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The exact nature of the many-body localization transition remains an open question. An aspect
which has been posited in various studies is the emergence of scale invariance around this point,
however the direct observation of this phenomenon is still absent. Here we achieve this by studying
the logarithmic negativity and mutual information between disjoint blocks of varying size across the
many-body localization transition. The two length scales, block sizes and the distance between them,
provide a clear quantitative probe of scale invariance across different length scales. We find that
at the transition point, the logarithmic negativity obeys a scale invariant exponential decay with
respect to the ratio of block separation to size, whereas the mutual information obeys a polynomial
decay. The observed scale invariance of the quantum correlations in a microscopic model opens the
direction to probe the fractal structure in critical eigenstates using tensor network techniques and
provide constraints on the theory of the many-body localization transition.

Quantum entanglement has transformed our under-
standing of phases of matter and the transitions between
them by revealing the complex quantum correlations in
the states [1–16]. In certain topological and impurity
models [15, 16], tuning an external control parameter can
result in novel “entanglement phase transitions” in which
the entanglement in the ground state of the system reor-
ganizes itself globally without any signatures in a local
order parameter. Recent developments in quantum phase
transitions in highly excited states and non-equilibrium
quantum orders [17–21] highlights the importance of en-
tanglement based understanding for theory and experi-
ments [22–28]. This paradigm shift has been stimulated
by the discovery of many-body localization (MBL) [29–33]:
the breakdown of thermalization in isolated, interacting,
disordered quantum systems. The phase transition be-
tween MBL and thermal phases, usually tuned by the
strength of disorder relative to interactions, is an entangle-
ment phase transition where the entanglement structure
of eigenstates and the entanglement dynamics undergo
a singular change [34–46]. However, the nature of the
transition in microscopic models remains a fundamental
open question.

On the thermal side of the MBL transition, the entan-
glement entropy of the energy eigenstates satisfy a volume
law, i.e. the entanglement entropy (EE) density is finite,
consistent with the eigenstate thermalization hypothe-
sis, while in the localized phase the eigenstates exhibit
a boundary-law; EE density is zero. This difference in
scaling of entanglement entropy hints at a first order char-
acter of the transition [47–50]. On the other hand the
divergence of the localization length on approaching the
critical point from the localized side is reminiscent of a
continuous, second-order phase transition [41, 42, 51, 52].
Furthermore, second order transitions are also charac-
terized by scale invariance at the critical point. Many

FIG. 1. Schematic of Set-Up. (a) Definitions of the
block size l, separation d for disjoint blocks A and B located
at sites i and j respectively of a spin chain of total length
L = 20. (b) The ‘bond’ entanglement, as quantified by the
logarithmic negativity EAB between the two subsystems A and
B. The bond mutual information, IAB , is similarly defined.
(c) The ‘self’ entanglement of subsystem A, which is simply
the total entanglement between it and its complement (entire
environment) Ā.

of these questions are hotly debated, and several ques-
tions about the transition remain unresolved as yet. For
instance, how does scale invariance manifests itself in
measures of entanglement across the MBL transition?

In this article we unravel the scale invariant structure
of entanglement at the MBL transition by focussing on
the eigenstate logarithmic negativity (LN) [53–56]. Un-
like entanglement entropy and mutual information, LN is
able to capture the quantum correlations even in mixed
states, thus proving to be particularly informative for
shedding light on the structure of many-body states [6–
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FIG. 2. Logarithmic Negativity & Mutual Information Adjacency Matrices. (a) Normalized self and bond logarithmic
negativity between blocks beginning at i and j plotted as an adjacency-like matrix (where node weights are the self entanglement
and edge weights are the bond entanglement) for various block sizes l and random field strengths h. This data corresponds
to a single noise field instance for L = 20. (b) The same but substituting the normalized mutual information for logarithmic
negativity.

8, 42, 57–62]. Additionally, by partitioning a system into
non-complementary blocks one can extract information
about the multipartite nature of entanglement in the
system [62]. By investigating the LN across the MBL
transition we reveal the emergence of scale-invariance in
the quantum correlations at the transition point. To our
knowledge this is the first demonstration of such entan-
glement invariance, without assuming any prior finite size
scaling ansatz, even in infinite temperature eigenstates.
We show striking differences between the LN and mutual
information in the system revealing the multipartite as-
pects of entanglement. This scale invariance provides a
constraint on phenomenological models developed for the
MBL transition based on strong disorder renormalization
group [49, 50, 63–67]. For ground state infinite random-
ness fixed point, LN and MI scale identically which is
distinct from the behaviour at the MBL transition found
in this work [68].

