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ABSTRACT
To date weak gravitational lensing surveys have typically been restricted to small fields of view, such that the flat-sky
approximation has been sufficiently satisfied. However, with Stage IV surveys (e.g. LSST and Euclid) imminent, extending
mass-mapping techniques to the sphere is a fundamental necessity. As such, we extend the sparse hierarchical Bayesian mass-
mapping formalism presented in previous work to the spherical sky. For the first time, this allows us to construct maximum a
posteriori spherical weak lensing dark-matter mass-maps, with principled Bayesian uncertainties, without imposing or assuming
Gaussianty. We solve the spherical mass-mapping inverse problem in the analysis setting adopting a sparsity promoting Laplace-
type wavelet prior, though this theoretical framework supports all log-concave posteriors. Our spherical mass-mapping formalism
facilitates principled statistical interpretation of reconstructions. We apply our framework to convergence reconstruction on high
resolution N-body simulations with pseudo-Euclid masking, polluted with a variety of realistic noise levels, and show a significant
increase in reconstruction fidelity compared to standard approaches. Furthermore, we perform the largest joint reconstruction to
date of the majority of publicly available shear observational data sets (combining DESY1, KiDS450, and CFHTLens) and find
that our formalism recovers a convergence map with significantly enhanced small-scale detail. Within our Bayesian framework
we validate, in a statistically rigorous manner, the community’s intuition regarding the need to smooth spherical Kaiser-Squires
estimates to provide physically meaningful convergence maps. Such approaches cannot reveal the small-scale physical structures
that we recover within our framework.

Key words: gravitational lensing: weak – methods: data analysis – methods: statistical – techniques: image processing – large-
scale structure of Universe.

1 INTRODUCTION

Gravitational lensing is an astrophysical phenomenon through which
the geometry of distant galaxies becomes distorted by the intervening
matter distribution. Mathematically, this lensing effect is a perturba-
tion by the local matter topology of the null geodesics along which
photons travel (Bartelmann & Schneider 2001; Schneider 2005;
Grimm & Yoo 2018). As such, gravitational lensing is sensitive to
all matter (both visible and invisible) and is thus a natural tool with
which to probe the nature of dark matter.

Weak gravitational lensing refers to the vast majority of lensing
events for which images are not multiply sourced or ‘strongly lensed’.
Equivalently the weak lensing regime can be defined as the regime
in which the lensing perturbations remain (to a good approximation)
linear. At first order the effect of weak lensing on distant galaxy
images manifests itself as two quantities: the spin-0 magnification
referred to as the convergence field 0κ , and a spin-2 perturbation to
the ellipticity (third-flattening) referred to as the shearing or shear
field 2γ .

Due to the ‘mass-sheet degeneracy’ there is no way to construct
a priori estimates of the intrinsic brightness, hence the convergence

� E-mail: m.price.17@ucl.ac.uk (MAP); jason.mcewen@ucl.ac.uk (JCM)

field is an unobservable quantity – theoretically one could infer the
convergence field directly from the galaxy sizes, but the intrinsic dis-
persion is too high (Alsing et al. 2015). However, as the distribution of
instrinsic ellipticities has zero mean and sufficiently tight dispersion,
averaging sufficient observations within a given pixel can provide an
accurate estimator for the shear signal. As such, measurements of
the shear field 2γ are typically taken and inverted to form estimates
of 0κ – coined dark matter mass maps by Clowe et al. (2006).

A large proportion (Taylor, Kitching & McEwen 2018) of cos-
mological information can be extracted directly from the shear
field (Van Waerbeke et al. 2013; Giblin et al. 2018; Fluri et al.
2019), however recently cosmologists have become increasingly
interested in extracting information from higher order statistics, such
as peak & void statistics and Minkowski functionals, which are
typically calculated directly from the convergence field (e.g. Coles
& Chiang 2000; Munshi & Coles 2017; Fluri et al. 2018; Peel et al.
2018) – motivating research into optimal mass-mapping techniques.
Typically, these higher order statistics aim to probe the non-Gaussian
information content of the convergence field.

Mapping from shear to convergence (mass-mapping) requires
solving an (often seriously) ill-posed inverse problem – mass-
mapping takes the form of a typical noisy deconvolution problem
with a spin-2 kernel (Wallis et al. 2017a), which is classically ill-
posed. The most naive mass-mapping technique for small fields of
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view is planar Kaiser-Squires (KS; Kaiser & Squires 1993) which
is direct inversion of the forward model in Fourier space. This
estimator does not take into account noise or boundary effects, and
so is typically post-processed via convolution with a large Gaussian
smoothing kernel, thus heavily degrading the quality of high-
resolution non-Gaussian information. Moreover, decomposition of
spin-fields on bounded manifolds is known to be degenerate (Bunn
et al. 2003) and so for non-trivial masking the KS estimator is ill-
defined and can be shown to perform poorly (see Section 5).

Many, perhaps more sophisticated, approaches to mass-mapping
on the plane have been developed (e.g. VanderPlas et al. 2011; Jee
et al. 2016; Lanusse et al. 2016; Jeffrey et al. 2018) though all
either lack a principled statistical framework or rely heavily on
assumptions or impositions of Gaussianity. In previous work we
present a sparse hierarchical Bayesian formalism for planar mass-
mapping (Price et al. 2018, 2019a, b) that provides fully principled
statistical uncertainties without the need to assume Gaussianity and
without the computational overhead of Markov Chain Monte Carlo
(MCMC) methods (e.g. Corless, King & Clowe 2009; Schneider
et al. 2015; Alsing et al. 2016).

One key assumption of these ‘planar’ mass-mapping techniques
is that the area of interest on the sky can be well approximated
as a plane. This assumption is colloquially referred to as the the
flat-sky approximation. For small-field surveys this approximation
is typically justified. However for future wide-field Stage IV surveys
mass-mapping must be constructed natively on the sphere (Chang
et al. 2018) to avoid errors due to projection effects, which can
be large (Wallis et al. 2017a; Vallis, Wallis & Kitching 2018).
Naturally one can naively invert the spherical forward model to form
the spherical Kaiser-Squires estimator (SKS; Wallis et al. 2017a)
which avoids projection effects but is seriously ill-posed, as is the KS
method. It should be noted that alternative techniques for spherical
reconstruction have also been developed (e.g. Pichon et al. 2010).

