
Actor-Based Model Checking for SDN Networks

Elvira Alberta, Miguel Gómez-Zamalloaa, Miguel Isabela,∗, Albert Rubioa,
Matteo Sammartinob, Alexandra Silvab

aComplutense University of Madrid, Spain
bUniversity College London, UK

Abstract

Software-Defined Networking (SDN) is a networking paradigm that has become
increasingly popular in the last decade. The unprecedented control over the
global behavior of the network it provides opens a range of new opportunities for
formal methods and much work has appeared in the last few years on providing
bridges between SDN and verification. This article advances this research line
and provides a link between SDN and traditional work on formal methods for
verification of concurrent and distributed software—actor-based modelling. We
show how SDN programs can be seamlessly modelled using actors, and thus
existing advanced model checking techniques developed for actors can be directly
applied to verify a range of properties of SDN networks, including consistency
of flow tables, violation of safety policies, and forwarding loops. Our model
checker for SDN networks is available through an online web interface, that also
provides the SDN actor-models for a number of well-known SDN benchmarks.

Keywords: Software-Defined Networks, Verification, Concurrency,
Actor-based modelling, Model checking

1. Introduction

SDN is a relatively recent networking paradigm which is now widely used in
industry, with many companies—such as Google and Facebook—using SDN to
control their backbone networks and data-centers. The core principle in SDN is
the separation of control and data planes—there is a centralized controller which
operates a collection of distributed interconnected switches. The controller can
dynamically update switches’ policies depending on the observed flow of packets,
which is a simple but powerful way to react to unexpected events in the network.

∗Corresponding author: Miguel Isabel, Department of Sistemas Informáticos y Com-
putación , C/ Profesor José Garćıa Santesmases, s/n Complutense University of Madrid,
E-28040 - Madrid (Spain). Phone/Fax +34 91 3947641 / +34 91 3947529.

Email addresses: elvira@sip.ucm.es (Elvira Albert), mzamalloa@ucm.es (Miguel
Gómez-Zamalloa), miguelis@ucm.es (Miguel Isabel), albert@cs.upc.edu (Albert
Rubio), m.sammartino@ucl.ac.uk (Matteo Sammartino),
alexandra.silva@ucl.ac.uk (Alexandra Silva)

Preprint submitted to Elsevier January 29, 2020

ar
X

iv
:2

00
1.

10
02

2v
1

 [
cs

.N
I]

 2
7

Ja
n

20
20

Network verification has gained an extra boost since SDN was introduced, as in
this new paradigm the amount of detailed information available about network
events is rich enough and can be centrally gathered to check for properties, both
statically and dynamically, of the network behavior. Moreover, the controller
itself is a program which can be analyzed and verified before deployment.

The distributed and concurrent nature of network behavior makes program-
ming and verification tasks challenging. Some of the bugs that can be found in
existing (programmable) networks are reminiscent of faults that have appeared
in distributed and concurrent systems, and which have inspired much research
in the verification and formal methods communities. With this observation as
a starting point, this article provides a new bridge between SDN and a strand
of formal methods—actor-based modelling [1]— which was originally developed
to analyze concurrent systems. Actors, entities equipped with a private mem-
ory, form the basic unit of computation in such framework and can interact with
each other through asynchronous messages. This setup enables reasoning about
local properties of the system without knowledge of the whole program, which
gives rise to more compositional and thus scalable methods. Actors provide
the foundations for the concurrency model of languages used in industry, e.g.,
Erlang and Scala, and libraries used in mainstream languages, e.g., Akka.

1.1. Summary of contributions

This article makes five main contributions:

1. SDN-semantics: A formalization of the semantics of SDN networks which
allows us to define the transitions that occur in the network and formalize
the concept of execution trace needed to prove soundness of our modelling.

2. SDN-Actors: An encoding of all basic components of an SDN network
(switches, hosts, controller) into the actor-based language ABS [2] and a
soundness proof of our encoding using the semantics of SDN networks in
point 1.

3. Barriers: One of the most challenging aspects to encode are the OpenFlow
barrier messages, special instructions that the controller can use to force
switches to execute all their queued tasks. We provide an implementation
of barriers using conditional synchronization and a soundness result.

4. Model checker: A model checker for our SDN models built on top of the
SYCO tool [3] that incorporates several dynamic partial-order reduction
(DPOR) algorithms.

5. Case studies: Several case studies of SDN and properties to illustrate the
versatility and potential of the approach. We were able to find bugs related
to programming errors in the controller, forwarding loops, and violation
of safety policies, and scale to larger networks than related techniques.

This article extends and improves the conference paper that appeared in the
FM’18 proceedings [4] as follows. On the theoretical side, we have formalized

2

the semantics of SDN networks and used it to prove soundness of the basic
encoding of SDN-Actors, ensuring thus the correctness of our models. On the
practical side, we have carried out a new experimental evaluation using the
Constrained DPOR algorithm [5]. This DPOR algorithm can take advantage of
independence conditions that we have defined specifically for the SDN domain
and that allow us to treat larger networks than by using related techniques
and than in our FM’18 paper. We have also extended the SYCO tool with a
mechanism to detect the violation of the property under check that stops the
exploration, while before SYCO was restricted to full exploration.

1.2. Organization of the article

Section 2 gives an intuition of the main ideas in the article by means of
a simple example. In Section 3 we present the semantics of SDN programs
and of actor systems, in two parts. First, Section 3.1 introduces a semantics
for SDN networks that describes the communication patterns in this kind of
networks and that allows us to formalize the notion of execution trace in the
SDN network. Next, we recall the semantics of actor systems from [2] which
will constitute the semantics of our models. Section 4 introduces the concept
of SDN-Actor by providing the encoding of all components in an SDN network
as actors. We formally prove the soundness of the encoding by relying on the
semantics introduced in Section 3.1. Section 5 extends both the SDN semantics
and our models to handle barriers and formalizes the soundness of this extension.
Section 6 describes our DPOR-based model checker which instantiates an off-
the-shelf model checker for actor systems with tailored independence conditions
to efficiently verify SDN-Actor models. Section 7 describes the experimental
evaluation of the tool. Related work and conclusions appear in Section 8.

2. Overview

This section contains an overview of the technical contributions via an ex-
tended example, which we also use to introduces basic concepts and notations.

2.1. Concurrency errors in SDN networks

SDN is a networking architecture where a central software controller can
dynamically change how network switches forward packets by monitoring the
traffic. Switches can be connected to hosts and to other switches via bidirec-
tional channels that may reorder packets. Each switch has a flow table, that
is a collection of guarded forwarding rules to determine the route of incoming
packets. Whenever a switch receives a packet, it checks if one of the flow table
rules applies. If no rule applies, the switch sends a message to the controller via
a dedicated link, and the packet is buffered until instructions arrive. Depending
on its policy, the controller instructs the switch, and possibly other switches in
the network, on how to update their flow tables. Such control messages between
the controller and the switches can be processed in arbitrary order.

We now show how a simple load-balancer can be implemented in SDN (exam-
ple taken from [6]) and how potential bugs can easily arise due to the concurrent

3

S1

C

S2

S3

H0

R2

R1

0
2

1 1

0

0

1

load-balancer

1
2

0

1
0

0

1

S2 S3C S1

first round
(R1 is chosen)

second round
(R2 is chosen)

{

{

4

5
6

Figure 1: Example SDN load-balancer. On the left: structure of the SDN. On the right:
messages exchanged in a possible execution of a naive controller program. Coloured arrows
stand for control messages to switches, indicating which flow rule to install (colours specify
the link to be used for the forwarding). Grey boxes and arrows among them represent packet
forwardings. Dashed arrows indicate messages to the controller.

behavior and asynchrony of message passing. Suppose we want to balance the
traffic to a server by using two replicas R1 and R2 to which the controller alter-
nates the traffic in a round-robin fashion. The structure of the SDN is shown in
Figure 1, on the left: H0 is any host that wants to communicate with the server
and S1, S2 and S3 are switches (numbers on endpoints stand for port numbers).

Even in this simple network, an incorrect implementation of the controller
can lead to serious problems. In Figure 1, on the right, we show an execution of
a naive controller, which simply instructs switches to forward packets along the
shortest path to the chosen replica. This implementation ignores the potential
concurrency in actions taken by switches and controller, leading to a forwarding
loop between S1 and S2. In the first round, when S1 queries the controller, R1 is
chosen. The figure shows S1 forwarding the packet to S2 before the end of the
first round, i.e., before a rule is installed on S2 (green arrow). This causes S2

to query the controller, which triggers the second round in which the controller
chooses R2. Thus, it sends instructions to install rules on S2, S1 and S3 to
forward the packet to S1, S3 and R2, respectively. When the controller rules
arrive at S1, it will have two contradictory instructions, telling to forward the
packet either to S2 or to S3. In the former case, the loop at the bottom of the
figure occurs. This issue can be avoided if the implementation uses barriers—the
controller will then guarantee that S2 receives and processes control messages
before taking any other action.

2.2. Actor-based modelling of SDN networks

We now explain how we can automatically detect the above problem using
actors and model checking. We use the object-oriented actor language ABS
[2, 7], where each actor type is specified as a class, consisting of a set of fields and
methods. Actors are instances of actor classes. For instance, the instructions:
Controller ctrl = new Controller(); Switch s1 = new Switch(”S1”,ctrl); Host h0 =

4

new Host(”H0”,s1,0); create 3 actors: a controller ctrl; a switch s1 with name
"S1" and a reference to ctrl; a host h0, with name "H0", connected to the switch
s1 via the port 0. The SDN in Figure 1 can be modeled using one actor per
component (additional data structures for network links will be shown later).

The execution model of actors is asynchronous. Each actor can be thought
of as a processor, with a queue of pending tasks and a local memory. Actors
are executed in parallel and, at each actor, one task is non-deterministically
selected among all the pending ones and executed. The syntax Fut<type>
f=a!m(x) spawns an asynchronous task m(x), that is added to the queue of
pending tasks of a, type is the type of the data returned by m or Unit if no data
is returned. This task consists in executing the method m of a with arguments
x. The variable f is a future variable [8] that will allow us to check if such task
has been completed. Left-hand side of the assignment can be omitted in case
the future variable is not needed.

A partial trace of execution of our SDN actor model computed by the model
checker is (the code that the tasks below execute will be given in Section 4):

1: h0!sendIn
1−→ 2: s1!switchHandlePacket

2−→ 3: ctrl!controlHandleMessage

3−→ 4: s1!switchHandleMessage(s2), 5: s1!sendOut, 6: s2!switchHandleMessage(r1)

Intuitively, a packet sending (sendIn) is executed on h0 (label 1), which
causes the packet to be forwarded to the switch s1 (2), then s1 sends a control
message to the controller (3). Finally, the controller spawns the three tasks in
the last state (parameters tell where to forward the packet). When executed,
these tasks will produce the messages in Figure 1 with the same numbers. Their
execution order is arbitrary: if it is the one shown in Figure 1, the execution
trace may lead to a state exhibiting a forwarding cycle between s1 and s2. As
we will show later, this situation can be easily detected by our model checker
SYCO via an exploration of a reduced execution tree, which avoids equivalent
executions (Section 6).

The ABS language provides a convenient await primitive that will be used
to model barriers and to rule out the behavior described above. The instruction
await f? synchronizes with the termination of the task associated to the future
variable f, by releasing the processor (so that another task can be scheduled) if
the task is not finished. Once the awaited task is finished, the suspended task
can resume. The await can be used also with boolean conditions await b? to
suspend the execution of the current active task until condition b holds. The
formal semantics of the language can be found in Section 3.2.

3. Semantics for SDN Networks and for Actors

This section presents two semantics that provide the formal basis on which
we build our models: we first introduce the semantics of SDN Networks in
Section 3.1, and then the semantics of actors in Section 3.2. The semantics

5

Host Switch Controller

packet

packet

pa
ck
et

Packet-in

Packet-out

Modify-State

packet

Figure 2: Information flow in SDN networks

of actors has been already defined in several works (ours is a simplification of
[2]). Our formalization of the SDN semantics is similar to that of [9]. We
have considered a simplification of the Openflow specification that captures the
essence of the communications of SDN networks (e.g., we have not included the
operation flood as it behaves similarly to the considered switch operations).

3.1. SDN Networks

Let us first describe the information flow of packets and messages among the
different elements in an SDN network that we have depicted in Figure 2. As in
standard networks, packets can be sent from hosts to switches and viceversa,
and also from switches to switches (see dashed arrows). The leftmost dashed
arrow represents the reception by a host of a new packet which is fed into the
network. The specific communications of SDN networks are performed by means
of Openflow messages (see regular arrows), which in our simplification can be
of three types:

• Packet-in: This message is sent from a switch to the controller when the
switch processes a packet for which it has no action rule to apply. The
message includes the switch identifier and the identifier and header of
the packet. The packet is buffered in the switch until a message of type
Packet-out is received.