RESULTS

Model: We consider a spin-1/2 chain with random
magnetic fields in the z-direction and with open boundary
conditions:

H = J

(
L−1∑
i=1

Si · Si+1 +

L∑
i=1

hiS
z
i

)
, (1)

with J the exchange coupling strength set to 1, Si =
1
2 (σxi , σ

y
i , σ

z
i ) a vector of Pauli matrices acting on spin i

and dimensionless parameter hi the random field at site i
drawn from the uniform distribution [−h, h]. For small h,
this model exhibits thermalising behaviour, whereas for
large h, it exhibits many-body localisation. The transition
point, hc, between these two phases is suspected to lie
between h ∼ 3.5− 5 [42, 69]. Unless otherwise noted we
take L = 20 (the longest numerically accessible size) and
diagonalize the Hamiltonian in the spin-0 subspace. For
each random instance a single eigenvector in the middle
of the energy spectrum is evaluated [70–72]. We compute
relevant entanglement measures for these eigenstates, and
unless explicitly noted average over many (at least 100)
different noise realizations.

Multipartite entanglement: In the MBL phase the
entanglement entropy in the eigenstates obeys the area-
law. The local degrees of freedom become unentangled
from their environment. In the vicinity of the transi-
tion the structure of the entanglement becomes more
complex, where as on the other side of the transition in
the thermal side, eigenstates satisfy the eigenstate ther-
malization hypothesis with the volume law for EE with
the entanglement being dominated by highly non-local
many-body degrees of freedom. We focus on two spe-
cific quantities to parse the structure of entanglement in
the critical eigenstates, the logarithmic negativity [53–56]
and mutual information. These quantities are evaluated
for two disjoint blocks (A and B) of equal size l, sepa-
rated by a distance d, as in Fig. 1(a). This allows us
to vary both of these length scales whilst keeping their
ratio fixed, a natural way to test for scale-invariance. By
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FIG. 3. Average Nearest Neighbour Blocked Logarithmic Negativity and Mutual Information. (a) Total nearest
neighbour logarithmic negativity, and (b) total nearest neighbour mutual information as a function of random field strength h
for various blocks sizes l.

contrast, the entanglement entropy of a single block is
unsuitable, since growing the size of the block simulta-
neously shrinks its environment. The two probes reveal
complementary information about the state– logarithmic
negativity quantifies the quantum correlations while the
mutual information reflects the combined effect of classi-
cal and quantum correlations between the two subsystems.
The mutual information for a bipartite mixed state, ρAB ,
is defined as:

IAB = SA + SB − SAB (2)

where SX denotes the von Neumann entropy of subsystem
X given by SX = −Tr [ρX log2 ρX ]. This is bounded by
IAB ≤ 2l. The logarithmic negativity on the other hand
is defined as

EAB = log2

∣∣∣ρTB

AB

∣∣∣ (3)

where ·TX denotes the partial transpose with respect to
subsystem X and | · | the trace norm. We call this quan-
tity, which is bounded by l, the ‘bond’ entanglement. To
access the logarithmic negativity when 2l > 12 we use
the TNSLQ method of [72, 73]. Since we work with open
boundary conditions, we can parametrize blocks A and
B with coordinates i and j respectively such that the
distance between their centres is d = |i− j| as shown in
Fig. 1(a)-(b). Note that the smallest separation is thus
d = l, corresponding to neighbouring blocks. We also
compute the logarithmic negativity for each single block
with everything else (a quantity monotonically related to
the entropy) which we call the ‘self’ entanglement and
denote as EA = EAĀ, where Ā represents the comple-
ment of block A – as shown in Fig. 1(c). Due to the
monogamy of entanglement [74] the self entanglement is
always greater than or equal to the bond entanglement,
namely EA ≥ EAB . This allows us to compare the portion
of the self entanglement which is stored in bonds at a
certain scale l and thus infer how multipartite the entan-
glement is [75]. We can also define the analogous quantity

to the above by substituting the mutual information for
the logarithmic negativity. In this case the ‘self’ mutual
information, IA, corresponds exactly to twice the von
Neumann entropy of subsystem A. Finally, in order to
directly compare across different block sizes we also define
the normalized entanglement negativity Ẽ = E/l, mutual
information Ĩ = I/l, and distance d̃ = d/l.