In this paper, we extend the previously developed hierarchical
Bayesian-sparse formalism to the sphere which, for the first time,
allows maximum a posteriori (MAP) convergence reconstruction
with principled Bayesian uncertainties in very high-dimensions na-
tively on the sphere without making any assumptions or impositions
of Gaussianity. Throughout this paper, we refer to our estimator,
formed within this framework, as the DARKMAPPER estimator (and by
extension the DARKMAPPER codebase). The reconstruction formalism
presented in this paper and any uncertainty quantification techniques
that follow support any choice of likelihood or prior such that the
posterior function belongs to the (rather comprehensive) set of log-
concave functions. As such one can incorporate various experimental
or systematic effects in future, e.g. more complex noise models or
intrinsic alignment corrections etc.

The structure of this paper is as follows. In Section 2, we provide
background mathematical details relevant to the scope of this paper,
such as the analysis of spin signals on the sphere, and succinctly
review weak gravitational lensing. Following this Section 3 provides
a cursory introduction to Bayesian analysis before presenting and
discussing both the general hierarchical Bayesian formalism and our
DARKMAPPER estimator. In this section, we explicitly outline the
likelihood and priors used throughout this paper but place emphasis
on the generality of this formalism. Furthermore, we outline how
to fold uncertainty in regularization parameters into the hierarchy
via the allocation of a suitable (here a conjugate) hyper-prior dis-
tribution. In Section 4, we extend previously developed uncertainty
quantification techniques to the spherical space and discuss how
one should approach constructing custom uncertainty quantification
techniques which fit within our formalism. In Section 5, using high

resolution N-body (Takahashi et al. 2017) simulations, pseudo-Euclid
masking (a masking of the galactic plane and the ecliptic) and
noise realizations representative of a variety of weak lensing survey
eras (including Stage IV), we demonstrate the drastic increase in
reconstruction fidelity of DARKMAPPER over SKS. Penultimately, in
Section 6 we apply both the SKS and DARKMAPPER estimators to
a global weak lensing data set constructed via the concatenation of
the majority of publicly available observational data sets. To the best
of our knowledge, this is the first such global spherical dark-matter
mass-maps. Furthermore, we perform global Bayesian uncertainty
quantification on these reconstructions. Finally, in Section 7 we draw
conclusions.

2 BACKGROUND

Here we present a cursory synopsis of the relevant background
required to understand weak lensing on the sphere. In no way is
this a complete description and so we recommend the reader follow
related papers (McEwen et al. 2015b; Wallis et al. 2017a; Wallis,
Wiaux & McEwen 2017b).

2.1 Spin-s spherical fields

Local rotations by χ ∈ [0, 2π ) about the tangent plane centred on
the spherical coordinate ω = (θ, ψ) ∈ S2 of square integrable spin-s
fields for s ∈ Z are defined generally by (Newman & Penrose 1966;
Goldberg et al. 1967; McEwen et al. 2013a; Wallis et al. 2017a)

sf
′(ω) = e−isχ

sf (ω), (1)

where ω = (θ , ψ) are standard spherical coordinates, given by
colatitude θ ∈ [0, π ) and longitude ψ ∈ [0, 2π ). The natural set
of orthogonal basis functions for spherical fields are the spherical
harmonics Y
m(ω).

When considering spin-s fields on S2 the natural set of orthogonal
basis functions are the spin-weighted spherical harmonics. The spin-
weighted spherical harmonics are generated by application of the
spin raising and lowering operators (ð and ð̄, respectively) to the
spherical eigenfunctions Y
m(ω). The spin-s raising and lowering
operators are given, respectively, by

ð ≡ − sins θ

(
∂

∂θ
+ i∂

sin θ∂ψ

)
sin−s θ, (2)

ð̄ ≡ − sin−s θ

(
∂

∂θ
− i∂

sin θ∂ψ

)
sins θ. (3)

On application to sY
m(ω) we find the recursion relations,

ð sY
m(ω) = [(
 − s)(
 + s + 1)]1/2
s+1Y
m(ω), (4)

ð̄ sY
m(ω) = − [(
 + s)(
 − s + 1)]1/2
s−1Y
m(ω). (5)

Following these recursions, it is clear that any spin-s weighted
spherical harmonic can be represented as s ∈ N repeated applications
of the spin raising (lowering) operator ð to the standard spin-0
spherical harmonic Y
m such that,

sY
m(ω) =
[

(
 − s)!

(
 + s)!

] 1
2

ð
sY
m(ω), (6)

for positive semidefinite spin 0 ≤ s ≤ 
, and for negative semidefinite
spin −
 ≤ s ≤ 0 by,

sY
m(ω) = (−1)s

[
(
 + s)!

(
 − s)!

] 1
2

ð̄
−sY
m(ω). (7)
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The spin-s weighted spherical harmonics form a complete set of
orthogonal basis functions which leads to the harmonic representa-
tion of a spin-s field sf(ω) by

sf (ω) =
∞∑


=0


∑
m=−


s f̂
m sY
m(ω). (8)

We can then trivially invert this decomposition to give the spin-
s field sf(ω) projected on to the spin basis eigenfunctions (i.e. the
spin-spherical harmonic coefficients),

s f̂
m =
∫

S2
d�(ω) sf (ω) sY

∗

m(ω), (9)

where the integral is over the sphere S2, and d�(ω) = sin θdθdφ is
the rotation invariant measure on the sphere. Typically the signal is
band-limited at 
max which implies sf
m = 0, ∀
 ≥ 
max allowing the

 summations in equation (8) and the upper limit of the integral in
equation (9) to be truncated at 
max to make the computation tractable.

2.2 Weak lensing on the sphere

This section provides a basic introduction to weak lensing mass-
mapping in the spherical setting. For a more detailed introduction,
we refer the reader to popular reviews (e.g. Bartelmann & Schneider
2001; Schneider 2005).

Gravitational lensing is an astrophysical effect which describes the
deflection of distant photons as they propagate to us here and now
by the intervening local matter distribution. As lensing is sensitive
to the local matter distribution (both visible and dark), it provides a
natural cosmological probe of dark matter.

Specifically, the weak lensing (WL) regime refers to photons
which have angular position on the source plane β (relative to the line-
of-sight from observer through the lensing mass) smaller than one
Einstein radius θE to the intervening lensing mass. Mathematically
this restricts us to singular solutions of the lens equation,

β = θ − θ2
E

θ

|θ |2
, where θE =

√
4GM

c2

fK (r − r ′)
fK (r)fK (r ′)

, (10)

for angular diameter distance fK, defined in the usual sense, which is
dependent on the curvature of the Universe K. The Universe has been
observed to be essentially flat (Planck Collaboration VI 2020) and
so to a good approximate K ≈ 0⇒fK(r) ≈ r, where r is the comoving
distance.

