 0.85 52.48 ± 0.88 55.81 ± 0.97

Relation [11] 68.52 ± 0.78 66.20 ± 0.74 75.18 ± 0.74 77.87 ± 0.64 46.04 ± 0.91 47.35 ± 0.88 62.04 ± 0.92 63.94 ± 0.92
BSNet (R&C) 73.47 ± 0.75 68.60 ± 0.73 80.25 ± 0.67 80.99 ± 0.63 54.12 ± 0.96 51.06 ± 0.94 64.83 ± 1.00 65.89 ± 1.00

DN4 [22] 87.47 ± 0.47 69.81 ± 0.69 84.07 ± 0.65 84.41 ± 0.58 34.12 ± 0.68 39.08 ± 0.76 60.65 ± 0.95 57.45 ± 0.89
BSNet (D&C) 86.88 ± 0.50 71.90 ± 0.68 83.12 ± 0.68 85.39 ± 0.56 40.89 ± 0.77 43.42 ± 0.86 62.86 ± 0.96 62.84 ± 0.95

Matching module: The matching module is composed of
three parts: a memory network, a metric module and an atten-
tion module. The memory network uses a simple bidirectional
LSTM, which further processes the support features from the
embedding module fφ, so that these features can contain the
context information. The metric module uses a cosine distance
measure, and a softmax layer is used in the attention module.
In the process of model training, a single support set and a
query sample will be used as input such that feature extraction
will be carried out at the same time. After that, these features
will be further processed through the memory network, and
then the final prediction value of a query image depends on
distance measurements and the attention module.

Prototype module: The prototype module is a module
which includes an Euclidean distance algorithm to calculate
the distance of query features and support features from
the embedding module fφ. The specific calculation formula
is −‖fφ(xq)− fφ(xs)‖2, where fφ(xq) represents the flat-
tened vector of a query feature and fφ(xs) represents the
flattened vector of a support prototype feature. For the 1-
shot classification, the feature of a support sample within
a class is the prototype of the class. For 5-shot, the mean
of the features of all 5 support samples in the same class
is the corresponding class prototype. The Euclidean distance
between a query feature and a class prototype represents the
dissimilarity between the query sample and the class.

Relation module: The relation module consists of two

convolution blocks and two full connection layers (or FC,
for short). Each convolution block is composed of 3 × 3
convolution of 64 filters, followed by batch normalization, a
ReLU non-linearity function and a 2 × 2 max-pooling. The
padding parameter of both blocks is set to be 0. The first FC
layer is followed by a ReLU function, and the second FC
layer is followed by a sigmoid function. The input sizes of
the first and the second FC layers are 576 and 8, respectively,
and the final output size is 1. During the training process,
we concatenated the feature of a query feature to every class
prototype (i.e. mean of support image’s features within each
class), resulting in 128-dimensional relation pairs. By passing
these relation pairs into the relation module, it computes
similarity scores between the query sample and each class.

Image-to-Class module: Different from other methods,
we use Conv64F to be the embedding module of image-to-
class module, of which the output size is 64 × 21 × 21.
We divide the features into 441 (21 × 21) 64-dimensional
local features. The image-to-class module consists of a cosine
measurement module and a K-Nearest-Neighbours classifier
(KNN for short). The cosine measurement module calculates
the cosine distance between each local features of the query
sample and each local features of the support samples. In
terms of 5-way 1-shot classification problems, we calculate
the cosine distance of the local features between the query
sample and each of the 5 support samples, get the cosine
distance of size 5× 441× 441. Then the KNN classifier takes
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Table III
FIVE-WAY FEW-SHOT CLASSIFICATION PERFORMANCE OF THE PROPOSED
BSNet BY ADJUSTING THE WEIGHTS IN THE LOSS FUNCTION, lq , ON THE

CUB-200-2011 DATASET. HERE lq = λ× l
(1)
q + β × l

(2)
q . WE REPORT

THE MEAN ACCURACY OF 600 RANDOMLY GENERATED TESTING
EPISODES FOR BSNet (R&C), WITH ITS 95% CONFIDENCE INTERVAL.

