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Abstract—Diabetes is a chronic metabolic disorder that affects
an estimated 463 million people worldwide. Aiming to improve
the treatment of people with diabetes, digital health has been
widely adopted in recent years and generated a huge amount of
data that could be used for further management of this chronic
disease. Taking advantage of this, approaches that use artificial
intelligence and specifically deep learning, an emerging type of
machine learning, have been widely adopted with promising
results. In this paper, we present a comprehensive review of
the applications of deep learning within the field of diabetes.
We conducted a systematic literature search and identified three
main areas that use this approach: diagnosis of diabetes, glucose
management, and diagnosis of diabetes-related complications.
The search resulted in the selection of 40 original research
articles, of which we have summarized the key information
about the employed learning models, development process, main
outcomes, and baseline methods for performance evaluation.
Among the analyzed literature, it is to be noted that various
deep learning techniques and frameworks have achieved state-
of-the-art performance in many diabetes-related tasks by outper-
forming conventional machine learning approaches. Meanwhile,
we identify some limitations in the current literature, such as a
lack of data availability and model interpretability. The rapid
developments in deep learning and the increase in available
data offer the possibility to meet these challenges in the near
future and allow the widespread deployment of this technology
in clinical settings.

Index Terms—Diabetes, deep learning, deep neural networks,
glucose management, diabetic complications, artificial intelligence

I. INTRODUCTION

Diabetes is a group of lifelong metabolic disorders caused
by defective insulin secretion or impaired insulin action. The
International Diabetes Federation estimates that there are 463
million people (95% confidence interval: 369–601 million)
living with diabetes in 2019, half of whom, however, remain
undiagnosed, due to the complex pathogenesis of diabetes [1].
The global prevalence of diabetes is projected to significantly
increase in the coming decade. Therefore, preventing and treat-
ing diabetes has been a heavy burden for national economies,
healthcare systems, and personal medical expenditures, espe-
cially for low- and middle-income countries [2].

According to the etiopathology of diabetes, there are three
main clinical categories: type 1 diabetes (T1D), type 2 diabetes
(T2D), and gestational diabetes mellitus (GDM) [3]. Other
categories due to specific causes include latent autoimmune
diabetes of adulthood and maturity-onset diabetes of the
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young. T1D occurs when the insulin-secreting β-cells of the
pancreas are destroyed by the immune system [4]. People
with T1D suffer from the absolute insufficiency of endocrine
insulin produced by the pancreatic β-cell, hence they rely on
exogenous delivery. T2D accounts for about 90% of people
with diabetes, resulting from insulin resistance or insufficient
insulin production. GDM appears during pregnancy and might
require lifestyle interventions and exogenous insulin delivery
to prevent complications in the infant. However, due to the
increasing heterogeneity and lack of continuous monitoring,
the early diagnosis and classification of diabetes are often
difficult in practice [5].

The majority of people with diabetes needing exogenous
insulin employ the so-called basal-bolus insulin therapy, which
consists on measuring glucose levels with a glucose levels
meter and delivering multiple daily injections (MDI) with an
insulin pen or with an insulin pump (continuous subcutaneous
insulin infusion (CSII)) [6].

For people living with diabetes, it is vital to maintain
blood glucose (BG) levels in a normal range. Otherwise,
hyperglycemia or hypoglycemia can cause short and long-term
complications in microvascular and macrovascular, including
neuropathy, nephropathy, retinopathy, stroke, cardiovascular
disease, and peripheral vascular disease [7]. Nevertheless, BG
control is challenging for people with diabetes, since there
are plenty of daily factors that influence BG levels, such as
meal ingestion, exercise, alcohol, illness, and stress. Thus self-
management, e.g., timely BG measurement, hormone delivery,
and adherence to recommended lifestyle are quite important,
but all of them require multidisciplinary knowledge in clinical
practice, especially for children and adolescents [8]. Besides,
due to the high inter and intra-population variability in the
glucose kinetics process and pharmacokinetics, it is difficult
to find an optimal therapeutic strategy for all people [9].

In recent decades, continuous glucose monitoring (CGM)
systems [10]–[12] and closed-loop hormone delivery sys-
tems [13], [14], also known as the artificial pancreas (AP),
have been widely researched, aiming at developing automatic
glucose regulation and relieving the burden of glucose man-
agement. An AP system employs CGM, a closed-loop control
algorithm, and an insulin pump to deliver insulin by CSII.
It has been proven to effectively reduce glycaemic control
and is recommended to some T1D cohorts [15]. Although
the AP is currently the state of the art in insulin delivery,
standard basal-bolus insulin therapy with a capillary blood
glucose meter and MDI through an insulin pen remains a
cost-effective treatment option, and in particular thanks to the
recent improvements enabling wireless connectivity of these
devices to a smartphone (i.e. smart pens and smart meters)
have significantly enhanced this therapeutic option [16], [17].
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Fig. 1: The illustration of diabetes management, along with the large amount of data produced by self-management and clinical
EHRs. The data is processed by healthcare providers to develop deep learning algorithms for the new treatments.

Furthermore, significant progress has been made in developing
smartphone applications and the integration of portable de-
vices, such as CGMs, for diabetes care [18] which allow users
to log their daily events and ultimately use them to provide
decision support. There is an increasing interest in integrating
physical activity monitoring through exercise bands to enhance
BG management [19]. Consequently, the wide use of wearable
devices and digital systems in diabetes management and the
increasing electronic health records (EHRs) in clinics have
produced a large amount of available data, as depicted in
Fig. 1. This current scenario offers tremendous opportunities
to apply advanced methods of artificial intelligence (AI) in
diabetes care to further improve the treatment of diabetes.

The medical datasets from multiple sources are often hetero-
geneous, high-dimensional, and sparse, and thus they are likely
to be underused in clinical scenarios [20]. Fortunately, machine
learning, as an increasingly successful AI branch, is powerful
at discovering nonlinear correlations of high-dimensional data.
The definition of machine learning is that systems are able to
learn knowledge and patterns automatically from experience
or existing data without being explicitly instructed [21]. More-
over, empowered by boosting computational capabilities, a
frontier machine learning method, deep learning, has achieved
recent success and improved performance surpassing state-of-
art in many health domains [22]. Compared to conventional
machine learning technology, deep learning allows the input of
raw data and learns representation automatically by exploiting
deep neural networks (DNNs), which require little feature
engineering work on data pre-processing [23].

Although there have been comprehensive literature reviews
on AI for diabetes [24]–[26], covering some conventional
machine learning methods and statistical models, they still lack
a systematic study focusing on deep learning applications for
diabetes. As an emerging approach, deep learning has recently
shown competitive performance in several important fields of
diabetes, such as diabetic eye diseases [27]. Therefore, in this
work, we specifically investigate the latest advances in deep
learning technologies for diabetes care.

