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Urban morphology has presented significant intellectual challenges to

mathematicians and physicists ever since the eighteenth century, when

Euler first explored the famous Königsberg bridges problem. Many important

regularities and scaling laws have been observed in urban studies, including

Zipf’s law and Gibrat’s law, rendering cities attractive systems for analysis

within statistical physics. Nevertheless, a broad consensus on how cities and

their boundaries are defined is still lacking. Applying an elementary clustering

technique to the street intersection space, we show that growth curves for the

maximum cluster size of the largest cities in the UK and in California collapse

to a single curve, namely the logistic. Subsequently, by introducing the concept

of the condensation threshold, we show that natural boundaries of cities can

be well defined in a universal way. This allows us to study and discuss sys-

tematically some of the regularities that are present in cities. We show that

some scaling laws present consistent behaviour in space and time, thus

suggesting the presence of common principles at the basis of the evolution

of urban systems.
1. Introduction
Since the middle of the twentieth century, universal properties of cities have

been identified, including Zipf’s and Gibrat’s laws [1,2]. City size has been

measured most commonly in terms of built area or population since Zipf’s

seminal book [1], notwithstanding that most of the time city boundaries have

been defined in terms of often arbitrary, fixed administrative boundaries.

Many different techniques to define cities have been suggested based on the

analysis of urban growth [3–5], and recently a method using demographic and

commuting data has been proposed [6]. Clustering techniques such as the City

Clustering Algorithm have been applied, mostly to analyse satellite images and

demographic data [7–9], but these are rarely parameter free. A method propos-

ing a bottom-up approach that does not rely on highly aggregated census data

or on the interpretation of remotely sensed images is needed.

When we define a city, we have to keep in mind that built area and popu-

lation are strongly correlated [9], but these correlations, as we show in this

paper, do not necessarily carry universal exponents. The interpretation of the

empirical outcomes using these definitions has to be therefore put into context

according to the methodology employed.

As pointed out in [6], a broad range of exponents based on different allome-

tries inferred from urban studies [10,11] can be observed for different boundary

definitions. This further supports the urgent need for an operational and con-

text-free definition of the city. It is somewhat astonishing that in spite of the

large body of literature about cities, the very concept of city remains in some

ways obscure, hidden or assumed.
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Figure 1. Logistic growth for the maximum cluster size in a clustering process: the condensation threshold. (a) Maximum cluster size NMax(t) as a function of the
threshold t for Greater London on a semi-log plot. The solid line is the logistic function fit of equation (2.1). The dashed line represents the carrying capacity C,
while the dotted line shows the condensation threshold ~t, defined as the threshold where NMax(t) ¼ C. (b) The maximum cluster (red) at the condensation
threshold for London.
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In this paper, we present some universal properties of cities

which emerge when applying an elemental clustering techni-

que to the vertices and edges of street networks. We obtain a

logistic growth curve from which the structural fringe of the

city can be defined mathematically in a bottom-up approach.

This is achieved by obtaining the parameters at the point at

which a condensation phenomenon is observed as we will

explain below. The curves for all cities then collapse to a single

curve, and city boundaries are hence defined in a universal

way. Such universality in the spatial properties of cities prompts

us to look at the spatial and temporal behaviour of important

properties of urban street networks, and thus investigate

whether some scaling laws could display a general behaviour.
2. Results
A city is a complex organism, composed of many super-

imposing layers, such as transportation networks, the built

environment, and different economic, social and information

flows [12–14]. Such layers are dynamical by nature and give

rise to generic patterns, such as fractal geometries [12,13].

Administrative boundaries overlook these aspects and are not

able to measure or record the dynamical aspects of cities in a

consistent way across space.

Among others, street networks provide a good repre-

sentation to characterize the morphology of a city, where

a street network is defined as that planar graph where the

street intersections N are the vertices and the street segments

E are the links. We will consider here street intersections as

being a good proxy for the urbanization process. Such a

choice reduces the complexity of the problem to that of a spatial

point pattern. This has the value of simplicity. Moreover, it has

been positively tested before [15,16] with some correlations

between the number of street intersections and built area

for urban systems being shown in the electronic supporting

material, §ID.

Considering a spatial window large enough to contain a

given city and using an elementary clustering technique [17],

we consider two street intersections to belong to the same clus-

ter if they have a distance below a given distance threshold t,

where t is measured in metres. Increasing t enlarges the size

of the clusters, until eventually a giant component appears,

which spans the entire street network.
We measure the maximum cluster size NMax(t) in terms of

number of intersections as a function of the increasing threshold

t, and we find that for all the cities NMax(t) grows exponentially

and eventually the growth slows down and the curve conden-

sates to a certain value (figure 1a). This behaviour has been

positively tested for all the largest cities in the UK and in Cali-

fornia, suggesting that the maximum cluster size behaviour

for cities highlights universal properties of urban morphology

(see electronic supplementary material, §II, for more details).

