
ar
X

iv
:2

00
1.

05
78

6v
1 

 [
cs

.F
L

] 
 1

6 
Ja

n 
20

20

A Categorical Framework for
Learning Generalised Tree Automata

Gerco van Heerdt
University College London
gerco.heerdt@ucl.ac.uk

Tobias Kappé
University College London

tkappe@cs.ucl.ac.uk

Jurriaan Rot
University College London

Radboud University
jrot@cs.ru.nl

Matteo Sammartino
Royal Holloway, University of

London
University College London

ma�eo.sammartino@rhul.ac.uk

Alexandra Silva
University College London
alexandra.silva@ucl.ac.uk

Abstract

Automata learning is a popular technique used to automati-
cally construct an automaton model from queries. Much re-
search went into devising ad hoc adaptations of algorithms
for different types of automata. The CALF project seeks to
unify these using category theory in order to ease correct-
ness proofs and guide the design of new algorithms. In this
paper, we extend CALF to cover learning of algebraic struc-
tures that may not have a coalgebraic presentation. Further-
more, we provide a detailed algorithmic account of an ab-
stract version of the popular L⋆ algorithm, which was miss-
ing from CALF. We instantiate the abstract theory to a large
class of Set functors, by which we recover for the first time
practical tree automata learning algorithms from an abstract
framework and at the same time obtain new algorithms to
learn algebras of quotiented polynomial functors.

Keywords active learning, algebras, tree automata

1 Introduction

Automata learning—automated discovery of automata mod-
els from system observations—is emerging as a highly effec-
tive bug-finding technique with applications in verification
of passports [3], bank cards [1], and basic network proto-
cols [18]. The design of algorithms for automata learning of
different models is a fundamental research problem, and in
the last years much progress has been made in developing
and understanding new algorithms. The roots of the area
go back to the 50s, when Moore studied the problem of in-
ferring deterministic finite automata. Later, the same prob-
lem, albeit under different names, was studied by control
theorists [19] and computational linguists [16]. The algo-
rithm that caught the attention of the verification commu-
nity is the one presented in Dana Angluin’s seminal paper
in 1987 [8]. She proves that it is possible to infer minimal
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deterministic automata in polynomial time using only so-
called membership and equivalence queries. Vaandrager’s
recent CACM article [27] provides an extensive review of
the literature in automata learning and its applications to
verification.

Angluin’s algorithm, called L
⋆, has served as a basis for

many extensions thatwork formore expressive models than
plain deterministic automata: I/O automata [4], weighted
automata [13, 29], register automata [2, 20, 24], nominal au-
tomata [23], and Büchi automata [9]. Many of these exten-
sions were developed independently and, though they bear
close resemblance to the original algorithm, arguments of
correctness and termination had to be repeated every time.
This motivated Silva and Jacobs to provide a categorical un-
derstanding of L⋆ [21] and capture essential data structures
in an abstract way in the hope of developing a generic, mod-
ular, and parametric framework for automata learning based
on (co)algebra. Their early work was taken much further in
van Heerdt’s master thesis [28], which then formed the ba-
sis of a wider project on developing a Categorical Automata

Learning Framework—CALF.1 CALF was described in the
2017 paper [30], but several problems were left open:

1. An abstract treatment of counterexamples: in the original
L
⋆ algorithm, counterexamples are a core component, as
they enable refinement of the state space of the learned
automaton to ensure progress towards termination.

2. The development of a full abstract learning algorithm that
could readily be instantiated for a givenmodel: in essence
CALF provided only the abstract data structures needed
in the learning process, but no direct algorithm.

3. Identifying suitable constraints on the abstract framework
to cover interesting examples, such as tree automata, that
did not fit the constraints of the original paper.

1h�p://www.calf-project.org
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In this paper, we provide answers to all the above open prob-
lems and develop CALF further to provide concrete learn-
ing algorithms for models that are algebras for a given func-
tor, which notably include tree automata. In a nutshell, the
contributions and technical roadmap of the paper are as fol-
lows. After recalling some categorical notions, the basics of
L
⋆ (Section 2), and CALF (Section 3), we provide:

1. A general treatment of counterexamples (Section 4), to-
gether with an abstract analysis of progress, that enables
termination analysis of a generic algorithm.

2. A step-by-step generalisation of all components of L⋆ for
models that are algebras of a given functor (Section 5).

3. Instantiation of the abstract algorithm to concrete cate-
gories and functors (Section 6), providing the first learn-
ing algorithm for tree automata derived abstractly.

The work in the present paper complements other recent
work on abstract automata learning algorithms: Barlocco,
Kupke, and Rot [12] gave an algorithm for coalgebras of a
functor, whereas Urbat and Schröder [26] provided an algo-
rithm for structures that can be represented as both alge-
bras and coalgebras. Our focus instead is on algebras, such
as tree automata, that cannot be covered by the aforemen-
tioned frameworks. A detailed comparison is given in Sec-
tion 7. We conclude with directions for future work in Sec-
tion 8. Omitted proofs are included in appendices A and B.

2 Preliminaries

In this section, we introduce some categorical notions that
we will need later in the technical development of the paper,
andwe describeAngluin’s original L⋆ algorithm.We assume
some prior knowledge of category theory (categories, func-
tors); definitions can be found in [11].

Definition2.1 (Factorisation). An (E,M)-factorisation sys-
tem on a category C consists of classes of morphisms E and
M, closed under composition with isos, such that for ev-
ery morphism f in C there exist e ∈ E and m ∈ M with
f =m ◦ e , and we have a unique diagonal fill-in property.

Given a morphism f , we write f ⊲ and f ⊳ for the E-part
andM-part of its factorisation, respectively.
We work in a category C with finite products and co-

products and a fixed factorisation system (E,M), where E
consists of epis and M consists of monos. We fix a vari-
etor F in C, that is, a functor such that there is a free F -
algebra monad (T ,η, µ). We write γX for the F -algebra struc-
ture FTX → TX , which is natural in X . Given an F -algebra

(Y ,y), we write f ♯ : (TX , µX ) → (Y ,y) for the extension of

f : X → Y and denote y∗ = id
♯
Y
: (TY , µY ) → (Y ,y). We of-

ten implicitly apply forgetful functors. We also fix an input
object I and an output objectO and write FI for the functor
I + F (−). Lastly, we assume that F preserves E.

2.1 Abstract Automata

We now recall the abstract automaton definition from Arbib
andManes [10], whichwewill use in this paper, and its basic
properties of accepted language and minimality.

Definition 2.2 (Automaton). An automaton is a tupleA =
(Q, δ , i,o) consisting of a state space objectQ , dynamicsδ : FQ →
Q , initial states i : I → Q , and an output o : Q → O . A ho-

momorphism from A to A′ = (Q ′, δ ′, i ′,o′) is an F -algebra
morphism h from (Q, δ ) to (Q ′, δ ′)—i.e., h : Q → Q ′ with
δ ′ ◦ Fh = h ◦ δ—such that h ◦ i = i ′ and o′ ◦ h = o.

We will use the case of deterministic automata as a run-
ning example throughout this paper.

Example 2.3. If C = Set with the (surjective, injective) fac-
torisation system, F = (−) ×A for a finite set A, I = 1 = {∗},
and O = 2 = {0, 1}, we recover deterministic automata
(DAs) as automata: the state space is a set Q , the transition
function is the dynamics, the initial state is represented as a
morphism 1→ Q , and the classification of states into accept-
ing and rejecting ones is represented by a morphismQ → 2.
In this case we obtain the monadT = (−) ×A∗, with its unit
pairing an element with the empty word ε and the multipli-
cation concatenating words. The extension of δ : Q×A→ Q

to δ ∗ : Q ×A∗ → Q is the usual one that lets the automaton
read a word starting from a given state.

Definition2.4 (Language). A language is amorphismTI →

O . The language accepted by an automaton A = (Q, δ , i,o)

is given by LA = TI
i ♯

−→ Q
o
−→ O .

Definition 2.5 (Minimality [10]). An automaton A is said

to be reachable if its reachability map i♯ is in E. A is mini-

mal if it is reachable and every reachable automatonA′ s.t.
LA = LA′ admits a (necessarily unique) homomorphism
toA.

Example 2.6. Recall the DA setting from Example 2.3. The

reachability map i♯ : 1 × A∗ → Q for a DA A = (Q, δ , i,o)
assigns to each word the state reached after reading that
word from the initial state. The language LA : 1 × A∗ → 2
accepted by A is precisely the language accepted by A in
the traditional sense. Reachability ofA means that for every
state q ∈ Q there exists a word that leads to q from the ini-
tial state. If this is the case, the unique homomorphism into
a language-equivalent minimal automaton identifies states
that accept the same language. Here, minimality is equiva-
lent to having a minimal number of states.

2.2 The L⋆ algorithm

In this section, we recall Angluin’s algorithmL
⋆, which learns

the minimal DFA accepting a given unknown regular lan-
guageL. The algorithm can be seen as a game between two
players: a learner and a teacher. The learner can ask two
types of queries to the teacher:

2
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Algorithm 1Make table closed and consistent

1: function Fix(S, E)
2: while T is not closed or not consistent do
3: if T is not closed then
4: find t ∈ S,a ∈ A such that ∀s ∈ S . T(ta) , T(s)

5: S ← S ∪ {sa}

6: else if T is not consistent then
7: find s1, s2 ∈ S , a ∈ A and e ∈ E such that

T(s1) = T(s2) and T(s1a)(e) , T(s2a)(e)

8: E ← E ∪ {ae}

9: return S , E

Algorithm 2 L
⋆ algorithm

1: S ← {ε}

2: E ← {ε}

3: S, E ← Fix(S, E)

4: while EQ(HT) = c do

5: S ← S ∪ prefixes(c)

6: S, E ← Fix(S, E)

7: returnHT

Figure 1. Angluin’s L⋆ algorithm

1. Membership queries: is a wordw ∈ A∗ in L?
2. Equivalence queries: is a hypothesis DFA H correct?

That is, is LH = L?

The teacher answers yes or no to these queries. Moreover,
negative answers to equivalence queries are witnessed by a
counterexample—a word classified incorrectly byH .
The learner gathers the results of queries into an observa-

tion table: a function T : S ∪ S ·A→ 2E , where S, E ⊆ A∗ are
finite sets of words and T(s)(e) = L(se). The function T can
be depicted as a table in which elements of S and S ·A label
rows (· is pointwise concatenation) and elements of E label
columns. As an example, consider the following table over
the alphabet {a,b}, where S = {ε} and E = {ε,b,ab}:

E

ε b ab

S
[

ε 1 0 1

S · A

[
a 0 1 0
b 0 0 0

This table approximates a language that contains ε,ab, but
not a,b,bb,aab,bab. Following the visual intuition, we will
refer to the part of the table indexed by S as the top part of
the table, and the one indexed by S · A as the bottom part.
Intuitively, the content of each row labelled by a word s

approximates theMyhill-Nerode equivalence class of s . This
is in fact themain idea behind the construction of a hypothe-
sis DFAHT from T: states ofHT are distinct rows of T, corre-
sponding to distinct Myhill-Nerode equivalence classes. For-
mally,HT = (Q,q0, δ , F ) is defined as follows:

• Q = {T(s) | s ∈ S} is a finite set of states;
• F = {T(s) | s ∈ S, T(s)(ε) = 1} is the set of final states;
• q0 = T(ε) is the initial state;
• δ : Q ×A→ Q, (T(s),a) 7→ T(sa) is the transition function.

