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Summary
Background Left ventricular maximum wall thickness (MWT) is central to diagnosis and risk stratification of 
hypertrophic cardiomyopathy, but human measurement is prone to variability. We developed an automated machine 
learning algorithm for MWT measurement and compared precision (reproducibility) with that of 11 international 
experts, using a dataset of patients with hypertrophic cardiomyopathy.

Methods 60 adult patients with hypertrophic cardiomyopathy, including those carrying hypertrophic 
cardiomyopathy gene mutations, were recruited at three institutes in the UK from August, 2018, to September, 2019: 
Barts Heart Centre, University College London Hospital (The Heart Hospital), and Leeds Teaching Hospitals NHS 
Trust. Participants had two cardiovascular magnetic resonance scans (test and retest) on the same day, ensuring no 
biological variability, using four cardiac MRI scanner models represented across two manufacturers and two field 
strengths. End-diastolic short-axis MWT was measured in test and retest by 11 international experts (from nine centres 
in six countries) and an automated machine learning method, which was trained to segment endocardial and 
epicardial contours on an independent, multicentre, multidisease dataset of 1923 patients. Machine learning MWT 
measurement was done with a method based on solving Laplace’s equation. To assess test–retest reproducibility, we 
estimated the absolute test–retest MWT difference (precision), the coefficient of variation (CoV) for duplicate 
measurements, and the number of patients reclassified between test and retest according to different thresholds 
(MWT >15 mm and >30 mm). We calculated the sample size required to detect a prespecified MWT change between 
pairs of scans for machine learning and each expert.

Findings 1440 MWT measurements were analysed, corresponding to two scans from 60 participants by 12 observers 
(11 experts and machine learning). Experts differed in the MWT they measured, ranging from 14·9 mm (SD 4·2) to 
19·0 mm (4·7; p<0·0001 for trend). Machine learning-measured mean MWT was 16·8 mm (4·1). Machine learning 
precision was superior, with a test–retest difference of 0·7 mm (0·6) compared with experts, who ranged from 1·1 mm (0·9) 
to 3·7 mm (2·0; p values for machine learning vs expert comparison ranging from <0·0001 to 0·0073) and a significantly 
lower CoV than for all experts (4·3% [95% CI 3·3–5·1] vs 5·7–12·1% across experts). On average, 38 (64%) patients were 
designated as having MWT greater than 15 mm by machine learning compared with 27 (45%) to 50 (83%) patients by 
experts; five (8%) patients were reclassified in test–retest by machine learning compared with four (7%) to 12 (20%) by 
experts. With a cutoff point of more than 30 mm for implantable cardioverter-defibrillator, three experts would have 
changed recommendations between tests a total of four times, but machine learning was consistent. Using machine 
learning, a clinical trial to detect a 2 mm MWT change would need 2·3 times (range 1·6–4·6) fewer patients.

Interpretation In this preliminary study, machine learning MWT measurement in hypertrophic cardiomyopathy 
is superior to human experts with potential implications for diagnosis, risk stratification, and clinical trials.
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Introduction
Left ventricular maximum wall thickness (MWT) is a key 
imaging biomarker in hypertrophic cardiomyopathy, 
guiding diagnosis, risk stratification, and clinical 

man agement.1–4 For diagnosis, hypertrophic cardio
myopathy is clinically defined by an MWT of at least 
15 mm in one or more left ventricular myocardial 
segments in the absence of abnormal loading conditions, 
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with a lower threshold in familial disease.3 MWT is also 
used in decision making for primary prevention of 
sudden car diac death with an implantable cardioverter
defib rillator (ICD).1,3 An example of the latter is the 
hypertrophic cardio  myopathy sudden cardiac death risk 
score (HCM RiskSCD) recommended by the European 
Society of Cardiology, which uses MWT as a continuous 
variable to stratify risk in these patients, while the 
American Heart Association suggests an MWT cutoff of 
more than 30 mm for ICD.1,3,5