2.1. The condensation threshold
The function defined by NMax(t), i.e. exponential growth

followed by condensation, has the characteristics of the

logistic growth function:

NMaxðtÞ ¼
C

1þ e�rðt�t0Þ
, ð2:1Þ

where C is the carrying capacity, r is the growth rate and t0 is

the inflection point [18].

Following equation (2.1), we show that for cities in the UK

and in California, NMax(t) grows as ert until the inflection

point t0, and after that it condensates at a constant value

given by the carrying capacity C. In order to do that, given

the transformation ft� ¼ rðt� t0Þ, N� ¼ NMaxðtÞ=Cg, we

expect that all the measured curves would collapse to a

single curve, namely N�ðt�Þ ¼ 1=ð1þ e�t
� Þ:

We test this hypothesis for the 61 largest cities in the UK

and for the 52 largest cities in California (see figure 2 and

electronic supplementary material, §I). These results are

shown in figure 3, and we can see that for both cases there

is a very high correlation (R2 . 0.99) for the quality of the col-

lapse. This correlation is maintained if the maximum cluster

size is measured according to the number of street segments

E(t) instead of the number of intersections. In this case, we

find that the collapse is estimated with an R2 . 0.98.

These results indicate that the proposed clustering tech-

nique is able to capture generic properties of urban street

networks. In order to investigate this further, we look at

how the logistic form of equation (2.1) is related to urban

morphology and whether it allows us to define in a rigorous

way the boundaries of a city.

As the logistic function is associated to the Verhulst model

[18], it is interesting to understand how the carrying capacity C,



(a) (b)

Figure 2. The UK and California datasets with land-use satellite comparison. (a) A large portion from the Corine dataset for the UK map representing a satellite image with
land-use. (b) The California satellite land-use map. The red parts are identified as urban areas, while the black contours are the city condensation boundaries as defined in the
text. Note that throughout this paper, we refer to towns and cities as being in the UK when strictly we are excluding those in Northern Ireland.
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Figure 3. Growth curve collapse for the cities in the UK and in California. (a,c) Rescaled maximum cluster size N� ¼ NMaxðtÞ=C as a function of the rescaled
threshold t� ¼ rðt� t0Þ for the largest 61 cities in the UK and for the largest 52 cities in California. The dashed curve is 1=ð1þ e�tÞ: (b,d ) In order to
evaluate the goodness of the collapse of the curves in (a,c), we plot in the horizontal axis the N�exp ¼ NMaxðtÞ=C values for the cities in the UK (b) and in California
(d ) and in the vertical axis, the estimated value via the logistic function N�th ¼ ð1þ e�t

� Þ�1: Then we calculate the R2 value of the resulting points with
the dashed curve y ¼ x and we find that R2 . 0.99 for both UK and California cities. (e – h) The same methodology as explained for (a – d ) is applied for
the number of street segments E(t) for the cities of the UK and California. In this case, we find that the quality of the logistic collapse is given by R2 .

0.99 for the UK and R2 . 0.98 for California.
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always referring to a reservoir in the system, could be associ-

ated to our clustering approach. To understand this, we note

that the largest cluster grows in the area where the inter-

section density is large, i.e. the urban area (see figure 1 as a

visual reference). The existence of a condensation phase

shows that there exists an abrupt transition between the

urban area and the rural area, where the intersection density
consistently drops. Hence, the reservoir could be interpreted

as the set of intersections belonging to the urban network

which are consumed while the maximum cluster grows, and

then the carrying capacity represents the city size in terms of

street intersections.

Following the clustering analysis introduced above, when t

grows after the logistic condensation phase, NMax(t) starts
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to grow again (figure 1). This is because after the maximum

cluster reaches the condensation phase, as t grows rural

intersections and small towns close by get absorbed by the

maximum cluster. In such a way, NMax(t) exceeds the carrying

capacity C.

We define the city condensation threshold ~t as the threshold

where the measured maximum cluster size NMax(t) inter-

sects the carrying capacity of the fitted logistic function, i.e.