II. DEEP LEARNING OVERVIEW

Among the wide range of techniques and approaches in
deep learning, we present the overview of several popular
deep learning methods that are commonly applied to health-
care and, in particular, in the diabetes field. Deep learning
originated from artificial neural networks (ANNs) inspired
by the structure of biological neurons in the brain [28]. A
standard ANN, as depicted in Fig. 2, comprises a number
of nodes and three layers: input, hidden and output layer, to
simulate the neuron behaviors by mathematical expressions.
In general, an ANN gains the perceptions through an iterative
training process called back-propagation but lacks general-
ization for supervised tasks [29]. By adding more hidden
layers, deep learning extends the ANN structure to DNNs for
better generalization, which extracts data features and learns
representations with thousands or even millions of parame-
ters [30]. The breakthroughs of computational hardware and
software infrastructures largely accelerate the development of
deep learning by increasing the size and depth of DNN models
in the recent two decades [28]. Fig. 2 depicts five popular
DNN architectures employed in diabetes research with the
corresponding nodes, cells, and connections. Popular software
frameworks to implement deep learning algorithms include
Theano [31], Caffe [32], TensorFlow [33], CNTK [34], and
PyTorch [35]. These frameworks support various programming
languages and hardware acceleration, which help people effi-
ciently build DNN models.

In general, most of the deep learning algorithms can be
divided into supervised learning, unsupervised learning, and
reinforcement learning. Classification and regression are com-
mon tasks in supervised learning, for which the labeled input
data is used during iterative model optimization and backward
propagation [29]. There are three supervised learning-based
DNNs found in the literature of diabetes: deep multilayer
perceptrons (DMLPs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs). The DMLP, also
known as a feed-forward neural network, uses the simple
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Fig. 2: The visualization of ANNs and DNNs. DNNs have an increasing number of hidden layers embedding the variants of
neural nodes and cells. Higher-level feature maps are computed by the deep models. There are five popular DNN architectures
for diabetes: DMLP, CNN, RNN, AE, and RBM.

connections between neurons, i.e. fully connected (FC) layers,
and forms the basis of many DNN models. The term “deep” is
highlighted to indicate the modes have deep architectures with
more than three layers since multilayer perceptrons refer to
both ANNs and DNNs in some studies. A DMLP is associated
with a set of weight vectors, bias scalars, and the nonlinear
activation functions, including sigmoid, tanh, and rectified
linear units (ReLU) [28].

Leveraging convolutional layers as preceptors, CNNs can
process the signals of multi-dimensional arrays and achieve
superior performance on imaging tasks [36]. A sub-sampling
layer, or pooling layer, is employed in most CNN archi-
tectures to aggregate feature maps. One major advantage of
convolutional operations is to reduce the neuron connections
between layers, as depicted in Fig. 2, which notably enhances
the efficiency of model training through back-propagation.
Empowered by the parallelized operations of graphics pro-
cessing units (GPUs) and tensor processing units (TPUs) [37],
various CNN-based models have been applied to large-scale
imaging recognition tasks, such as ImageNet database [38],
and transformed to industry practices. In this regard, the
popular CNN configurations found in literature are as follows:
AlexNet [30], VGGNet [39], Inception (GoogLeNet) [40], and
ResNet [41].

Different from other feed-forward neural networks, the input
of an RNN contains the information at the previous timesteps.
This feature makes RNNs powerful at processing sequential
signals to capture temporal features. However, the difficulty
of vanilla RNNs lies in the back-propagation training, where
the gradient vanishing and exploding problems are likely
to occur [42]. Fortunately, the advanced RNN cells, long
short-term memory (LSTM) [43], and gated recurrent units
(GRUs) [44], have overcome these problems by introducing
gate functions and persevering long-term information. These
RNN-based models have provided paradigms in numerous
prediction and regression tasks, especially in natural language
processing (NLP) and speech recognition. The latest trend in
RNN is the attention mechanism [45], which allows models

to focus on certain parts of input sequences and map the
dependencies regardless of the distances.

Regarding unsupervised learning, the predefined labels or
classes of inputs are not required for the model training. In this
context, the algorithm aims at inferring the hidden structures
and representations from the input datasets without supervi-
sion. Unsupervised learning is a powerful tool for data pre-
processing, cluster analysis, density estimation, and dimension
reduction. The autoencoder (AE) and the restricted Boltzmann
machine (RBM) are the two basic architectures. The key
feature of AEs is that its training target is the same as the input.
Latent representations of the input are first transformed by an
encoder, then fed to a decoder for reconstruction at the output.
An RBM is another approach to map the representations by
estimating probabilistic distribution over the input data, and
thus it is also regarded as a generative model. Compared to
standard Boltzmann machines, RBMs only allow the neuron
connections that form a bipartite graph, to accelerate training
processes. By stacking multiple RBMs, deep belief networks
(DBNs) or deep Boltzmann machines can be constructed [46].
In most cases, DBNs are used as feature detectors to extract
representations from data by unsupervised learning. However,
supervised learning can be further performed to fine-tune the
network weights and improve performance for certain learning
tasks [47].

Deep reinforcement learning (DRL) surpass human profes-
sions in a variety of control problems with high-dimensional
environments, where DNNs are employed as the approx-
imators of policy, value-function, or system models. The
network is trained by interacting with the environment con-
sistently [48].

III. METHODOLOGY

Aiming at identifying and analyzing the benefits of deep
learning within diabetes research, we conducted a system-
atic review by searching multiple public online databases,
including PubMed, DBLP Computer Science Bibliography,
and IEEEXplore. PubMed is a reputable database for biomed-
ical and clinical research, while DBLP contains millions of
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Fig. 3: PRISMA flow of selection process.

publications in the field of computer science. IEEE Xplore
is a digital library that covers studies in engineering and
allied fields. All three databases provide free and open-access
search engines or interfaces without requiring institutional
subscriptions like other databases (e.g. Ovid, Scopus, and Web
of Science). Therefore, to facilitate the reproducibility of the
search results, we have chosen open-access search engines.
We restricted the search to English-language documents that
were published between January 1, 2016 and March 31, 2020
(first quarter, Q1). The search was performed between April
5 and May 1, 2020, and was based on titles, abstracts, and
metadata. We followed preferred reporting items for systematic
review and meta-analyses (PRISMA) approach [49]. Fig. 3
summarizes the selection process.

A. Search Strategies

In our paper search, the keywords “diabetes”, “glucose” and
“artificial pancreas” were combined with the deep learning
terms using Boolean operators AND/OR. The specific query
searched was: ((diabetes OR glucose OR artificial pancreas)
AND (deep learning OR deep neural network OR convolution
neural network OR convolutional neural network OR recurrent
neural network OR LSTM OR autoencoder OR boltzmann
machine OR deep belief network)). After obtaining the results
of an initial collection of relevant articles, we first excluded
duplicated articles from different sources, then performed a
manual inspection to evaluate the remaining based on inclusion
criteria.