• Modify-State: This message is sent from the controller to a switch with
new action rules to be inserted into the switch’s flow-table. The message
includes a flow-table entry with an action rule.

• Packet-out: This message is sent from the controller to a switch to notify
that it must re-try applying an action rule to a buffered packet. The
message includes the packet header.

Figure 3 shows the semantics of the flow of communications performed in our
simplified SDN networks. The three types of messages below are respectively
abbreviated as pktIn, modState and pktOut.

• A host is a term of the form h(id , sid , o, in), where id is the host identifier,
sid and o are, respectively, the switch identifier and port to which the host
is connected, and in its input channel.

6

• A switch is of the form s(id , ft , b, in), where id is the switch identifier, ft
its flow-table, b its internal buffer of packets and in its input channel.

• The controller is of the form c(top, in) where top is the topology of the
network and in is its input channel.

• A state of the SDN network is a tuple of the form 〈H,S,C〉 where H =
{h | h is a host}, S = {s | s is a switch}, that is, H is a set of hosts, S is
a set of switches, and, C is the controller.

Letter p denotes a packet. Function header(p) returns its header. Flow-tables
are represented as mappings from pairs packet-header/port to actions and are
treated as a black-box through the following functions: lookup(ft , 〈ph, o〉) that
returns the action associated to the packet with header ph received through port
o in the flow-table ft , or ⊥ if there is no entry for it; and, put(ft , 〈ph, o〉, a) that
returns the new flow-table after inserting in ft the entry 〈ph, o〉 7→ a. For simplic-
ity, we only consider actions of the form send(id) or 〈send(id), o〉, which indicate
that the corresponding packet should be sent, respectively, to the host id , or to
the switch with id as identifier using port o. Function applyPol(top, sid, o, ph)
represents the application of the controller’s policy using the current network
topology top in result to a packet received via port o with header ph that the
switch with identifier sid has not been able to handle. It returns a set of pairs
〈id,m〉 where m is a modifyState message with an associated new flow-table
entry that has to be forwarded to the switch with identifier id.

A transition or step in the network corresponds to the processing of a packet
or message by a host, switch or the controller. There are six (sets of) transition
rules corresponding to the different types of incoming arrows in Figure 2:

• sendIn (abbreviated as si): It corresponds to the processing by a host of
a new packet which is fed into the network (denoted as new(p)), in which
case the packet is forwarded to the switch to which the host is connected
via the corresponding port. Note that the port is attached to the packet
(denoted o:p) since there is only one input channel in switches.

• hostHandlePacket (hhp): This corresponds to the processing by a host h
of a packet received from its switch, in which case the packet is consumed
without any further action.

• switchHandlePacket (shp): When a switch processes a received packet,
either from a host or from another switch, it looks up if there is any rule
matching with the header of the packet and port in its flow table ft . There
are three cases: (cases 1 and 2) there is a send action rule in the switch’s
flow-table, hence the packet is forwarded to the host (case 1) or switch
(case 2) indicated in the action (in the latter case also the switch’s port
is included in the action); or (case 3) there is no rule for this packet, in
which case the packet is buffered and a Packet-in message is sent to the
controller.

7

• sendOut (so): This corresponds to the processing of a Packet-out mes-
sage by a switch. After looking up the header of the packet p in its own
flow-table ft , there are three cases which are analogous to those of switch-
HandlePacket except that the packet is in the switch’s buffer (instead of
in its input channel), and that if no action rule is found in the switch’s
flow-table the packet is dropped.

• switchHandleMessage (shm): It corresponds to the processing of a Modify-
State message by a switch, in which case the received action rule is inserted
into the switch’s flow-table.

• controlHandleMessage (chm): The controller receives a Packet-in message
from a switch s in result to a packet that the switch s has not been able to
handle. As a result, the controller sends a set ms of Modify-State messages
with new action rules to a selected set of switches (as specified by the
controller’s policy with the current network topology), and a Packet-out
message to switch s.

A derivation E ≡ S0 → · · · → Sn is complete if S0 is the initial state and
Sn = 〈H,S,C〉 is the final state such that every message and packet in their
channels has been processed (their input channels are empty). We use exec(S)
to denote the set of all possible executions starting at state S.

3.2. Syntax and Semantics for Actor Programs

The grammar below describes the syntax of the language ABS in which SDN
models will be defined:

P ::= M C̄
C ::= class c(T̄ x̄){M̄}
M ::= T m(T̄ x̄){s; }
s ::= s ; s | x = e | if b then s else s | while b do s | m(z̄)

| x = new C(ȳ) | f = x!m(z̄) | await f? | await b?
Here, x, y, z denote variables names, f a future variable name, and s a sequence
of instructions. For any entity A, the notation Ā is used as a shorthand for
A1, ..., An. We use the special identifier this to denote the current actor.
For generality, the syntax of expressions e, Boolean conditions b and types
T is left unspecified. As in the object-oriented paradigm, a class denotes a
type of actors including their behavior, and it is defined as a set of fields and
methods. Lastly, m(z̄) denotes standard (synchronous) method calls, which are
only allowed on the actor itself, whereas “!” is used for asynchronous method
calls (see Section 2.2).

Figure 4 presents the semantics of the actor model. An actor is a term
of the form a(o, tk , h,Q), where o is the actor identifier, tk is the identifier
of the active task that holds the actor’s lock or ⊥ if the actor’s lock is free,
h is its local heap and Q is the queue of tasks in the actor. A heap h is a
mapping h : fields(C) 7→ V, where V stands for the set of references and val-
ues. A task tk is a term tk(tk ,m, l, s) where tk is a unique task identifier,

8

(si)
h = h(id, sid, o, in ∪ {new(p)}) s = s(sid , ft , b, in ′)

〈{h} ∪H, {s} ∪ S,C〉 → 〈{h(id, sid, o, in)} ∪H, {s(sid , ft , b, in ′ ∪ {o:p})} ∪ S,C〉

(hhp)
h = h(id, sid, o, in ∪ {p})

〈{h} ∪H,S,C〉 → 〈{h(id, sid, o, in)} ∪H,S,C〉

(shp1)

s = s(sid , ft , b, in ∪ {o:p}) h = h(id, sid, o′, in′)
send(id) = lookup(ft , 〈header(p),o〉)

〈{h} ∪H, {s} ∪ S,C〉 → 〈{h(id, sid, o′, in′ ∪ {p})} ∪H, {s(sid , ft , b, in)} ∪ S,C〉

(shp2)

s = s(sid , ft , b, in ∪ {o:p}) s′ = s(sid ′, ft ′, b′, in ′)
send(sid′,o′) = lookup(ft , 〈header(p),o〉)

〈H, {s, s′} ∪ S,C〉 → 〈H, {s(sid , ft , b, in), s(sid ′, ft ′, b′, in ′ ∪ {o′:p})} ∪ S,C〉

(shp3)
s=s(sid , ft , b, in ∪ {o:p}) s′ = s(sid , ft , b ∪ {o:p}, in) ⊥ = lookup(ft , 〈header(p),o〉)
〈H, {s} ∪ S, c(top, in′)〉 → 〈H, {s′} ∪ S, c(top, in′ ∪ {pktIn(sid, o, id(p), header(p))})〉

(so1)

s = s(sid , ft , b ∪ {o:p}, in ∪ {pktOut(ph)})
ph = header(p) h = h(id, sid, o′, in′) send(id) = lookup(ft , 〈header(p),o〉)
〈{h} ∪H, {s} ∪ S,C〉 → 〈{h(id, sid, o, in′ ∪ {p})} ∪H, {s(sid , ft , b, in)} ∪ S,C〉

(so2)

s = s(sid , ft , b ∪ {o:p}, in ∪ {pktOut(ph)})
ph = header(p) s′ = s(sid ′, ft ′, b′, in ′) send(sid′, o′) = lookup(ft , 〈header(p),o〉)
〈H, {s, s′} ∪ S,C〉 → 〈H, {s(sid , ft , b, in), s(sid ′, ft ′, b′, in ′ ∪ {o′:p})} ∪ S,C〉

(so3)

s = s(sid , ft , b ∪ {o:p}, in ∪ {pktOut(ph)})
ph = header(p) ⊥=lookup(ft , 〈header(p),o〉)
〈H, {s} ∪ S,C〉 → 〈H, {s(sid , ft , b, in)} ∪ S,C〉

(shm)
s = s(sid , ft , b, in ∪ {modState(〈ph, o〉 7→ a)})

〈H, {s} ∪ S,C〉 → 〈H, {s(sid , put(ft , 〈ph, o〉, a), b, in)} ∪ S,C〉

(chm)

c = c(top, cin ∪ {pktIn(sid, o, pid, ph)}) s = s(sid , ft , b, sin)
ms = applyPol(top, sid , o, ph) msid = {m | 〈id,m〉 ∈ ms}

S′ = {s(sid ′, ft ′, b′, in ′) | s(sid ′, ft ′, b′, in) ∈ S, in′ = in ∪mssid′}
〈H,S ∪ {s}, c〉 → 〈H,S′ ∪ s(sid , ft , b, sin ∪mssid ∪ {pktOut(ph)}), c(top, cin)〉

Figure 3: Semantics of SDN networks

9

(mstep)

a(o,⊥, h,Q) = selectAct(S)

tk(tk ,m, l , s) = selectTask(a(o,⊥, h,Q)) s 6= ε S
o·tk
;∗ S′

S 7−→ S′

(asy)
tk = tk(tk ,m, l, xf = y ! m1(z); s) o1 = l(y) tk1 = fresh() l1=newlocals(z̄,m1, l)

a(o, tk , h,Q∪ {tk}) · a(o1, tk
′, h′,Q′) o·tk

;

a(o, tk , h,Q∪{tk(tk ,m, l[xf 7→tk1], s)}) · a(o1, tk
′, h′,Q′∪{tk(tk1,m1, l1, body(m1))})

(syn)
tk = tk(tk ,m, l,m1(z); s) l1=newlocals(z̄,m1, l)

(syn) a(o, tk h,Q∪ {tk})· o·tk; a(o, tk , h,Q∪{tk(tk ,m, l1, body(m1); s)})

(new)

tk = tk(tk ,m, l, x = new D(ȳ); s) o1=fresh()
h′ = newheap(D) l′ = l[x→ o1] class D(f̄){. . .}

a(o, tk , h,Q∪ {tk}) o·tk
; a(o, tk , h,Q∪ {tk(tk ,m, l′, s)}) · a(o1,⊥, h′[f̄ 7→ l(ȳ)], ∅)

(await)1
tk = tk(tk ,m, l ,await xf; s) l(xf) = tk1 tk(tk1,m1, l1, ε) ∈ S

a(o, tk , h,Q∪ {tk}) o·tk
; a(o, tk , h,Q∪ {tk(tk ,m, l , s)})

(await)2
tk = tk(tk ,m, l ,await xf; s) l(xf) = tk1 tk(tk1,m1, l1, ε) 6∈ S
a(o, tk , h,Q∪ {tk}) o·tk

; a(o,⊥, h,Q∪ {tk(tk ,m, l ,await xf; s)})

(return)
tk = tk(tk ,m, l , ε)

a(o, tk , h,Q∪ {tk}) o·tk
; a(o,⊥, h,Q∪ {tk})

Figure 4: Semantics of concurrent primitives of actor programs

m is the method name executing in the task, l is a mapping from local vari-
ables to V, and s is the sequence of instructions to be executed. Finally, a
global state S is a set of actors. As actors do not share their states, the se-
mantics can be presented as a macro-step semantics [10] (defined by means of
the transition “ 7−→”) in which the evaluation of all statements of a task takes
place serially (without interleaving with any other task) until it gets to a re-
lease point, i.e., a point in which the actor’s processor becomes idle due to the
return or an await instruction. In this case, rule (mstep) is applied to select
an available task from an actor, namely relation selectAct(S) is applied to se-
lect non-deterministically an actor a(o,⊥, h,Q) in the state with a non-empty
queue Q, and, selectTask(a(o,⊥, h,Q)) to select non-deterministically a task of

Q. Micro-step transitions are written
o·tk
; and define evaluations in task tk by

actor o within a given macro-step. As before, the sequential instructions are
standard and thus omitted. In (new), an active task tk in actor o creates a new
actor of class D with a fresh identifier o1 = fresh(), which is introduced to the
state with a free lock. Here h′ = newheap(D) stands for a default initialization

10

on the fields of class D. Rule (syn) simply replaces in task tk the statement
with the method call to m1 by its body. Rule (asy) spawns a new task (the ini-
tial state is created by newlocals) with a fresh task identifier tk1 which is stored
in the future variable xf. We assume o 6= o1, but the case o = o1 is analogous,
the new task tk1 is simply added to the queue Q′ of actor o1. In rule (await)1,
the future variable xf we are awaiting for points to a finished task and thus the
await can be completed. The finished task identified with tk1 is looked up
in all actors in the current state (written as tk(tk1,m1, l1, ε) ∈ S). Otherwise,
(await)2 yields the lock so that any other task of the same actor can take it.
The behaviour of await on Boolean conditions is analogous. When rule (re-
turn) is executed, the task is finished, but it remains in the queue so that rules
(await)1 and (await)2 can be applied. A derivation E ≡ S0 7−→ · · · 7−→ Sn is
complete if S0 is the initial state and all actors in Sn are of the form a(o,⊥, h,Q),
where for all tk ∈ Q it holds that tk ≡ tk(tk ,m, l , ε). We use exec(S) to denote
the set of all possible executions starting at state S.