For F and q0 to be well-defined we need ε in E and S respec-
tively. Moreover, for δ to be well-defined we need T(sa) ∈ Q
for all sa ∈ S · A, and we must ensure that the choice of s

ε

ε 1

a 0

(a)

ε

ε 1
a 0

aa 1

(b)

a

a

(c)

ε

ε 1
a 0
aa 1
aaa 1

aaaa 1

(d)

ε a

ε 1 0
a 0 1
aa 1 1
aaa 1 1

aaaa 1 1

(e)

a

a

a

(f)

Figure 2. Example run of L⋆ on L = {w ∈ {a}∗ | |w | , 1}.

to represent a row does not affect the transition. These con-
straints are captured in the following two properties.

Definition 2.7 (Closedness and consistency). A table T is
closed if for all t ∈ S and a ∈ A there exists s ∈ S such that
T(s) = T(ta). A table is consistent if for all s1, s2 ∈ S such that
T(s1) = T(s2) we have T(s1a) = T(s2a) for any a ∈ A.

Closedness and consistency form the core of L⋆, described
in Algorithm 2. The sets S and E are initialised with the
empty word ε (lines 1 and 2), and extended as a closed and
consistent table is built using the subroutine Fix, given in
Algorithm 1. The main loop uses an equivalence query, de-
noted EQ, to ask the teacher whether the hypothesis in-
duced by the table is correct. If the result is a counterex-
ample c , the table is updated by adding all prefixes of c to S
(line 5) and made closed and consistent again (line 6). Oth-
erwise, the algorithm returns with the correct hypothesis
(line 7).

Example 2.8. We now run Algorithm 2 with the target lan-
guage L = {w ∈ {a}∗ | |w | , 1}. The algorithm starts
with S = E = {ε}; the corresponding table is depicted in
Figure 2a. It invokes Algorithm 1 to check closedness and

3
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consistency of this table: it is not closed, because T(a) does
not appear in the top part of the table. To fix this, it adds
the word a to the set S . The resulting table (Figure 2b) is
closed and consistent, so the algorithm builds the hypothe-
sis H shown in Figure 2c and poses the equivalence query
EQ(H). The teacher returns the counterexampleaaa, which
should have been accepted, and all its prefixes are added to
the set S . The next table (Figure 2d) is closed, but not consis-
tent: T(ε) = T(aa), but T(ε ·a) , T(aa ·a). The algorithm adds
a · ε = a to E so that T(ε) and T(aa) can be distinguished, as
depicted in Figure 2e. The table is now closed and consistent,
and the new hypothesis automaton is precisely the minimal
DFA accepting L (Figure 2f).

3 The abstract data structures in CALF

In this sectionwe recall the basic notions underpinning CALF [30]:
generalisations of the observation table, and the notions of
closedness, consistency and hypothesis. We call the gener-
alised table a wrapper :

Definition 3.1 (Wrapper). A wrapper for an object Q is a

pair of morphismsW =

(
S α // Q , Q β // P

)
. We de-

fine τW = β ◦ α and call the object through which it fac-

torises HW as in τW =
(
S τ ⊲

W
// // HW // τ ⊳

W
// P

)
.

Example 3.2. Recall the DA setting from Example 2.3 and
consider a DA (Q, δ , i,o). For each S ⊆ A∗ and E ⊆ A∗, we
define αS : S → Q and βE : Q → 2E by

αS (w) = i
♯(∗,w) βE (q)(e) = (o ◦ δ

∗)(q, e).

One can show that for all S ⊆ A∗ and E ⊆ A∗ we have

(βE ◦ αS )(s)(e) = LA(∗, se).

This composed function S → 2E is precisely the upper part
of the observation table with rows S and columns E in An-
gluin’s algorithm for regular languages. The image of βE◦αS
is precisely the set of rows that appear in the table, which
are used as states in the hypothesis, and can be obtained as
HW from the wrapper (αS , βE ).

Before we define hypotheses in this abstract framework,
we need generalised notions of closedness and consistency.

Definition3.3 (Closedness and consistency). Given awrap-

perW =

(
S α // Q , Q β // P

)
, where Q is the state

space of an automaton (Q, δ , i,o), we say thatW is closed
if there exist morphisms iW : I → HW and closeW : FS →
HW making the diagrams below commute.

I Q

HW P

i

iW β

τ ⊳
W

FS FQ Q

HW P

Fα

closeW

δ

β

τ ⊳
W

Furthermore, we say thatW is consistent if there exist mor-
phisms oW : HW → O and consW : FHW → P making the

diagrams below commute.

S HW

Q O

τ ⊲
W

α oW

o

FS FHW

FQ Q P

Fα

Fτ ⊲
W

consW

δ β

If E contains only regular epimorphisms, then τ ⊲
W

is the
coequaliser of morphisms f ,д : X → S and Fτ ⊲

W
is the co-

equaliser of morphisms p,q : Y → FS for certain objects X
and Y . A wrapperW is consistent in this situation if and
only if o ◦ α ◦ f = o ◦ α ◦ д and β ◦ δ ◦ α ◦ p = β ◦ δ ◦ α ◦ q.

Example 3.4. Recall themorphisms defined in Example 3.2
and consider a DA (Q, δ , i,o). Given S ⊆ A∗ and E ⊆ A∗, the
wrapper (αS , βE ) is closed if there exists s ∈ S such that
(βE ◦ αS )(s) = (βE ◦ i)(∗) and if for all t ∈ S ×A there exists
s ∈ S such that (βE ◦ αS )(s) = (βE ◦ δ ◦ (αS × idA))(t). The
first condition holds immediately if ϵ ∈ S ; in the second
condition, βE ◦ δ ◦ (αS × idA) : S × A → 2E represents the
lower part of the observation table associated with S and E.
The wrapper (αS , βE ) is consistent if for all s1, s2 ∈ S such

that (βE ◦ αS )(s1) = (βE ◦ αS )(s2) we have (o ◦ αS )(s1) =
(o ◦ αS )(s2) and (βE ◦ δ ◦ (αS × idA))(s1) = (βE ◦ δ ◦ (αS ×
idA))(s2). The first condition holds immediately if ϵ ∈ E;
the second condition says that observations with the same
behaviour (i.e., the same row) should lead to rows with the
same content in the lower part of the table.

When a wrapper is closed and consistent, we can build
the hypothesis automaton as follows.

Definition3.5 (Hypothesis). A closed and consistent wrap-

perW =

(
S α // Q , Q β // P

)
for the state space of

an automaton (Q, δ , i,o) induces a hypothesis automatonHW =
(HW, δW, iW,oW), where δW is the unique diagonal in the
commutative square below.

FS FHW

HW P

Fτ ⊲
W

closeW consW
δW

τ ⊳
W

4 Counterexamples, generalised

In this section, we provide a key missing element for the de-
velopment and analysis of an abstract learning algorithm in
CALF: treatment of counterexamples. In the original L⋆ algo-
rithm counterexamples were used to refine the state space
of the hypothesis–namely the representations of the Myhill-
Nerode classes of the language being learned.A crucial prop-
erty for termination, which we prove at a high level of gen-
erality in this section, is that adding counterexamples to a
closed and consistent table results in a table which either
fails to be closed or consistent, and hence needs to be ex-
tended. In turn, this results in progress being made in the al-
gorithm. We will show how we can use recursive coalgebras

4



Learning Generalised Tree Automata Conference’17, July 2017, Washington, DC, USA

aswitnesses for discrepancies—i.e., as counterexamples—between
a hypothesis and the target language in our abstract approach.
Let us first recall the definition.

Definition 4.1 (Recursive coalgebras). Recall that, for an
input object I , FI = I + F (−). An FI -coalgebra ρ : S → FIS is
recursive if for every algebra x : FIX → X there is a unique
morphism x ρ : S → X making the diagram below commute.

FIS FIX

S X

FI x
ρ

x

x ρ

ρ

The uniqueness property makes these morphisms com-
mute with algebra homomorphisms. That is, if ρ : S → FIS

is recursive, (X , x) and (Y ,y) are FI -algebras, then for any FI -
algebra morphism h : (X , x) → (Y ,y) we have h ◦ x ρ = yρ .

Example 4.2. A prefix-closed subset S ⊆ A∗ is easily equipped
with a coalgebra structure ρ : S → 1+S×A that detaches the
last letter from each non-empty word and assigns ∗ to the
empty one. Such a coalgebra is recursive, where the unique
map into an algebra is defined as a restricted reachability
map. This prefix-closed set is used in Algorithm 2, for DA
(see Example 2.3), to fix the counterexample (line 5).

Recursive FI -coalgebras have the special property that
using them as the state selector in a wrapper leads to a
reachable hypothesis, as we show next. Here, and through-
out the rest of this paper, we fix a target automaton At =

(Qt, δt, it,ot) of which we want to learn the language.

Proposition 4.3. Given a recursive ρ : S → FIS and a closed

and consistent wrapper for Qt of the formW = ([it, δt]
ρ , β),

we have that τ ⊲
W
= [iW, δW]

ρ andHW is reachable.

Proof. We will first show that τ ⊲
W
= [iW, δW]

ρ by using
the uniqueness property of the right hand side. This fol-
lows from the commutative diagram below as a result of
τ ⊳
W

being a mono, together with the uniqueness property
of [iW, δW]

ρ .

FIS FIHW

FIQt HW

S Qt P

HW

FI τ
⊲
W

FI [it,δt]
ρ

[iW,closeW ]

3

2

[iW,δW ]

[it,δt] τ ⊳
W

[it,δt]
ρ

τ ⊲
W

ρ

1

β

4

τ ⊳
W

1 definition of [it, δt]
ρ

2 closedness and def. of iW
3 definition of δW 4 definition of τ

Now i
♯
W
◦[ηI ,γI ]

ρ
= [iW, δW]

ρ
= τ ⊲
W
∈ E, so i

♯
W
∈ E by [6,

Proposition 14.11 via duality]. Thus, HW is reachable. �

Definition4.4 (Restricted language). Given a recursive coal-
gebra ρ : S → FIS , we define for any automatonA = (Q, δ , i,o)
its ρ-restricted language as the composition

L
ρ

A
= S

[i,δ ]ρ

−−−−→ Q
o
−→ O .