B. Inclusion and Exclusion Criteria

The studies included in this review are original and available
full-text, focusing on deep learning applications in diabetes.
The final collection of articles was organized into three cate-
gories based on the clinical application: diagnosis of diabetes,
glucose management, and diagnosis of complications. Partic-
ularly, the included studies were expected to:
• present the details of datasets and data processing

• explicitly describe methods, e.g., the structure of DNNs
• evaluate model performance with standard metrics.

It should be noted that the application of diabetic retinopa-
thy accounts for a large portion of the literature. Thus, in this
area, we selected the works presenting DNN results of high
originality, or large-scale clinical datasets. Abstracts, posters,
technique reports, and reviews were excluded.

C. Information Extraction

From the selected collection of articles, we inspected the
full-text and extracted key information to assess the deep
learning applications. The following pre-defined categories
were used to present the selected studies (Tables I, II, III).

1) Cases: We first summarized the specific application
cases, i.e. scenarios, of the selected studies to identify the
target of each work. For the studies with the available infor-
mation of the types of diabetes, we have indicated them with
† and ‡ for T1D and T2D, respectively.

2) Models: We present an overview of model architectures
which includes a variety of DNN layers and the popular
configurations, as mentioned in Section II. The details of
hybrid structures and ensemble techniques are also included.

3) Data Sources: The source of input data is an essential
factor for deep learning models. Many studies use more
than one dataset, including public and private datasets, to
validate the generalization of DNN models. Thus, this category
summarizes the information regarding the employed datasets,
e.g. sources, types, and formats. To facilitate future research
to address the issues of data availability, we have highlighted
the publicly available datasets with ?.

4) Development Process: This category summarizes the
strategies for developing deep learning models, including pre-
processing, training, validation, and testing. Although deep
learning is good at extracting representations from raw data,
these development steps need to be carefully designed, which
impact on the functionality and reproducibility of the models.

5) Main Outcomes: The major outcomes with the corre-
sponding metrics and criteria for performance evaluation, are
included in this category. Some of the employed metrics in
diabetes and complication diagnosis are sensitivity, specificity,
and area under the curve (AUC); and root mean square error
(RMSE) is common in glucose management. The results are
consistent with the goals in the Cases category.

6) Baselines: In most selected studies, the authors im-
plemented various baseline methods to compare with the
performance of DNN algorithms. Many conventional statistic
and machine learning methods are collected in this category,
including logistic regression (LR), autoregression (AR), au-
toregressive integrated moving average (ARIMA), support-
ing vector machines (SVMs), random forests (RFs), naive
Bayes (NB), k-nearest neighbors (KNN), latent variable model
(LVX), principal component analysis (PCA), and decision
trees (DTs). The best performance achieved by the baselines is
also presented for the purpose of comparison using the metrics
that are consistent with the Main Outcomes category.
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Fig. 4: Number of articles included in the collection grouped
by the year of publication and application field. The orange
dashed line indicates the number of citations in each year.

7) Limitations: As a review for an emerging methodology
such as deep learning, this category collects the limitations that
were identified for the selected studies, which could inspire
future work and improve the learning performance in each
application area.

IV. RESULTS

The initial search yielded a total of 610 papers (PubMed
(307), DBLP (31), and IEEE Xplore (272)), as shown in
Fig. 3. After removing the duplicates, 362 papers remained.
Then the papers were screened by the inclusion and exclusion
criteria. We manually assessed the eligibility of the remaining
papers by full-text inspection and included 40 papers in the
final collection. Based on the application scenarios, we divided
the final collection into three categories: diagnosis of diabetes
(n = 11), glucose management (n = 14), and diagnosis of
complications (n = 15). As shown in Fig. 4, most of the
selected papers were published in recent two years, which
indicates that the deep learning research for diabetes is a fairly
new topic and its interest has been accelerating. In addition,
we also calculated and plotted the number of citations of
the selected papers in October 2020, according to Google
Scholar. The details of the selected works are presented in
chronological order in Tables I, II, III.

A. Diagnosis of Diabetes

The early diagnosis of diabetes can effectively improve the
medical care and treatment for people living with diabetes.
The standard diagnosis to confirm diabetes in clinics requires
repeated glucose-based tests on hemoglobin A1c (HbA1c)
and corresponding diagnostic criteria for different diabetes
types [3]. However, due to the huge population and shortage
of physicians in rural areas, the number of undiagnosed cases
is significant and projected to increase in the future [61].
There is a high risk of developing diabetes without the onset
of symptoms, especially for people with T2D, which could
lead to long-term dysfunction of various organs and chronic
complications [62].

Therefore, the need to detect onset diabetes or predict
the diabetes risk arises, e.g. population screening and non-
invasive systems. Table I presents the current efforts at de-
veloping deep learning decision-support algorithms for the
diagnosis of diabetes. In particular, various supervised and
unsupervised learning approaches strategies have been applied,
where DMLP models are the most widely employed. The
feed-forward structures and simple connections make DMLP
a good option for a binary classifier on EHRs, while AEs
and RBMs are used to extract underlying patterns of the
data without supervision. It is noted that many studies have
used the publicly available dataset called Pima Indian Dia-
betes (PID), from the University of California Irvine (UCI)
repository [63]. It contains 768 instances with eight attributes
and a binary label (diabetic or non-diabetic), which can be
visualized by [64]. The Pima Indians have a higher prevalence
of T2D than any population [65], making the PID dataset
popular in machine learning research. An advantage of using
this dataset with the same metrics is to easily compare the
results with the previous work employing various machine
learning methods. In Table I, other public EHR datasets
specific to the area of diagnosing diabetes include Mount Sinai
Data Warehouse [66] and the Practice Fusion dataset [67].
Although these datasets are collected from different sources,
they use common coding systems for diagnosis, namely the
International Classification of Diseases ICD-9 and ICD-10.
With these systems, researchers can easily locate the EHRs of
patients with different types of diabetes and complications.

Nevertheless, the major limitation of applying deep learning
on the PID dataset is the small number of patients and
attributes. To prove the generalization of DNNs, the trained
models need to be validated on a large population dataset.
To this end, Miott et al. proposed a framework, namely
Deep Patient, using a stack of denoising AEs to learn the
representations from a large-scale dataset. The achieved AUC
for the diagnosis of diabetes classification was 0.907 [50]. A
recent study by Ryu et al. also employed a large dataset with
11,456 subjects [60]. They used a DMLP model to screen
undiagnosed diabetes and achieved an AUC of 80.11% to
detect undiagnosed diabetes. It is worth highlighting the data
pre-processing step employed in these studies to extract related
descriptors from the attributes of the patients, such as feature
analysis and data normalization.

Moreover, the non-invasive detection of diabetes is emerg-
ing in several studies. Lekha et al. proposed a one-dimensional
(1-D) CNN architecture to analyze the biomarkers in real-time
breath signals for diabetes detection and classification [53].
The breath samples were collected by MOS sensors to analyze
volatile organic compounds. The sensor array measured the
content in a small gas chamber with an interval of 1000
seconds. Then the CNN classifier further processed these
signals, which can reduce the need for feature selection and
optimized the overall performance, compared to PCA, SVM,
and singular value decomposition algorithm (SVD). In [54],
the heart rate variability from electrocardiograms (ECG) was
used as a marker to detect diabetes. The data was collected
from a group of 40 people over a 10-minute duration. The
ECG signals were sampled at 500 Hz with digital bandpass
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TABLE I: Summary of selected articles from the literature on diabetes diagnosis.

