250 kW Solid Fuel Combustion Test Facility

The 250 kW CTF is part of the UK CCS Research Centre PACT facilities and is designed to create a comprehensive database for oxy combustion under various test conditions and provide much needed validation data for CFD submodel development. The facility can use gas, coal, or coal/biomass blends as fuel. The oxidising medium can be either air, a synthetic mixture of CO$_2$/O$_2$ with or without steam injection, or a mixture of wet recycle gas and O$_2$. The facility can also supply flue gas to the connected post combustion carbon capture plant for solvent testing and development. Measurements include:

- in-flame temperature profiles using suction pyrometry;
- heat flux profiles using an ellipsoidal radiometer and total heat flux probes;
- in-flame and exhaust species profiles;
- flame characterisation, including shape, luminosity, temperature, and oscillation frequency, using 2-D and 3-D flame imaging systems. These techniques will provide direct photographs and videos of the flame, as well as computer tomographic reconstruction of the flame in 3-D; and
- velocity profiles within the top section of the furnace (for both non-reactive and reactive cases) using laser diagnostics (Particle Image Velocimetry);
- coal burnout and ash characterisation.

100 kW Coal/Biomass Rig

Work has also been undertaken using a 100kWth coal/biomass rig at Cranfield University that is also part of the UKCCSRC PACT facilities. The two main activities are experimental trials in a 100kW retrofit oxy-fired combustor, and the development of a kinetic model using Aspen Plus that predicts gas composition and temperatures of the process when varying the main operational parameters. For the experimental part of the project, primary parameters such as type of fuel (coal/biomass/clean/biomass blends), percentage of recycle flue gas, and type of recycle flue gas were varied to analyse their effects on the outputs of the process (gas composition, temperatures reached, and composition of ash generated). Additional aspects like sulphur trioxide levels inside the combustor, heat transfer, and study of the stability of the flame, have also been studied to be included in the future experiments. In parallel, a kinetic simulation model has been developed to study the oxy-combustion process through the co-firing of coal and biomass blends.

Selected Related Papers at OCC3

- T. Farrow, C-G. Sun, C. Snape, Impact of CO$_2$ on Biomass Devolatilisation, Nitrogen Partitioning and Combustion - A Drop Tube Furnace Analysis
- University of Edinburgh: H. Calmera, J. Gibbins, I. Trabadela
- University of Kent: L. Gao, M. Hossain, S. Li, G. Lu, D. Sun, Y. Yan
- University of Leeds: S. Black, A. Clements, L. Ma, W. Nimmo, M. Pourkashanian, A. Pranzitelli, J. Szuhánszki
- University of Nottingham: T. Farrow, H. Liu, C. Snape, C-G. Sun

2-D and 3-D Flame Imaging Systems

Two-dimensional (2-D) and three-dimensional (3-D) flame imaging systems have been developed to quantify the fundamental physical characteristics of oxyfuel flames. The systems are capable of measuring a range of flame characteristics, including length, volume, surface area, temperature distribution, soot concentration and emissivity. Photodiodes are incorporated in the 2-D imaging system to measure the oscillation frequency and stability of the flame. Experimental work is being undertaken on the 250 kW solid fuel combustion test facility (see left) to assess the performance and operability of the systems. In addition, a novel instrumentation system for measuring the velocity, concentration and particle size distribution of a pulverised coal flow has also been developed. The system operates on electrostatic and piezoelectric sensors and signal processing algorithms. It has been evaluated on a coal/biomass flow test rig at Kent and on a biomass flow pipeline at Tilbury Power Station. The project has also developed improved capability to use laser diagnostic techniques to make flow field measurements under oxyfuel conditions building on previous experience at the University of Cambridge.

Coal Property Measurements and Ash Characterisation

The impact of CO$_2$ and steam on devolatilisation and char burn-out in relation to normal air firing is being assessed by a comprehensive drop tube furnace (DTF) programme at the University of Nottingham. The DTF operates up to 450°C which is high enough to achieve the maximum volatile matter yields for coals with relatively short residence times. The results have indicated the enhanced volatile matter yields and char burn-out rates that can be achieved in CO$_2$. This has been complemented by dust ignition tests in oxyfuel atmospheres carried out at the University of Edinburgh (see right). Ash transformation and deposition in oxyfuel environments is being explored in a programme of work led by Imperial College London.

Computational Fluid Dynamics

CFD simulations have been performed in ANSYS FLUENT using RANS and LES in the 250 kW solid fuel combustion test facility under air firing and a variety of oxy-fuel conditions. New CFD submodels including radiation and char gasification reactions are important for oxy-coal combustion as well as other techniques such as flicker analysis. Validation and improvements to the CFD and existing models are a core focus for air and oxy-coal conditions. Model development includes incorporating the full spectrum correlated k-method (FSCK) and Mie theory for spectral radiation in CFD.

Selected Related Papers at OCC3

- T. Farrow, C-G. Sun, C. Snape, Impact of CO$_2$ on Biomass Devolatilisation, Nitrogen Partitioning and Combustion - A Drop Tube Furnace Analysis
- University of Edinburgh: H. Calmera, J. Gibbins, I. Trabadela
- University of Kent: L. Gao, M. Hossain, S. Li, G. Lu, D. Sun, Y. Yan
- University of Leeds: S. Black, A. Clements, L. Ma, W. Nimmo, M. Pourkashanian, A. Pranzitelli, J. Szuhánszki
- University of Nottingham: T. Farrow, H. Liu, C. Snape, C-G. Sun

The authors gratefully acknowledge funding from E.ON and EPSCR (grant #EP/N082153/1) and guidance from our Industrial Advisory Board members. The UKCCSRC PACT facilities are also supported by DECC (http://www.pact.ac.uk/).

The content of this poster is, however, entirely the responsibility of the authors.

OxyCAP UK: Oxyfuel Combustion - Academic Programme for the UK

Corresponding author: m.pourkashanian@leeds.ac.uk, +44(0)7946 471417

Project Participants (alphabetical by institution)

University of Cambridge: S. Balusamy, J. Dennis, S. Hochgreb, S. Scott

Cranfield University: H. Darabkhani, N. Jurado, J. Oakey

University of Edinburgh: H. Chalmers, J. Gibbins, I. Trabadela


University of Kent: L. Gao, M. Hossain, S. Li, G. Lu, D. Sun, Y. Yan

University of Leeds: S. Black, A. Clements, L. Ma, W. Nimmo, M. Pourkashanian, A. Pranzitelli, J. Szuhánszki

University of Nottingham: T. Farrow, H. Liu, C. Snape, C-G. Sun

The content of this poster is, however, entirely the responsibility of the authors.