Nowwe can definewhich recursive FI -coalgebras are coun-
terexamples for a given hypothesis.

Definition 4.5 (Counterexample). A closed and consistent
wrapperW is said to be correct up to a recursive ρ : S →
FIS if L

ρ

HW
= L

ρ

At
. A counterexample forW (or HW) is a

recursive ρ : S → FIS such thatW is not correct up to ρ.

The following result guarantees that a counterexample
exists for any incorrect hypothesis.

Proposition4.6 (Language equivalence via recursion). Given
an automaton A = (Q, δ , i,o), we have LAt = LA if and

only if L
ρ

At
= L

ρ

A
for all recursive ρ : S → FIS .

Proof. First assume that L
ρ

At
= L

ρ

A
for all recursive ρ : S →

FIS . Note thatTI is the initial algebra of FI ; thus [η,γ ] : FITI →
TI has an inverse. One easily sees that this inverse is recur-
sive, with the corresponding unique maps into algebras be-

ing reachability maps. Thus, LAt = ot ◦ i
♯
t = o ◦ i

♯
= LA .

Conversely, assume LAt = LA . Given a recursive coal-

gebra ρ : S → FIS , we have that [it, δt]
ρ
= i

♯
t ◦ [ηI ,γI ]

ρ and

[i, δ ]ρ = i♯ ◦ [ηI ,γI ]
ρ by uniqueness. Thus, the diagram be-

low commutes.

Qt

S T I O

Q

ot[it,δt]
ρ

[η,γ ]ρ

[i,δ ]ρ

i
♯
t

LAt=LA

i ♯

o �

Corollary 4.7 (Counterexample existence). Given a closed

and consistent wrapperW for Qt, we have LHW , LAt if

and only if there exists a counterexample forW.

Given a counterexample, the algorithm should adjust its
wrapper to accommodate the new information. The follow-
ing guarantees that doing this will lead to either a closed-
ness or a consistency defect.

Theorem 4.8 (Resolving counterexamples). Given a closed

and consistent wrapperW =

(
S α // Qt , Qt β // P

)

and a recursive coalgebra ρ : S ′ → FIS
′, the following holds.

If the wrapperW ′
= ([α , [it, δt]

ρ ], β) is closed and consistent,

thenW is correct up to ρ.

5
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Proof. Since the diagram below on the left commutes, we
obtain a unique diagonal h : HW → HW′ on the right.

S HW

S + S ′ Qt

HW′ P

τ ⊲
W

κ1 α

τ ⊳
W

[α , [it,δt]
ρ ]

τ ⊲
W′

β

τ ⊳
W′

S HW

S + S ′

HW′ P

τ ⊲
W

κ1
h

τ ⊳
W

τ ⊲
W′

τ ⊳
W′

We will show that h is an automaton homomorphism. Not-
ing that τ ⊳

W′ is a mono and τ ⊲
W

is an epi, commutativity of
the diagrams below shows that h commutes with the initial
states (h ◦ iW = iW′) and outputs (oW′ ◦ h = oW).

I HW HW′

Qt

HW′ P

iW

it
iW′

h

τ ⊳
W

1
2

τ ⊳
W′

β

τ ⊳
W′

1

S HW

S + S ′ Qt

HW HW′ O

τ ⊲
W

κ1

τ ⊲
W

α

oW
[α , [it,δt]

ρ ]
τ ⊲
W′

ot

3

h

2

oW′

3

1 closedness 2 definition of h 3 consistency

As for the transition functions, we use that τ ⊳
W′ is a mono to

show thath◦closeW = closeW′ ◦Fκ1 with the commutative
diagram below.

FS HW HW′

F (S + S ′) FQt

Qt

HW′ P

closeW

Fα
Fκ1

h

τ ⊳
W

1 2

τ ⊳
W′

F [α , [it,δt]
ρ ]

closeW′

δt

β

τ ⊳
W′

1

1 closedness 2 definition of h

We are now ready to show that h ◦ δW = δW′ ◦ Fh. This
follows from commutativity of the diagram below using the

fact that Fτ ⊲
W

is an epi.

FS FHW

F (S + S ′) HW

FHW FHW′ HW′

Fτ ⊲
W

Fκ1

Fτ ⊲
W

closeW
δW1

Fτ ⊲
W′

closeW′

4

h

Fh

2

δW′

3

1 definition of δW 2 definition of h
3 definition of δW′ 4 previous observation

Thus,h is an automaton homomorphismHW →HW′ . This
implies in particular that h ◦ [iW, δW]

ρ
= [iW′, δW′]ρ . It

follows that the diagram below commutes.

S ′ HW

HW′ O

[iW,δW ]
ρ

[iW′,δW′ ]
ρ

oW
h

oW′

(1)

We now show thatτ ⊲
W′◦κ2 = [iW′, δW′]ρ . This follows by

the uniqueness property of [iW′, δW′]ρ from commutativity
of the diagram below, using that τ ⊳

W′ is monic.

FI (S + S
′) FIHW′

FIS
′ FIQt HW′

S ′ Qt

S + S ′ HW′ P

FI τ
⊲
W′

FI [α , [it,δt]
ρ ]

[iW′,close
W′ ]

3
[iW′,δW′ ]

FIκ2

FI [it,δt]
ρ

[it,δt]
2

τ ⊳
W′

ρ

[it,δt]
ρ

κ2

1

β
4

[α , [it,δt]
ρ ]

τ ⊲
W′

τ ⊳
W′

1 definition of [it, δt]
ρ

2 closedness and def. of iW
3 definition of δW′ 4 definitions of τ ⊲

W′ and τ
⊳
W′

The commutative diagram below completes the proof.

S ′

S + S ′ Qt

HW HW′

O

[it,δt]
ρ

κ2

[iW′,δW′ ]
ρ

[iW,δW ]
ρ

[α , [it,δt]
ρ ]

τ ⊲
W′

1

2

ot

oW

(1)

oW′

1 consistency 2 previous observation �

Corollary 4.9 (Counterexample progress). Given a closed

and consistent wrapperW =

(
S α // Qt , Qt β // P

)

and a recursive ρ : S ′ → FIS
′ such that ρ is a counterexample

forW, ([α , [it, δt]
ρ ], β) is either not closed or not consistent.

6
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5 Generalised Learning Algorithm

We are now in a position to describe our general algorithm.
Similarly to L⋆, whichwe described in Section 2.2, it is organ-
ised into two procedures: Algorithm 3, which contains the
abstract procedure for making a table closed and consistent,
and Algorithm 4, containing the learning iterations. These
generalise the analogous procedures in L

⋆, Algorithm 1 and
Algorithm 2, respectively.

The procedure inAlgorithm3 assumes that for eachwrap-

perW =

(
S α // Qt , Qt β // P

)
there exists β ′ : Qt →

P ′ such that (α , β ′) is locally consistent w.r.t. β . These are
used in the steps in lines 4 and 6 to fix closedness and con-
sistency defects. We will see later in Section 6 that existence
of these maps ensuring local consistency can be proved con-
structively in concrete instances.
In Algorithm4, thewrapper is initialised with trivial maps

and extended to be closed and consistent using the subrou-
tine Fix (line 1). The equivalence query for the main loop
(line 2) returns a counterexample in the form of a recur-
sive coalgebra, which is used to update the wrapper. The
updated wrapper is then again passed on to the subroutine
Fix (line 4) to be made closed and consistent.
A crucial point is defining what it means to resolve the

“current” closedness and consistency defects. We refer to
these as local defects, by which we mean the ones directly
visible. For instance, in the DA example, the local closed-
ness defects are the rows from the bottom part missing in
the upper part, together with the empty word row if it is
missing. The local consistency defects are the pairs of row
labels that should be distinguished based on differing accep-
tance of those labels by the target, or differing rows when
the labels are extended with a single symbol.
We first introduce some additional notions. We partially

order the subobjects and quotients of Qt in the usual way:
for j : J → Qt and k : K → Qt inM, we say j ≤ k if there
exists f : J → K such that k ◦ f = j; for x : Qt → X and
y : Qt → Y in E, we say x ≤ y if there exists д : X → Y such
that y = д ◦ x .

Definition 5.1 (Local closedness and consistency). Given

a wrapperW =

(
S α // Qt , Qt β // P

)
and α ′ : S ′ →

Qt, we say thatW is locally closed w.r.t. α ′ if α ′⊳ ≤ α ⊳ and
there exist morphisms iW : I → HW and lcloseW,α ′ : FS →
HW making the diagrams below commute.

I Qt

HW P

it

iW β

τ ⊳
W

FS ′ FQt Qt

HW P

Fα ′

lcloseW,α ′

δt

β

τ ⊳
W

Given β ′ : Q → P ′, we say thatW is locally consistent w.r.t.
β ′ if β ⊲ ≤ β ′⊲ and there exist morphismsoW : HW → O and

lconsW,β ′ : FHW → P making the diagrams below com-
mute.

S HW

Qt O

τ ⊲
W

α oW

ot

FS FHW

FQt Qt P ′

Fα

Fτ ⊲
W

lconsW,β ′

δt β ′

Note that a wrapper (α , β) is closed if and only if it is
locally closedw.r.t. α and consistent if and only if it is locally
consistent w.r.t. β .

Example 5.2. Recall themorphisms defined in Example 3.2,
for which we consider At as the DA. Given S, S

′ ⊆ A∗ and
E ⊆ A∗, the wrapper (αS , βE ) is locally closed w.r.t. αS ′ if
(1) S ′ ⊆ S and there exists s ∈ S such that (βE ◦ αS )(s) =
(βE ◦ it)(∗), and (2) for all t ∈ S ′ × A there exists s ∈ S such
that (βE ◦ αS )(s) = (βE ◦ δt ◦ (αS ′ × idA))(t). The second
condition is equivalent to the property that any row in the
bottom part of the table (S ′, E) can be found in the top part
of the table (S, E).
Given E ′ ⊆ A∗, the wrapper (αS , βE ) is locally consistent

w.r.t. βE′ if for all s1, s2 ∈ S such that (βE ◦ αS )(s1) = (βE ◦
αS )(s2) we have (ot ◦ αS )(s1) = (ot ◦ αS )(s2) and (βE′ ◦ δt ◦
(αS × idA))(s1) = (βE′ ◦ δt ◦ (αS × idA))(s2). This condition is
equivalent to the property that for all s, s ′ ∈ S mapping to
the same row in the upper part of (S, E), the rows for sa and
s ′a are the same in the lower part of (S, E ′) for all a ∈ A.

The following shows that for each wrapper (α , β) for Qt

we can always find α ′ s.t. (α ′, β) is locally closed w.r.t. α .

Proposition 5.3. Given α : S → Qt and β : Qt → P , the

wrapper ([α , [it, δt] ◦ FIα], β) is locally closed w.r.t. α .

If α is the unique morphism induced by a recursive coal-
gebra, we can even simplify the above result and show that
the α ′ found is also induced by a recursive coalgebra.