Ref. Cases Models Data Sources Development Process Main Outcomes Baselines

[50]
Classification
of diabetes‡ Denosing AE Mount Sinai Data

Warehouse? (ICD-9)

Normalization; pre-process to
obtain raw features; the data of
training, validation and testing:
704,587, 5000, 76,214 patients

AUC: 0.907
Original
descriptors, PCA
(0.861)

[51]
Prediction
of diabetes‡

Modified
LSTM,
attention
pooling layer

An EHR dataset from
a regional hospital
(7191 patients,
ICD-10)

The split for training, validation
and testing: 2/3, 1/6 and 1/6 from
53,208 admissions

Precision of diagnosis,
intervention, unplanned
readmission: 66.2%,
78.7%, 79.0%

SVM, RF, plain
RNN, LSTM
(65.7%, 78.2%,
75.9% )

[52]
Detection of
diabetes†‡

RBM and
RNN

PID dataset from
UCI repository?

Feature selection by RFs; min-max
normalization; the ratio for training
and testing data: 80%, 20%

Sensitivity and
precision: 90.66%,
75%

N/A

[53]

Prediction
of
diabetes†‡

Modified 1-D
CNN and FC
layers

25 breath samples
collected by MOS
sensors with 1000-sec
intervals

The data for training and testing:
15 samples, 10 samples; leave-one
out cross-validation

AUC of T1D, T2D,
healthy subjects:
0.9659, 0.9625, 0.9644

SVD, SVM, PCA

[54]
Detection of
diabetes

5-layer CNN,
LSTM, and
SVM

ECG data sampled at
500 Hz with digital
bandpass filtering and
thresholding collected
from 40 people

Heart rate variability (HRV) data
from 71 ECG datasets (each
contains 1000 samples); 5 fold
cross-validation

Validation accuracy:
95.7%

Previous work
using HRV

[55]
Detection of
diabetes‡

DMLP with
dropout

PID dataset from
UCI repository?

The ratio of training and validation
data: 90% and 10% Accuracy: 88.41% Previous work on

the same dataset

[56]
Prediction
of diabetes‡ DMLP

A population dataset
(4814 participants,the
majority are
overweight)

Data cleaning (imputing missing
values with the median); the ratio
of training and testing data: 80%
and 20% from 656 T2D subjects

AUC without and with
HbA1c: 0.703, 0.840

SVM
(0.679,0.825)

[57]

Prediction
of the onset
T2D‡

DMLP and a
linear model

Practice Fusion
dataset (9948
patients, ICD-9)?

Feature extraction by grouping
1312 features; the ratio of training
and validation data: 70%, testing
data: 30%; 10-fold cross-validation

Sensitivity: 31.17%,
AUC: 84.13%

RF (29.12%,
16.07%)

[58]
Detection of
diabetes‡

2 layer AE
and a softmax
layer

PID dataset from
UCI repository?

Training the layer one by one with
previous output; fine-tuning by
supervised learning

Sensitivity: 87.92%,
specificity: 83.41%,
accuracy: 86.26%

Previous work on
the same dataset

[59]
Prediction
of diabetes‡ DBN PID dataset from

UCI repository?
Min-max normalization; feature
selection by PCA; pre-training for
RBMs; supervised fine-tuning

Sensitivity: 100%, F1
score: 0.808

DT, LR, RF,
SVM, NB (75.9%,
0.760)

[60]

Detection of
undiagnosed
diabetes‡

2 hidden
layer DMLP
with dropout

An EHR dataset from
a national survey
(31,098 subjects, 4
years)

Combining 2013-2016
datasets;selecting features by LR;
the data of training and testing:
11456 and 4444 subjects

AUC: 80.11%

LR, KNN, SVM,
AdaBoost,
Gaussian NB, RF
(79.05%)

filtering and thresholding operations to reduce noise during the
real-time detection. After deriving the heart rate time with the
Pan-Tompkins algorithm, the study developed a hybrid deep
learning model with CNN, LSTM, and SVM, and achieved a
validation accuracy of 95.7%.

B. Glucose Management

The goal of glucose management in diabetes is to keep BG
levels in the euglycemia region and avoid undesired glycemic
events (i.e. hypoglycemia and hyperglycemia). Taking advan-
tage of the digitization of diabetes self-management (Fig. 1),
the development of deep learning has been significantly ac-
celerated (Fig. 4). There are several sub-domains in glucose
management which can be differentiated: BG level prediction,
BG anomalies detection, insulin delivery control, and daily-life
decision support.

Among these, BG level prediction has attracted increasing
attention in recent years. An accurate BG prediction en-
ables early interventions to prevent BG anomalies (i.e. hy-
poglycemia and hyperglycemia) and assists sensor-augmented
insulin pumps (e.g. predictive low-glucose insulin suspend)

and AP systems (e.g. model predictive control) to deliver
optimal insulin and/or glucagon doses. The use of smart-
phone applications allows people to report the exogenous
events that influence BG levels. By temporally aligning CGM
measurements with these self-reported events, such as meal
composition and insulin dosage, a multivariate time series can
be formed and processed by deep learning models. Normally,
the prediction horizon (PH) for short and long-term forecast-
ing is 30 minutes and greater than 60 minutes respectively.
In this scenario, the RNN-based architecture is a powerful
tool, referring to its success in temporal sequence processing
and regression. Augmented by LSTM cells, the RNN is the
most widely used method for glucose prediction in Table II.
Mirshekarian et al. proposed an LSTM model for 30 and 60-
minute prediction, which outperforms the engineered physio-
logical model (EPM) with SVR [69]. EPM is a continuous
dynamic model used to calculate the system states, which
comprises the compartments of meal absorption dynamics,
insulin absorption dynamics, and glucose-insulin dynamics.
They further introduced a neural attention layer to emulate
the case-based prediction by a memory module [76]. Besides,
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TABLE II: Summary of selected articles from the literature on glucose management.