λ β

5-Way Accuracy (%)
CUB-200-2011

1-shot 5-shot

1 0.1 65.65 ± 0.97 78.80 ± 0.70
1 0.3 63.86 ± 0.91 78.83 ± 0.62
1 0.5 64.75 ± 0.97 80.01 ± 0.65
1 0.7 63.55 ± 0.97 79.08 ± 0.64
1 0.9 64.48 ± 1.00 79.08 ± 0.63
0.1 1 64.36 ± 0.94 79.22 ± 0.67
0.3 1 64.38 ± 1.00 79.55 ± 0.68
0.5 1 64.96 ± 0.98 79.41 ± 0.68
0.7 1 63.97 ± 1.02 78.59 ± 0.67
0.9 1 64.92 ± 0.96 78.53 ± 0.69
1 1 65.89 ± 1.00 80.99 ± 0.63

the category corresponding to the maximum of sum of top-3
cosine distances in each class as the prediction category of the
query sample (i.e. using K = 3). For 5-shot experiments, we
provide 5 support features of each class with 2205 (21×21×5)
64-dimensional local features.

Cosine module: The cosine module (i.e. the cosine similar-
ity branch in Section III-C) consists of two convolution blocks
and a cosine similarity measurement layer. Each convolution
block is composed of 3×3 convolution of 64 filters, followed
by batch normalization, a ReLU non-linearity activation func-
tion and a pooling layer. The padding of each block is 1. The
first convolution block is followed by a 2×2 max-poling, and
the second convolution block is followed by a 2×2 avg-pool.
Our cosine module does not require to concatenate representa-
tions of a query image and class prototypes, and feature maps
of the query image and class prototypes are fed independently
to the convolution blocks. Then these new feature maps are
flattened and pass through a cosine similarity layer to compute
the cosine distance between the query image and each class.
Cosine similarity scores represent the similarity between query
samples and each class’s prototype given support samples. For
5-shot learning, a class prototype is the mean of the feature
maps of 5 support images from an identical class, while it is
directly the feature map of a support image in 1-shot scenarios.

Bi-similarity module: We combine the self-proposed co-
sine module with other modules to build our bi-similarity
module. That is, hγ is our cosine module, and gϕ can be any
other modules mentioned above. Note that the parameter set-
ting of BSNet’s experiments is the same as that of gϕ similarity
experiments. In this way, features from the embedded module
fφ enter into hγ and gϕ respectively, producing bi-similarity
prediction values. At the meta-training stage, we update our
network with the average of the prediction losses of the two
similarity branches (Equation (2)). At the meta-testing stage,
we use the average of two similarity scores generated by the
two branches to produce the final prediction (Equation (3)).

C. Comparison with State-of-the-art Methods on Few Shot
Classification

To evaluate the performance of the proposed BSNet, we
compare it with several metric/similarity based few-shot clas-
sification networks, i.e., Matching Network [20], Prototype
Network [21], Relation Network [11], DN4 [22], on the four
images datasets mentioned in Sec. IV-A. Few shot classifi-
cation results are shown in Table II. BSNet is implemented
by keeping the hγ branch of Bi-similarity module to be our
cosine module, replacing the gϕ branch by an arbitrary module
among Matching module, Prototype module, Relation module,
and Image-to-Class module in Sec. IV-B, resulting in BSNet
(M&C), BSNet (P&C), BSNet (R&C), and BSNet (D&C) in
Table II, respectively.

Our BSNet outperforms Matching Network on Stanford-
Dogs, FGVC-Aircraft and CUB-200-2011, and achieves com-
parable generalization performance on Stanford-Cars (63.58%
versus 64.74%). To compare with DN4, we combine its
similarity measurement (i.e. the Image-to-Class module in
Sec. IV-B) with our cosine similarity measurement (i.e. the
Cosine module in Sec. IV-B), which achieves notable 85.39%
on the CUB-200-2011 dataset. It also demonstrates that the
proposed BSNet consistently exceeds the Prototype Network
and Relation Network on all of the four fine-grained datasets.