Proposition5.4. Given a recursive ρ : S → FIS , the wrapper

([it, δt] ◦ FI [it, δt]
ρ , β) is locally closed w.r.t. [it, δt]

ρ . Further-

more, FI ρ is also recursive and [it, δt] ◦ FI [it, δt]
ρ
= [it, δt]

FI ρ .

Definition 5.5 (Run of the algorithm). A run of the algo-
rithm is a stream of wrappersWn = (αn, βn) satisfying the
following conditions:

1. α0 : 0→ Qt and β0 : Qt → 1 are the unique morphisms;
2. ifWn is not closed, then βn+1 = βn and αn+1 is such that
(αn+1, βn) is locally closed w.r.t. αn ;

3. ifWn is closed but not consistent, then αn+1 = αn and
βn+1 is s.t. (αn, βn+1) is locally consistent w.r.t. βn ;

4. ifWn is closed and consistent and we obtain a counterex-
ample ρ : S → FIS forWn , then α ⊳

n+1 = [αn, [it, δt]
ρ ]⊳

and βn+1 = βn ; and
5. ifWn is closed and consistent and correct up to all recur-

sive FI -coalgebras, thenWn+1 =Wn .

We have the following correspondence.

7
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Algorithm 3Make wrapper closed and consistent

1: function Fix(α , β)
2: while (α , β) is not closed or not consistent do
3: if (α , β) is not closed then
4: α ← α ′ such that (α , β) is loc. closed w.r.t. α ′

5: else if (α , β) is not consistent then
6: β ← β ′ such that (α , β) is loc. consistent w.r.t. β ′

7: return α , β

Algorithm 4 Abstract automata learning algorithm

1: α , β ← Fix(! : 0→ Qt, ! : Qt → 1)
2: while EQ(H(α ,β )) = ρ : S → FIS do
3: α ← α ′ s.t. α ′⊳ = [α , [it, δt]

ρ ]⊳

4: α , β ← Fix(α , β)

5: returnH(α ,β )

Figure 3. Generalised Learning Algorithm.

Proposition 5.6. Algorithm 4 terminates if and only if for

all runs {Wn}n∈N there exists n ∈ N such thatWn+1 =Wn .

Lemma 5.7. Consider a run {Wn = (αn, βn)}n∈N andn ∈ N.

We have α ⊳
n ≤ α

⊳
n+1 and β

⊲
n+1 ≤ β

⊲
n for all n ∈ N. Moreover, if

α ⊳
n+1 ≤ α

⊳
n , then αn+1 = αn ; if β

⊲
n ≤ β

⊲
n+1, then βn+1 = βn .

Putting the above results together, we obtain the follow-
ing theorem showing that the algorithm terminates. More-
over, it necessarily terminates with a correct automaton, for
which we give conditions that guarantee minimality.

Theorem 5.8 (Termination). If Qt has finitely many subob-

ject and quotient isomorphism classes, then for all runs {Wn =

(αn, βn)}n∈N there exists n ∈ N such thatWn is closed and

consistent and the corresponding hypothesis is correct. IfAt is

minimal and for all k ∈ N there exists a recursive ρk : Sk →
FISk such that αk = [it, δt]

ρk , then the final hypothesis is

minimal.

Proof. We will show that {Wn}n∈N converges, for which it
suffices to show that both {αn}n∈N and {βn}n∈N converge.
Suppose {αn}n∈N does not converge. By Lemma 5.7 there ex-
ist in ∈ N for all n ∈ N such that in+1 > in , α

⊳
in
≤ α ⊳

in+1
, and

α ⊳
in+1
6≤ α ⊳

in
for all n ∈ N. Note that isomorphic subobjects

are ordered in both directions. Using transitivity of the order
on subobjects we know that for allm,n ∈ N withm , n we
have that α ⊳

im
and α ⊳

in
are not isomorphic subobjects. This

contradicts the fact that Qt has finitely many subobject iso-
morphism classes. Thus, {αn}n∈N must converge.
Now suppose {βn}n∈N does not converge. By Lemma 5.7

there exist in ∈ N for all n ∈ N such that in+1 > in , β
⊲
in+1
≤

β ⊲in , and β
⊲
in
6≤ β ⊲in+1 for all n ∈ N. Note that isomorphic quo-

tients are ordered in both directions. Using transitivity of
the order on quotients we know that for allm,n ∈ N with
m , n the quotients β ⊳im and β ⊳in are not isomorphic. This
contradicts the fact that Qt has finitely many quotient iso-
morphism classes. Thus, {βn}n∈N must converge. We con-
clude that {Wn}n∈N converges, and by Proposition 5.6 the
algorithm terminates. By definition, it does so with a correct
hypothesis.
Now assume that At is minimal and that for all k ∈ N

there exists ρk : Sk → FISk such that αk = [it, δt]
ρk . Let

n ∈ N be such thatWn+1 = Wn , which by the above we
know exists, and defineW =Wn . We know from Proposi-
tion 4.3 thatHW is reachable. Together with correctness of
HW and minimality ofAt there exists a unique automaton
homomorphism h : HW → At. We show that βn ◦ h = τ

⊳
W

with the commutative diagram below, where we precom-
pose with the epi τ ⊲

W
and use that automaton homomor-

phisms commute with restricted reachability maps.

Sn HW

HW Qt Pn

τ ⊲
W

τ ⊲
W
=[iW,δW ]

ρn
αn=[it,δt]

ρn

τ ⊳
W

h βn

It follows that h ∈ M [6, Proposition 14.11]. Being an au-
tomaton homomorphism,h commutes with the reachability

maps: h ◦ i
♯
W
= i

♯
t . Because i

♯
W
∈ E and i

♯
t ∈ E, we have

h ∈ E [6, Proposition 14.9 via duality]. Since E∩M contains
only isomorphisms [6, Proposition 14.6], it follows that h is
an isomorphism of automata and therefore that the hypoth-
esis is minimal. �

Computability. To be able to apply the algorithm in a con-
crete case one needs the following ingredients. For each au-
tomaton At having finitely many subobject and quotient
isomorphism classes there needs to be a run {Wn}n∈N such
that we have a family of sets {Dn}n∈N of data such that both
D0 and the function Dn 7→ Dn+1 are computable, and such
that we can determine from Dn whetherWn is closed and
consistent. Furthermore, we need to be able to compute the
hypothesisHn wheneverWn is closed and consistent. Usu-
ally Dn consists of a representation of the maps

αn ◦ βn βn ◦ δt ◦ Fαn βn ◦ it ot ◦ αn .

One then needs to show how to find local closedness and
local consistency witnesses using these maps, and that the
teacher can always choose a counterexample such that the
data in the step after adding the counterexample can be com-
puted. The teacher must also be restricted to return only
such suitable counterexamples, rather than arbitrary ones.

8



Learning Generalised Tree Automata Conference’17, July 2017, Washington, DC, USA

6 Example: Generalised Tree Automata

In this section we instantiate the above development to a
wide class of Set endofunctors. This yields an abstract algo-
rithm for generalised tree automata—i.e., automata accept-
ing sets of trees, possibly subject to equations—which in-
clude bottom-up tree automata and unordered tree automata.
These are examples that were not in scope of any of the ex-
isting abstract learning frameworks in the literature.
We first introduce the running examples for this section.

Example 6.1 (Tree automata). Let Γ be a ranked alphabet,
i.e., a finite set whereγ ∈ Γ comeswith arity(γ ) ∈ N. The set
of Γ-trees over a finite set of leaf symbols I is the smallest
set TΓ(I ) such that I ⊆ TΓ(I ), and for all γ ∈ Γ we have
that t1, . . . , tarity(γ ) ∈ TΓ(I ) implies (γ , t1, . . . , tarity(γ )) ∈ TΓ(I ).
The alphabet Γ gives rise to the polynomial functor FX =∐

γ ∈Γ X
arity(γ ). The corresponding free F -algebra monad is

preciselyTΓ , where the unit turns elements into leaves, and
the multiplication flattens nested trees into a tree. A bottom-
up deterministic tree automaton is then an automaton over
F with a finite input set I and output set O = 2.

Example 6.2 (Unordered tree automata). Consider the fi-
nite powerset functor Pf : Set→ Set, mapping a set to its fi-
nite subsets. The corresponding freePf-monadmaps a setX
to the set of finitely-branching unordered trees with nodes
in X . Automata over Pf , with output set O = 2 and finite
I , accept sets of such trees. Note that unordered trees can
be seen as trees over a ranked alphabet Γ = {si | i ∈ N},
where arity(si ) = i , satisfying equations that collapse dupli-
cate branches and identify lists of branches up to permuta-
tions.

Automata in these examples are algebras for endofunc-
tors with the following properties: they are strongly fini-

tary [7]—i.e., they preserve finite sets; and they preserve
weak pullbacks. In this section we will show that the con-
ditions listed at the end of Section 5 can be satisfied for all
automata over strongly finitary, weak-pullback-preserving
endofunctors F , with a finite input set I . For the rest of this
section we assume these properties for F and I .
In particular, in Section 6.1 we instantiate wrappers to

ones with a specific format, which make use of contexts to
generalise string concatenation to trees, and we show how
thesewrapper can be computed,whereuponwe develop pro-
cedures for local closedness (Section 6.2) and local consis-
tency (Section 6.3). Section 6.4 covers the representation of
the associated hypotheses, and we conclude by identifying
a set of suitable (finite) counterexamples in Section 6.5.

6.1 Contextual wrappers

Denote by 1 the set {�}. Given x ∈ X for any set X , we
write 1x for the function 1 → X that assigns x to �. Note
that for all functions f : X → Y we have

1f (x ) = f ◦ 1x . (2)

We use the set 1 to define the set of contexts T (I + 1), where
the holes � occurring in a context c ∈ T (I + 1) can be used
to plug in further data such as another context or a tree, e.g.,
in the case of Example 6.1. In fact, it is well known thatT (I+
(−)) forms a monad with unit η̂X = Tκ2 ◦ηX : X → T (I +X )

and multiplication µ̂X : T (I +T (I + X )) → T (I + X ) [22].
We now introduce a class of wrappers where, intuitively,

contexts are used to distinguish inequivalent states.

Definition 6.3 (Contextual wrappers). A contextual wrap-
per is a wrapper (αS , βE ) for Qt where:

• αS : S → Qt, for S ⊆ TI , is the restriction of the reach-
ability map to S ;
• βE : Qt → OE is the function given by

βE (q) = ot ◦ [it, 1q]
♯
.

for E ⊆ T (I + 1).

Example 6.4. In the case of DA, contextual wrappers are
essentially those of Example 3.2. In fact, αS is the restriction

of i♯ : A∗ � 1 × A∗ → Qt to S ⊆ A∗. For βE , a bit of care
is required due to the generality of contexts. We have E ⊆
{∗,�} ×A∗, and

βE (q)(x) =

{
(ot ◦ δ

∗
t )(q, e) if x = (�, e)

(ot ◦ δ
∗
t )(it(∗), e) if x = (∗, e).