Ref. Cases Models Data Sources Development Process Main Outcomes Baselines

[68]
Detection of
hypoglycemia†

DBN by
stacking RBMs

15 T1D children
monitored for
10-hour overnight

Calculating QT correlation and heart
rate; training and testing data: 10 and
5 subjects

Sensitivity: 79.70%,
specificity: 50.00%

DBN based on
ANNs (76.28%,
50.40%), multiple
regression

[69]

Prediction
of BG
levels†

LSTM and a
linear layer

A clinical database
with the T1D data
over 1600 days

Pre-training; linear interpolation;
training and testing data: 5 patients in
400 days, another 5 patients with 200
samples

RMSE for 30, 60-min
PH: 21.4, 38.0 mg/dL

ARIMA, EPM
with SVR (21.6,
39.2 mg/dL)

[70]

Prediction
of BG
levels†

LSTM,
Bidirectional
LSTM and 3
FC layers

(1) GoCarb dataset
(20 adults), (2)
UVa/Padova T1D
simulator (11
adults)

Pre-training on (2); linear interpolation
on (1); cross-validation (67%, 33%);
testing data: 26 sub-dataset from (1),
1791±141 CGM samples

RMSE for 30, 45,
60-min PH: 11.63,
21.75, 36.92 mg/dL

ARIMA, SVR
(11.69, 22.14,
37.42 mg/dL)

[71]

Prediction
of BG
levels†

Deep
sequential
polynomial
multi-output
model (RNN)

40 T1D subjects
over 1900 days

The ratio of training,validation and
testing data: 85%, 7.5% and 7.5%
from 555,000 CGM samples

Absolute percentage
error for 30-min PH:
4.87

Linear
extrapolation, RF,
RNN(LSTM, 5.3)

[72]
Glycemic
control†

CNN
(Inception-v3)

Food-101 dataset
(101 classes,
101,000 images)?

Image augmentation; pre-training on
ImageNet dataset; training and testing
data: 75,750, 25,250 images

Time in rage (TIR) of
70-180 mg/dL :
91.76%, top-1
accuracy of the image
classification: 81.65%

Standard
controller in
UVa/Padova T1D
simulator (TIR:
78.8%)

[73]

Prediction
of BG
levels‡

LSTM with
dynamic time
warping

A dataset from a
randomized trial (26
adults, smartphone
group (n = 11))

Pre-processing; transfer learning;
min-max normalization across patients;
training, validation and testing data:
CGM samples of 120, 30 and 30days

Clark Error Grid
zones of next-day PH
(A: 84.12, B: 15.16,
C: 0, D: 0.72, E: 0)%

ANN, KNN, ridge
regression (A:
83.03%), kernel
ridge regression,
moving average

[74]

Prediction
of BG
levels†

CNN, LSTM
and 2 FC
layers

(1)UVa/Padova T1D
simulator (10
adults), (2) 10
clinical subjects

Using Gaussian filter to remove
outliers; training and testing data: 50%
and 50%

RMSE for 30, 60-min
PH: 9.38, 18.87 (1);
21.07, 33.27 (2)
mg/dL

SVR (22.00, 34.35
(2)), LVX, neural
network, AR

[75]

Prediction
of BG
levels†

LSTM and a
FC layer

RT CGM dataset
(the population of
451 patients)

Removing sequences with low quality;
Tikhonov regularization; training and
testing data: 304,450 and 94128
samples

RMSE for 30, 45,
60-min PH: 19.47,
26.47, 32.38 mg/dL

AR, ANN,
standard RNN,
non-linear AR
(24.66, 32.33,
38.58 mg/dL)

[76]

Prediction
of BG
levels†

Memory-
Augmented
LSTM with
neural attention
weights

(1) OhioT1DM
dataset?, (2)AIDA
Simulator,
(3)UVa/Padova T1D
simulator

Pre-training; linear interpolation and
extrapolation; testing, validation and
training data: last 10 days, previous 10
days, rest days (1); 400, 100, and 100
days (2); 70, 10 and 10 days (3)

RMSE for 30, 60-min
PH: 18.74, 30.63 (1);
1.23, 2.27 (2); 2.93,
4.92 (3) with input of
CGM, insulin and
meal events

ARIMA (20.17,
33.47 (1); 5.59,
16.48 (2); 12.00,
18.66 (3))

[77]

Prediction
of BG
levels†

Dilated CNN
(residual and
parameterized
skip
connections)

(1) UVa/Padova
T1D simulator, (2)
ABC4D dataset, (3)
OhioT1DM dataset?

Ruling out outliers;
interpolation/extrapolation; label
transformation; training, validation and
testing set: 45%, 5%, 50% (1, 2); 40
and days (3)

RMSE for 30, 60-min
PH: 8.88, 19.90 (1);
19.19, 31.78 (2);
19.28, 31.83 (3)

SVR (21.75, 34.31
(3)), LVX (12.25,
22.41 (1)), neural
network (20.42,
33.13 (2)), AR

[78]
Glycemic
control†

Deep
Q-network with
GRU or 1-D
CNN

UVA/Padova
simulator (30 virtual
subjects)

Using CGM and insulin data in past
24 hours as the states, action setting:
{0, basal rate, 5*basal rate}; testing in
10 days

Average risk index
for the virtual
subject: 9.26

Proportional-
integral-derivative
control (11.80)

[79]

Prediction
of BG
levels†

2 branches of
LSTM cells
(past and future
information)

(1) UVa/Padova
T1D simulator (100
adults), (2) Padova
clinical dataset (1
patient)

Min-max normalization; output
filtering in (2); training data: four-day
protocol (1), testing data: 3-day
scenario and in vivo data over a month
(2)

Average RMSE for
PH of 60 minutes:
11.72 (1), 21.09 (2)

Linearized average
model (46.82 (2)),
daily model
predictor

[80]
Prediction
of HbA1c†

1-D CNN,
Inception
module, FC
layers

A clinical dataset
(759 T1D subjects,
1543 observations)

Behavioral feature extraction; manual
feature extraction; 10-fold
cross-validation; batch normalization;
loss regularization

Mean absolute error:
4.80, the coefficient
of determination:
0.71

Nathan’s formula,
CNN (5.98, 0.62),
manual features
extraction network

[81]

Prediction
of BG
levels†

LSTM and 2
FC layers OhioT1DM dataset?

Scaling glucose values by 0.01; the
ratio of training, validation and testing
data: 60%, 20% and 20%

RMSE for 30, 60-min
PH: 18.867, 31.403

Previous work
with machine
learning
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Li et al. transferred the prediction into a classification problem
and used 1-D dilated CNNs in their GluNet framework to
classify the predictive changes of future BG values [77]. The
study tested the model on the two clinical datasets. The use of
dilated DNNs to improve the BG prediction is also highlighted
in [82]–[84]. Similarly, Zaitcev et al. employed 1-D CNNs
with the Inception module to estimate HbA1c from imperfect
time series of CGM [80]. An important consideration for BG
prediction is whether the algorithm can be applied in real-time.
In this regard, the deep learning models based on CNN and
LSTM layers have been validated in smartphone applications
to perform real-time BG prediction with short inference time
and small memory consumption [74], [77].