~t ; t : NMaxðtÞ ¼ C: The city is so defined as the maximum clus-

ter at the city condensation threshold, as we show in figure 1 for

London. In order to investigate whether the city boundaries

obtained in this way bear any resemblance with the urbanized

space, we overlap the given contours with land-use satellite

images. Figure 2 demonstrates clearly that the city boundaries

as defined via the condensation threshold delimit the so-called

urban fringe, i.e. the spatial pattern related to the city’s expansion.
2.2. Space and time scaling relations
In this section, we try to understand the meaning of different

allometries that are usually found in urban studies and we

examine them in spatial and temporal terms. To pursue this,

we analyse a few simple global statistical properties of the

spatial networks: the network total street length L(N),

measured in meters, which is the sum of the lengths of the

street segments for a given network; the network area A(N ),

measured in square metres, which is the area embedded by a

given street network; the street intersection density P(n),

obtained by imposing a 400 m side square grid on the top of

the street network, and counting the number n of intersections

falling in each cell.1 These quantities are quite sensitive to the

structure of the network and some of them have been

considered in different studies [11,15,16,19,20].
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Figure 5. Historical London. Street intersections of the city cores of London
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The following analysis shows that urban street networks,

as defined via the condensation threshold, display statistical

properties which are consistently different from the statistical

properties of rural street networks.2 Moreover, we show that

the allometric exponents obtained for the above-mentioned

properties are compatible for cities in the UK and for cities

in California. Remarkably, we find that these exponents are

compatible with the ones found for the growth of London

during the last two centuries.

The network total street length L(N ) is a global quantity

characterizing the nature of the underlying network. We

can write that L ¼ Ekll, where E is the number of street

segments and kll is the average length of a street segment,

if such a quantity can be well defined. Then, considering

that the average degree of the network can be written as

kkl ¼ 2E=N, we have L ¼ kllkklN=2, where the density

distributions for both l and k have finite mean and variance.

We find (figure 4a) that for cities in the UK, the beha-

viour of L(N) is consistent with a linear function of N. On the

other hand, for the rural street network in the UK, we find

a different behaviour statistically significant for the same

quantity ( p-value ¼ 0.007), which scales in a sub-linear way,

i.e. LðNÞ/N0:93: The linear relation for L in urban net-

works is due to the independence of kkl and kll by N, while

the sub-linear relation for L in the rural network is due to the

sub-linearity of klðNÞl for those networks (see electronic

supplementary material, §III).

In the case of cities in California (figure 4b), we find that

the behaviour of L(N ) is consistent with that of the UK in a

slightly super-linear regime, i.e. LðNÞ/N1:04: On the other

hand, for the rural street network in California, we find

that L(N ) is sub-linear, i.e. LðNÞ/N0:84, and it is not consist-

ent within the error range neither with that of the California

urban street network ( p-value ¼ 0.0003) nor with that of the

UK rural street network.

In figure 4c,d, we see that the exponents for urban network

areas A(N) in the UK and in California are quite similar, follow-

ing a very mild super-linear relation, i.e. AðNÞ/N1:03: On the

other hand, super-linearity can be statistically discarded for

both exponents for the rural case in the UK ( p-value¼

0.000004) and in California ( p-value ¼ 0.0004). In addition, it

is important to note that for the rural networks, the exponents

for the UK and California are notably different. Linearity can

be discarded for California, while this is not the case for the UK.

These differences reflect the contrast in the spatial pat-

terns of the street networks covering these two countries. In

particular, the nearly linear relations found for the urban

areas reflect the fact that street intersections are generally

homogeneously distributed within the urban fringes. Such

homogeneity can be seen from the street intersection distri-

butions P(n) shown in figure 4e,f. In this case, again we

find very similar patterns between the UK and California,

where P(n) is well fitted by a logistic distribution in the

case of urban street networks. This is a bell-shaped distri-

bution with a well-defined average and variance, while it is

ill defined for rural street networks.

The analysis above highlights the fact that urban street net-

works are characterized by an overall homogeneous texture,

which is consistent between the two different countries con-

sidered in this work. In the same way, we can observe how

rural street networks differ consistently from urban street

networks and between different countries, displaying an

overall inhomogeneous structure. Hence, we find that for
urban conglomerations, a general behaviour emerges in the

study of the scaling laws which characterize the global street

network structure.

These scaling exponent similarities do not imply that differ-

ent cities look the same. In fact, different urbanization

processes shape cities in very different ways, in terms of mor-

phology and size. Nevertheless, the compatibility between

the exponents for the analysed quantities suggests that there

might be common principles for the growth of cities. If this is

the case, then cities at a specific point in time represent different

states of the evolutionary process. We will then expect to find

a similar behaviour if we looked at the evolution in time

of a specific city. In order to test this hypothesis, we consider

a unique dataset recording the evolution of street networks

of Greater London between 1786 and 2010, through nine

well-spaced temporal intervals defined by the maps shown

in figure 5 (see electronic supplementary material, §IC, for

more information).