Galaxies are naturally sparsely distributed across the sky and so the
overwhelming majority of observations fall within the weak lensing
regime (Bartelmann & Schneider 2001). Now consider a lensing
potential φ which is the weighted integral along the line of sight of
the local Newtonian potential �,

φ(r, ω) = 2

c2

∫ r

0
dr ′ fK (r − r ′)

fK (r)fK (r ′)
�(r ′, ω). (11)

Poisson’s equation must then be satisfied by the local Newtonian
potential,

∇2�(r, ω) = 3�MH 2
0

2a(r)
δ(r, ω), (12)

where δ(r, ω) is the fractional overdensity, H0 is the Hubble constant,
a(r) is the scale-parameter, and �M is the matter density parameter.
At first order two physical lensing quantities can be constructed, these
being the gravitational shear 2γ and the convergence 0κ (Bartelmann
& Schneider 2001; Schneider 2005), where the subscripts reflect the
spin of each field.

These quantities are related to the underlying scalar integrated
potential 0φ by the relations (Castro, Heavens & Kitching 2005;
Wallis et al. 2017a),

0κ(r, ω) = 1

4
(ðð̄ + ð̄ð) 0φ(r, ω), (13)

2γ (r, ω) = 1

2
ðð 0φ(r, ω), (14)

If we now project these values into their harmonic representations
by equation (9) we find the harmonic space relations,

0κ̂
m = − 1

2

(
 + 1) 0φ̂
m, (15)

2γ̂
m = 1

2

√
(
 + 2)!

(
 − 2)!
0φ̂
m. (16)

We can then trivially draw a relationship between 2γ̂
m and 0κ̂
min
harmonic space,

2γ̂
m = W
 0κ̂
m, (17)

which is the spherical forward model. We have defined a mapping
kernel (as in e.g. Wallis et al. 2017a) in harmonic space such that,

W
 = −1


(
 + 1)

√
(
 + 2)!

(
 − 2)!
. (18)

This mapping is analogous to the planar forward model (Price et al.
2018) but now defined on S2. This mapping can trivially be inverted
to define the so-called ‘Spherical Kaiser-Squires’ (SKS; Wallis et al.
2017a) convergence estimator,

0κ̂SKS

m = W−1


 2γ̂ obs

m , (19)

where superscript ‘obs’ refers to the observations (or measurements)
of a given shear field 2γ . A real-space representation of this mapping
exists (Wallis et al. 2017a).

It is of interest to notice certain similarities between the SKS
estimator 0κSKS and the maximum-likelihood estimator (MLE)
denoted 0κMLE, which is defined by maximization of the likelihood
(i.e. an implicit assumption of a flat prior on κ). Suppose the noise
properties are assumed to be Gaussian (as is common), then the
likelihood is given by

P (γ |κ) ∝ |�|−1/2 exp− 1
2 χ2

, (20)

for χ2 ≡ (γ − �κ)T �−1(γ − �κ) where � is simply the forward
model and � is the noise covariance. The solution which minimizes
the likelihood is thus given by

0κMLE = (�T �−1�)−1�T �−1γ. (21)

Therefore for the idealized SKS estimator �−1γ to be equivalent
to the MLE estimator we require �−1 and (�T �−1�)−1�T �−1 to
be equivalent operators. Provided � is invertible the � terms above
trivially cancel resulting in the remaining terms (�T �)−1�T , which
reduce to the idealized SKS estimator – note that in the idealized
setting � is straightforwardly invertible given both the spherical
harmonic transform and equation (18) are invertible (ignoring the
monopole 
 = 0). Thus in this setting the idealized SKS and MLE
estimator are equivalent.

However, in practical applications the forward model (e.g. with
PSF corrections, complex masking, etc.) is unlikely to be invertible
and hence the SKS and MLE estimators differ in practice. Further-
more, due to limited observation quality (discussed in Section 5.2.1)
the noise covariance is typically large in magnitude. In such settings
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the inverse problem is strongly ill-posed and thus significant regu-
larization (introduced through the prior term) is required to stabilize
the inversion. As such, a flat prior MLE results in unregularized
solutions which are highly unlikely to perform well (noise present in
γ is very likely to propagate directly into the κ estimate). This noise
propagation is well-known, hence the SKS estimator used in practice
always includes a smoothing post-processing step (convolution with
an arbitrary smoothing kernel) in an attempt to mitigate this noise.
Consequently, the SKS estimator used in practice does not support a
principled statistical interpretation.

3 SPHERICAL BAYESIAN MASS-MAPPING

Hierarchical Bayesian frameworks facilitate a natural, mathemati-
cally principled approach to uncertainty quantification. For an elegant
and approachable introduction to Bayesian methods see Trotta
(2017). This section introduces Bayesian inference and proceeds to
demonstrate how one may cast the spherical mass-mapping inversion
as a hierarchical Bayesian inference problem. For notational ease,
we drop spin subscripts on κ and γ henceforth.

3.1 Bayesian inference

First consider the posterior distribution given by Bayes’ Theorem,

p(κ|γ ; M) = p(γ |κ; M)p(κ; M)∫
CN p(γ |κ; M)p(κ; M)dκ

, (22)

where the likelihood function p(γ |κ; M) represents the probability
of observing a shear field γ given a convergence field κ and some
well defined model M (which includes both the mapping � : κ �→ γ

and some assumptions of the noise model). The second term in
the numerator, p(κ; M) is referred to as the prior which encodes
some a priori knowledge as to the nature of κ . Finally, the integral
denominator is the Bayesian evidence (or marginal likelihood) which
can be used for model comparison, though we do not consider this
within the scope of this paper.

One approach to estimate the convergence field is given by max-
imizing the posterior odds conditional on the measurements γ and
model M. Such a solution is referred to as the maximum a posteriori
(MAP) solution, κmap. This can done by either maximization of the
posterior or – due to the monotonicity of the logarithm function –
minimization of the log-posterior,

argmax
κ

{p(κ|γ ; M)} ≡ argmin
κ

{− log( p(κ|γ ; M) )} . (23)

This is a particularly helpful realization as the latter problem is more
straightforward to compute and, for log-concave posteriors, allows
one to pose the problem as a convex optimization problem for which
one may draw on the field of convex optimization.