4. SDN-Actors: an actor based encoding of SDN programs

We present the concept of SDN-Actor in 3 steps: Section 4.1 describes the
creation and initialization of the actors according to the topology. Section 4.2
provides the encoding of the operations and communication for Switch and Host

actors. Section 4.3 proposes the encoding of the controller. Altogether, our
encoding provides an actor-based semantics foundation of SDN networks that
follow the OpenFlow specification [11] captured by the semantics in Section 3.1.

4.1. Network topology

The topology can be given as a relation with two types of links:

1. SHlink(s,h,o): switch s is connected to host h through the port o

2. SSlink(s1,i1,s2,i2): switch s1 is connected via port i1 to port i2 ofs s2

from which we automatically generate the initial configuration as follows.

Definition 4.1 (initial configuration). Let S and H be, respectively, the set
of different switch and host identifiers available in the link relations that define
the network topology. The initial configuration (method init conf) is defined as:

• We create a controller actor Controller ctrl=new Controller()

• For each sid∈S, we create an actor Switch s=new Switch(sid,ctrl)

• For each hid∈H, we create an actor Host h=new Host(hid,s,o) where s is the
reference to the switch actor, o the port identifier, that hid is connected to.

• The data structures srefs and hrefs store, respectively, the relations between
identifier in the topology and reference in the program, for all switches in
S and hosts in H.

11

• The data structure ntw contains the link relations in the network topology.

• The synchronous call ctrl.addConfig(srefs,hrefs,ntw) initializes in the con-
troller the topology relations and the references to switches and hosts such
that the controller can send control messages to redirect the traffic to the
involved links.

Example 4.2. By applying Definition 4.1 to the topology in Figure 1, given as
the relation: SHlink(S1, H0, 0), SHlink(S2, R1, 0), SHlink(S3, R2, 0), SSlink(S1, 1, S2, 1),
and SSlink(S1, 2, S3, 1), we obtain the following initial configuration which con-
stitutes the init conf method from which the execution starts:

1 init conf() { Controller ctrl = new Controller(); Switch s1 = new Switch("S1",ctrl);
2 Switch s2 = new Switch("S2",ctrl); Switch s3 = new Switch("S3",ctrl);
3 Host h0 = new Host("H0",s1,0); Host r1 = new Host("R1",s2,0);
4 Host r2 = new Host("R2",s3,0);
5 Map<SwitchId,Switch> srefs = {"S1":s1, "S2":s2, "S3":s3};
6 Map<HostId,Host> hrefs = {"H0":h0, "R1":r1, "R2":r2};
7 List<Link> ntw = [SHLink("S1","H0",0), SSLink("S1",1,"S2",1),..];
8 ctrl.addConfig(srefs,hrefs,ntw); }

The data structures srefs and hrefs are implemented using maps, and the network
ntw as a heterogeneous list. The use of data structures is nevertheless orthog-
onal to the encoding as actors. We just assume standard functions to create,
initialize, access them (like getters, put, take, lookup, etc.) that will appear in
italics in the code.

4.2. The switch and host classes

Figure 5 presents the actor-based Switch and Host classes. We include at the
top some type declarations that are assumed and must be implemented (such as
identifiers, packets and their headers, etc.). There are two main data structures
implemented in more detail to make explicit the information they contain:

• the buffer at Line 22 (L22 for short) is a map that must contain pairs of
packet and input port indexed by their PacketId.

• the flow table flowT (L21) is implemented as a map indexed by the so-
called match field [11] represented by type MatchF in Figure 5. The match
field is composed by information stored in the header of a Packet (retrieved
by function getHeader) and the input port. For a given matching, the
flow table contains the Action the switch has to perform upon the reception
of the Packet. An action l can be of three types: i) send the packet to a
host h, ii) send the packet to the port o of a switch s, iii) drop the packet.
Given an action l, function isSwitch respectively isHost succeeds if the
action is of type ii) respectively i), and functions getSwitch, getHost
and getPort return the s, h and o respectively. The full implementation
must allow duplicate entries (non-deterministically selected), and the use
of wildcards in the match fields, but these aspects are unrelated to the
encoding of SDN actors, and skipped for simplicity.

12

9 type SwitchId=... type HostId=... type PortId=... type PacketId=...
10 type PacketH=... type Packet=... type Action=... type Link=...
11 type MatchF=(PacketH,PortId);

12 class Host(HostId hid, Switch s, PortId o) {
13 Unit sendIn(Packet p){
14 s!switchHandlePacket(p,o);
15 }
16 Unit hostHandlePacket(Packet p){
17 / ∗ output packet ∗ /
18 }
19 }
20 class Switch(SwitchId sid, Controller ctrl) {
21 Map<MatchF,Action> flowT={};
22 Map<PacketId,(Packet,PortId)> buffer={};
23 Unit switchHandlePacket(Packet p, PortId o){
24 Action l=lookup(flowT,(getHeader(p),o));
25 if (isSwitch(l))
26 getSwitch(l)!switchHandlePacket(p,getPort(l));
27 else if (isHost(l))
28 getHost(l)!hostHandlePacket(p);
29 else {
30 buffer=put(buffer,getId(p),(p,o));
31 ctrl!controlHandleMessage(sid,o,getId(p),getHeader(p));
32 }
33 }
34 Unit sendOut(PacketId pi){
35 Packet p; PortId o;
36 (p,o)=take(buffer,pi);
37 Action l=lookup(flowT,(getHeader(p),o));
38 if (isSwitch(l))
39 getSwitch(l)!switchHandlePacket(p,getPort(l));
40 else if (isHost(l))
41 getHost(l)!hostHandlePacket(p);
42 / ∗ else packet is dropped ∗ /
43 }
44 Unit switchHandleMessage(MatchF m, Action a){
45 flowT=put(flowT,m,a);
46 }
47 }

Figure 5: Type declarations (top) and actor-based host and switch classes (bottom)

13

Upon creation, hosts receive their identifier and a reference to the switch and
the port identifier they are connected to (defined as class parameters that are
initialized at the actor creation). Their method sendIn is used to send a packet
to the switch, and method hostHandlePacket to receive a packet from the switch.
Switches receive upon creation their identifier and a reference to the controller.
They have as additional fields: (a) the flow table flowT (as described above) in
which they store the actions to take upon receiving each kind of package, and
(b) a buffer in which they store packets that are waiting for a response from
the controller. Switches can perform three operations: (1) switchHandlePacket

receives a packet, looks up in the flow table the action to be made L24, and, if
there is an entry for the packet in the table, it asynchronously makes the corre-
sponding action (either send it to a host L27 or to a switch L25). Otherwise, it
sends a controlHandleMessage request and puts the packet and input port in the
buffer (L30 and L31) until it can be handled later upon receipt of a sendOut;
(2) sendOut receives a packet identifier that corresponds to a waiting packet, re-
trieves it from the buffer (L35), looks up the action l to be performed in the flow
table, and makes the corresponding asynchronous call (as in switchHandlePacket);
(3) switchHandleMessage corresponds to a message received from the controller
with an instruction to update the flow table. Other switch operations like for-
ward packet, that is similar to sendOut but directly tells the switch the action to
be performed, or flood, that sends a packet through all ports except the input
port, can be encoded similarly and are used in the experiments in Section 7.

Example 4.3. In init conf, after L8, we add h0!sendIn(p), where p is a packet to
be sent to the IP address of the replica servers (the information on the destina-
tion is part of the packet header). This is the only asynchronous task that init conf

spawns. Its execution in turn spawns a new task s1!switchHandlePacket(p,0) at
L13, that does not find an entry in flowT at L24 and spawns a controlHandleMessage

task on the controller at L31, whose code is presented in the next section.

4.3. The controller

After creating the controller actor, the method addConfig is invoked syn-
chronously to initialize the references to switches and hosts and set up the initial
network topology (see L8). A simple controller is presented in Figure 6. When
a switch asynchronously invokes controlHandleMessage, the controller applies the
current policy—function applyPolicy must be implemented for each different
type of controller. The implementation of the policy typically requires the def-
inition of new data structures in the controller to store additional information
(see Section 7). When applying the policy for a given SwitchId, PortId and PacketH

, we obtain a list of switch identifiers and corresponding actions to be applied
to them (as a data-structure of type List<(SwitchId,MatchF,Action)>). The while
loop at L57 in controlHandleMessage asynchronously invokes switchHandleMessage

at L82 on each of the switches in the list, and passes as parameter the corre-
sponding action to be applied for the given match entry. Finally, it notifies at
L63 the switch from which the packet came that this can be sent out. More so-
phisticated controllers that build upon this encoding are described in Section 7.

14

48 class Controller() {
49 Map<SwitchId,Switch> srefs={};
50 Map<HostId,Host> href={};
51 List<Link> ntw=[];
52 Unit addConfig(Map<SwitchId,Switch> sr, Map<HostId,Host> hr, List<Link> n){
53 / ∗ references to switches and hosts and network topology initialized ∗ /
54 }
55 Unit controlHandleMessage(SwitchId sid, PortId o, PacketId p, PacketH h){
56 List<(SwitchId,MatchF,Action)> l=applyPolicy(sid,o,h);
57 while (not(isEmpty(l))) {
58 SwitchId s1; Action a1; MatchF m1;
59 (s1,m1,a1)=head(l);
60 lookup(srefs,s1)!switchHandleMessage(m1,a1);
61 l=tail(l);
62 }
63 lookup(srefs,sid)!sendOut(p);
64 }
65 }

Figure 6: Controller class (without barriers)

Example 4.4. In the example, applyPolicy corresponds to the load-balancer de-
scribed in Section 2, which directs external requests to a chosen replica in a
round-robin fashion. For the call applyPolicy(s1,0,h), it chooses r1 and thus,
it returns in L56 two actions: (s1→s2), (s2→r1), i.e., one action to install in
s1 the rule to send the packet to s2, and the second to install in s2 the rule to
send it to r1. For simplicity, we assume that the Action just contains the loca-
tion to which the packet has to be sent (without including the port). The while
loop thus spawns two asynchronous calls, s1!switchHandleMessage(m1,s2) and s2

!switchHandleMessage(m1,r1). Besides, it sends a s1!sendOut(p) in L63. Several
problems may arise in this implementation. One problem, as explained in Sec-
tion 2, is that the packet is sent from s1 to s2 before the control message is
processed by s2. Then, s2 gets the packet and it does not find any matching rule,
thus it sends a controlHandleMessage to the controller. Applying the above policy,
the controller chooses now as replica r2 and returns the actions: (s2→s1), (s1→
s3), (s3→r2), i.e., the packet should be sent to r2 by first sending from s2 to s1

(first action), and so on. This might create the circularity depicted in Figure 1.

4.4. Soundness of the Encoding

An execution in the network is characterized by the messages in the queues of
the switches, hosts, and controller and the state of their data structures. First
of all, let us define the equivalence between an input channel with its buffer
(in, b) and a queue of pending tasks with its buffer (Q,buffer). Let us notice
here that even though we have used different notation for b and buffer, we use
b = buffer to denote the equality of information in both structures, that is, they
have exactly the same packets and with the same ports.

15

Definition 4.5. An input channel in with a buffer of pending packets b and a
queue of pending tasks Q with a buffer of pending packets buffer are equivalent,
written (in, b) ≡ (Q, buffer) if and only if:

1. in = ∅ = Q and b = buffer or

2. otherwise on the following holds:

pktOut: in = {pktOut(ph)}∪in′, ∃tk, p such that Q = {tk(, sendOut, l,)}∪
Q′, b = b’ ∪ {o:p}, buffer = buffer′ ∪ {(p, o)}, getId(p) = l[pi] and
getHeader(p) = ph, and (in′, b′) ≡ (Q′, buffer’).

modState: in = {modState(〈ph,o〉 7→ a)} ∪ in′,∃tk such that Q = Q′ ∪
{tk(, switchHandleMessage, l,)}, (〈ph,o〉 7→ a) = (l[m] 7→ l[a]) and
(in′, b) ≡ (Q′, buffer),

pktIn: in = {pktIn(sid,o,pid,ph)} ∪ in′, ∃tk such that Q = Q′ ∪
{tk(, controlHandleMessage, l,)}, sid = l[sid], pid = l[p], ph =
l[h], o = l[o] and (in′, b) ≡ (Q′, buffer).

packet: in = {o:p}∪in′, ∃tk such that Q = {tk(, switchHandlePacket, l,)}∪
Q′, o = l[o], p = l[p] and (in′, b) ≡ (Q′, buffer).

packet-out: in = {p}∪in′, ∃tk such that Q = {tk(, hostHandlePacket, l,)}∪
Q′, p = l[p], and (in′, b) ≡ (Q′, buffer).

packet-in: in = {new(pkt)}∪in′, ∃tk such that Q = {tk(, sendIn, l,)}∪
Q′, pkt = l[p], and (in′, b) ≡ (Q′, buffer).