In figure 6, we perform a simple test, by measuring the

aforementioned quantities in the contemporary UK urban

street networks and in the historical London dataset. Interest-

ingly enough, for L(N ) in the UK, the historical dataset

overlaps with the spatial dataset and both allometric fittings

are consistent over a linear regime. As we stated above, this

means an overall homogeneity in terms of the average connec-

tivity kkl and the average street segment length kll, that is

preserved over time. For A(N ), even if the points do not

really overlap, the allometric behaviour is consistent between

the time and space averages in the slightly super-linear regime.
3. Discussion
Two important results can be derived from our study. On the

one hand, we provided a methodology to define city bound-

aries through spatial urban networks in a universal way. On

the other, we explored the generality of some scaling laws

related to urban street networks. Both of these aspects

relate to the quest for methodological advancements in the

analysis of spatial urban networks, and they relate to the dis-

cussion of important statistical phenomena, such as those

described by Zipf’s law and Gibrat’s law.

Regarding the concept of city boundaries, we discovered

universal properties of street networks related to clustering

properties in the street intersection space. These properties
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allow us to distinguish the urban agglomerate with a method-

ology that is parameter free and that reduces the problem to

extract city boundaries to a simple clustering process on a

spatial point pattern.

The concept of city boundaries is very important to dis-

tinguish between urban and rural networks. We show that

allometries found in urban street networks consistently differ

from the ones found in rural street networks. This means that

an ill posed definition of boundaries, such as arbitrary admin-

istrative boundaries, would mix the properties of street

networks that are in two distinct phases of their evolution,

producing spurious results (see electronic supplementary

material, §III, for a direct example).

Regarding our analysis about the generality in space and

time of relevant allometries found in urban street networks,

we chose two very distinct datasets that present different

urbanization paths. While cities in the UK are mostly of

Roman or Mediaeval origin and reflect a long line of urban

evolution spanning two millennia, cities in California are

mostly the result of an urban explosion during the latter

half of the nineteenth and the twentieth centuries. In this con-

text, we find that urban street networks display compatible

properties, even though the datasets are very different. This

highlights how the city is an overall homogeneous structure

in terms of its street network quantities (average degree, aver-

age street length, etc.). These findings are confirmed by our

analysis, which compares the structure of the urban street

networks in the UK with the street networks of the historical

evolution of London during more than two centuries. Even if

these results are not definitive, a general behaviour for the

found exponents cannot be excluded at this point and new

perspectives of research in this direction are thus opened.

Spatial networks are widespread in nature and it is poss-

ible to see how the organization of spatially embedded

structures is often similar for a variety of different phenom-

ena. Leaf venation, crack pattern formation, river networks,

ant galleries, circulatory systems, soap froths, pipe networks

and so on, have been studied in a wide range of disciplines

which are often strongly related [21–25]. In particular,

brain networks seem to share a number of similarities with

the organization of spatial street networks, due to their

high modularity and fractal structure [26].

Even though cities present a diverse range of morphologi-

cal features, we have shown that the boundaries of cities can

be identified through universal properties of street networks.
This opens up new research perspectives in terms of the

analysis of the logistic parameters for each city. As cities

undergo different stages of evolution, related either to expan-

sion or to condensation phases, those different evolution

phases could be easily recognized and classified from the

deviations in the logistic curve related to the clustering

process (see electronic supplementary material, §IIA).

Moreover, from our analysis, we can derive a broad pic-

ture of the way a city evolves. What we observe is that the

street network can be found in two very distinct phases,

the rural one, which is not characterized by any distinctive

properties, and the urban one which is characterized by

high density of intersections which are distributed in patterns

that are mostly homogeneous and which carry very similar

exponents. In such a picture, a city street network develops

as an articulated organism territorializing the sparse rural

street network, filling the space with denser residential pat-

terns and then radically changing its morphology.

A key advantage of our method of analysis, compared to

other existing approaches, such as those based on data extracted

from satellite imagery, is the ease of use. Recent advances in geo-

graphic information system technologies have led to the

proliferation of street network data generated by public and pri-

vate entities. Our study demonstrates that these datasets can be

deployed in new ways to analyse key properties of cities, enhan-

cing our ability to manage the built environment. A

disadvantage of our methodology, as it is presented in this

form, derives from its bottom-up approach. As a matter of

fact, it is especially indicated to extract a limited number of

cities, as the extraction procedure could not be completely auto-

mated and needs eye inspection (see electronic supplementary

material, §IIA). In order to extract a large number of cities,

top-down techniques, such as the one presented in [27], are

definitively more efficient, even if less precise.
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Endnotes
1The size of the cell is somehow arbitrary. In France, for example,
administrative urban boundaries are set according to a maximum
of 200 m separation threshold between buildings. In a highly dense
urban system such as the UK, the choice of 400 m seems to be a
reasonable scale to allow that each square contains a fair amount of
intersections.
2In order to define rural street networks, we delete from the maps all
the cities defined by the condensation threshold and then we sample
from the resulting maps 1000 random portions of street network from
each map (see the electronic supplementary material, §I).
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