Note that the second case is not useful as a context distin-
guishing two states, because it does not depend on q.
Let us consider contextual wrappers for Example 6.1. We

have that S ⊆ TΓ(I ) is a set of Γ-trees over I , and E ⊆ TΓ(I+1)
is formed by contexts, i.e., Γ-treeswhere a special leaf�may
occur. The function αS (t) is the state reached after reading
the tree t , and βE (q)(t) can be seen as a generalisation of
the DA case: it is the output of the state reached via δ ∗ after
replacing every occurrence of � with q and x ∈ I with i(x)
in t . Therefore (αS ◦ βE ) : S → OE is the upper part of an
observation table where rows are labelled by trees, columns
by contexts, and rows are computed by plugging labels into
each column context and querying the language. When E

contains only contexts with exactly one instance of �, this
corresponds precisely to the observation tables of [14, 17].

We now show how to compute the morphisms induced
by a wrapper that are used in the definition of closedness,
consistency, and the hypothesis. In particular, we show that
they can be computed by querying the language LA .

9
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Proposition 6.5 (Computing wrapper morphisms). Given
S ⊆ TI with inclusion j : S → TI and E ⊆ T (I + 1), we have

βE ◦ αS : S → OE

(βE ◦ αS )(s) = LAt ◦ µI ◦T [ηI , 1s ]

βE ◦ δt ◦ FαS : FS → OE

(βE ◦ δt ◦ FαS )(f ) = LAt ◦ µI ◦T [ηI ,γI ◦ F j ◦ 1f ]

βE ◦ it : I → OE

(βE ◦ it)(x) = LAt ◦T [idI , 1x ]

ot ◦ αS : S → O

(ot ◦ αS )(s) = LAt(s).

Example 6.6. As in theDA case, themaps of Proposition 6.5
correspond to the observation table. The proposition tells us
how they can be computed by querying the language.
For bottom-up tree automata:

• βE ◦ αs is the upper part of the observation table, as
explained in Example 6.4;
• βE ◦δt ◦ FαS is the bottom part of the table. In fact, in
this case the successor rows for S are labelled by FS =∐

γ ∈Γ S
arity(γ ), i.e., by trees obtained by adding a new

root symbol to those from S . Successor rows are then
computed by plugging these trees into the contexts
E, and querying the language. Note that this requires
using the map γ to convert the additional root and its
arguments into a tree before they are plugged into a
context.
• βE ◦ it returns the leaf rows, i.e., those labelled by the
leaf symbols I ;
• ot ◦ αS queries the language for each row label.

For unordered tree automata the maps are similar. The key
difference is that now rows are labelled by trees and con-
texts up to equations. As a consequence, there is just one
successor row for each set of trees in S , whereas in the pre-
vious case we have one successor row for each symbolγ ∈ Γ
and arity(γ )-list of trees from S .

6.2 Witnessing local closedness

We now show how the general notion of local closedness
can be concretely instantiated for Set automata.

Lemma6.7 (Local closedness for Set automata). Given S, S ′ ⊆
TI and E ⊆ T (I+1) such that S ⊆ S ′, (αS ′, βE ) is locally closed
w.r.t. αS if there exist k : I → S ′ and ℓ : FS → S ′ such that

αS ′ ◦ k = it αS ′ ◦ ℓ = δt ◦ FαS .

Example 6.8. For bottom-up tree automata, local closed-
ness holds if the table (S ′, E) already contains each leaf row
(left equation), and it contains every successor row for S ,

namely FS =
∐
γ ∈Γ S

arity(γ ) (right equation).
For unordered tree automata the condition is similar, and

now involves successor trees in Pf(S).

The following proposition guarantees that we can always
extend S to make the wrapper locally closed. Moreover, this
can be done so that α ′S forms a proper contextual wrapper,
i.e., it is again a restricted reachability map.

Proposition 6.9. Given finite S ⊆ TI and E ⊆ T (I +1), there
exists a finite S ′ ⊆ TI such that (αS ′, βE ) is locally closed w.r.t.

αS . If there exists a recursive ρ : S → FIS such that αS =

[it, δt]
ρ , then there exists a recursive ρ ′ : S ′ → FIS

′ such that

αS ′ = [it, δt]
ρ ′ .

Proof. Let j : S → TI be the inclusion map and define

S ′ = S ∪ {ηI (x) | x ∈ I } ∪ {(γI ◦ F j)(x) | x ∈ FS}.

We choose k : I → S ′ and ℓ : FS → S ′ by setting

k(x) = ηI (x) ℓ(x) = (γI ◦ F j)(x)

Note that k and ℓ are well-defined by construction of S ′. Us-
ing the definitions of αS ′ and k , we can then derive that

(αS ′ ◦ k)(x) = i
♯
t (k(x)) = i

♯
t (ηI (x)) = it(x)

Furthermore, we find that

(αS ′ ◦ ℓ)(x) = i
♯
t (γI (F j(x))) (def. of ℓ)

= δt(F (i
♯
t )(F j(x)))

(i
♯
t is an F -algebra homomorphism)

= δt(F (i
♯
t ◦ j)(x))

= (δt ◦ FαS )(x) (def. of αS )

Hence (αS ′, βE ) is locally closed w.r.t. αS , by Lemma 6.7.
Given a recursive ρ : S → FIS such that αS = [it, δt]

ρ ,
define ρ ′ : S ′ → FIS

′ by

ρ ′(s) = ρ(s) ρ ′(([ηI ,γI ] ◦ FI j)(x)) = FI j(x).

Since both ρ and [ηI ,γI ]
−1 are recursive, so is ρ ′ �

Example 6.10. To better understand this proposition, it is
worth describing what recursive coalgebras are for the au-
tomata of Examples 6.1 and 6.2. For bottom-up tree automata,

they are coalgebras ρ : S →
∐
γ ∈Γ S

arity(γ )
+ I satisfying

suitable conditions. Prefix-closed subsets of TΓ(I ) are sets
of trees closed under taking subtrees. Every prefix-closed S
can be made into a recursive coalgebra that returns the root
symbol and its arguments, if applied to a tree of non-zero
depth, and a leaf otherwise. For unordered tree automata,
ρ : S → PfS + I will just return the set of subtrees or a leaf.

Note that the above proof leads to a rather inefficient al-
gorithm that adds all successor rows to the table to make
it locally closed. For instance, in the case of Example 6.4, it
adds rows obtained by adding a new root symbol to existing
row labels in all possible ways, for each symbol in the alpha-
bet. One may optimise the algorithm by adding instead only
missing rows, and one instance of each.

10
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6.3 Witnessing local consistency

Analogously to the previous section, we now show how lo-
cal consistency can be concretely instantiated for Set au-
tomata.

Lemma 6.11 (Local consistency for Set automata). Let S ⊆
TI and E ⊆ E ′ ⊆ T (I + 1), with S finite. Furthermore, suppose

that for s, s ′ ∈ S with (βE′ ◦ αS )(s) = (βE′ ◦ αS )(s
′) we have

(ot ◦ αS )(s) = (ot ◦ αS )(s
′)

βE ◦ δt ◦ F (αS ◦ [idS , 1s ]) = βE ◦ δt ◦ F (αS ◦ [idS , 1s ′])

ThenW = (αS , βE′) is locally consistent w.r.t. βE .

Example 6.12. For bottom-up tree automata, local consis-
tency amounts to require the following for the table for (S, E ′).
For every pair of trees s, s ′ ∈ S such that the corresponding
rows are equal we must have:

• both s and s ′ are either accepted or rejected;
• successor rows obtained by extending s and s ′ in the
same way are equal. Formally, comparable extensions
of s and s ′ are obtained by plugging them into the
same “one-level” context from F (S + 1) =

∐
γ ∈Γ(S +

{�})arity(γ ).

For unordered-tree automata, we need to compare s and
s ′ only when they are equationally inequivalent. Note that
one-level contexts are also up to equations, which means
that the position of the hole in the context is irrelevant for
computing extensions of s and s ′.

The following ensures that we can always make thewrap-
per locally consistent by finding a suitable finite E ′.

Proposition 6.13. Given finite S ⊆ TI and E ⊆ T (I + 1), the
set E ′ ⊆ T (I + 1) is defined as

E ′ = E ∪ {(ηI+1 ◦ κ2)(�)}

∪ {(µ̂1 ◦T (idI +cx ))(e) | e ∈ E, x ∈ F (S + 1)},

where cx : 1→ T (I + 1), with cx = γI+1 ◦ F [Tκ1 ◦ j, η̂1] ◦ 1x ,
where j : S → TI is set inclusion. It holds that E ′ is finite and

(αS , βE′) is locally consistent w.r.t. βE .

We remark that the above definition of E ′ results in a
highly inefficient procedure. One can optimise it by incre-
mentally adding elements of the proposed E ′ to E that dis-
tinguish rows not distinguished by the current elements of
E and that need to be added in order to satisfy the conditions
of Lemma 6.11.

6.4 Representing hypotheses

Given finite S ⊆ TI and E ⊆ T (I + 1), we consider the
wrapperW = (αS , βE ). Assuming closedness and consis-
tency, the state space of the associated hypothesis is given
by the image of βE ◦ αS : S → OE . Since S and E are finite

we can represent this function and thus compute its image.
The structure of the hypothesis is defined by

iHW (x) = (βE ◦ it)(x) oHW (τ
⊲
W(s)) = (ot ◦ αS )(s)

δHW (F (τ
⊲
W)(x)) = (βE ◦ δt ◦ FαS )(x).

We know from Proposition 6.5 how to compute those func-
tions via membership queries. This can be done in finite
time because E is finite.
The hypothesis automaton for bottom-up and unordered

tree automata, as in the DA case (see Example 3.2), is ob-
tained by taking distinct rows as states. See Example 6.6 for
the description of the hypothesis input, output and transi-
tion maps for those automata types.

6.5 Finite counterexamples

Finally, we refine Proposition 4.6 to show that the teacher
can always pick a finite counterexample.

Proposition 6.14 (Language equivalence via finite recur-
sion). Given an automaton A = (Q, δ , i,o), we have LAt =

LA if and only if L
ρ

At
= L

ρ

A
for all recursive ρ : S → FIS

such that S is finite.

Proof. Suppose that for all recursive coalgebras ρ : S → FIS

such that S is finite we have ot ◦ [it, δ ]
ρ
= o ◦ [i, δ ]ρ . Given

t ∈ TI , note that (TI , [ηI ,γI ]) is the initial algebra of functor
FI , which by being finitary is also the colimit of the initial se-
quence of FI [5] and hence isomorphic to (

⋃
n∈N F

n
I
∅,a) for

an initial algebra structure a : FI
(⋃

n∈N F
n
I
∅
)
→

⋃
n∈N F

n
I
∅.