Measurement error therefore can lead to underdiagnosis 
and overdiagnosis, as well as inappropriate or ineffective 
therapies, yet there is no standardised protocol for 
measuring MWT. Sources of MWT measurement error 
include the complex myocardial shape (trabe culation, non
parallel threedimensional edges), modalityspecific vari
ation (spatio temporal resolution, piloting, artifacts) and 
intraobserver and interobserver variation.6 Cardio vas cular 
magnetic resonance (CMR) can offer better spa tial 
resolution and blood–myocardium interface definition,7–10 
while auto mated machine learning approaches could 
minimise human variation.9,10 In many domains, machine 
learning approaches with deep fully convo lutional neural 
networks (CNNs) have achieved human performance,11,12 
including in cardiac imaging.10 The definition of a gold 

standard typically relies on comparisons across modalities 
(with systematic bias) and measurements by experts (with 
intraobserver and interobserver variability). Ideally, these 
com parisons would be made against a ground truth (for 
accuracy), but for MWT, a ground truth is not easily 
attainable. One solution to objectively assess performance 
in MWT measurement is to evaluate repeatability 
(ie, precision) on test–retest data—ie, multiple scans taken 
from the same individual.10

We applied a machine learning algorithm previously 
trained on multicentre, multidisease cases to deliver auto
mated left ventricular contours and MWT on a separate, 
multicentre test–retest dataset of hypertrophic cardio
myopathy CMR scans. We aimed to investigate whether 
MWT by machine learning was more precise than a 
multicentre panel of 11 human experts (nine centres in six 
countries, across four continents) by evaluating test–retest 
MWT measurements, and to explore the impli cations of 
machine learning MWT measurements on hypertrophic 
cardiomyopathy diag nosis and risk stratification.

Methods
Study population
For the hypertrophic cardiomyopathy test–retest dataset, 
patients with hypertrophic cardiomyopathy (including 
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Research in context

Evidence before this study
Both diagnosis and risk stratification of hypertrophic 
cardiomyopathy relies on accurate measurement of left ventricular 
maximum wall thickness (MWT), but its measurement by human 
experts has variation. Machine learning approaches with fully 
convolutional neural networks could improve precision in MWT 
measurement. We searched PubMed for studies published before 
Aug 7, 2020, focused on automated left ventricular wall thickness 
measurement, using the terms (“left ventricle” OR “LV”) AND 
(“maximum wall thickness” OR “MWT” OR “wall thickness”) AND 
(“automated” OR “automatic”), without language restrictions. 
This process returned 53 publications. The articles covered a range 
of modalities (echocardiogram, cardiac MRI, cardiac CT, and PET) 
and tools (manual, semi-automated or fully automated, 
two dimensional or three dimensional imaging, different 
sequences and parameters). In most cases, the aim was to 
compare left ventricular segmentation tools between different 
modalities with a particular focus on left ventricular volumes, 
mass, or measures of myocardial deformation. Some tools 
required manual endocardial and epicardial left ventricular 
segmentation before automatic MWT measurement. To the best 
of our knowledge, the precision of deep learning MWT 
measurement when compared with manual segmentation 
by human experts is still unknown.

Added value of this study
MWT measurement lacks standardisation. Here, we propose 
a machine learning solution with superior precision to human 

experts. Our automated machine learning method, trained 
on 1923 separate multicentre, multidisease cases, segments the 
endocardial and epicardial left ventricular borders and then 
measures left ventricular MWT, substantially surpassing the 
MWT measurement performance of 11 tested human experts, 
gauged by precision. Our machine learning tool was more 
consistent than human experts in assigning diagnoses of 
hypertrophic cardiomyopathy (MWT >15 mm) and 
recommendations for an implantable cardioverter-defibrillator  
(ICD) and returned smaller changes in sudden cardiac death risk 
score. The precision shown by our machine learning tool is the 
first step in improving MWT measurement.

Implications of all the available evidence
Machine learning holds the promise of transforming health 
care. Widespread adoption of such a tool to measure MWT 
could affect clinical decision making in hypertrophic 
cardiomyopathy by improving precision in diagnosis and risk 
stratification for ICD, while also reducing sample sizes needed 
for clinical trials that use MWT as an outcome measure. 
Our tool could also easily be applied retrospectively (and 
prospectively) to pivotal clinical trials in cardiology and 
potentially change research outcomes. A tool that is more 
precise and has the same accuracy as human experts could be 
the next gold standard.
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seven genotypepositive, phenotypenegative patients 
with left ventricular MWT less than 15 mm, as clinically 
defined before enrol ment) who underwent CMR for 
clinical reasons were opportunistically recruited at three 
institutions in the UK from August, 2018, to September, 
2019: Barts Heart Centre, University College London 
Hospital (The Heart Hospital), and Leeds Teaching 
Hospitals NHS Trust. The seven phenotypenegative 
patients were included so as to assess diagnosis 
reclassification according to the 15 mm cutoff. 
Four scanner models (Siemens Aera, Philips Achieva, 
Siemens Avanto, Siemens Prisma) are thus represented 
across two MRI scanner manufacturers (Siemens 
Healthi neers [Erlangen, Germany], Philips Health care 
[Amsterdam, Netherlands]) and two field strengths 
(1·5 and 3 Tesla). Exclusion criteria were patients younger 
than 18 years, contraindications to CMR, cardiac implan
table electronic devices, clinically significant arrhythmia 
(eg, atrial fib rillation, frequent ectopy) or inability to hold 
breath, and pregnancy. Ethical approval was obtained in 
each centre (London–Surrey Research Ethics Committee, 
reference 18/LO/0188) and the study conformed to the 
principles of the Helsinki Declaration. Written informed 
consent was obtained from all participants.