Now, we can define the equivalence between an SDN state and an SDN-Actor
state.

Definition 4.6 (equivalence). An SDN state S = 〈H,Sw,C〉 and an SDN-
actor state Sa are equivalent, written S ≡ Sa, if and only if:

Host: ∀h(id, sid, o, in) ∈ H,∃!a(, , h,Q) ∈ Sa such that (in, ∅) ≡ (Q, ∅),
id = h[hid], sid = h[s], and o = h[o].

Switch: ∀s(id, ft, b, in) ∈ Sw,∃!a(, , h,Q) ∈ Sa such that (in, b) ≡ (Q, h[buffer]),
id = h[sid], and ft = h[flowT].

Controller: C = c(top, cin) and ∃!a(id, , h,Q) ∈ Sa such that
(cin, ∅) ≡ (Q, ∅), related(top, {h[srefs], h[href], h[ntw]}),
and ∀a(, , h′,) ∈ Sa, id = h′[ctrl].

Let us notice here that we use related(top, {h[srefs], h[href], h[ntw]}) to clarify
that information about the topology is coherent in both the controller and the
controller actor.

The following theorem ensures the soundness of our modelling. Essentially
we guarantee that, for a given SDN network that follows the OpenFlow specifica-
tion, any execution in the network has an equivalent execution in the SDN-Actor
model. The proof can be found in the appendix. We denote as Sini

a the SDN-
Actor state defined in Definition 4.1, i.e., after executing method init conf() and

16

all asynchronous calls to method sendIn containing the packets to be delivered.
Furthermore, Sini ≡ Sini

a .

Theorem 4.7. Let Sini and Sini
a be an SDN state and an SDN-Actor state,

respectively.

1. For every execution Sini → S1 → ...→ Sn ∈ exec(Sini),∃Sini
a 7−→ ... 7−→

Sn
a ∈ exec(Sini

a) such that Sn ≡ Sn
a .

2. For every execution Sini
a 7−→ S1

a 7−→ ... 7−→ Sn
a ∈ exec(Sini

a),∃Sini →
...→ Sn ∈ exec(Sini) such that Sn ≡ Sn

a .

5. Implementing barriers using conditional synchronization

Barriers [11] have been designed to force a switch to handle previous control
messages, and thus avoid problems such as the one described above.

Definition 5.1 (OF barrier). Following OpenFlow [11], upon receipt of a bar-
rier message, the switch must finish processing all previously-received controller
messages, before executing any messages received after the barrier message.

Figure 7 shows our modelling that intuitively consists in the controller not
sending further messages to any switch on which a barrier has been activated,
until this switch acknowledges that all previous control messages have been
already processed. The main points in the implementation are:

1. The controller creates a future variable at L82 for every asynchronous task
that it posts on all switches.

2. it keeps in barrierMap the list of future variables (not yet acknowledged)
for each of the switches (putAdd in L82 adds the future variable to the list
indexed by s1 in the map).

3. The controller keeps in barrierOn the set of switches with an active barrier.

4. A barrier on a switch consists in the controller awaiting on the list of
future variables that the switch needs to acknowledge to ensure that its
control messages have already been processed (method barrierRequest).

5. All control messages must be now preceded by a call to barrierWait that
checks if the corresponding switch has an active barrier, L97. This is
because while suspended in a barrier, the controller can start to process
another controlHandleMessage unrelated to the previous one, but which af-
fects (some of) the same switches for which a barrier was set. So, we
cannot send messages to them until their barriers are set to off. Similarly,
the call to barrierRequest must also be preceded by a call to barrierWait

since barrierRequest is indeed modelling the send to the switch of a control
message (the barrier message).

17

66 class Controller() {
67 Map<SwitchId,Switch> srefs={};
68 Map<HostId,Host> href={};
69 List<Link> ntw=[];
70 Map<SwitchId,List<Fut<Unit>> barrierMap={};
71 Set<SwitchId> barrierOn = ∅;
72 Unit addConfig(Map<SwitchId,Switch> sr, Map<HostId,Host> hr, List<Link> n){
73 / ∗ references to switches and hosts and network topology initialized ∗ /
74 }
75 Unit controlHandleMessage(SwitchId sid, PortId o, PacketId p, PacketH h){
76 List<(SwitchId,MatchF,Action)> l=applyPolicy(sid,o,h);
77 List<SwitchId> ls = [];
78 while (not(isEmpty(l))) {
79 SwitchId s1; Action a1; MatchF m1;
80 (s1,m1,a1)=head(l);
81 barrierWait(s1);
82 Fut<Unit>f=lookup(srefs,s1)!switchHandleMessage(m1,a1);
83 barrierMap=putAdd(barrierMap,s1,f);
84 ls = add(ls,s1);
85 l=tail(l);
86 }
87 while(not(isEmpty(ls))) {
88 barrierWait(head(ls));
89 barrierRequest(head(ls));
90 ls=tail(ls);
91 }
92 barrierWait(sid);
93 Fut<Unit>f=lookup(srefs,sid)!sendOut(p);
94 barrierMap=putAdd(barrierMap,sid,f);
95 }
96 Unit barrierWait (SwitchId sid){
97 await not(contains(barrierOn,sid))?;
98 }
99 Unit barrierRequest (SwitchId sid){

100 barrierOn=add(barrierOn,sid);
101 List<Fut<Unit>> futSid=take(barrierMap,sid);
102 while (not(isEmpty(futSid)) {
103 Fut<Unit> fi=head(futSid);
104 await fi?;
105 futSid=tail(futSid);
106 }
107 barrierOn=delete(barrierOn,sid);
108 }
109 }

Figure 7: Extension of Controller class with barriers

18

Note that this is not a restriction on the type of controllers we model, but
rather an effective way to encode barriers using actors and conditional syn-
chronization (by means of the await instructions) that ensures the behaviour of
OpenFlow barriers.

The next theorem states that our implementation of barriers via methods
barrierRequest and barrierWait provide a sound encoding of the OF barrier mes-
sages in Definition 5.1.

Theorem 5.2 (soundness of barriers). Given any state S in any execution
of the SDN-Actor model right before executing L89 with switch sid as parameter
(i.e., the state before activating a barrier over sid), and the state S′ right before
executing L90 (i.e., the state after receiving the acknowledgement of the barrier),
the following holds:

• All switchHandleMessage and sendOut tasks in the queue of switch sid in
state S have been completely executed in state S′.

• No switchHandleMessage nor sendOut task have been spawned over switch
sid in any middle state between S and S′.

• No other barrierRequest call for switch sid is performed between S and S′.

Proof.
Let us firstly define an invariant which holds for every possible state S′′ of any
execution of the SDN-Actor model:

∀a(sid, , ,Q) ∈ S′′ and ∀tk(tk,m, ,) ∈ Q, m ∈ {switchHandleMessage, sendOut}

∃!a(cid, , h,) ∈ S′′ such that tk ∈ h[barrierMap][sid]

The invariant states that every spawned switchHandleMessage or sendOut task tk
on a switch sid is recorded by means of a future variable in the list associated to
sid in the barrierMap field of the controller (i.e. tk ∈ h[barrierMap][sid]). Note the
abuse of notation ∈ to check existence of an element in a List data-structure,
and [] to access the value of a key in a Map data-structure. It can be seen
that after making any asynchronous call to method switchHandleMessage (L82)
or sendOut (L93), the corresponding future variable is always recorded in the
barrierMap field (L83 and L94).

Now, given the controller of the state S, a(cid, , hc,Qc) ∈ S, for every task
tk(tid, controlHandleMessage, lc, barrierRequest(l); s) ∈ Qc, we have a derivation

S = S0

cid.tid

;∗ S1 7−→ ... 7−→ Sn
cid.tid7−→ Sn+1 = S′ such that S1 is the global

state after executing the micro-step transitions of such task until it stops at
L104, and Sn+1 is the first state where hc[barrierOn] does not contain the switch
sw = l[sid]. Let us notice that if such stop is not performed, then every task
in sw has already finished and barrierRequest is performed in a single macro-step
(S0 = Sn). Then, we know that ∀i ∈ {0, ..., n + 1},∃a(sw, , ,Qi) ∈ Si with
Qi = SHPi ∪ SOi ∪ SHMi such that:

19

• SHP i contains all switchHandlePacket tasks,

• SO i contains all sendOut tasks, and,

• SHM i contains all switchHandleMessage tasks.

By the definitions of the states S1 and Sn+1, we know that ∀i ∈ {1, ..., n},
sw ∈ hc[barrierOn]. Hence, ∀i ∈ {1, ..., n}, the condition of the await instruction
at L97 does not hold, thus, the task is suspended in state Si, and, consequently,
no switchHandleMessage nor sendOut task can be spawned in any state Si. There-
fore, ∀i ∈ {1, ..., n},∀j ∈ {i, ..., n},SHM j (resp. SOj) never contains more tasks
than SHM i (resp. SO i). Similarly, no other call to barrierRequest can be per-
formed due to the call to barrierWait in L88, which implies that there cannot be
two active barriers over the same switch.

Finally, since sw no longer belongs to barrierOn in Sn+1, we know that ∀fut ∈
hc[barrierMap][sid], the task lc[fut] has finished, since for each variable fut , the
await statement in L104 has succeeded. Moreover, using the invariant, we know
that all the tasks in SHMn and SOn have their corresponding future variable
in hc [barrierMap][sid], and therefore all of them have finished.

2

6. DPOR-based model checking of SDN-Actors

Model checking tools deal with a combinatorial blow-up of the state space
(a.k.a. the state space explosion problem) that must be faced to solve real-
world problems. This problem is exacerbated in the context of SDN programs,
because of the concurrent and distributed nature of networks: all network com-
ponents (switches, hosts, controllers) are distributed nodes that run in parallel
and whose concurrent tasks can interact. As we have seen, a controller message
sent from a switch can change the state of another switch, and affect the route
of an incoming packet. Thus, a model checker needs to explore all possible re-
orderings of dependent tasks (i.e., those whose execution might interfere with
each other) leading to a huge number of possible executions even for networks
with a low number of nodes and packets. Additionally, the state space is un-
bounded because hosts may generate unboundedly many packets that could be
simultaneously traversing the network.

There are two incomplete approaches to handle unbounded inputs: one is to
impose a bound k on the number of packets of each type (as e.g. in[12]) and
the other one is to use abstraction (as e.g. in [13]). In the former, the search
space is exhausted for the considered input, but there could be bugs that only
show up when more packets are considered. In the latter, abstraction requires
to lose information and bugs may only show up when the omitted information
is considered. Therefore, the sources of incompleteness are different, and the
approaches can complement each other. Our tool SYCO uses the former, e.g.,
in Example 4.3 we have considered one packet (limit k = 1). The rest of the
section presents the key features of our approach assuming such a k bound.

20

10
11

16

9

1:h0!sendIn

1

2:s1!shp

2

3:c!chm

3

4, 6

4

6

5, 6

7: s2!shp, 6
7 6

8: c!chm, 6

8

6

6, 9, 10, 12

11

9, 10, 12

12 6

6, 9, 10, 13:s1!shp

9

10

15

5

so: sendOut

hhp: hostHandlePacket

shm: switchHandleMessage

shp: switchHandlePacket

4:s1!shm(s2), 5:s1!so, 6:s2!shm(r1)

15:r1!hhp, 9, 10

6, 9:s1!shm(s3), 10:s3!shm(r2), 11:s2!shm(s1), 12:s2!so 17:r1!hhp

7

7

9, 10, 11, 12

12

9, 10, 12

a

b c

d

e

chm: controlHandleMessage

9, 10, 11, 16: r1!hhp

EXECUTIONS

ABBREVIATIONS

a: packet not sent from s1

b,c: packet not sent from s2

d,g: cycle sending from s1 to s2 and back

e,f: packet sent to r1, wrong flow tables

h : packet sent to r1, one rule per switch

5 4

17

h

12

9
9
11

12 6
 6, 9, 10, 11

11

10

f
g

complete exec.

incomplete exec.