3.2 Spherical sparse mass-mapping

In this paper, we consider the ill-posed linear inverse problem of
recovering the complex discretized spherical convergence κ ∈ CNS2

on the complex S2-sphere from a typically incomplete (M < N) set
of M complex discretized shear measurements γ ∈ CM . Throughout
we adopt the McEwen-Wiaux (MW) pixellization scheme, which
provides theoretically exact spin spherical harmonic transforms
(SSHT) due to exact quadrature (McEwen & Wiaux 2011).

We begin by defining the measurement operator (operator which
encodes the forward model) which maps from a fiducial convergence

field to the observed shear measurements

� ∈ CM×NS2 : κ ∈ CNS2 �→ γ ∈ CM. (24)

In the spherical setting, by noting the spherical lensing forward model
given by equation (18) this measurement operator naturally takes the
form,

� = M2Ỹ W 0Y , (25)

where sY and s Ỹ represent the forward and inverse spin-s spherical
harmonic transforms, respectively, M is a masking operator, and W is
harmonic space multiplication by the kernel W
 defined in equation
(18). The adjoint-measurement operator can then be shown to be,

�† = 0Y† W 2Ỹ
†
M†, (26)

where it should be noted that from symmetry W is trivially self-
adjoint. Additionally, it is important to note that adjoint (†) spin-s
spherical harmonic transforms are not equivalent to the correspond-
ing inverse spherical harmonic transforms – an important caveat often
overlooked throughout the field.

3.2.1 Likelihood function

Suppose now that measurements γ are acquired under some additive
Gaussian noise ni ∼ N (0, σ 2

i ) ∈ CM where σ i is the noise standard
deviation of a given pixel which is primarily dependent on the number
of observations within said pixel, which is in turn dependent on the
pixel size and number density of galaxy observations. Then the data
acquisition model is simply given by

γ = �κ + n. (27)

In such a setting the Bayesian likelihood function (data fidelity
term) is given by the product of Gaussian likelihoods defined
on each pixel with pixel noise variance σ 2

i , which is to say
an overall multivariate Gaussian likelihood of known covariance
� = diag(σ1, σ2, . . . , σM ) ∈ RM×M . Let �iκ be the value of �κ at
pixel i, then the overall likelihood is then defined as,

p(γ |κ) ∝
M∏

i=0

exp

( −(�iκ − γi )2

2σ 2
i

)
=

M∏
i=0

exp

( −1

2

(
�̄iκ − γ̄i

)2
)

,

= p(γ |κ) ∝ exp

(
−∣∣∣∣�̄κ − γ̄

∣∣∣∣2
2

2

)
, (28)

where
∣∣∣∣ · ∣∣∣∣

2
is the 
2-norm and �̄ = �− 1

2 � is a composition of
the measurement operator and an inverse covariance weighting as
defined in Section 3.2. Effectively this covariance weighting leads to
measurements γ̄ = �− 1

2 γ which whiten the typically non-uniform
noise variance in the observational data (shear field).

This likelihood is therefore structured to correctly account for the
covariance of observational data. In this case, the covariance matrix
is taken to be diagonal but not necessarily proportional to the identity
matrix – therefore accounting for varied numbers of observations per
pixel. There are several points which should be noted. In the above
we have explicitly ignored the complicating factor of intrinsic galaxy
alignments which in practice would lead to non-diagonal covariance.
This extension can easily be supported, given a sound understanding
of the effects of intrinsic alignments on the data covariance (which
in practice may be challenging).

Additionally here we, for simplicity, assume each pixel contains
a sufficient number of galaxy observations that a central limit
theorem (CLT) argument for pixel noise can be justified. Largely

MNRAS 500, 5436–5452 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/5436/5986632 by U
C

L, London user on 02 February 2021



5440 M. A. Price et al.

this assumption is acceptable, however as the resolution increases
(pixel size decreases) the noise becomes increasingly non-Gaussian.

Finally, the forward model considered here (Section 3.2) begins
from κ and ends at masked, gridded γ measurements, however
there are several steps which must take place before one acquires
such measurements. One may therefore wish to extend this model
to incorporate such complicating factors as pixelization effects,
reduced shear (see Section 3.3.1), point squared function (PSF)
errors etc.

It should then be explicitly noted that this mass-mapping formal-
ism requires only that the posterior belong to the (rather compre-
hensive) set of log-concave functions, and as such one can directly
interchange the noise model or introduce complicating factors where
desired provided the posterior remains log-concave.

3.2.2 Prior function

As this inverse problem is ill-posed (often seriously), MLEs are
suboptimal and must be regularized by some prior assumption as to
the nature of the convergence field. In this work we select a sparsity
promoting, Laplace-type prior in the form of the 
1-norm

∣∣∣∣.∣∣∣∣
1

–
though as discussed in Section 3.2.1 this formalism supports any
log-concave priors of which there are many to choose from (e.g.
most exponential family priors).

Laplace-type priors are often adopted when one wishes to promote
sparsity in a given dictionary or basis. Wavelets � are localized in
both the frequency and spatial domains and thus constitute a naturally
sparsifying dictionary for most physical signals. There are several
wavelet constructions on the sphere that may be considered (see
e.g. Schröder & Sweldens 1995; Barreiro et al. 2000; Narcowich,
Petrushev & Ward 2006; Starck et al. 2006; Marinucci et al.
2007; McEwen & Scaife 2008; Wiaux et al. 2008; Baldi et al.
2009; McEwen, Wiaux & Eyers 2011; Chan et al. 2017; McEwen,
Durastanti & Wiaux 2018; McEwen & Price 2019) with varying
localization and uncorrelation properties. In this paper we adopt the
scale-discretized wavelets (Wiaux et al. 2008; Leistedt et al. 2013;
McEwen, Vandergheynst & Wiaux 2013b; McEwen et al. 2015a)
scheme as not only does it satisfy qausi-exponential localization and
asymptotic uncorrelation properties (McEwen et al. 2018) but also
supports directionality which may often be of interest for the weak
lensing setting.

We specifically adopt a Laplace-type wavelet log-prior
∣∣∣∣�(·)∣∣∣∣

1
.

Note that as
∣∣∣∣ · ∣∣∣∣

1
is a discretization of the continuous 
1-norm

it must be reweighted by wavelet pixel size, which in practice is
as simple as multiplying a given wavelet coefficient by a factor
proportional to sin (θ ) where θ is the angular deviation of the given
pixel from the pole. Throughout this paper any reference to the 
1-
norm applied to a spherical space refers explicitly to this spherically
reweighted norm.