In Fig. 2(a) we show the data for both normalized self
and bond entanglement as a matrix with elements (i, j) for
varying block size l and a single instance each for random
field strength h. This is analogous to an adjacency matrix
where the node weights are the self entanglement and
the edge weights the bond entanglement. The diagonal
terms, i.e. i = j, represent the self entanglement of
the block i while the off diagonal elements denote the
bond entanglement between blocks i and j. As the figure
shows in the ergodic regime for any block size l and
location i the self entanglement is almost maximum (i.e.
ẼA ∼ 1). On the other hand the bond entanglement
is zero due to the multipartite nature of entanglement –
until the size of A ∪ B becomes half of the system size,
namely l ∼ L/4. This matches the expected behaviour
for random pure states [73, 76]. Near the transition point,
however, bond entanglement appears for all scales of block
size l including rare cases where d is many multiples of
l. We associate these to the emergence of resonances
between distant blocks in the eigenstates of the system.
We also note that while certain spins show no individual
(l = 1) bond entanglement, by increasing the block size to
l = 2 for example, entanglement is revealed between the
same groups of spins, implying the multipartite nature
of that entanglement. By increasing h into the MBL
phase, the bond entanglement becomes short range and
all the entanglement structure is apparent in block size
l = 1, whereas large blocks have relatively diminished
entanglement. This can be explained as in the MBL
phase the entanglement is mainly area-law like and thus
primarily within the blocks rather than between them.
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FIG. 4. Decay of bond logarithmic negativity and mutual information with relative separation. Decay of
normalized logarithmic negativity (panels (a)-(c)) and mutual information (panels (d)-(f)) with normalized separation d̃ for
several random field strengths h and various block sizes l for L = 20. (a) and (d) correspond to the ergodic regime with h = 1.
(b) and (e) show data near the transition point with h ∼ hc ∼ 3.25. The inset of panel (e) is the same data, but plotted on a
log-log scale in order to demonstrate the power law behaviour. A stretched exponential fit was also investigated but this was not
found to be as natural as a power law. (c) and (f) correspond to the MBL regime.

In Fig. 2(b) we show the equivalent plots for the nor-
malized mutual information. Although many of the same
structural patterns appear, there is a major difference
with the logarithmic negativity. Namely, in the ergodic
regime and close to the transition, there is mutual informa-
tion between individual spins and small blocks where no
entanglement is detected. This further evidences multipar-
tite entanglement, the imprint of which is solely classical
correlations among subsystems. In the MBL regime we
also note the presence of mutual information at longer
ranges than the logarithmic negativity.

Generally speaking the LN and MI depend on both l
and d, but for scale invariance, we would expect instead
only the ratio of l and d to be relevant. As such, we
now introduce two quantities that depend on block size,
l, and normalized separation d̃ = d/l. From these, scale
invariance would be heralded by the disappearance of any
dependence on l. Specifically, we consider the relative LN
and MI averaged over all pairs of blocks with the same
relative separation d̃:

Ẽd̃(l) =
1

N
∑

{i,j: |i−j|
l =d̃}

〈
ẼAiBj

〉
Ĩd̃(l) =

1

N
∑

{i,j: |i−j|
l =d̃}

〈
ĨAiBj

〉
. (4)

where N is the size of the summation set and 〈·〉 indicates
the ensemble average over noise instances. For example,
we can consider only the entanglement or correlations
contained in nearest neighbour blocks, namely, d̃ = 1. In
Fig. 3(a) we show Ẽd̃=1(l) as a function of h across the
transition for varying block size l. At h ∼ 3.25 we find
a very clear data collapse for all curves – in other words,
the dependence on block-size l drops out. We infer that
h ∼ 3.25 corresponds to the transition point for this total
system size of L = 20, which matches previous studies [73].

We find very similar behaviour for the equivalent MI
quantity, Ĩd̃=1(l) in Fig. 3(b). We emphasize that this
is really quite distinct with respect to previous studies,
where the collapse has been with regard to total system
size L [42, 48, 69].

To probe the scale invariance in even stronger terms
we can consider not only the nearest neighbour entan-
glement but the full behaviour with regard to arbitrary
block separation. We plot Ẽd̃(l) and Ĩd̃(l) as functions of

d̃ with varying l in Fig. 4 for three representative values
of h and a total length of L = 20. In Fig. 4(a), deep in
the ergodic phase, we find that for blocks large enough
to have bond entanglement (l & L/4), there is essen-
tially no dependence on the separation d̃ – the states are
permutationally invariant as expected for volume law en-
tanglement. In Fig. 4(b), at approximately the transition
point for this length, hc ∼ 3.25, all the curves collapse
onto each other with an exponential decay - there is no
dependence on l. Finally, in Fig. 4(c), deep in the MBL
phase, the entanglement Ed̃(l) depends on both l and d̃
and decays quicker relative to larger l – as expected for
area law states.

