

Eleventh Annual Conference on Carbon Capture, Utilization & Sequestration

Oxycombustion

Oxy-combustion of Coal/Biomass Mixtures in a 100kWth Combustor

Nelia Jurado Hamidreza G. Darabkhani

John E. Oakey

(j.e.oakey@cranfield.ac.uk)

Centre for Energy and Resource Technology (CERT), School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK

April 30 – May 3, 2012 • David L. Lawrence Convention Center • Pittsburgh, Pennsylvania

LIST OF CONTENTS

- **1. Aim**
- 2. Retrofitting of the Existing Air-firing Facility
- **3. Experimental Results**
- 4. Simulation Results using Aspen Plus®
- 5. Experimental and Simulation Results: Comparison
- 6. Summary and Future Work

AIM

Cran

To understand the possible compensation in the heat transfer through the use of blends of coal and biomass in a retrofitted pilot plant for the fact that the properties (higher heat capacity and emissivity) of the gases in the oxy-combustion process differ from the air-

Diagram of Multi-fuel Combustion Rig at CERT

RETROFITTING OF THE EXISTING AIR-FIRING FACILITY

Swirler of the Burner

30 deg

- **RFG System** Gas tight fans
 - Thermal conditioning of the RFG
- New layout of the pipelines
 - ✓ Oxygen injection
- •Primary Secondary

- CO₂ supply
- **New Fuel Feeder**

NEXT STAGES

- **CO₂ Purification**
 - **SOx Removal**
 - Water Removal
- **CAPCIS** System's Installation: Acid Dew Point measurement

Experimental Results : GAS COMPOSITION Daw Mill Coal 100%

Experimental Results : GAS COMPOSITION Cereal Co-Product 100%

Experimental Results : GAS COMPOSITION Daw Mill 50% - Cereal Co-Product 50%

Experimental Results : GAS COMPOSITION Fuel Comparison

MAIN SPECIES

- Maximum CO₂ when burning coal
- The water vapour concentration increases with the percentage of CCP in fuel

MINOR SPECIES

- SO₂ concentration dramatically decreases by adding more CCP into the fuel mixture
- CO increased in the last case due to not as good combustion as for the others cases

Fraction of total flue gas recycled	Sulphur concentration in flue gas
0.7	3110
0.6	2370
0.5	1920
0.4	1650
0.3	1390
0.2	1230
0.1	1080
0	1000

Example of the effect of recycle strategy on SO_2 concentration in the flue gas, based on 1000 ppmv without recycle. Data taken from Buhre *et al.*, (2005)

Experimental Results : TEMPERATURE Fuel Comparison

Experimental Results : ASH DEPOSITION Fuel Comparison

Following the trend of the previous analysis:

- K: Increases with the percentage of biomass
- Fe, Ti : Increases with the percentage of coal

Exceptions:

- O, Si, Mg: Not clear pattern
- Ca: Opposite behaviour to expected

Ash Deposit Probe Daw Mill 50%-CCP 50%

Ash Deposit Probe CCP 100%

Different morphology of the ash comparing different fuels

	SiO2	AI2O3	Fe2O3	TiO2	CaO	MgO	Na2O	K2O	Mn304	P2O5	SO3	BaO
DAW MILL	36.8	23.9	11.2	1.1	12	2.5	1.5	0.5	0.4	-	-	-
ССР	44.36	2.79	2.47	0.12	7.78	3.96	0.36	24.72	0.1	12.04	-	0.05

Previous ash Previous ash analysis supplied by EON

Simulation Results using Aspen Plus®: OXY-FUEL COMBUSTION MODEL

EQUILIBRIUM MODEL

	STAGE 1 Air-firing case	STAGE 2 Oxy-firing case with Wet Recirculation	STAGE 3 Oxy-firing case with Wet Recirculation and Heat Loss	STAGE 4 Oxy-firing case with Wet Recirculation, Heat Loss and Air Leakage	STAGE 5 Air-firing case (KINETIC MODEL)	STAGE 6 Oxy-firing case with Wet Recirculation, Heat Loss and Air Leakage (<i>KINETIC MODEL</i>)
AIR/OXY-FIRING	Air -firing	Oxy -firing	Oxy -firing	Oxy -firing	Air -firing	Oxy -firing
%RFG		60,65,70	60,65,70	60,65,70	-	55,60,65,70
% O ₂ Exc (v/v)	21	0,10,21	0,5,10	0,5,10	21	0,5,10
T _{RFG} (⁰C)		370	130	130		130
Air Leakage				1.7% of Total Gas		1.7% of Total Gas
Fuel	Coal	Coal	Coal	Coal	Coal	Coal(El Cerrejon, Daw Mill), Biomass(Cereal Co- Product, Miscanthus), Blends of Coal and Biomass