A tougher problem is fine-grained 1-shot classification. We
also conducted 5-way 1-shot experiments on the four fine-
grained datasets. Table II demonstrates that the proposed
BSNet achieves the state-of-the-art classification performance
on fine-grained datasets in 1-shot scenarios. That is, the pro-
posed BSNet achieves the best classification accuracy on each
dataset, 54.12%, 51.06%, 64.83% and 65.89%, respectively.

It is found that the proposed BSNet has great improvements
by combining the deep relation measurement (i.e. the Relation
module in Sec. IV-B) and our Cosine module, which consis-
tently obtains state-of-the-art performance on all of the four
fine-grained datasets in 1-shot scenarios. It is also found that
the combination of our Cosine module with other few-shot
networks boosts the performance (around 2% to 8% in mean
accuracy) with the exception of Matching Network.

For the two addends in the loss function of BSNet (Equa-
tion 2), we also tried to tune their weights according to
lq = λ × l

(1)
q + β × l

(2)
q . Table III lists the classification

performance of BSNet (R&C) on the CUB-200-2011 dataset
when λ and β are set to different values. Firstly, the highest
mean value of the classification accuracies is achieved when
the weights of the two addends both equal 1. Meanwhile,
we can only observe tiny difference of the standard deviation
between different settings of the weights. Thus, we simply
select equal weights for the two addends in the loss function.

D. Few-shot Classification with Different Backbone Networks

In the previous experiments, we used feature embedding
modules Conv4 for the Matching Network, Prototype Network
and Relation Network, and Con64F for DN4. To further in-
vestigate the effectiveness of the proposed BSNet, We changed
the feature embedding module to Conv4, Conv6, and Conv8.
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Table IV
FEW-SHOT CLASSIFICATION OF CHANGING THE BACKBONE NETWORK ON THE STANFORD-CARS AND CUB-200-2011 DATASETS. WE REPORT THE

MEAN ACCURACY FOR EACH METHOD, ALONG WITH ITS 95% CONFIDENCE INTERVAL.

Backbone Model
5-Way Accuracy (%)

5-shot 1-shot
Stanford-Cars CUB-200-2011 Stanford-Cars CUB-200-2011

Conv4

Matching Network [20] 64.74 ± 0.72 74.57 ± 0.73 44.73 ± 0.77 60.06 ± 0.88
BSNet (M&C) 63.58 ± 0.75 74.68 ± 0.71 44.93 ± 0.80 60.73 ± 0.94

Prototype Network [21] 62.14 ± 0.76 75.06 ± 0.67 36.54 ± 0.74 50.67 ± 0.88
BSNet (P&C) 63.72 ± 0.78 76.34 ± 0.65 44.56 ± 0.83 55.81 ± 0.97

Relation Network [11] 68.52 ± 0.78 77.87 ± 0.64 46.04 ± 0.91 63.94 ± 0.92
BSNet (R&C) 73.47 ± 0.75 80.99 ± 0.63 54.12 ± 0.96 65.89 ± 1.00

DN4 [22] 86.59 ± 0.54 82.97 ± 0.66 59.57 ± 0.87 64.02 ± 0.92
BSNet (D&C) 86.68 ± 0.54 84.18 ± 0.64 61.41 ± 0.92 65.20 ± 0.92

Conv6

Matching Network [20] 71.65 ± 0.72 76.36 ± 0.60 57.00 ± 0.94 61.05 ± 0.93
BSNet (M&C) 74.50 ± 0.75 78.99 ± 0.65 58.32 ± 0.95 67.60 ± 0.91

Prototype Network [21] 74.55 ± 0.71 80.59 ± 0.61 53.92 ± 0.93 63.63 ± 0.93
BSNet (P&C) 74.61 ± 0.71 80.51 ± 0.62 54.25 ± 0.96 64.93 ± 0.99

Relation Network [11] 72.86 ± 0.73 79.16 ± 0.68 47.36 ± 0.93 62.93 ± 0.97
BSNet ( R&C) 76.90 ± 0.70 80.32 ± 0.62 55.27 ± 1.00 66.19 ± 0.98