In Figs. 4(d)-(f), we plot Id̃(l) for the same choices of h.
Although qualitatively the behaviour is similar – constant
in the ergodic phase, collapse near the transition point
and fast decay in the MBL phase – there are a few no-
table differences. Firstly, the mutual information is much
more pervasive that the logarithmic negativity – classical
correlations appear for small blocks in the ergodic phase
at further separations in the MBL phase. Moreover, at
the transition point, the behaviour observed is a collapse
to power law decay rather than exponential decay, as
demonstrated by the log-log inset plot of Fig. 4(e).

The full data collapse in Fig. 4(b) and (e) is strong
evidence for scale invariance at the transition point. Based
on this we suggest the following ansatzes for the decay of
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FIG. 5. Emergence of log l scaling of the self entan-
glement at the MBL transition. Coefficients extracted
from least-squares fitting the average self-entanglement as
〈EA(l)〉 = avoll + acrit log2 l + aarea for varying random field
strength h and total system size L. The mean uncertainty
derived from the fitting process for the three coefficients was
0.057, 0.16, and 0.094 respectively.

the logarithmic negativity and mutual information near
the transition point:

Ed̃(l) = CEe
−d̃/λE (5)

Id̃(l) = CI d̃
−1/αI (6)

where generically CE , CI , λE and αI might all be functions
of L, l and h. To investigate these quantities we perform
least squares fitting of Eq. (5) and Eq. (6) to our data
in the region of the transition, finding the values of the
coefficients to be CE ∼ 2, λE ∼ 0.45, CI ∼ 0.3, and
αI ∼ 0.5.
log(l) scaling of self entanglement: Our above anal-

ysis of the microscopic entanglement structure reveals
strong evidence of scale invariance. One interesting par-
allel to draw here are low energy states of disorder-free
gap-less models, for which scale invariance is captured
by logarithmic scaling of the entanglement entropy with
block size - directly related to the self entanglement, EA
studied here. To further investigate this link we fit an
ansatz to the average (taken here over both random sam-
ples and block locations) self entanglement of the form

〈EA(l)〉 = avoll + acrit log2 l + aarea (7)

for varying block size l, total length L and random field
strength h. In Fig 5 we plot the extracted coefficients
avol, acrit, aarea using least-squares fitting including their
uncertainty. We exclude the smallest and largest block
size l = {1, L/2} to mitigate finite size effects. As the
figure shows, in the ergodic regime, the behaviour is well
described by a linear scaling of EA with l – volume law
behaviour with avol approaching 1 whilst acrit and aarea

both approach 0. Deep in the MBL regime, we find the
behaviour is dominated by the constant term, aarea, re-
flecting an area law as expected. Near the transition
however, we indeed find that both avol and aarea are small
and instead the logarithmic scaling term acrit peaks. Both
the ergodic and critical features described can be seen
to sharpen with increasing total system size L, whilst
the MBL behaviour is, as expected, fixed. These fea-
tures further corroborate the scale invariant structure
of entanglement in critical eigenstates at the transition
point.

DISCUSSION

The nature of the MBL transition is still not well-
understood, although the emergence of scale invariance
near the transition point has already been conjectured.
Here however we have directly observed the scale invari-
ant structure within states around the MBL transition.
We have done so by employing the logarithmic negativ-
ity and mutual information, both of which permit two
controllable lengths – block size l and separation d. We
found that at the transition point, the ‘total’ amount of
entanglement and mutual information stored in nearest
neighbour (d = l) bonds collapses for all block sizes l.
Motivated by this, we investigated the decay of the nor-
malized logarithmic and mutual information as functions
of normalized separation d̃, finding collapse across all
block sizes for both. Crucially, for the entanglement we
find exponential decay whereas for the full correlations, as
quantified by the mutual information, we find polynomial
decay. The final piece of evidence provided is that the
average self entanglement 〈EA〉 is well described by a log-
arithmic scaling with block size l close to the transition,
as opposed to linear and constant scaling in the ergodic
and MBL regimes respectively.

One immediate implication of this work is the likely
existence of a Multiscale Entanglement Renormalization
Ansatz (MERA) [77, 78] like description of critical eigen-
states near the MBL transition. Such a description
would extend the efficient simulations from the fully MBL
regime [79–85] into the critical region, an area currently
limited essentially to exact diagonalization and thus small
system sizes. This can potentially open directions for
analysing infinite temperature eigenstate quantum phase
transitions using controlled numerical techniques. Fur-
thermore, the behaviour of entanglement negativity across
the MBL transition provides a constraint on the theory of
the MBL transition using strong disorder renormalization
group of highly excited states.
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