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On the verge of the ongoing coronavirus pandemic, in vitro data suggested

that chloroquine, and its analog hydroxychloroquine, may be useful in controlling

SARS-CoV-2 infection. Efforts are ongoing in order to test this hypothesis in clinical

trials. Some studies demonstrated no evidence of efficacy, whereas in some cases

results were retracted after reporting. Despite the lack of scientific validation, support

for the use of these compounds continues from various influencers. At the cellular level,

the lysosomotropic drug chloroquine accumulates in acidic organelles where it acts as

an alkalizing agent with possible downstream effects on several cellular pathways. In

this perspective, we discuss a possible modulatory role of these drugs in two shared

features of neurodegenerative diseases, the cellular accumulation of aberrantly folded

proteins and the contribution of neuroinflammation in this pathogenic process. Certainly,

the decision on the use of chloroquine must be determined by its efficacy in the specific

clinical situation. However, at an unprecedented time of a potential widespread use of

chloroquine, we seek to raise awareness of its potential impact in ongoing clinical trials

evaluating disease-modifying therapies in neurodegeneration.
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INTRODUCTION

On February 4th, 2020, at the verge of a new pandemic crisis, the anti-malarial drug chloroquine
(CQ), was proposed to be highly effective in controlling SARS-CoV-2 infection in vitro (1). Soon
after, in March 2020, the lack of specific treatments for the rising coronavirus burden induced the
U. S. Food and Drug Administration (FDA) to issue an emergency use authorization (EUA) for
CQ, and its (more soluble and less toxic) analog hydroxychloroquine (HCQ), as treatments for the
control of SARS-CoV-2, the severe acute respiratory syndrome caused by the new coronavirus (2).
On June 2020, in light of recent scientific data and analysis, the FDA revoked the EUA for CQ/HCQ,
as reported side effects “no longer outweigh the known and potential risks for the authorized
use” (3). The most worrisome adverse effects, also listed in the drug labels, include heart rhythm
interference related to long QT syndrome, ventricular tachycardia and fibrillation, in particular
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in combination with QT-prolonging drugs or pre-existing kidney
or heart disorders (4–6). Likely differences in dosing regimens
when using CQ/HCQ for their approved indications, which
are unlikely to meet the concentrations affecting SARS-CoV-
2 activity in vitro, may explain why the occurrence of these
symptoms is uncommon in the medical practice. For instance,
while safety profile of CQ in the treatment of rheumatic diseases
have been reported up to 500mg (once daily) (7), in a SARS-CoV-
2 clinical trial assessing CQ efficacy a QT interval alteration was
observed in patients treated with a higher dose (600mg, twice
daily) (4).

The EUA permission and revocation of the use of CQ/HCQ
has caused a stir in the scientific community and beyond
during this unstable and delicate pandemic situation. While we
acknowledge the natural tendency to dismiss uncomfortable facts
and the keenness to move away from CQ, reflecting on possible
short and long-term neurological side-effects caused by its use
are worthy of a more comprehensive scientific consideration.
In particular considering that CQ was, and still is, used as
a putative off-label drug to treat SARS-CoV-2, highlights that
the response to this pandemic has not always been ruled by
a rational and scientific approach. Nonetheless, the possible
consequences of using CQ should instigate discussion and
warrant a more cautious approach if a similar situation should
arise in the future. Here we provide a perspective on the
potential interaction of CQ and the neuronal dyshomeostasis
observed in common degenerative disorders such as Alzheimer’s
or Parkinson’s disease. We consider the pharmacodynamics and
pharmacokinetic attributes of CQ, and its potential effects on the
nervous and immune systems.

IMPAIRMENT OF THE
AUTOPHAGY-LYSOSOME PATHWAY

Historically recognized for its undeniable utility in malarial
prophylaxis and treatment (8), CQ is also extensively used as a
cell biology research compound based on its potent inhibitory
activity on autophagic and lysosomal clearance functions. The
lipophilic nature of CQ enables a rapid penetration across
lipid bilayer membranes. Within the cell, CQ behaves as a
lysosomotropic agent, i.e., it undergoes a protonation-based
trapping when it reaches the acidic environment present in
the lumen of organelles such as lysosomes. Its weak base
characteristics results in its accumulation as a function of the
pH gradient, the neutralization of the low pH, the inhibition of
acidic hydrolases and the impairment of organelle maturation
(9). This has led to defining the mode of action of CQ as an
inhibitor of both enzymatic activity and organelle fusion resulting
in halting autophagy flux and endo-lysosomal degradative
function (10).