DN4 [22] 87.04 ± 0.54 83.81 ± 0.65 42.77 ± 0.81 66.13 ± 0.94
BSNet (D&C) 86.17 ± 0.57 83.43 ± 0.64 57.16 ± 0.97 67.58 ± 0.95

Conv8

Matching Network [20] 71.84 ± 0.73 74.84 ± 0.62 57.41 ± 0.96 63.44 ± 0.95
BSNet (M&C) 72.26 ± 0.72 76.96 ± 0.63 57.86 ± 0.91 66.06 ± 0.98

Prototype Network [21] 76.69 ± 0.68 81.44 ± 0.61 57.66 ± 0.99 65.54 ± 0.97
BSNet (P&C) 76.30 ± 0.70 81.77 ± 0.61 53.19 ± 0.96 65.50 ± 0.99

Relation Network [11] 73.09 ± 0.75 78.63 ± 0.66 47.45 ± 0.94 62.47 ± 0.99
BSNet (R&C) 75.29 ± 0.72 80.60 ± 0.63 53.77 ± 0.94 63.23 ± 1.01

DN4 [22] 88.14 ± 0.50 84.41 ± 0.63 61.73 ± 0.97 64.26 ± 1.01
BSNet (D&C) 84.66 ± 0.59 81.06 ± 0.72 61.20 ± 0.97 64.28 ± 1.01

ResNet-10
Relation Network [11] 83.85 ± 0.64 81.67 ± 0.58 63.55 ± 1.04 69.95 ± 0.97

BSNet (R&C) 84.09 ± 0.66 82.85 ± 0.61 66.97 ± 0.99 69.73 ± 0.97

ResNet-18
Relation Network [11] 83.61 ± 0.68 83.04 ± 0.60 61.02 ± 1.04 69.58 ± 0.97

BSNet (R&C) 85.28 ± 0.64 83.24 ± 0.60 60.36 ± 0.98 69.61 ± 0.92

ResNet-34
Relation Network [11] 89.07 ± 0.56 84.21 ± 0.55 76.35 ± 1.00 71.89 ± 1.04

BSNet (R&C) 85.30 ± 0.68 82.12 ± 0.59 72.72 ± 1.02 68.98 ± 1.04

We run all the compared methods and BSNet on the Stanford-
Cars and CUB-200-2011 datasets, respectively. Regarding the
structure of Conv4 (introduced in Section IV-B), Conv6, and
Conv8, we used the same setting as [23]. The classification
results are listed in Table IV, from which we can make the
following observations:

Firstly, when all the methods use Conv4 as the feature
embedding module, for the 5-way 5-shot classification on
the Stanford-Cars dataset, the proposed BSNet is inferior
to the Matching Network. But in other cases, the proposed
method performs better than the Matching Network, Prototype
Network, Relation Network, and DN4 on the Stanford-Cars and
CUB-200-2011 datasets in both the 5-way 5-shot classification
and the 5-way 1-shot classification scenarios. When all the
methods use Conv6 as the feature embedding module, the
proposed BSNet performs slightly worse than the Prototype
network and DN4 on CUB-200-2011 dataset, and performs
slightly worse than DN4 on Stanford-Cars in the 5-way 5-

shot classification. In other cases, BSNet performs better than
all the compared methods in the 5-way 5-shot classification.
Moreover, BSNet performs the best in the 5-way 1-shot tasks.
Secondly, when all the methods use Conv8 as the feature
embedding module, the proposed BSNet performs worse than
Prototype Network and DN4 in 5-way 1-shot and 5-way 5-shot
tasks, respectively. However, it performs better than Matching
Network and Relation Network on Stanford-Cars and CUB-
200-2011 for both the 5-way 5-shot and 5-way 1-shot tasks.