With our choice of 
1-norm regularization the prior can be written
compactly as

p(κ) ∝ exp
(

−μ
∣∣∣∣�̃†

κ
∣∣∣∣

1

)
, (29)

where �̃
†

is the analysis forward-adjoint spherical wavelet trans-
forms (see equation A8 in the appendix) with coefficients �̃

†
i , and

μ ∈ R+ is the regularization parameter. It is assumed here that the
spherical wavelet dictionary �̃ is a naturally sparsifying dictionary
for the convergence field defined on the sphere. In practice one may
select whichever dictionary one’s prior knowledge of the convergence
indicates is likely to be highly sparsifying.

Conceptually, a sparsity-promoting prior can be thought of as a
mathematical manifestation of Occam’s Razor – the philosophical
notion that the simplest answer is usually the best answer. Mathe-
matically, this is equivalent to down-weighting solutions with large
numbers of non-zero coefficients, which may match the noisy data
perfectly, in favour of a less perfect match but with significantly
fewer non-zero coefficients.

Alternatively, one may view sparsity priors (in this context) as
a relative assumption of the sparsity of the true signal and noise
signal when projected into a sparsifying dictionary. This is to say
that the assumption is that the noise signal will be less sparse in �̃

than the true signal. Typically noise signals are relatively uniformly
distributed in wavelet space, whereas most physical signals are
sparsely distributed and therefore this relative interpretation of the
sparsity prior makes reasonable sense (Mallat 1999).

Note that the only constraint on the posterior is that it must be
log-concave (such that the log-posterior is convex). Hence one can
select any log-concave prior within this framework, e.g. one could
select an 
2-norm prior which with minor adjustments produces
Wiener filtering (see Horowitz, Seljak & Aslanyan 2018, for alternate
iterative Wiener filtering approaches), or a flat prior which produces
the maximum-likelihood estimate (MLE).

3.3 Implementation

The minimization of the log-posterior in equation (23) is (in the
analysis setting) therefore precisely the same as solving,

κmap = argmin
κ

{
μ

∣∣∣∣�†κ
∣∣∣∣

1
+

∣∣∣∣�̄κ − γ̄
∣∣∣∣2

2

2

}
.

︸ ︷︷ ︸
Objective function

(30)

The bracketed term on the RHS is referred to as the objective function.
We solve this convex optimization problem using the S2INV (Price
et al., in preparation) code which is largely built around the SOPT
C++ object oriented framework1 (Carrillo, McEwen & Wiaux 2012;
Carrillo et al. 2013; Onose et al. 2016; Pratley et al. 2018), utilizing an
adapted proximal forward–backward splitting algorithm (Combettes
& Pesquet 2009), although a variety of alternate algorithms are pro-
vided within S2INV (Price et al., in preparation). Wavelet transforms
on the sphere are computed using S2LET2 (McEwen & Wiaux 2011;
Leistedt et al. 2013; McEwen et al. 2015a, b; Chan et al. 2017;
McEwen et al. 2018), which in turn makes use of SSHT3 (McEwen &
Wiaux 2011; McEwen et al. 2013a) to compute spherical harmonic
transforms and SO34 (McEwen et al. 2015a) to compute Wigner
transforms.

To deal with the non-differentiable 
1-norm prior, gradient op-
erators ∇ are in some sense replaced by proximal operators when
applied to the non-differentiable term (Moreau 1962). The iteration
steps are provided in the schematic of Fig. 1, for full details of the
derivation of the proximal forward–backward algorithm iterations
look to Combettes & Pesquet (2009). These primary optimizations
are terminated once the objective function is updated by less than a
set threshold (in our experiments 10−6) between iterations.

1https://github.com/astro-informatics/sopt
2http://astro-informatics.github.io/s2let/
3https://astro-informatics.github.io/ssht/
4http://astro-informatics.github.io/so3/
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Sparse Bayesian mass-mapping on the sphere 5441

Figure 1. Schematic of proximal forward–backward splitting algorithm used
(Combettes & Pesquet 2009). Note that the first iterative block represents the
Majorize-Minimization (MM) algorithm marginalization over the regulariza-
tion parameter (which here is treated as a nuisance parameter), the second
iterative block represents the primary proximal forward–backward iterations,
and the final (optional) block represents the reduced shear outer iterations.
Note that the softλ, μ(η) operation is the soft thresholding operation, which is
the proximal projection of the 
1-norm (see e.g. Pereyra 2017; Cai, Pereyra
& McEwen 2018a, b, for details).

3.3.1 Reduced shear

Fig. 1 displays a schematic representation of the steps taken in
computing κmap. A degeneracy between the convergence field κ and
shear field γ exists, and as such γ is not a true observable. Instead
the reduced shear g is the true observable where,

g(ω) = γ (ω)

1 − κ(ω)
. (31)

When working sufficiently within the weak lensing regime κ � 1
and γ ≈ g � 1. Although typically the reduced shear need not be
accounted for, for completeness we correct for the reduced shear
(Mediavilla et al. 2016; Wallis et al. 2017a; Price et al. 2018). We add

correcting iterations outside our primary iterations to maintain the
linearity of the overall reconstruction. Our reduced shear correction
iterations are displayed schematically in the final loop of Fig. 1.

Reduced shear iterations are deemed to have converged once the
convergence update maxj |κ (i)

j − κ
(i+1)
j | < 10−10 where j runs over

all pixels (as in Wallis et al. 2017a).

3.3.2 Bayesian regularization parameter

For recovered statistics to be truly principled, the regularization
parameter must necessarily be folded into the hierarchy or correctly
marginalized over. One way to do this was recently developed
(Pereyra, Bioucas-Dias & Figueiredo 2015) and shown to work well
in the planar weak lensing setting (Price et al. 2018).