Another application of CNNs is to estimate macronutrient
content as a daily-life support [72]. With a publicly available
dataset of food images (Food-101 dataset) [85], the trained
CNN model can predict the food category based on the
food images from smartphones, then assist decision support
systems and AP systems to compute the required amount of
meal bolus insulin. The proposed algorithm was validated
in the UVA/Padova T1D simulator with the disturbances of
carbohydrate content and incorrect estimation of meal sizes.
The UVA/Padova T1D simulator, developed by the University
of Virginia (US) and the University of Padova (Italy), is a
glucose-insulin dynamics simulator that has been accepted by
the Food and Drug Administration for pre-clinical studies [86].
In recent years, many research groups use computer simula-
tion, i.e. in silico setup, to test algorithms in various virtual
scenarios, considering the high costs and safety concerns
associated to actual clinical trials in humans and animals.
Fox et al. used the UVA/Padova T1D simulator to test DRL
algorithms to control the delivery of basal insulin, using GRU
and 1-D CNN architectures. Recent studies also explored
the latest DRL algorithms for other types of hormones in
glycemic control, such as glucagon and bolus insulin [87],
[88]. Moreover, the simulator is frequently employed in glu-
cose prediction to generate synthetic population datasets that
are used for initial validation. Although most of the studies
conducted experiments on their proprietary clinical datasets,
there is a dataset available to researchers, the OhioT1DM
dataset, which was released for the first edition of BG level
prediction challenge in 2018 and later updated for the 2020
edition [89]. This dataset contains multi-modal data (CGM,
meals, insulin, exercise) corresponding to 12 subjects with
T1D over eight weeks.

Furthermore, an unsupervised learning algorithm based on
DBNs, and taking ECG signals as input, was employed
to detect hypoglycemia in children with T1D [68]. Simi-
larly, in a recent study, ECGs were used to detect noctur-
nal hypoglycemia in healthy individuals with a CNN-LSTM
model [90].

C. Diagnosis of Complications
In this category, most research has focused on the analysis of

medical imaging to detect and diagnose multiple complications
associated to people living with diabetes, as shown in Table III.
Diabetes-related complications are diverse and regular exami-
nations and clinical visits are time-consuming, expensive, and

subjective [106]. For a long-term chronic disorder such as
diabetes, its treatment is a heavy burden on the healthcare
systems. Therefore, automated systems that are able to screen,
detect, predict, and diagnose diabetes-related complications
play an important role in population-based surveillance and
monitoring.

Diabetic retinopathy (DR) is the leading cause of vision
impairments and blindness in the world [107]. DR is often
difficult to be detected until vision-threatening events occur.
Fortunately, the state-of-art technologies of deep learning have
shown great potential to meet this challenge and provide
solutions to various DR problems reaching, in some cases,
superhuman performance [27]. Following the success in the
computer version (CV), a large number of CNN-based models
have been adopted to extract the representation from retinal
fundus photographs. In the 2015 Kaggle competition on DR
screening, all the top results were achieved by CNNs, using a
publicly available dataset [108]. Other public datasets with im-
ages of DR examinations include the Messidor-2 dataset [109]
and the E-Ophtha dataset [110]. In Table III, nearly all the
selected studies used CNNs to detect DR (10/11, 91%). The
exception is the study by ElTanboly et al. which designed
a multistage deep fusion classification network with a stack
of non-negativity-constrained AEs to detect DR in optical
coherence tomography (OCT) images for the patients who
have almost normal retina appearances [93]. The AE model
achieved high classification accuracy on an experiment with
52 subjects. As for CNN-based studies, most of the approaches
are adapted or inspired from two popular architectures in
the CV; VGGNet (4/10, 40%) and Inception (5/10, 50%).
In [98], multiple popular CNN configurations were explored
on the Kaggle dataset, where VGGNet-s obtained the highest
accuracy in the experiments. VGGNet was developed by the
University of Oxford (UK), aiming at improving the recogni-
tion performance on the ImageNet database with small kernel
size and deep networks [39], while Inception employs sparse
connections between activation functions in an Inception mod-
ule to enhance the efficiency of computation on GPUs [40].
Both of the architectures achieved satisfactory performance
on DR detection. Abràmoff et al. proposed a VGGNet-
based model to detect multiple classes of DR on Messidor-2
dataset [91], achieving a high sensitivity of 96.8% on referable
DR. Then the VGG adapted architecture was validated in
two large scale datasets with multi-ethnic populations [95],
[100]. Their studies indicated deep learning methods can detect
the referable DR with high accuracy but with much less
time than human assessors. Gulshan et al. used an Inception-
based architecture to detect referable DR and achieved the
sensitivity of 96.8% and the specificity of 87.0%. The clinical
settings to implement such systems were further investigated,
including the feasibility and acceptability of outpatient set-
tings [96] and grader variability [97]. Ruamviboonsuk et al.
conducted a nationwide experiment to validate an Inception-
based model [99]. Compared with human specialists, the deep
learning model obtained significantly higher sensitivity and
slightly lower specificity. Their achievement is regarded as one
of the human level performance milestones in the AI Index
2019 annual report [111]. Meanwhile, Arcadu et al. proposed
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TABLE III: Summary of selected articles from the literature on diagnosis of complications.

Ref. Cases Models Data Sources Development Process Main Outcomes Baselines

[91]

Referable
DR
detection

CNN (Inspired
by AlexNet,
VGGNet)

(1) EyeCheck
project, (2)
Messidor-2 dataset?

Training data: 10,000 to 1,250,000
unique samples (1), testing data:
1748 images (2)

Sensitivity: 96.8%,
specificity: 87.0%,
AUC: 0.980

Classical detector
by LR (AUC:
0.955))

[92]

Referable
DR
detection

CNN
(Inception-v3),
an ensemble of
10 networks

(1) EyePACS-1
dataset, (2)
Messidor-2 dataset?

Batch normalization; pre-initialization
by the ImageNet data; training and
validation data : 80% and 20% of
128,125 retinal images, testing data:
4497 images (1) and 1748 images (2)

Sensitivity: 97.5% (1),
96.1% (2), specificity:
93.9% (1), 93.4% (2),
AUC: 0.990 (1), 0.991
(2)

N/A

[93]
DR
detection‡

A stack of
non-negativity-
constrained
AEs

Images from 52
clinical scans with
12 retinal layers

Feature extraction by cumulative
distribution function; training data:
40 subjects, testing data: 12 subjects

Sensitivity: 92%,
specificity: 83%,
accuracy: 100%

k-star (89%, 89%,
89%), KNN, RF,
DT

[94]
DR
detection

Customized
CNN: (5
residual blocks
), DT classifier

(1) EyePACS
dataset, (2)
Messidor-2
dataset?, (3)
E-Ophtha dataset?