10
6 11

Figure 8: Search tree for running example w/o barriers (rightmost branch w/ barriers)

6.1. DPOR-based model checking in actors

DPOR [14] is able to dynamically identify and avoid the exploration of re-
dundant executions and prune the search space exponentially. It is based on
the idea of initially exploring an arbitrary interleaving of the various concurrent
tasks, and dynamically tracking dependent interactions between them to iden-
tify backtracking points where alternative paths in the state space need to be
explored. Two tasks are independent when changing their order of execution
will not affect their combined effect. When DPOR is applied to actor systems,
there are inherent reductions [15] because: (i) we can atomically execute each
task (without re-orderings) until a return or an await instruction are found, as
concurrency is non-preemptive and the active task cannot be interrupted. This
avoids having to consider the reorderings at the level of instructions (as one
must do in thread-based concurrency), and allows us to work at the level of
tasks. (ii) Also, two tasks can have a dependency only if they belong to the
same actor. This is because only the actor itself can modify its private memory.

Example 6.1. Figure 8 shows the search tree computed by DPOR for our SDN-
Actor program without barriers. It has no redundancy, i.e., each execution cor-
responds to a different behavior on the packet arrival and/or the actions in-

21

stalled in the flow tables (see top right descriptions). At each node (i.e., state),
we show the available tasks. A task is given an identifier the first time it ap-
pears, and afterwards only its identifier is shown. Method names are abbreviated
as shown in the top left, and parameters are omitted except in tasks executing
switchHandleMessage, for which we only include the switch identifier that is part
of the Action to be installed. For instance, 4:s1!shm(s2) is a task with identifier
4, that will execute method switchHandleMessage on s1 and will add to its flow ta-
ble the information that the packet must be sent to s2. Labels on the edges show
the task(s) that have been executed. At each state, we underline the tasks which
have an interacting dependency. The execution starts by executing the init conf

method in Example 4.2 with the instruction sendIn added in Example 4.3 which
appears in the root. The next two steps have one task available, but in the fourth
state we have tasks 4 and 5, belonging to the same actor, whose reordering needs
to be considered (leading to branching), while 6 is independent of them. Out of
the 8 branches of the tree, only the rightmost execution h corresponds to the
correct behavior in which the packet is actually sent to r1 and the actions are
installed in the flow tables in the expected order. In execution a the packet does
not arrive at the destination because the sendOut is executed before the action
has been installed. Executions d and g correspond to the cycle described in
Section 2, each of them with different installations of actions.

Importantly, we do not need specific optimizations to use the DPOR algorithm
in [16] to model check SDN-Actors. The use of await (is already covered by
DPOR and) does not require any change either and, as expected, the search tree

for the implementation with barriers only contains branch h . The difference
arises from task 3 in the tree: in the presence of barriers, this leads to a state in
which we have asynchronous calls 4 and 6 and task 3 suspended at the await in
L104 (awaiting for the termination of 4 and then of 6). Therefore, the dependent
tasks 4 and 5 will not coexist because 5 is not spawned until 4 and 6 terminate.

6.2. Entry-level and context-sensitive independence

When two tasks that belong to the same actor are found, in the context of
DPOR techniques, independence is commonly over-approximated by requiring
that actor fields accessed by one task are not modified by the other. In our
model, all tasks posted on a given switch access its flow table, namely sendOut

and switchHandlePacket read it and switchHandleMessage writes it. Thus, in princi-
ple, any task executing switchHandleMessage is considered dependent on the other
two. This explains the tasks underlinings in the figure and the branching in the
tree. When there are multiple packets traversing the network usually different
packets access distinct entries in the flow table. This results in the inaccurate
detection of many dependencies hence producing redundant executions. Using
Constrained DPOR [5], we alleviate this state space explosion:

1. Entry-level independence. We adopt a finer-grained notion of entry-level
independence for which an access to entry i is independent from an access
to j if i 6= j. This aspect is not visible when considering a single packet

22

as in the example, as all accesses to the flow table refer to the same entry.
However, by simply adding another packet to the erroneous program, the
state explosion is huge and the system times out if entry-level indepen-
dence is not implemented, while it computes 92 executions (exploring 761
states) with entry-level independence.

2. Context-sensitiveness. Even when two tasks t and p access the same entry,
Constrained DPOR [5] introduces some further checks that avoid redun-
dant explorations. If the state before executing both tasks satisfies a
certain independence annotation, then the executions of p and q are guar-
anteed to commute. Hence, one of the derivations can be pruned and
further exploration from it is avoided. For instance, executing two consec-
utive switchHandleMessage on the same entry might lead to the same state
if the flow table contains duplicate entries, as our implementation allows.
An example of independence annotation for these two tasks is the check
of duplicate entries in the state.

Although entry-level independence in theory could be proved automatically by
using SMT solvers (see [5]), this is not yet possible in our system, and we have
declared annotations which are valid for any SDN model. Let us explain the
most representative annotations for method switchHandleMessage(m,a):

1. indep(switchHandlePacket(pi,pk),!matchHead&Port(getHeader(pk),pi,m)) denotes
that tasks executing switchHandleMessage(m,a) are independent of those ex-
ecuting switchHandlePacket(pi,pk) if the matched field of the message does
not match the header and the input port of the packet (the condition is
checked by the auxiliary function matchHead&Port).

2. indep(switchHandleMessage(m2,a2),indepSwitchMsgeMsge(m,a,m2,a2)) denotes
that tasks executing switchHandleMessage(m,a) are independent of those ex-
ecuting switchHandleMessage(m2,a2) if the matched fields m and m2 are in-
dependent (they do not match with the same entries in the flow table),
but actions a and a2 are equals (the condition is checked by the auxiliary
function indepSwitchMsgeMsge).

6.3. Comparison of DPOR reductions with related work

Other model checkers for SDN programs have used DPOR-based algorithms
before [12, 13]. According to the experiments in the NICE tool, DPOR only
achieves a 20% reduction of the search space because even the finest granular-
ity does not distinguish independent flows. The reason for this modest reduc-
tion might be that it does not take advantage of the inherent independence of
the code executed by the distributed elements of the network (switches, host,
clients), nor to the fact that barriers allow removing dependencies, as our actor-
based SDN model does. In Kuai [13], a number of optimizations are defined
to take advantage of these aspects. Such optimizations must be (1) identified
and formalized in the semantics, (2) proven correct and, (3) implemented in

23

the model checker. Instead, due to our formalization using actors, the opti-
mizations are already implicit in the model and handled by the model checker
without requiring any extension. Another main difference with Kuai is that
they make two important simplifications to the kind of SDNs they can handle:
(i) they assume a simplified model of switches in which a switch gets suspended
(i.e., does not process further packets nor controller messages) while awaiting a
controller request. The error showed in Example 1 would thus not be captured.
We do not make any simplification and thus a switch can start to process a new
packet while awaiting the controller and can also receive other controller actions
(triggered by other switches). (ii) It works on a class of SDNs in which the size
of the controller queue is one. Therefore, it will not capture potential errors
that arise due to the reordering of messages by the controller. In contrast, our
model checker works on the general model of SDN networks.

7. Implementation and experimental evaluation

This section describes how to use our model checking tool and its visual-
ization capabilities in Section 7.1, and then the experimental evaluation carried
out on a series of standard SDN benchmarks in Section 7.2.

7.1. The model checking tool and its visualization capabilities

We have built an extension for property model checking on top of the
SYCO tool [3]. It can be used through an online web interface available at:
http://costa.fdi.ucm.es/syco by selecting the POR algorithm CDPOR and
disabling the automatic generation of independence constraints. All benchmarks
we are describing in this section can be found in the folder JSS19. In order to
run the model checker, the user first opens one of these benchmarks and clicks
over the button Apply. By default SYCO makes a full exploration of the ex-
ecution. However, by using the Settings, it is possible to change the default
options. In particular, by selecting Property checking, the exploration finishes
after finding an execution trace that violates the property being checked. In or-
der to define the property P under test, we add to the controller a new method
called error message and encode P as a Boolean function Fp using the pro-
gramming language itself. Then, in all places where the property has to hold,
we add an if statement checking the negation of Fp and if it holds we call
asynchronously to error message on the controller. Then property holds for
the given input if and only if there is no trace in the execution tree including a
call to error message.

The result of executing the model checker is shown in the console at the bot-
tom, where SYCO first prints the number of executions explored and the output
state for each explored execution. The output state contains the actors mod-
elling the controller, the switches and the hosts created during the execution.
Each actor is represented as a term with three arguments: the actor identifier,
the actor type or class, and the final values of their fields.

24

http://costa.fdi.ucm.es/syco

7.2. Checking SDN properties in case studies

To evaluate our approach, we have implemented a series of standard SDN
benchmarks used in previous work [13, 17, 6]. Our goal is on the one hand to
show the versatility of our approach to check properties that are handled using
different approaches in the literature (e.g., programming errors in the controller
as in [17], safety policy violations as in [17, 13], or loop detection as in [6]). And,
on the other hand, to show that we are able to handle networks larger than in
related systems [13], but without requiring simplifications to the SDN models,
nor extensions for DPOR reduction, and in spite of using a non-distributed
model checker. We should note though that a precise comparison of figures
is not possible due to the differences described in Section 6.3 and the use of
different implementations of controllers.

Times are obtained on an Intel Core i7 at 3.4Ghz with 8GB of RAM (Linux
Kernel 3.2). For each benchmark, we show in the second column the number
of switches, hosts and packets, Execs corresponds to the number of different
executions (i.e., branches in the search tree), States to the number of nodes in
the search tree, and Time is the time taken by the analysis in ms. Results are
shown in Figure 9.

Controller with load balancer [6] (LB/LBB). This corresponds to the controller
of [6], similar to our running example. It performs stateless load balancing
among a set of replica identified by a virtual IP (VIP) address. When receiving
packets destined to a VIP, the controller selects a particular host and installs
flow rules along the entire path. For a buggy controller without barriers (LB)
and a network with 3 switches and 3 hosts, we detect that there is a forwarding
loop (i.e., that a packet reaches a switch more than once) in 9ms after exploring
21 states. For this, we have added to the switches a field to store the packet
identifiers that they have already received, and when the same packet reaches
it, it sends an error message, which is observable from the final state. We are
able to scale this version up to 302 hosts and 300 packets. Once we check the
correct version with barriers (LBB), we are able to scale up to 127 hosts and
125 packets. As it can be observed, for the largest network, 1499 states are
explored and in all cases we verify that the traffic is balanced. The experiments
in [6] do not specify the time to detect the bug for this controller (they only
mentioned that their analysis finishes in less than 32s in the vast majority of
cases). Nevertheless, the underlying techniques to find the bugs are unrelated
(see Section 8), and thus time comparison is not meaningful.

SSH controller [13] (SSHE/SSHB). This case study is based on a controller that
dynamically modifies the behaviors of the switches as follows: it can update the
switches with a rule that states that no SSH packets are forwarded, and another
that states that all non-SSH packets are forwarded. We have two versions of
the SSH controller. The first three evaluations correspond to an erroneous SSH
controller that installs the rule to forward packets and the rule to drop SSH
packets with the same priority, and thus the safety policy can be violated. As
in [13], we evaluate a network with 2 switches and 2 hosts. As for packets, we

25

Name SxHxP Execs States Time

LB 3x52x50 4 313 1305
LB 3x102x100 4 613 7301
LB 3x202x200 4 1213 38203
LB 3x302x300 4 1813 110220

LBB 3x52x50 1 599 11117
LBB 3x77x75 1 899 31644
LBB 3x102x100 1 1199 68059
LBB 3x127x125 1 1499 127740

(a) Controller with load balancer.

Name SxHxP Execs States Time

SSH 2x2x100ssh 1 407 83824
SSH 2x2x120oth 1 490 146151
SSH 2x2x50each 1 410 117245

SSH 2x2x2cor 179 1691 1340

SSHB 2x2x2 6 120 104
SSHB 2x2x3 65 1419 2506
SSHB 3x3x4 421 10951 33470

(b) SSH controller.

Name SxHxP Execs States Time

LE 3x3x2 3 71 42
LE 3x3x5 10 383 355
LE 6x3x2 5 217 272
LE 6x3x5 16 1040 2045
LE 9x2x2 10 787 4570
LE 15x2x2 16 2074 49274

(c) Network authentication with learning.

Name SxHxP Execs States Time

MIb 1x5x12 32 599 1029
MIb 1x5x14 64 1107 2730
MIb 1x5x16 748 9418 24870
MIb 1x8x20 2242 45539 153419

MI 1x5x8 32 1004 865
MI 1x5x10 256 9436 9176
MI 1x5x12 960 17941 29675
MI 1x8x14 1727 55200 119908

(d) Firewall with migration.