This Bayesian hierarchical inference approach assumes a gamma
distribution hyper-prior

p(μ) = βα

�(α)
μα−1e−βμIR+ (μ), (32)

with weakly dependent hyperparameters α and β which without loss
of generality can be fixed at α = β = 1. We then iterate (Pereyra et al.
2015) to effectively marginalize over μ which is treated as a nuisance
parameter in the main body of our hierarchy. These iterations are,

κ (t) = argmin
κ

{
1

2

∣∣∣∣�̄κ − γ̄
∣∣∣∣2

2
+ μ(t)

∣∣∣∣�†κ
∣∣∣∣

1

}
, (33)

μ(t+1) = (N/k) + α − 1∣∣∣∣�†κ (t)
∣∣∣∣

1
+ β

, (34)

where the log-prior
∣∣∣∣�†κ

∣∣∣∣
1

is k-homogeneous. Note that a sufficient
statistic (log-prior) is k-homogeneous if ∃ k ∈ R+ such that,

f (ηx) = ηkf (x), ∀x ∈ RM, ∀η > 0. (35)

Further note that all norms, composite norms, and compositions
of norms with linear operators are 1-homogeneous, i.e. k = 1.
See Pereyra et al. (2015) for further details. These regularization–
marginalization iterations are terminated when the update to the
regularization parameter is less than 1 per cent i.e. |μ(i + 1) −
μ(i)|/μ(i) < 0.01.

3.3.3 Computational efficiency

As discussed in 3.3 all iterations consist of a forward step which
includes application of the measurement operator before computing
the data fidelity term, followed by the backward step which includes
application of the spherical wavelet transform.

The measurement operator is dominated by the spin spherical
harmonic transforms which scale as O(L3). Similarly the computa-
tional efficiency of the wavelet transform is dominated by underlying
harmonic transforms, however with directionality N (i.e. wavelet on
the rotation group) the transform scales as O(N × L3). The overall
forward–backward algorithm scales additively as O(K × (N + 1) ×
L3) ∼ O(K × N × L3), where K is the total number of iterations
required for convergence.

The SKS operator also requires the application of spin spherical
harmonic transforms and therefore scales as O(L3). However the
SKS method requires only a single application of the transform
and thus the ratio of computational efficiency between the two
algorithms effectively scales as O(K × N ) – which is to say the
difference in computational efficiency is primarily determined by the
choice of wavelet complexity and the magnitudes of the associated
convergence criteria.
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5442 M. A. Price et al.

In practice, including the marginalization preliminary iterations
and subsequent annealing iterations to optimize convergence, we
find O(102) iterations are sufficient for convergence. We consider
axisymmetric wavelets (N = 1) in this article, thus the DARKMAPPER

algorithm is O(102) times slower than SKS but with greatly superior
reconstruction performance and the ability to quantify uncertainties
in a statistically principled manner.

It is interesting to note that MCMC methods typically require a
very large number of samples, with each individual sample requiring
at least one spin spherical harmonic transform. Therefore the increase
in computational efficiency of this approximate Bayesian inference
over sampling methods is roughly given by O(nsamples/102), where
nsamples is the total number of samples required for convergence
of a given MCMC sampling method. As MCMC methods often
require at least O(106) this increase in computation speed is (many)
orders of magnitude. In the spherical setting an O(104) increase
in computation speed results in computations which would take
O(decades) taking O(days).

4 BAYESIAN UNCERTAINTY
QUANTIFICATION

Though MAP estimates provide high-fidelity estimates of the con-
vergence field, uncertainties on these estimates are a necessity if
one aims to make statistically principled inferences. Generally, for
scientific inference one should prioritize principled uncertainties over
image aesthetics.

Bayesian inference approaches as presented in Section 3 provide
principled statistical frameworks through which quantification of
uncertainty on recovered statistics comes naturally from the pos-
terior. Typically the posterior cannot be evaluated analytically, and
so MCMC sampling methods must be used. In moderate to low
dimensional settings for computationally cheap functions, MCMC
chains can feasibly be computed. However, in high dimensional
spherical settings, MCMC techniques quickly become challenging
to compute.

Bespoke MCMC techniques have been developed for the weak
lensing setting (e.g. Corless et al. 2009; Schneider et al. 2015;
Alsing et al. 2016) which can improve computational efficiency,
yet these methods will find it challenging to accommodate future
‘Big Data’ from high-resolution wide-field surveys. Furthermore,
these sometimes come with additional restrictions (e.g. some are
restricted to Gaussian priors). This provides strong motivation for
the development of fast, approximate Bayesian inference approaches
(Pereyra 2017; Cai et al. 2018b; Price et al. 2018, 2019a, b), the
uncertainty quantification of which we extend to the complex S2-
sphere and present in this section.

4.1 Highest posterior density region

At 100(1 − α) per cent confidence a subset Cα ∈ CNS2 of the pos-
terior space is considered a credible region of the posterior iif the
integral equation,

p(κ ∈ Cα|γ ) =
∫

κ∈C
N

S2
p(κ|γ )ICα

dκ = 1 − α, (36)

is satisfied, where we have used the set indicator function ICα
, defined

to be,

ICα
=

{
1 if, κ ∈ Cα

0 if, κ �∈ Cα.
(37)

Theoretically there are infinitely many regions which satisfy the
integral in equation (36). However, the decision-theoretic optimal

region – in the sense of minimum volume – is the Highest Posterior
Density (HPD) credible-region, which is given by (Robert 2001)

Cα := {κ : f (κ) + g(κ) ≤ εα}, (38)

where the combination f(κ) + g(κ) is our objective function derived
in Section 3.3, and εα is an isocontour (i.e. level-set) of the log-
posterior.

However, in high dimensional (N � 1) settings εα (and therefore
Cα) becomes particularly difficult to compute, thus motivating the
development of alternate approaches that are fast and approximate.
Recent advances in probability concentration theory have led to the
derivation (Pereyra 2017) of a conservative approximate credible-
region C ′

α for log-concave distributions. This approximate region is
defined as,

C ′
α := {κ : f (κ) + g(κ) ≤ ε′

α}, (39)

such that,

ε′
α = f (κmap) + g(κmap) + τα

√
N + N, (40)

is the approximate level-set threshold with constant τα =√
16 log(3/α). Recall that N is the dimension of κ ∈ CNS2 which

for equiangular spherical sampling (MW; McEwen & Wiaux 2011)
is given by,

NMW ≡ 
max(2
max − 1) ≈ 2
2
max, (41)

for signals with angular band-limit 
max. An upper bound on the
error introduced through this approximation has been shown to exist
(Pereyra 2017) and is given by,

0 ≤ ε′
α − εα ≤ ηα

√
N + N, (42)

where ηα = √
16 log(3/α) + √

1/α. This error scales at most linearly
with N and in high dimensional settings can be somewhat large,
though in practice we find this error upper-bound to be extremely
conservative (Price et al. 2019b).

Note that the error is positive semidefinite which corroborates the
assertion that C ′

α is a conservative approximation. Mathematically,
this is to say that the true HPD credible region Cα is subset of the
approximate HPD credible region C ′

α i.e. Cα ⊆ C ′
α . This ensures that

if some convergence field κ �∈ C ′
α then necessarily κ �∈ Cα .