Let ϕ : (TI , [ηI ,γI ]) → (
⋃
n∈N F

n
I
∅,a) be the isomorphism.

There exists n ∈ N such that ϕ(t) ∈ FnI ∅. The set FnI ∅ is
finite by FI preserving finite sets and the carrier of a re-
cursive coalgebra ρ : Fn

I
∅ → Fn+1

I
∅ by [15, Proposition 6],

with aρ : FnI ∅ →
⋃
n∈N F

n
I ∅ being the inclusion. Then S =

{ϕ−1(x) | x ∈ Fn
I
∅} is also finite and the carrier of a recur-

sive coalgebra ρ ′ : S → FIS , with [ηI ,γI ]
ρ ′ : S → TI being

the inclusion. Moreover, t ∈ S . Thus,

LAt(t) = (LAt ◦ [ηI ,γI ]
ρ ′)(t)

= (ot ◦ i
♯
t ◦ [ηI ,γI ]

ρ ′)(t) (definition of LAt)

= (ot ◦ [it, δt]
ρ ′)(t)

(i
♯
t is an FI -algebra homomorphism)

= L
ρ ′

At
(t) (definition of L

ρ ′

A
)

= L
ρ ′

A
(t) (assumption)

= (o ◦ [i, δ ]ρ
′

)(t) (definition of L
ρ ′

A
)

= (o ◦ i♯ ◦ [ηI ,γI ]
ρ ′)(t)

(i♯ is an FI -algebra homomorphism)

= (LA ◦ [ηI ,γI ]
ρ ′)(t) (definition of LA)

= LA(t).

The converse follows from Proposition 4.6. �

11
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Corollary 6.15 (Finite counterexample existence). Given a

closed and consistent wrapperW for Qt, we have LHW ,

LAt if and only if there exists a counterexample ρ : S → FIS

forW such that S is finite.

Example 6.16. Recall from Example 6.10 that finite recur-
sive coalgebras for bottom-up (resp. unordered) tree automata

are coalgebras ρ : S →
∐

γ ∈Γ S
arity(γ )

+ I (resp. ρ : S →
PfS + I ). Therefore, finite counterexamples are recursive
coalgebras of this form such that S is finite or, more con-
cretely, a finite subtree-closed set of trees.

7 Related work

This paper proceeds in the line of work on categorical au-
tomata learning started in [21], and further developed in
the CALF framework [30, 31]. CALF provides abstract defi-
nitions of closedness, consistency and hypothesis, and sev-
eral techniques to analyse and guide development of con-
crete learning algorithms. CALF operates at a high level of
abstraction and does not include an explicit learning algo-
rithm.We discuss two further recent categorical approaches
to learning, whichmake stronger assumptions than in CALF
that allow for the definition of concrete algorithms. The present
paper can be thought of as a third such approach.
Barlocco et al. [12] proposed an abstract algorithm for

learning coalgebras. It stipulates the tests to be formed by
an abstract version of coalgebraic modal logic. On the one
hand, the notion of wrapper and closedness from CALF es-
sentially instantiate to that setting; on the other hand, the
combination of logic and coalgebra is preciselywhat enables
to define an actual learning algorithm in [12]. The current
work focus on algebras rather than coalgebras, and is or-
thogonal. In particular, it covers (bottom-up) tree automata,
which is outside the scope of [12].

Urbat and Schröder have recently proposed another cate-
gorical approach to automata learning [26], which—similarly
to the work of Barlocco et al.—makes stronger assumptions
than in CALF in order to define a learning algorithm. Their
work focuses primarly on automata, assuming that the sys-
tems of interest can be viewed both as algebras and coalge-
bras, and the generality comes from allowing to instantiate
these in various categories. Moreover, it allows covering al-
gebraic recognisers in certain cases, through a reduction to
automata over a carefully constructed alphabet; this (orthog-
onal) extension allows covering, e.g.,ω-languages as well as
tree languages. However, the reduction to automata makes
this process quite different than the approach to tree learn-
ing in the present paper: it makes use of an automaton over
all (flat) contexts, yielding an infinite alphabet, and there-
fore the algorithmic aspect is not clear. The extension to an
actual algorithm for learning tree automata is mentioned as
future work in [26]. In the present paper, this is achieved by
learning algebras directly.

Concrete algorithms for learning tree automata and lan-
guages have appeared in the literature [14, 17, 25]. The infer-
ence of regular tree languages using membership and equiv-
alence queries appeared in [17], who extended earlier work
of Sakakibara [25]. Later, [14] provided a learning algorithm
for regular tree automata using only membership queries.
The instantiated algorithm in our paper has elements (such
as the use of contexts) close to the concrete algorithms. How-
ever, the focus of the present paper is on presenting an al-
gebraic framework that can effectively be instantiated to re-
cover such concrete algorithms in a modular and canonical
fashion, with proofs of correctness and termination stem-
ming from the general framework.

8 Future Work

The work in this paper makes use of the free monad of a
functor F in the formulation of the generalised learning al-
gorithm and hence can only deal with quotienting in a re-
stricted setting, namely by flat equations in the presentation
of F . This excludes more complex models such as that of
pomset automata, which feature languages of words mod-
ulo complex equations. Such richer equations can be cap-
tured by monads that are not necessarily free. It remains
an open challenge to extend the present algorithm to this
richer setting.
Another direction for future work is to extend the frame-

work with side-effects, encoded by a monad, in the style
of [31]. Thiswould enable learningmore compact automata—
albeit with richer, monadic, transitions—representing lan-
guages and, as a concrete instance, provide an active learn-
ing algorithm for weighted tree automata.
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A Proofs for Section 5

Lemma A.1. For all morphisms α1 : S1 → Qt, α2 : S2 → Qt,

and f : S1 → S2 such that α2 ◦ f = α1 we have α
⊳
1
≤ α ⊳

2
.

Proof. This follows directly from the unique diagonal ob-
tained in the commutative diagram below.

S1 •

S2

⋆ Qt

α ⊲
1

f

α ⊳
1

α ⊲
2

α ⊳
2

�

Proposition 5.3. Given α : S → Qt and β : Qt → P , the

wrapper ([α , [it, δt] ◦ FIα], β) is locally closed w.r.t. α .

Proof. LetW = ([α , [it, δt]◦FIα], β). Note thatα
⊳ ≤ [α , [it, δt]◦

FIα]
⊳ by Lemma A.1 (via κ1 : S → S + FIS). We define

iW = I
κ1
−→ FIS

κ2
−→ S + FIS

τ ⊲
W
−−→ HW

lcloseW,α = FS
κ2
−→ FIS

κ2
−→ S + FIS

τ ⊲
W
−−→ HW

and note that the commutative diagrams below show that
they satisfy the required properties.

I

S + FIS S + FIQt Qt

HW P

it

κ2◦κ1
κ2◦κ1

id+FIα

τ ⊲
W

[α , [it,δt]]

β

τ ⊳
W

FS FQt

S + FIS S + FIQt Qt

HW P

FIα

κ2◦κ2

δt

κ2◦κ2

id+FIα

τ ⊲
W

[α , [it,δt]]

β

τ ⊳
W

�

Proposition5.4. Given a recursive ρ : S → FIS , the wrapper

([it, δt] ◦ FI [it, δt]
ρ , β) is locally closed w.r.t. [it, δt]

ρ . Further-

more, FI ρ is also recursive and [it, δt] ◦ FI [it, δt]
ρ
= [it, δt]

FI ρ .
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Proof. Let α = [it, δt]
ρ andW = ([it, δt] ◦ FIα , β). Note that

α ⊳ ≤ ([it, δt] ◦ FIα)
⊳ by Lemma A.1 (via ρ).

We know from [15, Proposition 6] that FI ρ is recursive,
so we have [it, δt] ◦ FIα = [it, δt]

FI ρ by uniqueness from
commutativity of the diagram below.

FI FIS FI FIQt FIQt

FIS FIQt Qt

FI FI [it,δt]
ρ FI [it,δt]

FI [it,δt] [it,δt]FI ρ

FI [it,δt]
ρ [it,δt]

�

Lemma A.2. For any run {Wn = (αn, βn)}n∈N and n ∈ N,

if α ⊳
n+1 ≤ α

⊳
n , thenWn is closed.

Proof. For each j ∈ N, denote by S j the domain of α j and
by Pj the codomain of βj , and let X j be the object through
which α j factorises. We define fj : Xn → Hn as the unique
diagonal in the commutative square below.

S j X j

Qt

HWj Pj

α ⊲
j

τ ⊲
Wj

α ⊳
j

fj

βj
τ ⊳
Wj

Note that fj ∈ E because τ ⊲
Wj
∈ E.

We write v : Xn+1 → Xn for the witness of α
⊳
n+1 ≤ α

⊳
n . As-

sume towards a contradiction thatWn is not closed. By the
definition of a run we then have that βn+1 = βn andWn+1

is locally closed w.r.t. αn . Define iWn = h ◦ iWn+1 : I →
HWn and closeWn = h ◦ lcloseWn+1,αn , where iWn+1 and
lcloseWn+1,αn exist by local closedness andh : HWn+1 → HWn

is the unique diagonal in the commutative diagram below.

Xn+1 HWn+1

Xn Qt

HWn Pn = Pn+1

fn+1

α ⊳
n+1

v

τ ⊳
Wn+1α ⊳

n

fn

βn=βn+1

1

τ ⊳
Wn

1

1 definition of fn or fn+1

Xn+1 HWn+1

Xn

HWn Pn = Pn+1

fn+1

v

τ ⊳
Wn+1

h

fn
τ ⊳
Wn

Now the diagrams below commute, leading to the desired
contradiction thatWn is closed.

I

HWn+1 Qt

HWn Pn = Pn+1

itiWn+1

τ ⊳
Wn+1

h

1

2
βn

τ ⊳
Wn

FSn FQt

HWn+1 Qt

HWn Pn = Pn+1

Fαn

lcloseWn+1,αn δt

τ ⊳
Wn+1

h

1

2
βn

τ ⊳
Wn

1 local closedness 2 definition of h �

Lemma A.3. For any run {Wn = (αn, βn)}n∈N and n ∈ N,

ifWn is closed and β ⊲n ≤ β
⊲
n+1, thenWn is consistent.

Proof. For each j ∈ N, denote by S j the domain of α j and
by Pj the codomain of βj , and let X j be the object through
which βj factorises. We define fj : HWj → X j as the unique
diagonal in the commutative square below.

S j HWj

Qt

X j Pj

τ ⊲
Wj

α j

fj
τ ⊳
Wj

β ⊲
j

β ⊳
j

Note that fj ∈ M because τ ⊳
Wj
∈ M.