In addition to traditional convolutional backbone networks,
we test feature embedding by ResNet-10, ResNet-18 or ResNet-
34, for Relation Network and BSNet on the Stanford-Cars and
CUB-200-2011 datasets (see Table IV). We used the same
setting as [23], except that the epoch number of ResNet-34 is
set to 1,800 since this feature embedding network is difficult
to converge on the training data, especially for BSNet. From
Table IV, we find that, when Relation Network and BSNet use
ResNet-10 or ResNet-18 as the feature embedding module,
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Figure 3. Ablation study: effectiveness of the two-branch similarity. Five-way few-shot classification performance of Relation Network, Cosine Network and
the proposed BSNet (R&C), on the Stanford-Cars (Cars), Stanford-Dogs (Dogs), FGVC-Aircraft (Aircraft) and CUB-200-2011 (CUB) datasets. The mean
accuracy of 600 randomly generated testing episodes for each method is reported.

BSNet generally outperforms Relation Network. When
ResNet-34 is chosen, however, Relation Network is better.

In brief, we can conclude that, firstly, when we change
the feature embedding to Conv4, Conv6, Conv8, ResNet-10,
and ResNet-18, BSNet outperforms the compared methods in
most of the cases. Secondly, the performance of all compared
methods will increase when the embedding layer becomes
deeper, which is consistent with the findings in [23].

E. Ablation Study on Effectiveness of Bi-Similarity Module

To further explore the effect of Bi-similarity module, in
this section, we prune either of two similarity branches in Bi-
similarity module. If only keeping Relation similarity branch
and pruning the Cosine similarity branch, we recover the
Relation Network [11]. Similarly, if only keeping our cosine
branch, we obtain a single Cosine module based network,
which is denoted by Cosine Network in this work.

We compare the performance of Relation Network, Cosine
Network and the proposed BSNet with different embedding
modules here, i.e., Conv4 and Resnet-10, on the four fine-
grained datasets. Experimental results of 5-way 5-shot and 5-
way 1-shot tasks are presented in Figure 3. From Figure 3,
it can be found that firstly, in some cases Relation Network
performs better than Cosine Network, and in other cases Co-
sine Network performs better than Relation Network. Secondly,

Table V
FIVE-WAY FEW-SHOT CLASSIFICATION PERFORMANCE ON THE

Stanford-Cars (CARS) AND CUB-200-2011 (CUB) DATASETS. THE
METHODS INCLUDE: Matching Network, Prototype Network, Relation

Network, AND THE PROPOSED BSNet BUT WITH TWO OTHER SIMILARITY
METRICS. WE REPORT THE MEAN ACCURACY FOR EACH METHOD, ALONG

WITH ITS 95% CONFIDENCE INTERVAL.

Shot Model
5-Way Accuracy (%)

Cars CUB

5-shot

Matching [20] 64.74 ± 0.72 74.57 ± 0.73
Prototype [21] 62.14 ± 0.76 75.06 ± 0.67
Relation [11] 68.52 ± 0.78 77.87 ± 0.64

BSNet (M&P) 68.69 ± 0.70 78.20 ± 0.64
BSNet (M&R) 67.32 ± 0.71 77.95 ± 0.69
BSNet (P&R) 63.73 ± 0.74 76.83 ± 0.65

1-shot

Matching [20] 44.73 ± 0.77 60.06 ± 0.88
Prototype [21] 36.54 ± 0.74 50.67 ± 0.88
Relation [11] 46.04 ± 0.91 63.94 ± 0.92

BSNet (M&P) 38.44 ± 0.75 52.10 ± 0.90
BSNet (M&R) 45.92 ± 0.79 62.70 ± 0.92
BSNet (P&R) 41.20 ± 0.83 52.95 ± 0.98

in most cases, the proposed BSNet outperforms both of the
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Figure 4. Visualization of similarity scores predicted by Relation Network [11], Cosine Network and the proposed BSNet on the Stanford-Cars (Cars) and
CUB-200-2011 (CUB) datasets. In each confusion matrix, the vertical axis shows 5 classes in a task, the horizontal axis shows query samples in the 5 classes,
each class contains 16 query samples. Warmer color means larger similarity score.