Further note that although we adopt the approximate level-set
threshold derived in Pereyra (2017) in this work, research into these
types of bounds is a relatively new area of study. Thus, if and when
new (more constraining) bounds are derived they can trivially be
substituted here.

4.2 General application

Having introduced the concept of an approximate HPD-credible
region C ′

α of the posterior, the question then immediately arises as to
how one can utilize this information in practice. In MCMC sampling
type approaches, one may simply use the recovered samples to
quantify uncertainty at well defined confidence on specific properties
of the recovered posterior. In our setting, we have recovered only the
MAP solution in a form which supports trivial computation of the
approximate level-set threshold, and thus C ′

α .
With such limited posterior knowledge one may only ask whether

a surrogate solution (an adjusted convergence map) does or does
not belong to C ′

α . In effect this is to say that in our formalism all
questions of the posterior must be cast as Bayesian hypothesis tests
of varying complexity (Price et al. 2018, 2019a). Some examples are
provided in the following subsections.
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Sparse Bayesian mass-mapping on the sphere 5443

Figure 2. Schematic of hypothesis testing (Price et al. 2018). The feature F
is entirely general and can be constructed by any well defined operator on the
MAP solution κmap.

4.2.1 Bayesian hypothesis testing

A Bayesian hypothesis test on the posterior (see Fig. 2) is simply: the
MAP convergence is recovered, a feature of that map is removed5 to
form a surrogate map κ sur, if κ sur �∈ C ′

α , then κ sur �∈ Cα , and thus the
hypothesis that feature of interest is insignificant is rejected at some
well defined confidence, implying that the feature cannot be deemed
insignificant at said confidence (for more details look to Cai et al.
2018b; Price et al. 2018).

One can invisage constructing substantially more complicated
uncertainty quantification techniques via iterative application of
Bayesian hypothesis testing or by more complicated individual
Bayesian hypothesis tests.

4.2.2 Local credible intervals

The next most straightforward uncertainty quantification technique is
given by the notion of local credible intervals (Cai et al. 2018b; Price
et al. 2019b) which are in effect pixel-level Bayesian uncertainty
(error) bars on recovered maps. Conceptually these are formed by
splitting the recovered MAP estimate into superpixels (groups of
adjacent pixels), then within each superpixel (keeping all other pixels
fixed at their MAP values) iteratively increasing (decreasing) the
recovered pixel intensity and thus constructing surrogate solutions,
checking whether these surrogate solutions belong to C ′

α . Once the
maximum (minimum) superpixel intensity is located (typically via
bisection) the difference (maximum–minimum) is taken to be the
range of values which cannot be rejected for a recovered superpixels
intensity – hence the notion of these representing pixel level Bayesian
uncertainty (error) bars.

4.2.3 Uncertainty quantification of global features

For science, in particularly for cosmology, it is often perhaps
more informative to leverage the concept of Bayesian hypothesis
testing to consider global structure, and therefore consider global (or
aggregate) statistics of a recovered field. To do so one must simply
define a logically consistent algorithm which constructs surrogate

5In practice one may simply adjust κsur to suit a specific question of the
posterior.

convergence solutions that are representative of the global question
they wish to ask of the recovered convergence field, after which the
process follows in much the same way as demonstrated for forming
local credible intervals.

It should, however, be noted that one must be careful how one poses
these global questions, as the questions of interest are often inherently
non-convex and must be solved via decision theory methods. A good
example of how one can apply hypothesis testing to global structure
can be found in Price et al. (2019a) where the Bayesian uncertainty
in the aggregate peak statistic is recovered.

Here we have discussed only a few possible uncertainty quan-
tification techniques which are supported by this formalism, though
in practice following the methodology outlined above one can form
uncertainty quantification techniques around a far more compre-
hensive set of global features (or equally statistics) provided a
few important caveats are understood: the process of Bayesian
hypothesis tests suggested to quantify a specified uncertainty are
well defined and clearly explained, the limitations of any method are
fully acknowledged, and the results are interpretted correctly so as
to mitigate unjustified statistical statements. We present a specific
example on current cosmic shear data in Section 6.

4.2.4 The curse of dimensionality

Finally, it is academic to note that the concept of changing only a
small number of pixels of a given map whilst fixing the remaining
at their MAP values is explicitly recovering conditional probabilities
which are by definition the largest possible uncertainties. Though this
is precisely what one requires of such approximations it highlights an
inherent drawback of such approaches. As the approximate level-set
threshold scales with the total dimension of the inference in high
dimensional cases, the uncertainty of any individual local structure
within an image becomes large.

Conceptually this makes sense as the higher the dimensionality
of the problem, the more statistical fluctuations occur and thus
the higher the chance that a statistical fluctuation produced the
feature of interest. As such, for anything higher than moderate
dimensional settings local uncertainties become very large and one
should prioritize global or aggregate statistics.

5 SIMULATIONS

In this section, we apply the spherical Kaiser–Squires (SKS) es-
timator, both with and without post-processing smoothing, and
the spherical sparse hierarchical Bayesian (DARKMAPPER) estimator
developed in this article to a range of realistic N-body simulations
which are masked throughout by a pseudo-Euclid mask so as to best
match upcoming Stage IV surveys.

5.1 Data set

Throughout this article, we perform reconstructions and uncertainty
quantification on simulated convergence maps generated from the
high resolution Takahashi N-body simulation data sets (Takahashi
et al. 2017).6 These mock convergence maps are generated via
multiple-lens plane ray-tracing, and are provided for a range of
comoving distances. Specifically, simulated convergence maps are
presented at every 150 Mpc h−1 for redshift zs ∈ [0.05, 5.3]. The
cosmological parameters selected for this suite of simulations are

6These data sets can be found at http://cosmo.phys.hirosaki-u.ac.jp/takahasi
/allsky raytracing/.
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�m = 1, �� = 0.279, �cdm = 0.233, �b = 0.046, h = 0.7, σ 8 =
0.82, and ns = 0.97 which are consistent with the WMAP 9 yr result
(Hinshaw et al. 2013).

We select redshift slice 16 which corresponds to the slice with
redshift zs ∼ 1. To mitigate the Poisson noise present in such N-
body snapshots, we convolve the Takahashi convergence with a very
small smoothing kernel sufficient only to remove the noise whilst
adjusting the signal as little as possible. Finally we apply a pseudo-
Euclid masking (a straightforward masking of the galactic plane and
the ecliptic) so as to best mimic the setting of upcoming Stage IV
surveys.