Feature extraction; training and
validation data: 75,137 images
(5-fold cross-validation, 1), testing
data: 1368 images (2) and 405
images (3)

Sensitivity: 94% (1),
93% (2), 90% (3),
specificity: 98% (1),
87% (2), 94% (3),
AUC: 0.97 (1), 0.94
(2), 0.95 (3)

Previous work
with machine
learning on (2)

[95]

Referable
DR
detection

CNN (Adapted
VGGNet)

Singapore national
DR screening
program

Each image was analyzed by two
graders and one specialist, training
data: 76,370 images (2010-2013
year), testing data: 71,896 images
(2014-2015 year)

Sensitivity: 90.5%,
specificity: 91.6%,
AUC: 0.936

N/A

[96]

Referable
DR
detection

CNN
(Inception-v3) LabelMe dataset

21 grader validated the accuracy of
the labels; training data: 58,790
images, cross-validation data: 8000
images

Sensitivity: 92.3%,
specificity: 93.7%, 96%
of participants satisfied
with the model

Manual screening
models

[97]

Moderate or
worse DR
detection

CNN
(Inception-v4),
an ensemble of
10 networks

EyePACS clinics,
(2) Messidor-2
dataset?, (3)
EyePACS-2 dataset

Gaussian process bandit algorithm
(hyper-parameter tuning); training
and validation data: 1,665,151 and
3737 images (1), (2), testing data:
1958 images (3)

Sensitivity: 97.1%,
specificity: 92.3%,
AUC: 0.986

Three retinal
Specialists
(sensitivity:
83.8%)

[98]
DR
detection

CNN
(VGGNet-s) Kaggle dataset?

Normalization schemes and data
augmentation; non-local means
denoising; 5-fold cross-validation,
training and validation data: 35,126
images

Sensitivity: 86.47%,
specificity: 97.43%,
AUC: 0.9786,
accuracy: 95.68%

AlexNet, ResNet,
VGGNet-16,
VGGNet-19
(specificity:
96.49%),
GoogleNet,

[99]

Referable
DR
detection

CNN
(Inception-v4),
an ensemble of
10 networks

A large-scale
population (13
health regions, 7517
patients)

A cascade of thresholds
(hyper-parameter tuning); testing
data: 25,326 images

Sensitivity: 96.8%,
specificity: 95.6%,
AUC: 0.987

13 human regional
graders
(sensitivity: 74%)

[100]

Referable
DR
detection

CNN(Adapted
VGGNet)

A multi-ethnic,
multi-site dataset (5
races, 18,912
patients)

Training and validation data: 76,370
and 8000 images, testing data:
93,293 images

The estimation of DR
prevalence: 16.1%, the
AUC for referable DR:
0.863, the time taken
to diagnose: 10.4h, risk
factor: 0.743

10 retinal
specialists and 7
professional
graders
(prevalence:15.9%,
time: 1554.8 h)

[101]

Estimation
of DR
severity
scale

CNN pillars
(Inception-v3)
and RF

(1) Kaggle dataset?,
(2) 2 large clinical
trials (530 patients)

SHAP for feature selection; transfer
learning (1); 5-fold cross-validation:
4781 images (2)

AUC at month 6, 12,
24: 0.68, 0.79, 0.77

Well-trained
reading center
experts

[102]

Prediction
of mortality
in ICU

1-D CNN and
2 FC layers MIMIC-III dataset?

Feature analysis by importance;
addressing imbalance classes;
training and testing data: 70% and
30% from 9000 subjects

AUC: 0.885 ANN (0.792), RF,
DT

[103]

Prediction
of
myocardial
infarction‡

DMLP
American
commercial health
plan

Descriptive statistics analysis,
confounding factor analysis;
extracting 199,116 patients

AUC: 0.767, with
hazard ratio: 0.81 and
0.63

LR (AUC: 0.760)

[104]

Classification
of diabetic
foot

Customized
9-layer CNN

Plantar thermogram
database with 167
subjects?

Data augmentation; patch extraction;
the ratio of training and validation
data: 70% and 30%, 10-fold
cross-validation

Sensitivity: 0.9167,
AUC: 0.8533

SVM, ANN,
AlexNet,
GoogLeNet

[105]

Detection of
diabetic
neuropathy†‡

U-Net CNNs
(5 ensembles)

(1) BioImLab
dataset?, (2) Beijing
dataset, (3) ENA
dataset

Patch extraction; training set: 1698
images (2), testing set: 2137 images
(1), (3)

Fibre length 0.933,
length/segment: 0.656,
branch points: 0.891,
nail points: 0.623

ACCMetrics
model (0.825,
0.325, 0.570,
0.257)
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an Inception model to predict DR progression by leveraging
individual color fundus photographs [101].

The deep learning applications to other complications are
also noted in the literature. Wittler et al. designed a CNN-
based model to predict mortality based on the data from the
intensive care unit (ICU) patients, achieving an AUC score
of 0.885 [102]. The ICU dataset in this study, referred to as
MIMIC-III, is freely accessible [112]. Williams et al. [105]
proposed a U-Net CNN to quantify the nerve fiber properties
in the diagnosis of diabetic neuropathy, involving a public
dataset [113]. Their results show an excellent localization
performance for the quantification and the potential to be
adopted in clinical settings. In [104], a customized CNN
was designed to detect plantar ulcers on the thermography
of diabetic foot with a publicly accessible dataset [114].
Moreover, Yamada et al. investigated the incidence of car-
diovascular disease among three anti-diabetic drugs, using a
DMLP model that achieved better results than conventional LR
analysis [103]. In summary, it is noted that most of the studies
focused on microvascular complications, including DR [91]–
[101], diabetic foot [104], and diabetic neuropathy [105],
while there is only one study focusing on macrovascular
complications (cardiovascular diseases) [103].

D. Summary of Deep Learning Techniques
A significant number of deep learning methods have been

adopted by the diabetes research community, covering various
architectures in supervised learning and unsupervised learning.
Among these, CNN-based architectures are the most widely
used, particularly in clinical imaging problems. CNNs are
good at extracting features from raw data, requiring little
hand-engineered work and domain expertise on image pro-
cessing [23]. Hence, the main application of CNNs has been
in the analysis of clinical scans and medical images used for
the diagnosis of diabetes-related complications. Another use
of CNN-based architectures is to support the daily life of
people with diabetes by estimating macronutrients from food
images. Today the new techniques are actively developed in
the CV area to improve the model performance while reducing
the complexity. Hence the evolution of CNN configurations
(VGGNet, Inception) opens the door to the development of
more powerful algorithms. In addition, some studies have
applied 1-D CNNs to process sequential signals, using convo-
lutional filters to extract data features with a large receptive
field. Several of these work further used LSTM layers to
process the outcomes from CNN architectures to compute
the temporal dependencies by hybrid models: convolutional
RNN (CRNN) [74] and CNN-LSTM [54], [90], relying on
the powerful capability of RNNs in sequence processing. In
fact, RNN-based architectures dominate among the glucose
management applications, especially for BG prediction. The
recursive computations and advanced cell structures are suit-
able for mapping the glucose series measured by CGM in
real-time. Some studies explored the latest advances of the
techniques in NLP, such as bidirectional LSTM [70] and neural
attention mechanisms [51], [76].

DMLP and unsupervised learning algorithms are commonly
used in diabetes diagnosis. However, careful feature selection

and normalization in pre-processing are required in many cases
of these tasks, due to the heterogeneous forms of the records
in EHR datasets. To this end, conventional machine learning
algorithms are employed to discover the most relevant features.
For instance, in [59], PCA was employed to calculate principal
components scores for each data feature by deriving the
eigenvectors coefficients and weights. In [60], LR analysis was
used to compute correlations between non-invasive variables
and the attributes of individuals to select significant features
for diabetes detection.