Table VI
FIVE-WAY FEW-SHOT CLASSIFICATION PERFORMANCE ON THE Stanford-Cars AND CUB-200-2011 DATASETS. THE METHODS INCLUDE: Matching

Network, Prototype Network, Relation Network, Cosine Network, AND THE PROPOSED BSNet WITH THREE OR FOUR SIMILARITY METRICS. WE REPORT
THE MEAN ACCURACY FOR EACH METHOD, ALONG WITH ITS 95% CONFIDENCE INTERVAL.

Model
5-Way 5-shot Accuracy (%) 5-Way 1-shot Accuracy (%)

Stanford-Cars CUB-200-2011 Stanford-Cars CUB-200-2011

Matching Network [20] 64.74 ± 0.72 74.57 ± 0.73 44.73 ± 0.77 60.06 ± 0.88
Prototype Network [21] 62.14 ± 0.76 75.06 ± 0.67 36.54 ± 0.74 50.67 ± 0.88
Relation Network [11] 68.52 ± 0.78 77.87 ± 0.64 46.04 ± 0.91 63.94 ± 0.92

Cosine Network 69.98 ± 0.83 77.86 ± 0.68 53.84 ± 0.94 65.04 ± 0.97

BSNet (M&P&R) 71.53 ± 0.73 79.83 ± 0.63 45.56 ± 0.83 60.28 ± 0.94
BSNet (M&P&C) 71.50 ± 0.75 79.30 ± 0.61 44.33 ± 0.83 59.18 ± 0.93
BSNet (M&R&C) 72.70 ± 0.71 80.84 ± 0.67 54.82 ± 0.89 66.13 ± 0.90
BSNet (P&R&C) 69.20 ± 0.76 79.26 ± 0.62 47.09 ± 0.85 58.98 ± 0.96

BSNet (M&P&R&C) 72.78 ± 0.73 80.94 ± 0.63 48.00 ± 0.87 59.50 ± 0.96

Relation Network and the Cosine Network.

We visualize similarity scores obtained by Relation Net-
work, Cosine Network, and the proposed BSNet in the 5-
way 5-shot experiments. In particular, we fixed the testing
tasks from the meta-testing set of the Stanford-Cars and
CUB-200-2011 datasets, respectively, so that the sequences
of testing tasks for different methods on each dataset are the
same. On the Stanford-Cars dataset, the prediction accuracy of
Relation Network, Cosine Network and the proposed BSNet are
68.52±0.78%, 69.98±0.83% and 73.47±0.75%, respectively.
On the CUB-200-2011 dataset, the prediction accuracy of
Relation Network, Cosine Network and the proposed BSNet are

77.87±0.64%, 77.86±0.68% and 80.99±0.63%, respectively.
For each dataset, we randomly select a testing task and
show the similarity scores of its query images via confusion
matrices. Please refer to Figure 4 for details.

From Figure 4, it can be observed that on the Stanford-Cars
dataset, for the query images from the 4th class, the predicting
similarity scores of Relation Network are higher than those
of Cosine Network; on the CUB-200-2011 dataset, for the
query images from the 3rd class, the predicting similarity
scores of Cosine Network are higher than those of Relation
Network. However, in both cases, BSNet can predict query
images correctly by synthesizing the Relation module and the
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Figure 5. Feature visualization under Matching Network [20], Prototype Network [21], Relation Network [11], DN4 [22], Cosine Network and the proposed
BSNet on the Stanford-Cars and Stanford-Dogs datasets. The redder the region, the more class-discriminative it is.

Cosine module. Similar patterns can also be found in other
tasks.

These results further show that our bi-similarity idea is
reasonable and the proposed BSNet is less biased on similarity.

F. Feature Visualization

To further demonstrate that the features learned by the
proposed BSNet are distributed in a smaller feature space and
are more discriminative, we use a gradient-based technique,
Grad-CAM [44], to visualize the important regions in the
original images, which is illustrated in Figure 1.