CMR scan protocol
All patients underwent CMR scans twice in the same day 
(scans A and B). After the first scan, patients were brought 
out of the bore, repositioned on the table, and isocentre 
positioning was repeated before the second scan. Each 
scan used a similar protocol (without changes in imaging 
parameters be tween tests) that consisted of balanced 
steadystate free precession (bSSFP) cine imaging in 
fourchamber, twochamber, and threechamber views and 
twodimensional (2D) left ventricular shortaxis (SAX) 
cine stack, ensuring coverage of the left ventricular base 
and apex, as per international recom mendations.8 Cine 
imaging was acquired in both scans before any 
gadoliniumbased contrast was given. CMR parameters 
are detailed in the appendix (p 9). Image quality was 
assessed using previously published criteria.13 All cines 
used in this study had an overall score no greater than 3 
(on a scale from 0 to 21, with lower scores indicating 
higher quality images) as judged by an investigator (JBA), 
as detailed in the appendix (p 8). Of note, all scans scored 0 
for the left ventricular coverage criteria, indicating full left 
ventricular coverage from base to apex.13

Machine learning algorithm
We previously developed an automated 2D deep fully 
CNN14 with Unet architecture15 that was trained to seg
ment the left ventricular SAX endocardial and epicardial 
contours in enddiastole and endsystole from an input of 
CMR bSSFP cine images.10 In brief, the CNN was trained 
on an independent dataset of CMR scans from 
1923 patients, with each scan comprising three sets of 
standard cine images: twochamber and fourchamber 

views and a stack of 2D SAX slices (mean 12 slices), each 
with 25 or 30 frames. These images were manually 
annotated by an expert (JCM). Manual segmentation in 
the SAX stack consisted of left ventricular endocardial and 
epicardial contours in enddiastole and left ventricular 
endo  cardial contours in endsystole. Papillary muscles 
and trabeculations were considered part of the left ven
tricular blood pool. The training dataset comprised healthy 
volunteers and indivi duals with balanced pathologies 
(diseases with dilatation and hypertrophy, the latter in
cluding hypertrophic car diomyopathy; Fabry disease; 
hypertension; amy loidosis; and aortic stenosis) who were 
scanned across 13 centres in three countries, using a 
variety of scanners (ten scanner models, 1·5 and 3 Tesla 
field strengths, and three MRI manufacturers: Siemens 
Healthineers, Philips Healthcare, GE Healthcare 
[Chicago, IL, USA]). We previously validated our machine 
learning algorithm on the VOLUMES Resource dataset, 
a precision opensource dataset for left ventricular 
volumes and mass.10 Further technical details of the ma
chine learning training method are available in the 
appendix (pp 2–6).

MWT measurement
MWT measurement by machine learning proceeded in 
two steps: drawing of left ventricular endocardial and 
epicardial contours and wall thickness measurement. 
Endocardial left ventricular contours were automatically 
drawn on each SAX cine image using the machine 
learning algorithm (appendix pp 2–6). Each 2D SAX 
image was segmented separately and the contours for 
each phase interpolated across all slices to calculate the 
volume for that phase. Enddiastole was chosen as the 
phase with the largest blood pool volume and both endo
cardial and epicardial contours were drawn in this phase. 
Further details of this step can be found in the appendix 
(pp 4–6).

Measurement of the distance between epicardial and 
endocardial contours is ambiguous and commonly used 
methods have limitations (appendix p 5). Desirable 
characteristics of an effective approach include a unique 
and invertible solution (ie, homeomorphic mapping), such 
that each point on the endocardial contour maps to a single 
corresponding epicardial point and vice versa; being 
consistent and robust, such that small changes in contour 
shape do not lead to large changes in measure ment; and 
being computationally efficient. There is no accepted 
method to measure MWT. A previous study suggested the 
use of Laplace’s equation to measure cerebral cortical 
thickness in neuroimaging.16 We used a similar method, 
solving Laplace’s equation to define a dense correspondence 
between myocardial borders and the maximum distance 
recorded (figure 1; appendix pp 4–5).