Aiming at specific tasks, the DNN layers can be accessed
and customized to incorporate with other models. Apart from
the CRNN and the CNN-LSTM, other hybrid learning models
in the literature involve the linear model [57], SVM [54],
DTs [94], and RFs [101] to integrate data features at the input
or perform a second-level analysis at the output. Moreover,
the ensemble models for deep learning are highlighted in [92],
[97], [99], [101], [105]. In these works, the ensemble contains
multiple CNNs trained by the same dataset and obtains the
final results by linear averaging in the testing phase. Due
to the random initialization and batch feeding, each of the
CNNs learns a distinct representation and improves the overall
accuracy and generalization.

Training a very deep model from scratch is time-consuming
since millions of parameters in the DNN units need to be
tuned. In this regard, an approach called transfer learning, i.e.
pre-training, provides a shortcut to solve this issue. Partic-
ularly, for clinical imaging tasks, the ImageNet database is
a critical auxiliary component for CNN pre-training, which
has been used in [72], [92]. Fine-tuning the weights based on
the ImageNet paradigms can largely speed up convergence
for target datasets, but it is not a necessary step if there
are sufficient computational resources [115]. In the tasks of
glucose management, the in silico datasets derived from the
simulators and a portion of real clinical data are used for pre-
training [69], [70], [76]. It is an effective method to mitigate
the high demand for data during the DNN training. The unsu-
pervised pre-training in DBNs is calculated layer by layer [47]
to find good initial weights for the discriminative fine-tuning,
which is used by [59]. Alternatively, data augmentation is a
way to improve model performance with limited data, which
can be found in [98], [104]. These studies used a series of
image manipulation, such as shifting, rotating, and flipping, to
transform the available images and expand the training sets.

V. DISCUSSION

A. Limitations and Challenges

Although deep learning has improved the state of art in
several areas of diabetes, the applications in healthcare systems
need to be robust, reliable, and convincing to avoid safety
issues and provide effective therapeutic aids. In this con-
text, there remain several limitations and challenges for deep
learning to be further introduced in actual clinical settings.
Table IV summarizes the five common limitations identified
from the selected articles: data volume, data variability, data
quality, feature processing, and interpretability. In real-world
scenarios, the data collected from people with diabetes are
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prone to be imperfect, due to human errors and sensor artifacts.
The process to collect real data is sometimes expensive and
time-consuming. Due to data privacy policies, sharing data-
sets among research teams is sometimes difficult. These fac-
tors lead to many studies employing a reduced, sometimes
insufficient, amount of data. Another challenge that arises due
to the complexity of glucose dynamics is how to process the
available data in order to characterize people with diabetes.
Also, deep learning models lack transparency. From the per-
spective of clinicians, why the models produce the output for
a certain input case is important, particularly for some critical
decision-making applications. The complicated structures in
DNN layers can effectively learn the patterns from non-linear
signals but reduce the interpretability of the model. Therefore,
it is crucial to consider the trade-off between performance and
interpretability when investigating deep learning for diabetes.
Finally, the efficiency of training deep learning models is ex-
pected to be enhanced through new algorithmic and hardware
developments [52], [104].

B. Opportunities and Future Work

The list of challenges introduced in Section V-A not only
applies to the field of diabetes but also is valid in other health
domains. Deep learning is a hotspot in the era of AI, and it is
worth noting that most of the selected papers are publications
from the recent two years, as shown in Fig. 4, which indicates
that this is an emerging technology. Hence, there is a large
space to improve the current applications for diabetes.

First, the digital records and vital signs are increasingly
collected by the multi-modal systems with wearables and
smartphone applications. Most of these data are conveniently
uploaded to centralized systems or cloud repositories. With
the popularization of the Internet of things and 5G networks,
data volumes and variability of data sources are expected to
significantly increase in many healthcare applications, and in
particular, in diabetes care. As the data volume expands, many
low-quality data samples can be filtered out and removed from
training sets, and the advances in wearables (e.g. CGM) can
effectively reduce the measurement errors. Deep learning is
well adapted to cope with such an increase in data availability.
Several publicly available datasets are outlined in Section IV,
and more datasets will be shared in the communities after
proper post-processing and de-anonymization. In order to
deploy deep learning in an ambulatory setting, the frameworks
mentioned in Section II can be easily ported to mobile devices
by using tools such as TensorFlow Lite [74], [77].

To interpret deep learning technologies in healthcare, many
recent attempts in the AI domain have been made to enhance
model transparency and understand model functionality. In
particular, a unified framework, the SHapley Additive exPla-
nations (SHAP), was proposed to explain the input features
that contribute to the final output, which has been validated
on many data-driven applications in healthcare domains [116].
This is also an effective method to select input features
by ranking their importance. In Table III, an article also
employed SHAP analysis to attribute the descriptors for the
CNN outcomes [101]. Another effective technique to interpret

the learned features of CNN layers is t-distributed stochas-
tic neighbor embedding (t-SNE) [117], which was used to
visualize the clusters of heartbeat data according to glucose
levels in [90]. The use of t-SNE can also be generalized to
other CNN applications, such as DR detection, to qualitatively
analyze the extracted feature maps. Moreover, a recent study
also verified the conformance of neural network models in
terms of glucose-insulin dynamics [118]. Similar approaches
can be used to analyze the performance of DNNs and further
enhance interpretability.

Instead of solely using data-driven models, integrating the
expert knowledge in the learning process can help to better
understand the underlying mechanisms of a health condition
such as diabetes. Specifically, there are two feasible methods.
One is to incorporate the physiological parameters as the input
feature of the models, and the other is to use expert knowledge
as a guide during the training process. Expert knowledge
is also essential to craft safety constrains and calculate the
confidence of the model outputs.

Many selected articles mentioned that their studies require
to be further validated in real-world scenarios [79], [80], [95],
[101], [105]. In this regard, a team from Google took a step
forward. They conducted a human-centered study in 11 clinics,
applying deep learning to diabetic eye diseases [119]. The
results indicate that some socio-environmental factors need
to be addressed before the widespread deployment of such
automated systems.

VI. CONCLUSION

In this paper, we present a comprehensive review of the
current trend in deep learning technologies for diabetes re-
search. We performed a systematic search, selected a collection
of articles, and summarized the key information focusing on
three areas: diagnosis of diabetes, glucose management, and
diagnosis of diabetes related complications. In these areas,
various DNN architectures and learning techniques have been
applied and obtained superior experimental performance that
previous conventional machine learning approached. On the
other hand, several challenges have been identified from the
literature including data availability, feature processing, and
model interpretability. In the future, there is great potential to
meet these challenges by transferring the latest advances in
deep learning technologies into massive multi-modal data of
diabetes management. We expect that deep learning technolo-
gies will be widespread in clinical settings and largely improve
the treatment of people living with diabetes.
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