5.2 Methodology

As in previous work (Price et al. 2018, 2019a, b), we be-
gin by applying the measurement operator � (see equation 25)
to the fiducial ground truth, full-sky Takahashi convergence
map κ to create artificial masked clean shear measurements
γ ∈ CM .

A noise standard deviation σ i is computed (see Section 5.2.1)
for each pixel i individually and used to construct known diagonal
covariance �.7 Hence we create noisy simulated shear observations
γ n = γ + n and a simulated data covariance � which would in
practice be provided by the observation team – this covariance is
defined by the number of galaxy observations within a given pixel of
the sky.

We then apply the standard SKS estimator and the DARKMAPPER

estimator presented in this paper to these noisy artificial measure-
ments γ n to create estimates of the fiducial convergence map κ .
For DARKMAPPER, we simply adopt diadic axisymmetric spherical
wavelets (N = 1 and λ = 2 for simplicity), with scale-discretized
harmonic tiling (McEwen et al. 2018) (adopting minimum wavelet
scale j0 = 0 and maximum wavelet scale jmax = 10 resulting in
a total of 11 wavelet scales). Additional complexity may produce
better results at the cost of computational efficiency. Furthermore
scale-discretized wavelets are only one possible choice of spherical
wavelets (see Section 3.2.2). Other wavelets on the sphere could be
adopted and are interchangable within this reconstruction formalism,
provided they support exact synthesis of a signal from its wavelet
coefficients.

We adopt the signal-to-noise ratio (SNR) as a metric to com-
pare how closely each convergence estimator matches the true
convergence map. This recovered SNR in decibels (dB) is defined
to be,

Recovered SNR = 20 × log10

( ∣∣∣∣κ∣∣∣∣
2∣∣∣∣κ − κmap

∣∣∣∣
2

)
, (43)

from which it is clear that the larger the recovered SNR the
more accurate8 the convergence estimator. Additionally we record
the Pearson correlation coefficient between recovered convergence
estimators κmap ∈ CNS2 and the fiducial convergence κ ∈ CNS2 as
a measure of topological fidelity of the estimator. The Pearson

7Note we here do not consider off diagonal terms which may arise due
to intrinsic galaxy alignments though in future this can be incorporated
straightforwardly.
8Accuracy here is in regard to the pixel-level deviation not structural
correlation, for which specific estimators may be designed.

correlation coefficient is defined to be

r =
∑NS2

i=1 {κmap(i) − κ̄map}{κ(i) − κ̄}√∑NS2

i=1 {κmap(i) − κ̄map}2

√∑NS2

i=1 {κ(i) − κ̄}2

, (44)

where x̄ = 〈x〉. The correlation coefficient r ∈ [ − 1, 1] quantifies
the structural similarity between two data sets: 1 indicates maximal
positive correlation, 0 indicates no correlation, and −1 indicates
maximal negative correlation.

In practice the SKS estimator (as with its predecessor the KS
estimator) is post-processed via axisymmetric convolution with an
often quite large Gaussian smoothing kernel. The absolute scale of
this kernel is typically chosen ‘by eye’ (which is to say arbitrarily),
but in order to maximize the performance of the SKS estimator
we iteratively compute the smoothing scale which maximizes the
recovered SNR, yielding the best possible reconstruction that can
be provided by the SKS estimator (i.e. with optimal smoothing).
We then use this optimal SKS estimator for comparison. Note that
this may only be performed in simulation settings where the fiducial
convergence is known. Further note that such ad hoc parameters do
not exist within the DARKMAPPER formalism, for which a principled
statistical problem is posed and solved by automated optimization
algorithms.

5.2.1 Noise

For weak-lensing surveys the noise level of a given pixel is dependent
on: the number density of galaxy observations ngal (typically given
per arcmin2), the size of said pixel, and the variance of the intrinsic
ellipticity distribution σ 2

e .
Knowing the area A of a given pixel the noise standard deviation

σ i is simply given by,

σi =
√

σ 2
e

A × (180/π )2 × 3600 × ngal
, (45)

where 3600(180/π )2 converts steradians to arcmin2 – this relation
is simply a reduction in the noise standard deviation by the root of
the number of data points. Thus, larger pixels which (assuming a
roughly uniform spatial distribution of galaxy observations) contain
more observations have smaller noise variance. In practice the
value of σ i (and therefore the covariance �) can be determined
using the true number of galaxies in a given pixel rather than
ngal.

The typical intrinsic ellipticity standard deviation is σ e ∼ 0.37.
Upcoming Stage IV surveys (e.g. Euclid (Laureijs et al. 2011)
and LSST) are projected to achieve a number density of ngal ∼
30 arcmin−2 – a soft limit due to blending complications. For
academic discussion we also consider the case of a potential future
space-based survey which may push the number density as high
as ngal ∼ 100 arcmin−2, in addition to lower number densities
ngal ∈ [5, 10] arcmin−2 which are representative of past Stage III
surveys.

5.3 Reconstruction results

For an angular band limit 
max = 2048, a pseudo-Euclid mask,
and input ngal ∈ [5, 10, 30, 100] we compute the spherical SKS
estimator, an idealized (optimally smoothed) SKS estimator, and
the DARKMAPPER estimator. The results can be found in Fig. 3
and numerically in Table 1. In all cases the DARKMAPPER estimator
provides the highest reconstruction fidelity both in terms of recovered

MNRAS 500, 5436–5452 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/5436/5986632 by U
C

L, London user on 02 February 2021
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Figure 3. The top row displays the ground truth Takahashi convergence map as described in Section 5.1 with close up of a small region. Top to bottom:
Increasing number density of galaxies (ngal) and therefore decreasing noise levels. At the top we have ngal = 5 which is representative of current Stage III
surveys, at the bottom we have ngal = 30 which has been forecast for upcoming Stage IV surveys (e.g. Euclid / LSST). Left to right: The spherical Kaiser–Squires
(Wallis et al. 2017a) estimator without the ad hoc smoothing kernel post-processing, the optimally smoothed spherical Kaiser–Squires estimator, and finally the
DARKMAPPER estimator. Discussion: Clearly the DARKMAPPER estimator is visibly superior in all cases, numerically recovering both significantly larger SNR
and Pearson correlation coefficients. All reconstructions are plotted on the same colourscale to aid comparison (Green 2011).
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