We write v : Xn → Xn+1 for the witness of β ⊲n ≤ β ⊲n+1.
Assume towards a contradiction thatWn is not consistent.
By the definition of a run of the algorithmwe then have that
αn+1 = αn andWn+1 is locally consistent w.r.t. βn . Define
oWn = oWn+1 ◦ h : HWn → O and consWn = lconsWn+1,βn ◦

h, where h : HWn → HWn+1 is the unique diagonal in the
commutative diagram below.

Sn = Sn+1 HWn

Qt Xn

HWn+1 Xn+1

τ ⊲
Wn

αn=αn+1
τ ⊲
Wn+1

fn

β ⊲
n

β ⊲
n+1

1

v

fn+1

1

1 definition of fn or fn+1

Sn = Sn+1 HWn

Xn

HWn+1 Xn+1

τ ⊲
Wn

τ ⊲
Wn+1

fn

h

v

fn+1

Now the diagrams below commute, leading to the desired
contradiction thatWn is consistent.

Sn = Sn+1 HWn

Qt HWn+1

O

τ ⊲
Wn

τ ⊲
Wn+1

αn
2

h

ot

1

oWn+1

FSn = FSn+1 FHWn

FQt FHWn+1

Qt Pn

Fτ ⊲
Wn

Fτ ⊲
Wn+1

Fαn
2

Fv

δt

1

lconsWn+1,βn

βn

1 local consistency 2 definition of h �

Lemma A.4. Let α : S → Qt, α
′ : S ′ → Qt, and β : Qt → P

be such that α ⊳ and α ′⊳ are isomorphic subobjects. If (α , β) is

closed and consistent, then so is (α ′, β).

Proof. WriteW = (α , β) andW ′
= (α ′, β). Let X and X ′

be the respective objects through which α and α ′ factorise,
and denote by ϕ : X → X ′ the subobject isomorphism (α ′⊳ ◦

14
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ϕ = α ⊳). We define f : X → HW and д : X ′ → HW′ as the
unique diagonals in the diagrams below.

S X

Qt

HW P

α ⊲

τ ⊲
W

α ⊳

f

β

τ ⊳
W

S ′ X ′

Qt

HW′ P

α ′⊲

τ ⊲
W′

α ′⊳

д

β

τ ⊳
W′

Note thatα ⊲ andτ ⊲
W

are in E, and therefore so is f ; similarly,
since α ′⊲ and τ ⊲

W′ are in E, so is д [6, Proposition 14.9 via

duality]. We now define ψ : HW → HW′ and ψ−1 : HW →
HW′ as the unique diagonals in the diagrams below.

X HW

X ′

HW′ P

f

ϕ

τ ⊳
W

ψ

д

τ ⊳
W′

X ′ HW′

X

HW P

д

ϕ−1

τ ⊳
W′

ψ −1

f

τ ⊳
W

It is a standard result that ψ and ψ−1 are inverse to each
other [6, Proposition 14.7], as suggested by their names. We
define

iW′ = I
iW
−−→ HW

ψ
−→ HW′ oW′ = HW′

ψ −1

−−−→ HW
oW
−−→ O

d = HW′

Fψ −1

−−−−→ FHW
δW
−−→ HW

ψ
−→ HW′ .

To show closedness and consistency, we will need the fol-
lowing two equations.

oW ◦ f = ot ◦ α
⊳ τ ⊳W ◦ δW ◦ F f = β ◦ δt ◦ Fα

⊳
. (3)

Note that both α ⊲ and Fα ⊲ are in E because F preserves E,
and that they are therefore both epis. We use this to prove
(3) with the commutative diagrams below.

S X

X HW

Qt O

τ ⊲
W

α ⊲

α ⊲ 1

2

f

α ⊳
oW

ot

1 definition of f
2 consistency
3 closedness
4 definition of δW

FS FX

FX FHW

FQt HW

Qt P

Fα ⊲

Fα ⊲

Fτ ⊲
W

closeW

3

4

1 F f

Fα ⊳ δW

δt τ ⊳
W

β

Now the diagrams below commute.

I Qt

HW

HW′ P

it

iW
iW′

1

β

τ ⊳
W

ψ

2

3

τW′⊳

S ′

X ′ HW′

X HW

Qt O

τ ⊲
W′

α ′⊲ 4

д

ϕ−1

α ′⊳

6

5

ψ −1
oW′

7

f

α ⊳ (3)
oW

ot

1 definition of iW′ 5 subobject morphism
2 closedness 6 definition ofψ−1

3 definition ofψ 7 definition of oW′

4 definition of д 8 definition of d

FS ′ FX ′

FHW′ FX FQt Qt

FHW HW

HW′ P

Fα ′⊲

Fτ ⊲
W′

4 Fϕ−1
Fα ′⊳

Fд 5

6

ψ −1

d

Fα ⊳

F f

δt

(3)

β
δW

8
τ ⊳
W

ψ 3

τ ⊳
W′

Using [30, Theorem 9], the existence of a d making the last
diagram above commute shows together with the other two
commutative diagrams thatW ′ is closed and consistent. �

Lemma 5.7. Consider a run {Wn = (αn, βn)}n∈N andn ∈ N.

We have α ⊳
n ≤ α

⊳
n+1 and β

⊲
n+1 ≤ β

⊲
n for all n ∈ N. Moreover, if

α ⊳
n+1 ≤ α

⊳
n , then αn+1 = αn ; if β

⊲
n ≤ β

⊲
n+1, then βn+1 = βn .

Proof. We consider each of the cases listed in the definition
of a run of the algorithm. IfWn is not closed, then βn+1 = βn
and α ⊳

n ≤ α
⊳
n+1 by the definition of local closedness. Suppos-

ing α ⊳
n+1 ≤ α

⊳
n leads by Lemma A.2 to the contradiction that

Wn is closed.
IfWn is closed but not consistent, then αn+1 = αn and we

have β ⊲n+1 ≤ β ⊲n by the definition of local consistency. Sup-
posing β ⊲n ≤ β ⊲n+1 leads by Lemma A.3 to the contradiction
thatWn is consistent.
IfWn is closed and consistent and we obtain a counterex-

ample ρ : S → FIS forWn , then βn+1 = βn and α ⊳
n+1 =

[αn, [it, δt]
ρ ]⊳ .We haveα ⊳

n ≤ [αn, [it, δt]
ρ ]⊳ using LemmaA.1.

Suppose α ⊳
n+1 ≤ α

⊳
n . Then [αn, [it, δt]

ρ ]⊳ = α ⊳
n+1 ≤ α

⊳
n , so α

⊳
n

and [αn, [it, δt]
ρ ]⊳ are isomorphic subobjects. By LemmaA.4

this implies that ([αn, [it, δt]
ρ ], βn) is also closed and consis-

tent, which by Corollary 4.9 contradicts the fact that ρ is a
counterexample forWn .
IfWn is closed and consistent and correct up to all re-

cursive FI -coalgebras, then we immediately have αn+1 = αn
and βn+1 = βn . �

15
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B Proofs for Section 6

Lemma B.1. For all T -algebras (X , x), p : I → X , and c ∈

T (I + X ), the diagram below commutes.

T (I +T (I + X )) T (I + X )

T (I + 1) X

µ̂X

[p, idX ]
♯T (idI +1c )

[p,1
[p, idX ]

♯ (c )
]♯

Proof. Given any setY and aT (I +(−))-algebra (Z , z), the ex-
tension of a morphism f : Y → Z to the T (I + (−))-algebra
homomorphsm f ♮ : T (I + Y ) → Z is given by f ♮ = z ◦

T (idI +f ). We can supplyX with theT (I+(−))-algebra struc-

ture [p, idX ]
♯ : T (I + X ) → X . Thus,

[p, 1[p, idX ]♯ (c)]
♯
= [p, 1

id
♮
X
(c)
]♯

= [p, idX ]
♯ ◦T (idI +1id♮

X
(c)
)

= 1
♮

id
♮
X
(c)

= (id
♮
X
◦1c )

♮ (2)

= id
♮
X
◦1

♮
c

= [p, idX ]
♯ ◦ 1

♮
c

= [p, idX ]
♯ ◦ µ̂X ◦T (idI +1c ). �

Proposition 6.5 (Computing wrapper morphisms). Given
S ⊆ TI with inclusion j : S → TI and E ⊆ T (I + 1), we have

βE ◦ αS : S → OE

(βE ◦ αS )(s) = LAt ◦ µI ◦T [ηI , 1s ]

βE ◦ δt ◦ FαS : FS → OE

(βE ◦ δt ◦ FαS )(f ) = LAt ◦ µI ◦T [ηI ,γI ◦ F j ◦ 1f ]

βE ◦ it : I → OE

(βE ◦ it)(x) = LAt ◦T [idI , 1x ]

ot ◦ αS : S → O

(ot ◦ αS )(s) = LAt(s).

Proof. We first claim that

(βE ◦ i
♯
t )(s) = LAt ◦ µI ◦T [ηI , 1s ]. (4)

To see this, first note that

(βE ◦ i
♯
t )(s) = ot ◦ [it, 1i ♯t (s)

]♯

= ot ◦ δ
∗
t ◦T [it, 1i ♯t (s)

]♯

= ot ◦ δ
∗
t ◦T [it, i

♯
t ◦ 1s ]

= ot ◦ δ
∗
t ◦T [i

♯
t ◦ ηI , i

♯
t ◦ 1s ]

= ot ◦ δ
∗
t ◦Ti

♯
t ◦T [ηI , 1s ]

It remains to show thatot◦δ
∗
t ◦Ti

♯
t = LAt◦µI , which follows

by commutativity of the diagram below.

T 2I T I

T 2Qt TQt

TQt Qt O

T 2it

µI

T i
♯
t

3

i
♯
t

T it

LAt

1
µQt

Tδ ∗t

4

δ ∗t

1 2

δ ∗t
ot

1 property of i
♯
t 2 definition of LAt

3 naturality 4 (T , δ ∗t ) is a T -algebra

For the first equation, we derive

(βE ◦ αS )(s) = (βE ◦ i
♯
t )(s) (def. of αS )

= LAt ◦ µI ◦T [ηI , 1s ] (by (4))

For the second equation, we derive

(βE ◦ δt ◦ FαS )(f ) = (βE ◦ δt ◦ Fi
♯
t ◦ F j)(f ) (def. of αS )

= (βE ◦ i
♯
t ◦ γI ◦ F j)(f )

(i♯ is an F -algebra homomorphism)

= LAt ◦ µI ◦T [ηI , 1(γI ◦F j)(f )] (by (4))

= LAt ◦ µI ◦T [ηI ,γI ◦ F j ◦ 1f ] (by (2))

For the third equation, we derive

(βE ◦ it)(s) = (βE ◦ i
♯
t ◦ ηI )(s) (property of i♯)

= LAt ◦ µI ◦T [ηI , 1ηI (s)] (by (4))

= LAt ◦ µI ◦T [ηI ,ηI ◦ 1s ] (by (2))

= LAt ◦ µI ◦TηI ◦T [idI , 1s ]

= LAt ◦T [idI , 1s ] (monad law)

Finally, for the fourth equation, we derive:

(ot ◦ αS )(s) = (ot ◦ i
♯
t )(s) (definition of αS )

= LAt(s) (definition of LAt) �

Lemma6.7 (Local closedness for Set automata). Given S, S ′ ⊆
TI and E ⊆ T (I+1) such that S ⊆ S ′, (αS ′, βE ) is locally closed
w.r.t. αS if there exist k : I → S ′ and ℓ : FS → S ′ such that

αS ′ ◦ k = it αS ′ ◦ ℓ = δt ◦ FαS .