Abbreviations: CQ, Chloroquine; FDA, U. S. Food and Drug Administration;

EUA, Emergency use authorization; CNS, Central nervous system; CMA,

Chaperon mediated autophagy; HSC70, Chaperone heat-shock cognate

70; LAMP2A, Lysosomal membrane associated protein 2A; MHC, Major

histocompatibility complex; TLR, Toll-like receptor.

IMPAIRMENT OF THE PROTEASOME
SYSTEM

Beside the autophagy-lysosome pathway, experimental evidence
proposes that CQ is a weak antagonist of the proteasome
system, causing accumulation of ubiquitinated proteins
in mammalian cells (11, 12). Mechanistically, CQ acts as
an allosteric inhibitor of the enzymatic activity of the 26S
proteasome degradation system (13). Together, these studies
highlight a likely dual inhibitory effect of CQ in the two
major metabolic systems regulating cellular proteostasis.
Moreover, the presence of CQ modify the heat-shock response
regulating protein chaperons expression in mammalian
cells (14) with additional consequences on the mammalian
proteostasis and on the drug resistance of the malaria parasite
Plasmodium (15).

ACCESS TO THE CENTRAL NERVOUS
SYSTEM: A PHARMACOKINETIC
PERSPECTIVE

CQ can be administered orally as a phosphate salt and it is
efficiently absorbed by the upper intestinal tract, thus permitting
a high drug bioavailability. Plasma CQ concentration peaks at
8–12 h post-administration. CQ is slowly metabolized mainly
in the liver by cytochrome P450 enzymes and is converted
into desethylchloroquine. Further desethylation leads to the
second, less frequent, metabolite bisdesethylchloroquine. CQ
and its active metabolites have a remarkably slow elimination
rate, which in turns may facilitate a widespread tissue exposure,
indeed reflected in a large distribution volume. Although about
70% of CQ is directly cleared by the kidneys, CQ and its
metabolites are detected in blood plasma for as long as 70
days, and in the urine up to 1 year post-administration.
Notably, the equally active CQ enantiomers differ in their
overall elimination kinetics. In animals, the concentration of
CQ reaches 10-to-700 times higher levels in the liver, spleen,
kidney, and lung when taking that detected in the plasma
as reference (16, 17). Despite some controversy around the
efficacy of CQ to penetrate the blood-brain barrier (BBB),
animal studies demonstrate that this drug and its analogs
can penetrate and reach a concentration that is sufficient
to exert its effects within the central nervous system (CNS)
(18–20). Nonetheless, reported neurological side effects of CQ
and its analogs implicate a non-yet fully confirmed CNS
exposure in humans (21). In particular, CQ/HCQ can have
potential adverse neuropsychiatric effects, similar to symptoms
occurring in neurodegenerative disorders, such as agitation,
emotional instability, anxiety, irritability and, rarely, psychosis
(22, 23).

Therefore, at a time were CQ is used in clinical trials
or as a self-remedy, and as long it is not excluded that
the CNS is a target tissue of the drug, predicting possible
consequences of CQ exposure in the brain is important in order
to prevent possible neurological effects, e.g., for patients affected
by neurodegenerative disorders.
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MODULATION OF AUTOPHAGY

Although little is known regarding the direct effects of CQ on

the CNS, the latter is particularly vulnerable to disruptions of the
cellular degradative pathways. Indeed, terminally differentiated
neurons rely on efficient quality control systems such as the
autophagic-lysosomal pathway for maintaining their delicate

proteostasis, which is gradually impaired as the brain ages (24).
Autophagy is responsible for delivering cytoplasmic material to
the lysosome for degradation. Autophagy is subdivided in three
distinct processes that differ in their mechanism of recognition
and delivery of substrates to lysosomes: chaperon mediated
autophagy (CMA), macroautophagy and microautophagy (25).
The selective clearance of aberrant proteins is primarily carried
out by CMA and macroautophagy. In CMA, proteins that
bear a pentapeptide degradation signal (KFERQ-like) are
recognized by the chaperone heat-shock cognate 70 (HSC70)
and delivered through the CMA adaptor lysosomal membrane
associated protein 2A (LAMP2A) to the lysosomal lumen
for degradation. In contrast, aberrantly folded proteins that
are prone to self-aggregate into β-sheet-rich oligomers and
higher order aggregates are sequestered by macroautophagy
together with small portion of the cytoplasm. These substrates
are encapsulated within an intermediate double lipid bilayer
membrane organelle termed “autophagosome” and directed
toward lysosomes, where upon membrane fusion, cargos are
liberated in the hydrolases-enriched lysosomal lumen for
enzymatic digestion (26) (Figure 1A).