The largest wall thickness value across all slices for 
each scan was recorded as the MWT. Image files were 
reviewed for quality control but there was no active 
human correction of any of the machine learning MWT 

See Online for appendix

For the VOLUMES Resource 
dataset see https://
thevolumesresource.com/

https://thevolumesresource.com/
https://thevolumesresource.com/
https://thevolumesresource.com/
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measurements—these would either be accepted or 
rejected. If there was a Turing test failure in any image 
(biologically implausible contouring) as deemed by JBA 
(investigator with Level 3 CMR certification), that image 
was excluded. All other images were included for final 
analysis.

11 CMR and cardiomyopathy experts (BLG, CBD, 
CHC, CM, ES, GP, JC, JCM, MYD, NABN, and SEP), 
who were accredited as Level 3 by the Society for 
Cardiovascular Magnetic Resonance or European 
Association of Cardio vascular Imaging or who had at 
least 10 years of CMR experience, measured MWT in the 
hypertrophic cardio myopathy test–retest dataset. Experts 
were aware that the sample was comprised of clinical and 
subclinical hyper trophic cardiomyopathies, but were 
blinded to any other clinical characteristics. Each scan 
was assigned a ran domly generated identification code so 
that scans were analysed in a random order for each batch 
(one batch for scan A and one for scan B), and all 
observers were blinded to test and retest status. Each scan 
included three longaxis views (four chamber, 
two chamber, and three cham ber) and a SAX stack cine. 
Similar instructions for MWT measurement were given 
to all experts. Experts were instructed to measure the 
MWT using digital callipers on the SAX stack only 
(although they could use longaxis views to plan this 
measurement), in enddiastole, as routinely done in 

clinical practice and in accordance with international 
recommendations.3 All experts used cvi42 software 
(version 5.9.x) for the purpose of this analysis (Circle 
Cardiovascular Imaging, Calgary, Canada). Once the 
first batch of scans (ie, the experts’ test batch) was 
analysed, experts deleted those scans and only then would 
the second batch of scans (ie, the experts’ retest batch) be 
given to them. There was a minimum of 24 h between the 
analysis of each batch. The calliper locations of all 
measurements were exported to visualise the source of 
measurement variation.

Statistical analysis
Discrete variables are presented as absolute frequencies 
with percentages and continuous variables as mean (SD) 
or mean (95% CI). Interobserver agreement for MWT for 
all observers was assessed using the intraclass correlation 
coefficient (ICC; absolute agreement between single 
measures) and Lin’s concordance correlation coefficient 
(CCC; agreement between two measures) for pairwise 
comparisons.17 CCC was categorised as almost per fect 
(>0·99), substantial (0·95 to 0·99), moderate (0·90 to 
<0·95), or poor (<0·90). To assess test–retest repro
ducibility, we estimated the absolute MWT diffe rence 
(precision) and the coefficient of variation (CoV) for 
duplicate measurements18 using the root mean square 
method.19,20 We also estimated the BlandAltman bias and 
limits of agreement; these limits of agreement are a 
measure of precision, calculated as (mean difference 
between test and retest) ± 1·96 × SD, where a smaller 
range between these two limits indicates better precision. 
Paired Student’s t test was used to compare absolute 
MWT test–retest differences and mean test–retest MWTs 
between machine learning and each expert. We compared 
test–retest precision between diffe rent observers using a 
linear mixedeffects regression model, with observers 
(including machine learning), test–retest category, and 
the interaction term of observers and test–retest category 
included as fixed effects and patients as a random effect 
(appendix p 7). MWT correlations using Pearson’s 
correlation (r) and linear regressions with coefficients of 
determination (R²) and 95% CIs were done between 
the first and second scans for each observer.