Proof. LetW = (αS ′, βE ), and choose

iW = τ
⊲
W ◦ k lcloseW,αS = τ

⊲
W ◦ ℓ

The necessary diagrams now commute:

I Qt

S ′

HW P

it

iW

k

β

τ ⊲
W

αS′

τ ⊳
W

FS ′ FQt Qt

S ′

HW P

Fα ′

lcloseW,α ′

ℓ

δt

β

τ ⊲
W

αS′

τ ⊳
W

16
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Note thatαS ≤ αS ′ becauseS ⊆ S
′. Thus,W is locally closed

w.r.t. αS . �

Lemma 6.11 (Local consistency for Set automata). Let S ⊆
TI and E ⊆ E ′ ⊆ T (I + 1), with S finite. Furthermore, suppose

that for s, s ′ ∈ S with (βE′ ◦ αS )(s) = (βE′ ◦ αS )(s
′) we have

(ot ◦ αS )(s) = (ot ◦ αS )(s
′)

βE ◦ δt ◦ F (αS ◦ [idS , 1s ]) = βE ◦ δt ◦ F (αS ◦ [idS , 1s ′])

ThenW = (αS , βE′) is locally consistent w.r.t. βE .

Proof. Since τ ⊲
W

is surjective, so is Fτ ⊲
W
. We define the func-

tion lconsW,βE : FHW → OE by

lconsW,βE (Fτ
⊲
W(y)) = (βE ◦ δt ◦ FαS )(y).

By definition this satisfies the local consistency condition.
It remains to show that the function is well-defined. Denote
by K the kernel

{(s, s ′) | s, s ′ ∈ S, τ ⊲W(s) = τ
⊲
W(s

′)}

and let j : K → S × S be the inclusion. Consider y, z ∈ FS
such that Fτ ⊲

W
(y) = Fτ ⊲

W
(z). Because F preserves weak

pullbacks we can find x ∈ FK such that F (π1 ◦ j)(x) =
y and F (π2 ◦ j)(x) = z. Using that S is finite, write K =
{(s1, s

′
1), . . . , (sn, s

′
n)}. For all 1 ≤ m ≤ n we define fm : K →

S + 1 by

fm(sk , s
′
k ) =




κ1(s
′
k
) if k <m

κ2(�) if k =m

κ1(sk ) if k >m.

Furthermore, let cm = F (fm)(x) ∈ F (S + 1). We will prove
that

(βE◦δt◦F (αS◦[idS , 1s1 ]))(c1) = (βE◦δt◦F (αS◦[idS , 1sn ]))(cn),
(5)

for which it suffices by induction to prove for all 1 ≤ m < n
that

(βE ◦ δt ◦ F (αS ◦ [idS , 1sm ]))(cm)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1sm+1 ]))(cm+1).

Note that

[idS , 1s ′m ] ◦ fm = [idS , 1sm+1 ] ◦ fm+1

by the definitions of fm and fm+1, so

(βE ◦ δt ◦ F (αS ◦ [idS , 1sm ]))(cm)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1s ′m ]))(cm)

(assumption)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1s ′m ] ◦ fm))(x)

(definition of cm)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1sm+1] ◦ fm+1))(x)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1sm+1]))(cm+1)

(definition of cm+1).

Then

(βE ◦ δt ◦ FαS )(y) = (βE ◦ δt ◦ F (αS ◦ π1 ◦ j))(x)

(definition of x )

= (βE ◦ δt ◦ F (αS ◦ [idS , 1s1] ◦ f1))(x)

(definition of f1)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1s1]))(c1)

(definition of c1)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1sn ]))(cn)

(5)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1s ′n ]))(cn)

(assumption)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1s ′n ]) ◦ fn)(x)

(definition of cn)

= (βE ◦ δt ◦ F (αS ◦ π2 ◦ j))(x)

(definition of fn)

= (βE ◦ δt ◦ FαS )(z)

(definition of x ).

We conclude that lconsW,βE is well-defined.
We define oW : HW → O by

oW(τ
⊲
W(s)) = (ot ◦ αS )(s).

Again the local consistency condition is satisfied by defini-
tion, but we need to show that the function is well-defined.
Consider s1, s2 ∈ S such that τ ⊲

W
(s1) = τ

⊲
W
(s2). Then

(βE′ ◦ αS )(s1) = (τ
⊳
W ◦ τ

⊲
W)(s1)

= (τ ⊳W ◦ τ
⊲
W)(s2)

= (βE′ ◦ αS )(s2),

so (ot ◦ αS )(s1) = (ot ◦ αS )(s2). Note that βE′ ≤ βE because
E ⊆ E ′. Thus,W is locally consistent w.r.t. βE . �

Proposition 6.13. Given finite S ⊆ TI and E ⊆ T (I + 1), the
set E ′ ⊆ T (I + 1) is defined as

E ′ = E ∪ {(ηI+1 ◦ κ2)(�)}

∪ {(µ̂1 ◦T (idI +cx ))(e) | e ∈ E, x ∈ F (S + 1)},

where cx : 1→ T (I + 1), with cx = γI+1 ◦ F [Tκ1 ◦ j, η̂1] ◦ 1x ,
where j : S → TI is set inclusion. It holds that E ′ is finite and

(αS , βE′) is locally consistent w.r.t. βE .

Proof. Note that since S is finite and F preserves finite sets
we have that F (S + 1) is also finite. Together with the fact
that E is finite it follows that E ′ is finite. Suppose s1, s2 ∈ S
are such that (βE′ ◦ αS )(s1) = (βE′ ◦ αS )(s2). For all s ∈ S we

17
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have

(ot ◦ αS )(s) = (ot ◦ 1αS (s))(�)

= (ot ◦ [it, 1αS (s)] ◦ κ2)(�)

= (ot ◦ [it, 1αS (s)]
♯ ◦ ηI+1 ◦ κ2)(�)

= (βE′ ◦ αS )(s)((ηI+1 ◦ κ2)(�))

(definition of βE′),

so

(ot ◦ αS )(s1) = (βE′ ◦ αS )(s1)((ηI+1 ◦ κ2)(�))

= (βE′ ◦ αS )(s2)((ηI+1 ◦ κ2)(�))

= (ot ◦ αS )(s2).

Furthermore, for all s ∈ S we have

F [Tit ◦ j,T1αS (s) ◦ η1]

= F [T [it, 1αS (s)] ◦Tκ1 ◦ j,T [it, 1αS (s)] ◦Tκ2 ◦ η1]

= FT [it, 1αS (s)] ◦ F [Tκ1 ◦ j,Tκ2 ◦ η1]

= FT [it, 1αS (s)] ◦ F [Tκ1 ◦ j, η̂1]

(definition of η̂1),

so for all s ∈ S and x ∈ F (S + 1) we have

(δt ◦ F [αS , 1αS (s)])(x)

= (δt ◦ F [δ
∗
t ◦Tit ◦ j, δ

∗
t ◦T1αS (s) ◦ η1])(x)

(definition of αS )

= (δt ◦ Fδ
∗
t ◦ F [Tit ◦ j,T1αS (s) ◦ η1])(x)

= (δ ∗t ◦ γQ ◦ F [Tit ◦ j,T1αS (s) ◦ η1])(x)

(δ ∗t is an F -algebra homomorphism)

= (δ ∗t ◦ γQ ◦ FT [it, 1αS (s)] ◦ F [Tκ1 ◦ j, η̂1])(x)

(shown above)

= (δ ∗t ◦T [it, 1αS (s)] ◦ γI+1 ◦ F [Tκ1 ◦ j, η̂1])(x)

= (δ ∗t ◦T [it, 1αS (s)] ◦ γI+1 ◦ F [Tκ1 ◦ j, η̂1] ◦ 1x )(�)

= (δ ∗t ◦T [it, 1αS (s)] ◦ cx )(�)

(definition of cx )

= ([it, 1αS (s)]
♯ ◦ cx )(�)

= [it, idQ ]
♯((T (idI +1αS (s)) ◦ cx )(�)).

Note that for all s ∈ S , x ∈ F (S + 1) we have

µ̂Q ◦T (idI +1(T (idI +1αS (s ))◦cx )(�)
)

= µ̂Q ◦T (idI +(T (idI +1αS (s)) ◦ 1cx (�)))

(2)

= µ̂Q ◦T (idI +(T (idI +1αS (s)) ◦ cx ))

(definition of 1cx (�))

= µ̂Q ◦T (idI +(T (idI +1αS (s)))) ◦T (idI +cx )

= T (idI +1αS (s)) ◦ µ̂1 ◦T (idI +cx ),

so for all s ∈ S , x ∈ F (S + 1), and e ∈ E,

(βE ◦ δt ◦ F (αS ◦ [idS , 1s ]))(x)(e)

= (βE ◦ δt ◦ F [αS , 1αS (s)])(x)(e)

(2)

= (ot ◦ [it, 1(δt◦F [αS ,1αS (s )])(x )]
♯)(e)

(definition of βE )

= (ot ◦ [it, 1[it, idQ ]♯ ((T (idI +1αS (s ))◦cx )(�))
]♯)(e)

(shown earlier)

= (ot ◦ [it, idQ ]
♯ ◦ µ̂Q ◦T (idI +1(T (idI +1αS (s ))◦cx )(�)

))(e)

(Lemma B.1)

= (ot ◦ [it, idQ ]
♯ ◦T (idI +1αS (s)) ◦ µ̂1 ◦T (idI +cx ))(e)

(shown above)

= (ot ◦ [it, 1αS (s)]
♯ ◦ µ̂1 ◦T (idI +cx ))(e)

= (βE′ ◦ αS )(s)((µ̂1 ◦T (idI +cx ))(e))

(definition of βE′),

and therefore for all x ∈ F (S + 1) and e ∈ E,

(βE ◦ δt ◦ F (αS ◦ [idS , 1s1]))(x)(e)

= (βE′ ◦ αS )(s1)((µ̂1 ◦T (idI +cx ))(e))

= (βE′ ◦ αS )(s2)((µ̂1 ◦T (idI +cx ))(e)) (assumption)

= (βE ◦ δt ◦ F (αS ◦ [idS , 1s2]))(x)(e).

Thus, it follows from Lemma 6.11 that (αS , βE′) is locally
consistent w.r.t. βE . �
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