Most late onset neurodegenerative disorders share the
progressive deposition of aberrantly folded, β-sheet-rich
protein aggregates into ubiquitinated intraneuronal inclusions.
Each disorder is characterized by the aggregation of specific
proteins: examples are beta-amyloid and TAU in Alzheimer’s
disease (27), NACP/α-synuclein in Parkinson’s disease (28),
huntingtin in Huntington’s disease (29), TDP-43 in amyotrophic
lateral sclerosis and frontotemporal lobar degeneration (30).
Nevertheless, another key pathological hallmark of these
otherwise clinically and etiologically diverse disorders is the
progressive impairment in the autophagy-lysosome degradation
pathway. This is exemplified by the fact that mutations of
genes regulating autophagy and lysosome activity are associated
to the most frequent late-onset forms of neurodegeneration
(31). Furthermore, experimental animal models demonstrate
that autophagy deficiency accelerates protein aggregation and
behavioral phenotypes of neurodegeneration. Evidence that CQ
exposure on neurons may lead to a similar outcome are known
since long time (32). More recently the activity of CQ on the
amyloidogenic processing of the amyloid precursor protein by
neurons (33, 34) as well as on huntingtin accumulation in brain
(20) were reported. CQ also modulates autophagic flux (35) and
mitochondrial homeostasis by an autophagic process (36). CQ is
also linked to neuronal death in primary cultures (37, 38). These
facts are reinforced by studies demonstrating that autophagy
stimulation can clear intra-neuronal insoluble protein inclusions
with amelioration of behavioral phenotypes in animal models
of neurodegenerative diseases (26) (Table 1). Nevertheless,
macroautophagy may also favor seeded propagation of

aberrantly folded neurodegeneration-associated TAU mediated
by extracellular vesicles (39).

MODULATION OF INFLAMMATORY
RESPONSE

Another increasingly documented feature of neurodegenerative
disorders is the chronic inflammation of the CNS
(neuroinflammation). Although a causal relationship has
not yet been demonstrated, there are studies reporting a
correlation between prolonged treatment with non-steroidal
anti-inflammatory drugs and decreased risk for Alzheimer’s
and Parkinson’s disease (40, 41). Activation of CNS-resident
macrophages (microglia cells) around senile plaques has been
documented in transgenic mouse model of Alzheimer’s disease
(42). These phagocytic cells actively uptake beta-amyloid and
acquire an activated phenotype characterized by morphological
changes and by an increased production of pro-inflammatory
modulators such as the major histocompatibility complex
(MHC) class II, several interleukins and tumor necrosis
factor alpha. Persistent microglial activation is associated
with cellular senescence, neurotoxicity and subsequent
disease progression (43). Recent studies suggest that this
may also involve deleterious reactive transformation in
astrocytes (44). Notably, elimination of senescent glial cells,
which are known to release proinflammatory modulators, is
beneficial (45–47).

Against this background, HCQ’s clinical efficacy in treating
autoimmune inflammatory diseases, such as rheumatoid arthritis
and systemic lupus erythematosus, is well-documented (48).
Current hypotheses in the field are linked to an indirect effect
of HCQ in modulating the inflammatory response (Figure 1B).
Specifically, interference of lysosomal activity might affect several
immunomodulatory pathways. One intuitive mechanism is the
inhibition of antigen presentation via the autophagy-lysosome
pathway. As lysosomes are the main organelles for hydrolytic
processing, they reside at the intersection between different
pathways delivering intracellular and extracellular cargos on
route to degradation (49). This context provides a unique cellular
environment for the binding of antigens to MHC class II. For
instance, a recent report suggests that extracellular proteins
are hydrolysed in endocytic compartments and delivered to
MHC class II-containing lysosomes as antigenic peptides before
being presented to CD4+ T cells (50). Nevertheless, functional
lysosomes are required for antigenic peptide-binding to MHC
class II molecules and the alkalizing properties that HCQ exerts
in these organelles might impair this process. Another possibility
is that HCQ interferes in Toll-like receptor (TLR) signaling.
In mammals, TLRs are a group of transmembrane pattern-
recognition receptors that initiate innate immune response to
infection by sensing pathogen macromolecules. However, TLRs
can also be activated in the absence of pathogen infection (51).
Indeed, activated microglia surrounding beta-amyloid plaques
in Alzheimer’s disease brains display up-regulated levels of
TLRs (52, 53). A recent report indicates that, in order to
be functional, TLR7 requires proteolytic cleavage in lysosomes
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FIGURE 1 | Potential cellular and molecular mechanisms of chloroquine in neurodegeneration. The lysosomotropic agent chloroquine (CQ) rapidly penetrates across

lipid bilayer membranes and following a pH gradient accumulates within lysosomes. In these acidic organelles, CQ behaves as a weak base by increasing the pH,

which in turns affects the activity of lysosomal hydrolases. Disruption of lysosomal activity prevents interaction and fusion among organelles of the

autophagy-lysosome and of the endocytic pathways. This cellular condition may have dichotomic effects in the pathogenesis of neurodegenerative diseases by (A)

inhibiting cytosolic clearance of aberrantly protein fibrils and (B) preventing MHC class II-mediated antigen presentation and preventing the expression of

pro-inflammatory cytokines via TLR activation.