Figure 9: Experimental results.

26

write 100ssh, 120other, and 50each to indicate that we send 100 SSH packets,
120 non-SSH packets and 50 of each type. We detect the error by checking in
the switch if two contradictory drop and forward packet actions are received
for the same entry. The results that we obtain for 1 packet suggest higher
performance of our approach: in [13] they find the bug in 0.1s and we do it
in 0.004s or 0.007s, depending on the type of packet. The last evaluation 2

cor corresponds to the correct SSH controller for which we achieve a notable
improvement as we have now less tasks that match the same entry (as priority
is different). The row SSHB is a correct implementation with barriers that
reduces the number of executions for 2 packets notably because it guarantees
that forward rules are installed and thus switches will not send further requests.
They prove the correctness for SSHB-2-2 in 6.4 seconds by exploring 13 states,
we explore 15 states (in 6ms) or 18 states (in 8 ms), depending on the type of
packet. Furthermore we are able to scale up to 3 hosts and 3 switches.

Network authentication with learning [17, 13] (LE). This implements a com-
position of a learning switch with authentication in [17]. Also, [13] evaluates a
MAC learning controller but using a different implementation. LE implements
a controller with barriers for which we can verify flow-table consistency and that
the packet flows satisfy the intended policy. We have considered configurations
of 3x3, 6x3, 9x2 and 15x2. When compared to [13], we handle larger sizes of
networks and for similar sizes, we explore less States in less Time. We note
that this might be due to the differences pointed out in Section 6.3 and different
implementations of the controller.

Firewall with migration[17] (MIb/MI). MI is the implementation of a firewall
that supports migration of trusted hosts. A host is trusted if it either sent/re-
ceived (on some switch) a message through/from port 1. Thus, when a trusted
host migrates to a new switch, the controller will remember it was trusted before
and will allow communication from either port. For the same network 1x5 as
[17], we can scale the number of packets up to 12 packets that actually modify
the data base for trusted hosts. We can keep on adding more packets if those
do not affect the shared data base. In MIb, we introduce the same bug in the
controller as [17], which forgets to check if trusted on events from port 2. We
detect the error by checking in the final state of the derivations that a packet
arrives to a host that is not in the trusted data base. The scalability of MI and
MIb are rather similar. However, we can handle larger sizes of networks (1x8).
Both [17] and us find the bug in a negligible time.

8. Conclusions

We have proposed an actor-based framework to model and verify SDN pro-
grams. A unique feature of our approach is that we can use existing advanced
verification algorithms without requiring any specific extension to handle SDN
features. This has allowed us to model and analyse several SDN scenarios: a

27

controller with load balancer, an SSH controller, a learning switch with authen-
tication, and a firewall with migration. Experiments have given evidence of the
versatility and scalability of our approach.

We conclude with a review of related work in verification of software-defined
networks and some directions for future work.

8.1. Related work

Static and Dynamic verification.. The last years have witnessed the develop-
ment of many static and dynamic techniques for verification that are closely
related to our approach. Static approaches have the main advantage that, when
the property can be proved, it is ensured for any possible execution, while using
dynamic analysis only guarantees the property for the considered inputs. As
a counterpart, in order to cover all possible behaviors, static analysis needs to
perform abstraction, which can give a don’t-know answer, and, possibly, false
positives. In [17], the work on Horn-based verification is lifted to the SDN pro-
gramming paradigm, but excluding barriers. Using this kind of verification, one
can prove safety invariants on the program. Our framework can additionally
check liveness invariants (e.g., loop detection) by inspecting the traces com-
puted by the model checker. Static algebraic techniques are used in NetKAT
[18, 19, 20], to prove properties of SDN programs. NetKAT does not include
primitives for concurrency, and has a significantly higher level of abstraction.
Therefore capturing features and scenarios we are interested in would be diffi-
cult. In [21], a particular type of attacks in the context of SDN networks has
been modeled in Maude using the so-called hierarchically structured composite
actor systems described in [22]. This work does not provide a general model
for SDN networks and, besides, barriers are not considered. On the other hand,
it applies a statistical model checker, which requires to have a given scheduler
for the messages. Such scheduler determines the exact order in which messages
are handled while our framework captures all possible behaviours. Hence, both
their aim and their SDN model are radically different from ours.

Concerning dynamic techniques, our work is mostly related to the model
checkers NICE and Kuai for SDN programs, which have been compared in
detail in Section 6.3. Our approach could be adapted to apply abstractions that
bound the size of buffers [13] and to consider environment messages [23]. The
approach of [6, 24] is based on analyzing dynamically given snapshots of the
network from real executions. Instead, we try to find programming errors by
inspecting only the SDN program and considering all possible execution traces,
thus enabling verification at system design time.

Data and Control-plane verification. There is a substantial body of work on
verification techniques for SDN focussing specifically on the data or the control
plane. Data-plane approaches include: Anteater [25], which uses static analy-
sis via SAT solving; FlowChecker [26], which applies symbolic model-checking
to OpenFlow configurations; VeriFlow [27], which provides an infrastructure
to check data-plane properties in real-time. Control-plane approaches include:
Flowlog [28], a declarative language to program SDN controllers, which uses the

28

Alloy model-checker to perform verification; [29], which uses differential analysis
to discover bugs in different versions of the same controller program.

We stress that our approach targets both control and data-plane, and in par-
ticular it is capable of detecting bugs that arise from their interaction. Moreover,
concurrency and barriers are not considered in the mentioned works.

Quantitative verification. In [30], SDN components are modelled via a quanti-
tative process algebra. Their focus is on quantitative properties, e.g., latency
and congestion. In particular, concurrency and barriers are not considered.

Network verification via actors. Another actor-based verification framework is
Rebeca (see [31] for a survey). Rebeca supports a variety of state-reduction
techniques, and has been used to model and verify wireless networks [32, 33].
Our approach uses the ABS language and the SYCO tool. SYCO includes recent
DPOR techniques [5, 16] which, by exploiting specific features of SDNs, enabled
us to better scale and analyse larger networks.

8.2. Future Work

Although we did not explore it in this article, the encoding we provide opens
the door to apply a range of techniques other than model checking. For in-
stance, static analysis, runtime monitoring or simulation of network behavior
can be done now using the ABS toolsuite [7]. Other tools and methods for ver-
ification of message-passing and concurrent-object systems could be also easily
adapted [34, 35, 36, 37]. In addition, because the encoding is not very far from
the original flow tables, both model extraction from existing network code and
code generation from an actor model should be achievable with a small extension
of the tool. This is left for future work.

Acknowledgments This work was partially funded by the Spanish MECD
Salvador de Madariaga Mobility Grants PRX17/00297 and PRX17/00303, the
Spanish FPU Grant FPU15/04313, the Spanish MINECO projects TIN2015-
69175-C4-2-R, TIN2015-69175-C4-3-R, the Spanish MCIU, AEI and FEDER
(EU) through projects RTI2018-094403-B-C31 and RTI2018-094403-B-C33 and
the CM project S2018/TCS-4314, the ERC starting grant Profoundnet (679127)
and a Leverhulme Prize (PLP-2016-129).

References

[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed Sys-
tems, MIT Press, Cambridge, MA, 1986.

[2] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS: A
core language for abstract behavioral specification, in: FMCO, 2010, pp.
142–164.

29

[3] E. Albert, M. Gómez-Zamalloa, M. Isabel, SYCO: a systematic testing
tool for concurrent objects, in: CC, 2016, pp. 269–270. doi:10.1145/
2892208.2892236.

[4] E. Albert, M. Gómez-Zamalloa, A. Rubio, M. Sammartino, A. Silva, Sdn-
actors: Modeling and verification of SDN programs, in: FM, 2018, pp.
550–567. doi:10.1007/978-3-319-95582-7_33.

[5] E. Albert, M. Gómez-Zamalloa, M. Isabel, A. Rubio, Constrained dynamic
partial order reduction, in: CAV, 2018, pp. 392–410. doi:10.1007/
978-3-319-96142-2_24.

[6] A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, M. T. Vechev, Sdnracer:
concurrency analysis for software-defined networks, in: POPL, 2016, pp.
402–415. doi:10.1145/2908080.2908124.

[7] The ABS tool suite, http://abs-models.org.

[8] F. S. de Boer, D. Clarke, E. B. Johnsen, A Complete Guide to the Future,
in: ESOP, Vol. 4421, 2007, pp. 316–330.

[9] A. Guha, M. Reitblatt, N. Foster, Machine-verified network controllers, in:
PLDI, 2013, pp. 483–494. doi:10.1145/2491956.2462178.

[10] K. Sen, G. Agha, Automated Systematic Testing of Open Distributed Pro-
grams, in: FASE, 2006, pp. 339–356.

[11] Openflow switch specification, version 1.4.0 (October 2013).

[12] M. Canini, D. Venzano, P. Pereśıni, D. Kostic, J. Rexford, A NICE way to
test openflow applications, in: NSDI, 2012, pp. 127–140.

[13] R. Majumdar, S. D. Tetali, Z. Wang, Kuai: A model checker for software-
defined networks, in: FMCAD, 2014, pp. 163–170. doi:10.1109/
FMCAD.2014.6987609.

[14] C. Flanagan, P. Godefroid, Dynamic partial-order reduction for model
checking software, in: POPL, 2005, pp. 110–121.

[15] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov,
G. Agha, Transdpor: A novel dynamic partial-order reduction technique
for testing actor programs, in: FMOODS/FORTE, 2012, pp. 219–234.

[16] E. Albert, P. Arenas, M. G. de la Banda, M. Gómez-Zamalloa, P. J. Stuckey,
Context-sensitive dynamic partial order reduction, in: CAV, Vol. 10426,
2017, pp. 526–543.

[17] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, A. Valadarsky, Vericon: towards verifying controller pro-
grams in software-defined networks, in: PLDI, 2014, pp. 282–293. doi:
10.1145/2594291.2594317.

30

https://doi.org/10.1145/2892208.2892236
https://doi.org/10.1145/2892208.2892236
https://doi.org/10.1007/978-3-319-95582-7_33
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1145/2908080.2908124
http://abs-models.org
https://doi.org/10.1145/2491956.2462178
https://doi.org/10.1109/FMCAD.2014.6987609
https://doi.org/10.1109/FMCAD.2014.6987609
https://doi.org/10.1145/2594291.2594317
https://doi.org/10.1145/2594291.2594317

[18] N. Foster, D. Kozen, M. Milano, A. Silva, L. Thompson, A coalgebraic
decision procedure for netkat, in: POPL, 2015, pp. 343–355. doi:10.
1145/2676726.2677011.

[19] C. J. Anderson, N. Foster, A. Guha, J. Jeannin, D. Kozen, C. Schlesinger,
D. Walker, Netkat: semantic foundations for networks, in: POPL, 2014,
pp. 113–126. doi:10.1145/2535838.2535862.

[20] R. Beckett, M. Greenberg, D. Walker, Temporal netkat, in: PLDI, 2016,
pp. 386–401. doi:10.1145/2908080.2908108.

[21] T. A. Pascoal, Y. G. Dantas, I. E. Fonseca, V. Nigam, Slow TCAM ex-
haustion ddos attack, in: SEC, 2017, pp. 17–31.

[22] J. Eckhardt, T. Mühlbauer, J. Meseguer, M. Wirsing, Statistical model
checking for composite actor systems, in: WADT, 2012, pp. 143–160.

[23] D. Sethi, S. Narayana, S. Malik, Abstractions for model checking SDN
controllers, in: FMCAD, 2013, pp. 145–148.

[24] P. Kazemian, G. Varghese, N. McKeown, Header space analysis: Static
checking for networks, in: NSDI, 2012, pp. 113–126.

[25] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, B. Godfrey, S. T. King,
Debugging the data plane with anteater, in: ACM SIGCOMM, 2011, pp.
290–301. doi:10.1145/2018436.2018470.

[26] E. Al-Shaer, S. Al-Haj, Flowchecker: configuration analysis and verifica-
tion of federated openflow infrastructures, in: SafeConfig, 2010, pp. 37–44.
doi:10.1145/1866898.1866905.

[27] A. Khurshid, X. Zou, W. Zhou, M. Caesar, P. B. Godfrey, Veriflow: Veri-
fying network-wide invariants in real time, in: NSDI, 2013, pp. 15–27.

[28] T. Nelson, A. D. Ferguson, M. J. G. Scheer, S. Krishnamurthi, Tierless
programming and reasoning for software-defined networks, in: NSDI, 2014,
pp. 519–531.

[29] T. Nelson, A. D. Ferguson, S. Krishnamurthi, Static differential program
analysis for software-defined networks, in: FM, 2015, pp. 395–413. doi:
10.1007/978-3-319-19249-9_25.

[30] V. Galpin, Formal modelling of software defined networking, in: IFM, 2018,
pp. 172–193. doi:10.1007/978-3-319-98938-9_11.