Simulation Results using Aspen Plus®: OXY-FUEL COMBUSTION KINETIC MODEL

Reactor's Name	Type of Reactor	Reactions	Aspects to Highlight
DECOMP	RYIELD		
VOL-COMB	RSTOICH	CO + 0.5O2→CO2 S+ O2→SO2 H2+ 0.5O2→H2O	Xc =VM-H-S Proposed by to Sotudeh-Gharebaagh et al., (1998)
CHARCOMB	RPLUG	$C(s) + 0.5O2 \rightarrow CO$ $C(s) + CO2 \rightarrow 2CO$ $C(s) + H2O \rightarrow CO + H2$ $CO + 0.5O2 \rightarrow CO2$ $H2 + 0.5O2 \rightarrow H2O$	Kinetic reaction's parameters taken from Vascellari and Cau,(2009) modified to match with the dimensions required by Aspen Plus ®. For this modifications, bulk and real density of the char particle, total gas flowrate fed to the combustor and particle ratio have been taken into account.(Initial dimensions: $kg_C /m^2 \cdot s \cdot Pa$.vs. Final dimensions: $kmol_C /m^3 \cdot s \cdot Pa$)
NOX-THERM	REQUIL	0.5N2(air)+0.5O2→NO 0.5N2(air)+0.5O2→NO2 N2+0.5O2→N2O	
NOX-FUEL	RSTOICH	0.5N2(Fuel)+O2→NO2	

Simulation Results: KINETIC MODEL Daw Mill Coal 100%

- Increases when the percentage of RFG is reduced
- Temperature: The 70% RFG case matches up with the reference case

Simulation Results: KINETIC MODEL Cereal Co-Product 100%

- CO₂: Rises when the RFG percentage increases
- H₂O : decreases when the RFG percentage increases
- O₂ : Between the limits proposed with the exception of the 0% excess of oxygen cases
- O₂, _{FED}: Out of range for the 55% RFG cases

Experimental and Simulation Results: KINETIC MODEL Fuel Comparison

• CO2: Better prediction when higher percentage of biomass in the fuel

• H2O : Better prediction when higher percentage of coal in the fuel

Eleventh Annual Conference on Carbon Capture, Utilization & Sequestration

Summary and Future Work

Cranfield

SUMMARY

- Significant improvement in the Oxy-Combustor's performance as a result of the new fuel feeder installation
- Maximum concentration of CO₂: 56.7%(v/v) (Wet basis)
- Kinetic Simulation Model has been developed with acceptable accordance with experimental results
- There is still some Air Ingress into the process
- Difficulties to have an excess of O₂ in the exhaust gas while keeping the O₂ in the entrance under 28% (v/v)

Future work

- Experimental tests using a wider variety of coal-biomass' blends
- **Q** Re-sealing of the burner and combustor to minimise air leakage
- **Implementation of SO_x and H₂O removal in the Pilot Plant**
- Further development of the simulation model:
 - Including equipment for CO_2 purification (SO_x and H₂O removal)
 - Combining wet and dry recycle Eleventh Annual Conference on Carbon Capture, Utilization & Sequestration

References

WALL, T., LIU, Y., SPERO, C., ELLIOTT, L., KHARE, S., RATHNAM, R., ZEENATHAL, F., MOGHTADERI, B., BUHRE, B., SHENG, C., GUPTA, R., YAMADA, T., MAKINO, K. and YU, J., 2009. An overview on oxyfuel coal combustion-State of the art research and technology development. Chemical Engineering Research and Design, 87(8), pp. 1003-1016.

BUHRE, B.J.P., ELLIOTT, L.K., SHENG, C.D., GUPTA, R.P., WALL, T.F., 2005. Oxy-fuel combustion technology for coalfired power generation. Progress in Energy and Combustion Science 2005;31(4):283e307.

XIONG, J., ZHAO, H., CHEN, M. and ZHENG, C., 2011. Simulation study of an 800 MWe oxy-combustion pulverized-coalfired power plant. Energy and Fuels, 25(5), pp. 2405-2415.

SOTUDEH-GHAREBAAGH, R., LEGROS, R., CHAOUKI, J. and PARIS, J., 1998. Simulation of circulating fluidized bed reactors using ASPEN PLUS. Fuel, 77(4), pp. 327-337.

VASCELLARI, M., CAU, G., 2009. Numerical simulation of pulverized coal oxy-combustion with exhaust gas recirculation. <u>http://tu-__freiberg.academia.edu/MicheleVascellari/Papers/110684/Numerical_Simulation_of_Pulverized_Coal_Oxy-</u> <u>Combustion_With_Exhaust_Gas_Recirculation</u> (01/02/2012)

FIELD, M., 1969, Rate of combustion size-graded fractions of char from a low-rank coal between 1200K and 2000K. Combustion and Flame, 13(3), pp. 237-252.

LI, K. and YOU, C., 2010. Particle combustion model simultaneously considering a volatile and carbon reaction. Energy and Fuels, 24(8), pp. 4178-4184

Eleventh Annual Conference on Carbon Capture, Utilization & Sequestration

Oxycombustion

Oxy-combustion of Coal/Biomass Mixtures in a 100kWth Combustor

Nelia Jurado Hamidreza G. Darabkhani

John E. Oakey

(j.e.oakey@cranfield.ac.uk)

Centre for Energy and Resource Technology (CERT), School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK

April 30 – May 3, 2012 • David L. Lawrence Convention Center • Pittsburgh, Pennsylvania