(48). Thus, interfering with lysosomal pH via lysosomotropic
agents may prevent activation of TLRs. Moreover, evidence
exists for a mode of action of CQ/HCQ independently of
its effect on lysosomal function, as shown for its ability to
interference with interleukin-2 production (54). Although the

precise mechanism(s), by which CQ/HCQ inhibits inflammatory
response, requires further investigation, its potential role in
disrupting the integrity of the CNS immune system in
neurodegenerative disorders is an intriguing and noteworthy
hypothesis. Evidence for a possible role of CQ in modulating
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TABLE 1 | Examples of evidence for beneficial effect of autophagy stimulation in murine brain.

Compound Targeted

pathway

Ectopic

expression

Disease

model

Outcome References

Rapamycin Mammalian target

of rapamycin

(mTor)

Human TDP-43 Amyotrophic lateral

sclerosis

Reduced TDP-43 inclusions and

improved learning/memory

impairment

(56)

Rapamycin mTor Human APP

Human TAU

Human PSEN1

Alzheimer’s disease Reduced beta-amyloid and TAU

deposition and improved learning

defects

(57)

Rapamycin mTor Human NACP Parkinson’s disease Reduced aggregation of NACP and

associated pathology

(58)

CCI-779 mTor Human HTT Huntington’s disease Reduced huntingtin aggregates

formation and improved behavioral

phenotype

(59)

Trehalose mTor-independent Human SOD1 Amyotrophic lateral

sclerosis

Reduced accumulation of SOD1 and

enhanced motoneuronal survival

(60)

Trehalose mTor-independent Human APP

Human PSEN1

Alzheimer’s disease Reduced beta-amyloid plaque

deposition and improved learning

defects

(61)

Trehalose mTor-independent Human TAU Alzheimer’s disease Reduced TAU inclusions and

increased brain neuronal survival

(62)

Trehalose mTor-independent Human HTT Huntington’s disease Reduced formation of polyglutamine

aggregates and amelioration of motor

dysfunction

(63)

Lithium Inositol synthesis Human APP

Human PSEN1

Alzheimer’s disease Reduced beta-amyloid plaque

formation and improved memory

deficits

(64)

Lithium Inositol synthesis Human SOD1 Amyotrophic lateral

sclerosis

Reduced SOD1 aggregates and

increased brain neuronal survival

(65)

Carbamazepine Inositol synthesis Human APP

Human PSEN1

Alzheimer’s disease Reduced beta-amyloid plaque

formation and improved memory

deficits

(66)

Carbamazepine Inositol synthesis Human TDP-43 Amyotrophic lateral

sclerosis

Reduced TDP-43 inclusions and

improved learning/memory

impairement

(56)

Spermidine Acetyl transferases

synthesis

Human TDP-43 Amyotrophic lateral

sclerosis

Reduced TDP-43 inclusions and

improved learning/memory

impairement

(56)

Verapamil Ca2+ channel Human SOD1 Amyotrophic lateral

sclerosis

Reduced SOD1 aggregates and

prolonged animal survival

(67)

Felodipine Ca2+ channel Human NACP Parkinson’s disease Reduced aggregation of NACP and

improved behavioral phenotype

(68)

Calpastatin Calpain Human HTT Huntington’s disease Reduced HTT aggregates formation

and improved locomotor function

(69)

Beclin-1 Beclin-1

dependent

Human NACP Parkinson’s disease Reduced aggregation of NACP (70)

LAMP2A LAMP2A

dependent

Human NACP Parkinson’s disease Reduced generation of aberrant

NACP species

(71)

inflammation and autophagic death of neurons in the brain
exists (55).

CONCLUSIONS

Given the demographic, in particular associated to aging, of
people affected by neurodegenerative disorders and patients
more vulnerable to develop a serious SARS-CoV-2 disease
course, the possibility that CQ, or one of its analogs, will be
prescribed/self-consumed by patients enrolled in clinical trials

(or outside this context and off license) is worth considering.
However, the use of CQ and its analogs must be determined
by clinical need, so that prescribing CQ may be opportune and
take priority depending on specific clinical context. However, at
a time of a potential widespread use of CQ, in order to mitigate
the risk of potential misinterpretation in ongoing clinical trials
evaluating disease-modifying therapies in neurodegeneration, we
seek to raise awareness and caution that the use of CQ and its
analogs needs to be clearly documented and carefully considered
in interpreting trial outcomes in this arena and beyond.
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