[31] M. Sirjani, M. M. Jaghoori, Ten years of analyzing actors: Rebeca expe-
rience, in: Formal Modeling: Actors, Open Systems, Biological Systems,
2011, pp. 20–56. doi:10.1007/978-3-642-24933-4_3.

31

https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2908080.2908108
https://doi.org/10.1145/2018436.2018470
https://doi.org/10.1145/1866898.1866905
https://doi.org/10.1007/978-3-319-19249-9_25
https://doi.org/10.1007/978-3-319-19249-9_25
https://doi.org/10.1007/978-3-319-98938-9_11
https://doi.org/10.1007/978-3-642-24933-4_3

[32] B. Yousefi, F. Ghassemi, R. Khosravi, Modeling and efficient verification of
wireless ad hoc networks, Formal Asp. Comput. 29 (6) (2017) 1051–1086.
doi:10.1007/s00165-017-0429-z.

[33] E. Khamespanah, M. Sirjani, K. Mechitov, G. Agha, Modeling and
analyzing real-time wireless sensor and actuator networks using actors
and model checking, STTT 20 (5) (2018) 547–561. doi:10.1007/
s10009-017-0480-3.

[34] M. Christakis, A. Gotovos, K. F. Sagonas, Systematic Testing for Detecting
Concurrency Errors in Erlang Programs, in: ICST, 2013, pp. 154–163.

[35] S. Lauterburg, R. K. Karmani, D. Marinov, G. Agha, Basset: a tool for
systematic testing of actor programs, in: SIGSOFT FSE, 2010, pp. 363–
364. doi:10.1145/1882291.1882349.

[36] A. Bouajjani, M. Emmi, C. Enea, J. Hamza, Tractable refinement checking
for concurrent objects, in: POPL, 2015, pp. 651–662. doi:10.1145/
2676726.2677002.

[37] H. Liang, X. Feng, A program logic for concurrent objects under fair
scheduling, in: POPL, 2016, pp. 385–399. doi:10.1145/2837614.
2837635.

32

https://doi.org/10.1007/s00165-017-0429-z
https://doi.org/10.1007/s10009-017-0480-3
https://doi.org/10.1007/s10009-017-0480-3
https://doi.org/10.1145/1882291.1882349
https://doi.org/10.1145/2676726.2677002
https://doi.org/10.1145/2676726.2677002
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2837614.2837635

Appendix A. Soundness Proofs

Appendix A.1. Proof of Theorem 4.7

Let α be the one-to-one function that pairs each element of S with its unique
actor in Sa such that S ≡ Sa.

Assumption 1. Given an SDN state S = 〈H,Sw,C〉 and an SDN-Actor state
Sa such that S ≡ Sa, C = c(top, cin) and a(c, tk, h,Q) ∈ Sa with α(C) =
a(c, tk, h,Q), then

applyPol(top, sid, o, ph) = applyPolicy(sid, o, ph)

Assumption 2. Sini ≡ Sini
a , where Sini

a is the SDN-Actor state defined in
Def.4.1, that is, the state after executing method init conf() and all asynchronous
calls to method sendIn containing the packets to be delivered.

Definition Appendix A.1 (succ(S) (succ(Sa))). Given an SDN(resp. SDN-
Actor) state S (resp. Sa), succ(S) (resp. succ(Sa)) denotes the set of final states
of the executions in exec(S) (resp. exec(Sa)).

Lemma Appendix A.2. Given an SDN state and an SDN-Actor state Sa

such that S ≡ Sa and S ∈ succ(Sini) and Sa ∈ succ(Sini
a),

1. If S → S′, then ∃S′a such that Sa 7−→ S′a and S′ ≡ S′a.

2. If Sa 7−→ S′a, then ∃S′ such that S → S′ and S′ ≡ S′a.

Proof.
Let us see reason about both points at the same time. We distinguish several
cases depending on the semantics rule applied during the step S → S′. Let S
and S′ be 〈H,Sw,C〉 and 〈H ′, Sw′, C ′〉, respectively.

1. If rule (si) is applied,

• H = H ′′∪{h(id, sid, o, in∪{new(p)})} andH ′ = H ′′∪{h(id, sid, o, in)}
• Sw=Sw′′∪{s(sid, ft , b, in′)} and Sw′=Sw′′∪{s(sid, ft , b, in′∪{o:p})}
• C = C ′

Moreover, we know that S ≡ Sa, hence α(h(id, sid, o, in ∪ {new(p)})) =
a(hoid, , h,Q) ∈ Sa and Q = {tk(tid, sendIn, l,)}∪Q′. Thus, task tid can
be executed in state Sa by actor hoid and it will send a task shp (where shp

stands for switchHandlePacket) to h[s] such that h[s] = α(s(sid, ft , b, in′)) =
a(soid, , h2,Q′′) ∈ Sa (by the equivalence of S and Sa).

a) Sa = S′′a ∪ {a(hoid, , h,Q), a(soid, , h2,Q′′), }
b) S′a = S′′a ∪ {a(hoid, , h,Q′), a(soid, , h2,Q′′ ∪ {tk(, shp, l2,)})},

such that l2[p] = l[p] and l2[o] = h[o].

33

By such equivalence we know that (1) 〈H ′′, Sw′′, C〉 ≡ S′′a , (2) (in, ∅) ≡
(Q′, ∅) and by a) and b) (in′ ∪ {o : p}, ∅) ≡ (Q′′ ∪ {tk(, shp, l2,)}, ∅)
Consequently, S′ ≡ S′a.

2. If rule (hhp) is applied,

• H = H ′′ ∪ {h(id, sid, o, in ∪ {p})} and H ′ = H ′′ ∪ {h(id, sid, o, in)}
• Sw = Sw′ and C = C ′

We also know S ≡ Sa, hence α(h(id, sid, o, in ∪ {p})) = a(hoid, , h,Q) ∈
Sa and Q = {tk(tid, hhp, l,)}∪Q′ (where hhp stands for hostHandlePacket

). Therefore task tid can be executed in state Sa by hoid and the packet
is removed from the buffer.

• Sa = S′′a ∪ {a(hoid, , h,Q)}
• S′a = S′′a ∪ {a(hoid, , h,Q′)}.

Furthermore, p = l[p]. By the equivalence between Sa and S, we know
that (in ∪ {p}, ∅) ≡ (Q, ∅) and then, (1) (in, ∅) ≡ (Q′, ∅) and also, (2)
〈H ′′, Sw,C〉 ≡ S′′a . Consequently, S′ ≡ S′a.

3. If rule (shp1) is applied,

• H = H ′′ ∪ {h(id, sid, o, in′} and H ′ = H ′′ ∪ {h(id, sid, o, in′ ∪ {p})}
• Sw=Sw′′∪{s(sid, ft , b, in∪{o2 : p})} and Sw′=Sw′′∪{s(sid, ft , b, in)}
• C = C ′ and 〈send(id)〉 = lookup(ft , 〈header(p), o〉).

Moreover, we know S ≡ Sa, hence α(s(sid, ft , b, in)) = a(soid, , h,Q) ∈
Sa and Q = {tk(tid, shp, l,)} ∪ Q′. Therefore, task tid can be executed
and by the equivalence, we know that ft = h[flowT], thus the action re-
turned by flowT is the same that the one returned by ft , that is send(id).
Therefore, the check in line 21 does not succeed, but the check in line
22 does, and, consequently, it spawns a task hhp to α(h(id, sid, o, in′)) =
a(hoid, , h2,Q′′) ∈ Sa. As a result

• Sa = S′′a ∪ {a(hoid, , h2,Q′′), a(soid, , h,Q)}
• S′a = S′′a ∪ {a(hoid, , h2,Q′′ ∪ {tk(, hhp, l2,)}), a(soid, , h,Q′)}

where l[p] = l2[p]. We also know by S ≡ Sa, that (1) 〈H ′′, Sw′′, C〉 ≡ S′′a ,
(2) (in ∪ {o2 : p}, b) ≡ (Q, h[buffer]). Since p = l2[p], then (in′ ∪ {p}, b) ≡
(Q′′ ∪ {tk(, hhp, l2,)}, h[buffer]). Consequently, we have that S′ ≡ S′a.

4. If rule (shp2) is applied,

• Sw = Sw′′ ∪ {s(sid, ft , b, in ∪ {o2 : p}), s(sid′, ft ′, b′, in′)}
• Sw′ = Sw′′ ∪ {s(sid, ft , b, in), s(sid′, ft ′, b′, in′ ∪ {o : p})}
• H = H ′, C = C ′ and send(sid′, o) = lookup(ft , 〈header(p), o2〉).

34

Moreover, we know that S ≡ Sa, so α(s(sid, ft , b, in)) = a(soid, , h,Q) ∈
Sa and Q = {tk(tid, shp, l,)} ∪Q′. Hence, task tid can be executed, and
by the equivalence, we know that ft = h[flowT], thus the action returned
by flowT is the same that the one returned by ft , that is send(soid′, o).
Therefore, the check in line 21 succeeds and, consequently, it spawns a
task shp to α(s(sid′, ft ′, b′, in′)) = a(soid′, , h2,Q′′) ∈ Sa. As a result

• Sa = S′′a ∪ {a(soid′, , h2,Q′′), a(soid, , h,Q)}
• S′a = S′′a ∪ {s(soid′, , h2,Q′′ ∪ {tk(, shp, l2,)}), a(soid, , h,Q′)}

where l[p] = l2[p]. We also know by S ≡ Sa, that (1) 〈H,Sw′′, C〉 ≡ S′′a ,
(2) (in∪ {o2 : p}, b) ≡ (Q, h[buffer]). Finally, we also know that (in′ ∪ {o :
p}, b′) ≡ (Q′′ ∪ {tk(, shp, l2,)}, h2[buffer]) because o = l2[o], p = l2[p].
Consequently, we have that S′ ≡ S′a.

5. If rule shp3 is applied,

• Sw = Sw′′∪{s(sid, ft , b, in∪{o : p})} and Sw = Sw′′∪{s(sid, ft , b∪
{o : p}, in)}

• C = c(top, in′) and C ′ = c(top, in′ ∪ {pktIn(sid,o,id(p),header(p))})
• H = H ′ and ⊥ = lookup(ft , 〈header(p), o〉).

Moreover, we know that S ≡ Sa, so α(s(sid, ft , b, in)) = a(soid, , h,Q) ∈
Sa and Q = {tk(tid, shp, l,)} ∪ Q′. Hence, task tid can be executed and
by the equivalence, we know that ft = h[flowT], so the action returned
by flowT is the same that the one returned by ft , that is ⊥. Therefore,
the checks in line 21 and 22 do not succeed and, consequently, it (1)
spawns a task chm (where chm stands forcontrolHandleMessage) to h[ctrl] =
α(c(top, in′)) = a(coid, , h2,Q′′) ∈ Sa, and, (2) it stores the packet and
the port o : p in h[buffer]. As a result

• Sa = S′′a ∪ {a(soid, , h,Q), a(coid, , h2,Q′′)}.
• S′a = S′′a ∪ {a(soid, , h′,Q′), a(coid, , h2,Q′′ ∪ {tk(, chm, l2,)})}

and h′ := h but h′[buffer] := h[buffer] ∪ {(p, o)}.

Furthermore, we know that (1) 〈H,Sw′′, C〉 ≡ (S′′a ∪ {a(coid, , h2,Q′′)})
and (2) (in, b ∪ {o : p}) ≡ (Q′, h[buffer] ∪ {(p, o)}). Moreover, we have
(in′, ∅) ≡ (Q′′ ∪ {task (, chm, l2, }, ∅) since soid = l2[sid], p = l[p] and
o = l[o]. Consequently, we have S′ ≡ S′a.

6. If rule (so1) is applied,

• H = H ′′∪{h(id, sid, o, in′} and H ′ = H ′′∪{h(id, sid, o, in′∪{o : p})}
• Sw = Sw′′ ∪ {s(sid, ft , b ∪ {o2 : p}, in ∪ {pktOut(ph)})} and Sw′ =
Sw′′ ∪ {s(sid, ft , b, in)}

• C = C ′, ph = header(p) and send(id) = lookup(ft , 〈header(p), o〉).