In Figure 5, we randomly select 8 images (4 from Stanford-
Cars, 4 from Stanford-Dogs) and resize the original images to
the same size as the output of the embedding layer fφ. The
resized raw images are compared to the outputs of Grad-CAM
under the setting of Matching Network, Prototype Network,
Relation Network, DN4 Network, our Cosine Network and the
proposed BSNet. Figure 5 shows that in comparison with other
compared methods, the proposed BSNet consistently has a
reduced number of class-discriminative regions concentrated
in the regions of “cars” or “dogs”, thus the features learned
by BSNet are more robust and efficient.

G. Effect of Changing Similarity Modules on BSNet

To further show the applicability of BSNet, we implemented
BSNet based on two similarity metrics among Prototype mod-
ule, Relation module and Matching module (see Table V). In
addition, we also extended BSNet to a network with three or
four similarity modules (see Table VI).

From Table V, we can observe that, for 5-way 5-shot
classification, either BSNet is better than single similarity
metric networks, e.g., BSNet(M&P) outperforms Matching
Network and Prototype Network on the Stanford-Cars dataset,
or BSNet performs in between the two single similarity
metric networks, e.g., BSNet(M&R) underperforms Matching
Network but outperforms Relation Network on the Stanford-
Cars dataset. For 5-way 1-shot classification, the accuracy of
BSNet is in between those of the two single similarity metric
networks on the two datasets.

From Table VI, we can see that, when we extend the pro-
posed BSNet to a network with three similarity metrics, it still
works well on the Stanford-Cars and CUB-200-2011 datasets.
BSNet either outperforms all single similarity networks, or
performs better than the worst one of three single similarity
networks but worse than the best one of three single similarity
networks. When we equip BSNet with four similarity metrics,
similar patterns can be found.
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In short, the above results indicate that: firstly, when we
replace the similarity branch with different similarity metric
modules, the improvement over a single similarity network is
consistent with that of the BSNet with Relation module and
Cosine module. Secondly, when we extend BSNet to multiple
similarity metrics, the improvement is also consistent with the
bi-similarity BSNet.

H. Discussion

The experimental results have demonstrated the effective-
ness of BSNet. As listed in Table II and Table IV, in most
cases, the proposed BSNet can improve the state-of-the-art
metric-based few-shot learning methods. This can be attributed
to the following properties of BSNet. Firstly, compared with
the single-similarity network, even though the proposed BSNet
contains more model parameters, it does not necessarily in-
crease the empirical Rademacher complexity according to the
Theorem 1. When a single-similarity based few-shot method
has larger model complexity, bi-similarity can reduce the
model complexity, and thus resulting in better generalization
performance. Therefore, when a single-similarity network is
excessively flexible, a BSNet with better generalization can be
constructed by simply adding an additional similarity module
with lower model complexity onto the single-similarity net-
work. Secondly, BSNet can learn more discriminative features
than other single-similarity networks, as the feature embedding
in BSNet needs to meet two distinct similarity measures.

The experimental results demonstrate the applicability of
BSNet. As listed in Table V and VI, the proposed BSNet either
performs better than all individual similarity networks, or per-
forms better than the worst one of three individual similarity
networks. We can interpret this pattern from the perspective
of the Rademacher complexity: the Rademacher complexity
of the proposed BSNet is no more than the average of the
Rademacher complexities of two individual networks. Hence,
according to the relationship between a model generalization
error bound and an empirical Rademacher complexity (The-
orem 3.1 in [45]), when the Rademacher complexity of the
proposed BSNet is lower than both two individual networks,
the proposed BSNet may perform better than the two individual
networks; otherwise, BSNet may perform in between the two
individual networks. Thus, in terms of the similarity metric
selection for BSNet, it is desirable to have each similarity
metric module with lower Rademacher complexity.

V. CONCLUSION

In this paper, we proposed a novel neural network, namely
Bi-Similarity Network, for few-shot fine-grained image classi-
fication. The proposed network contains a shared embedding
module and a bi-similarity module, the structure of which
contains a parameter sharing mechanism. The Bi-Similarity
Network can learn fewer but more discriminative regions
compared with other single metric/similarity based few-shot
learning neural networks. Extensive experiments demonstrate
that the proposed BSNet outperforms or matches previous
state-of-the-art performance on fine-grained image datasets.
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