35

We also know S ≡ Sa, so α(s(sid, ft , b ∪ {o2 : p}, in ∪ {pktOut(ph)})) =
a(soid, , h,Q) ∈ Sa and Q = {tk(tid, sendOut, l,)} ∪ Q′. Hence, task
tid can be executed and by the equivalence, we know that ft = h[flowT],
so the action returned by flowT is the same that the one returned by ft ,
that is send(soid, o). Therefore, the check in line 28 does not succeed,
but the check in line 29 does, and, consequently, it spawns a task hhp to
α(h(id, sid, o, in′)) = a(hoid, , h2,Q′′) ∈ Sa. As a result

• Sa = S′′a ∪ {a(hoid, , h2,Q′′), a(soid, , h,Q)}
• S′a = S′′a ∪ {a(hoid, , h2,Q′′ ∪ {tk(, hhp, l2,)}), a(soid, , h′,Q′)}

where h′ := h but h′[buffer] := take(h[buffer], l[pi]). We also know by S ≡
Sa, that (1) 〈H ′′, Sw′′, C〉 ≡ S′′a , (2) (in ∪ {o2 : p}, b) ≡ (Q, h[buffer]). Fi-
nally, we also know that (in′∪{o : p}, b) ≡ (Q′′∪{tk(, hhp, l2,)}, h[buffer])
since (p, o) = take(h[buffer], l[pi]) = (l2[p], o). Consequently, we have that
S′ ≡ S′a.

7. If rule (so2) is applied,

• Sw = Sw′′∪{s(sid, ft , b∪{o2 : p}, in∪{pktOut(ph)}), s(sid′, ft ′, b′, in′)}
• Sw′ = Sw′′ ∪ {s(sid, ft , b, in), s(sid′, ft ′, b′, in′ ∪ {o : p})}
• H = H ′, C = C ′ and send(sid′, o) = lookup(ft , 〈header(p), o2〉).

Moreover, we know S ≡ Sa, so α(s(sid, ft , b∪{o2 : h}, in∪{pktOut(ph)})) =
a(soid, , h,Q) ∈ Sa and Q = {tk(tid, sendOut, l,)} ∪ Q′. Hence, task tid
can be executed and, by the equivalence, we know that ft = h[flowT], so
the action returned by flowT is the same that the one returned by ft , that is
send(soid′, o). Therefore, the check in line 28 succeeds, and consequently,
it spawns a task shp to α(s(sid′, ft ′, b′, in′)) = a(soid′, , h2,Q′′) ∈ Sa. As
a result

• Sa = S′′a ∪ {a(soid′, , h2,Q′′), a(soid, , h,Q)}
• S′a = S′′a ∪ {s(soid′, , h2,Q′′ ∪ {tk(, shp, l2,)}), a(soid, , h,Q′)}

where h′ := h but h′[buffer] := take(h[buffer], l[pi]). We also know by S ≡
Sa, that (1) 〈H,Sw′′, C〉 ≡ S′′a , (2) (in ∪ {o2 : p}, b) ≡ (Q, h[buffer]). Fi-
nally, we also know that (in′∪{o : p}, b) ≡ (Q′′∪{tk(, shp, l2,)}, h[buffer])
since (p, o) = take(h[buffer], l[pi]) = (l2[p], l2[o]). Consequently, we have
that S′ ≡ S′a.

8. If rule (so3) is applied,

• Sw = Sw′′ ∪ {s(sid, ft , b ∪ {o : p}, in ∪ {pktOut(ph)})}
• Sw′ = Sw′′ ∪ {s(sid, ft , b, in)}
• H=H ′, C=C ′, and ph=header(p) and ⊥=lookup(ft , 〈header(p), o〉).

36

Moreover, we know that S ≡ Sa, so α(s(sid, ft , b∪{o:p}, in∪{pktOut(ph)}))
= a(soid, , h,Q) ∈ Sa and Q = {tk(tid, sendOut, l,)} ∪ Q′. Hence, task
tid can be executed, and by the equivalence, we know that ft = h[flowT],
thus the action returned by flowT is the same that the one returned by
ft , that is ⊥. Therefore, the checks in line 28 and 29 do not succeed, and
consequently, it drops the packet without spawning any other task. As a
result

• Sa = S′′a ∪ {a(soid, , h,Q)}
• S′a = S′′a ∪ {a(soid, , h′,Q′)}

where h′ := h but h′[buffer] := take(h[buffer], l[pi]). We also know by S ≡
Sa, that (1) 〈H,Sw′′, C〉 ≡ S′′a , (2) (in, b) ≡ (Q′, h′[buffer]). Consequently,
we have that S′ ≡ S′a.

9. If rule (shm) is applied,

• Sw = Sw′′ ∪ {s(sid, ft , b, in ∪ {modState(〈ph, o〉 7→ a)})}
• Sw′ = Sw′′ ∪ {s(sid, put(ft , 〈ph, o〉, a), b, in)}
• H = H ′, C = C ′.

Moreover, we know that S ≡ Sa, so α(s(sid, ft , b, in∪{modState(〈ph,o〉 7→
a)})) = a(soid, , h,Q) ∈ Sa and Q = {tk(tid, switchHandleMessage, l,)} ∪
Q′. Therefore, task tid can be executed, and by the equivalence, we know
that ft = h[flowT], hence put(ft ,m, a) = put(h[flowT], 〈ph, o〉, a), and m =
〈ph, o〉 because of Assumption 1, that is, applyPol and applyPolicy behaves
similarly for α(s) and s, ∀s ∈ Sw and α(s) ∈ S.

• Sa = S′′a ∪ {a(soid, , h,Q)}
• S′a = S′′a ∪ {a(soid, , h′,Q′)}

where h′ := h but h′[flowT] := put(h[flowT],m, a). We also know by S ≡
Sa, that (1) 〈H,Sw′′, C〉 ≡ S′′a , (2) (in, b) ≡ (Q′, h[buffer]). Consequently,
we have that S′ ≡ S′a.

10. If rule (chm) is applied,

• Sw = Sw′′ ∪ {s(sid, ft , b, in)}
• Sw′ = Sw′′ms ∪ {s(sid, ft , b, in ∪mssid ∪ {pktOut(ph)}},
• H = H ′, C = c(top, cin ∪ {pktIn(sid,o,pid,ph)}) and C ′ = c(top, cin)

where ms = applyPol(top, sid, o, ph) and msid = {m|〈id,m〉 ∈ ms}.
Moreover, we know that S ≡ Sa, so α(c(top, cin∪{pktIn(sid,o,pid,ph)})) =
a(coid, , h,Q) ∈ Sa and Q = {tk(tid, chm, l1,)} ∪ Q′ (where chm stands
for chm) such that soid = l1[sid], o = l1[o], pid = l1[p] and ph = l1[h].
Therefore, task tid can be executed, and by the equivalence of S and Sa

37

and Assumption 1, we know that the list l is equivalent to ms, in the sense
that it contains exactly the same switches and the same actions. Hence,
in line 41, actor coid spawns tasks shm to every switch in the list l (where
shm stands for switchHandleMessage) and finally, it spawns a a task sendOut

to actor soid in line 43. Let us see the equivalence between S′a and S′.

• ∀s(sid′, ft ′, b′, in′) ∈ Sw′′ such thatmssid′ = ∅, then s(sid, ft ′, b′, in′) ∈
Sw′′ms. Furthermore, if mssid′ = ∅, then sid′ 6∈ l, hence sid′ will not
receive any message. Therefore, α(s(sid′, ft ′, b′, in′)) ∈ Sa ∩ S′a.

• ∀s(sid′, ft ′, b′, in′) ∈ Sw′′ such that mssid′ 6= ∅,then s(sid, ft ′, b′, in′∪
mssid′) ∈ Sw′′ms. Then, coid will spawn as many shm tasks as mes-
sages in {(m, a)|(soid′,m, a) ∈ l} (and in mssoid′). By Sa ≡ S, we
know α(s(sid, ft ′, b′, in′)) = a(soid′, , h2,Q′′) ∈ Sa and (in′, b′) ≡
(Q′′, h2[buffer]). Furthermore, a(soid′, , h2,Q′′ ∪ tksl,soid′) ∈ S′a,
where tksl,soid′ :={tk(, shm, l′,) |(soid′,m, a)∈l, l′[m]:=m, l′[a]:=a}
which is equivalent to the information contained in mssid′ . Then,
(in′ ∪mssid′ , b) ≡ (Q′′ ∪ tksl,soid′ , h2[buffer]).

• Regarding the switch s(sid, ft , b, in), by the equivalence of S and Sa,
we know that α(s(sid, ft , b, in)) = a(soid, , h1,Qsoid) ∈ Sa and since
soid = l[sid], actor coid spawns a task sendOut, and as many shm tasks
as messages in {(m, a)|(soid,m, a) ∈ l}, and then a(soid, , h1,Qsoid∪
tksl,soid∪{tk(, sendOut, l′,)}) ∈ S′a. Again, by the equivalence of S
and Sa, we know that (in, b) ≡ (Qsoid, h1[buffer]) and, since tksl,soid is
the equivalent information contained in mssid, then we get that (in∪
mssid, b) ≡ (Qsoid∪ tksl,soid, h1[buffer]). Finally, pktOut(ph) contains
the equivalent information to tout:=tk(, sendOut, l′,), thus we get
(in′ ∪ (mssid′ ∪ {pktOut(ph)}, b) ≡ (Q′′ ∪ tksl,soid′ ∪ {tout}, h[buffer]).

• Regarding the controller C, we know that (cin∪{pktIn(sid,o,pid,ph)}, ∅)
≡ (Q ∪ {tk(tkid, chm, l1,)}, ∅). Furthermore, by Assumption 1, we
know that related(top, {h[srefs, href, ntw]}). As a consequence (cin, ∅)
≡ (Q, ∅).

All in all, we conclude that S′ ≡ S′a.

Let us notice here that even though we have distinguished the different cases
depending on the semantics rule for SDN networks, the previous reasoning also
includes each possible execution of a task in the SDN-Actor model. Hence, each
possible execution of a task corresponds exactly with one of the semantics rule
for SDN networks. 2

Theorem 4.7. Let Sini and Sini
a be an SDN state and an SDN-Actor state,

respectively.

1. For every execution Sini → S1 → ...→ Sn ∈ exec(Sini),∃Sini
a 7−→ S1

a 7−→
... 7−→ Sn

a ∈ exec(Sini
a) such that Sn ≡ Sn

a .

38

2. For every execution Sini
a 7−→ S1

a 7−→ ... 7−→ Sn
a ∈ exec(Sini

a),∃Sini →
S1 → ...→ Sn ∈ exec(Sini) such that Sn ≡ Sn

a .

Proof.
Let us prove both cases by induction on the length n of the execution.

• If n = 0, it is straightforward to see that S0 = Sini ≡ Sini
a = S0

a.

• Let us suppose that both cases are true for n and let us prove them for
n+ 1

1. We need to prove that for every execution Sini → S1 → ...→ Sn+1 ∈
exec(Sini), ∃Sini

a 7−→ S1
a 7−→ ... 7−→ Sn

a 7−→ Sn+1
a ∈ exec(Sini

a) such
that Sn+1 ≡ Sn+1

a . Applying the induction hypothesis we know
that ∃Sini

a 7−→ S1
a 7−→ ... 7−→ Sn

a ∈ exec(Sini
a) such that Sn ≡ Sn

a .
Therefore, now we have Sn → Sn+1, and Sn ≡ Sn

a , hence, applying
Lemma Appendix A.2.1 we get that ∃Sn+1

a such that Sn
a 7−→ Sn+1

a

and Sn+1 ≡ Sn+1
a .

2. We need to prove that for every execution Sini
a 7−→ S1

a 7−→ ... 7−→
Sn+1
a ∈ exec(Sini

a), ∃Sini → S1 → ... → Sn → Sn+1 ∈ exec(Sini)
such that Sn+1 ≡ Sn+1

a . Applying the induction hypothesis we know
that ∃Sini → S1 → ... → Sn ∈ exec(Sini) such that Sn ≡ Sn

a .
Therefore, now we have Sn

a 7−→ Sn+1
a , and Sn ≡ Sn

a , hence, applying
Lemma Appendix A.2.2 we get ∃Sn+1 such that Sn → Sn+1 and
Sn+1 ≡ Sn+1

a .

2

39

	1 Introduction
	1.1 Summary of contributions
	1.2 Organization of the article

	2 Overview
	2.1 Concurrency errors in SDN networks
	2.2 Actor-based modelling of SDN networks

	3 Semantics for SDN Networks and for Actors
	3.1 SDN Networks
	3.2 Syntax and Semantics for Actor Programs

	4 SDN-Actors: an actor based encoding of SDN programs
	4.1 Network topology
	4.2 The switch and host classes
	4.3 The controller
	4.4 Soundness of the Encoding

	5 Implementing barriers using conditional synchronization
	6 DPOR-based model checking of SDN-Actors
	6.1 DPOR-based model checking in actors
	6.2 Entry-level and context-sensitive independence
	6.3 Comparison of DPOR reductions with related work

	7 Implementation and experimental evaluation
	7.1 The model checking tool and its visualization capabilities
	7.2 Checking SDN properties in case studies

	8 Conclusions
	8.1 Related work
	8.2 Future Work

	Appendix A Soundness Proofs
	Appendix A.1 Proof of Theorem ??