The sample size required (number of patients) to detect 
a prespecified MWT change between pairs of scans was 
calculated (β=0·90, α=0·05). As a measure of reliability, 
the minimum detectable change—ie, the smallest 
detectable difference that is not due to random variation—
was estimated as 1·96 × √2 × SD × √(1 – ICC).21

The proportion of patients reclassified between test 
and retest according to the 15 mm cutoff (for diagnosis) 
and 30 mm cutoff (for prognosis) are presented. We 
also assessed how much changes in MWT measurement 
between test and retest would affect the risk score 
generated by the HCM RiskSCD calculator.1 The 
MWT weighting in the HCM RiskSCD follows a 
quadratic function1 (appendix p 7), with results 

Figure 1: A solution of Laplace’s equation for left ventricular wall thickness measurement
First, automated machine learning end-diastolic contours are obtained and used to specify boundary conditions. 
Laplace’s equation is solved for the whole field and shown here using isocontours (different colours). The gradient 
field can be followed from endocardium (red) to epicardium (yellow), generating a set of non-intersecting 
streamlines that are orthogonal to the isocontours. The wall thickness corresponds to the Euclidian distance 
between the start and end points of the streamline (resulting in no overlap between wall thickness calliper 
positions). Here, the maximum thickness measures 28·0 mm.

28·0 mm

Machine learning-segmented 
short-axis cine

Isocontours

Maximum thickness

Orthogonal lines



Articles

www.thelancet.com/digital-health   Published online December 3, 2020    https://doi.org/10.1016/S2589-7500(20)30267-3 5

expressed as a percentage risk of sudden cardiac death 
at 5 years. We noted the highest errors in MWT score 
weighting bet ween test and retest. Twosided p<0·05 
was considered significant. All analyses were done in 
R (RStudio version 1.1.423). Full details are included in 
the appendix (pp 6–7).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, writing 
of the report, or the decision to submit the paper for 
publication. JBA, RHD, and JCM had direct access and 
verified all the data in the study, and had final re
sponsibility for the decision to submit for publication.

Results
Scans were obtained from 60 patients with hypertrophic 
cardiomyopathy, with a mean age of 55·9 years (SD 13·4), 
42 (70%) of whom were male (appendix p 10). A total of 
1439 SAX images were included. Two scans per patient 
provided a dataset of 1440 MWT measurements across 
the 12 observers (11 experts and machine learning) for 
subsequent analysis. Both test and retest scans were 
available for analysis in all patients. Human quality 
control of machine learning wall thickness measurements 
revealed eight (0·6%) biologically implausible callipers 
out of the 1439 SAX images analysed (corresponding to 
eight images in five unique patients), all of which were 
excluded from our analysis, but none of the measurements 
represented an MWT, so this human quality control did 
not affect any results.

Across the patients analysed, mean MWT (between test 
and retest) for human experts ranged from 14·9 mm 
(SD 4·2) to 19·0 mm (4·7; p<0·0001 for trend), a difference 
of 4·1 mm. The machine learningmeasured mean MWT 
was 16·8 mm (4·1), falling within the range measured by 
experts, with five experts measuring significantly thicker 
and four significantly thinner; two experts were statistically 
indis tinguishable (table). The highest MWT difference 
noted between experts in a single case was 11·4 mm 
(MWT of 25·3 mm by expert 8 vs 36·7 mm by expert 9).

There was only moderate agreement among all experts 
for mean MWT test–retest (ICC 0·82, 95% CI 0·69–0·90). 
Pairwise agreement between experts was poor in 
two thirds of cases (CCC <0·90 in 37 [67%] of 55 pairs). A 
similarly poor pairwise agreement rate was also found 
between seven (64%) experts and machine learning.

When assessing test–retest reproducibility, experts had 
significant differences in precision (absolute test–retest 
MWT difference), ranging from 1·1 mm (SD 0·9) to 
3·7 mm (2·0), with a mean difference across all experts 
of 1·5 mm (0·6; table). Test–retest difference among 
experts increased with higher mean MWT values 
(r=0·55; p<0·0001), but this trend was not seen with 
machine learning (r=0·04; p=0·783; appendix p 14).

Machine learning performance surpassed humans 
on all measures of test–retest error: its precision was 

signi ficantly better than that of all experts (table; p values 
for machine learning vs expert comparison ranging from 
<0·0001 to 0·0073); the BlandAltman limits of agreement 
were narrower for machine learning, with an interval half 
that of the human experts’ mean (3·7 mm vs 7·7 mm; 
table; figure 2; appendix pp 15–17); the CoV for duplicate 
measurements was significantly lower in machine learn
ing than for all experts (table); the coefficient of deter
mination for the linear regression model of test MWT 
predicting retest MWT was higher in mac hine learning 
(R²=0·96) than for all experts (ranging from 0·58 to 0·93; 
appendix pp 15–17); and machine learning did not show 
a significant contribution to MWT test–retest difference 
in a linear mixedeffects model (appendix p 11).

Using the 15 mm cutoff for hypertrophic cardio
myopathy diagnosis, five (8%) patients assessed by 
machine learning would have had a different diagnosis 
between test and retest scans, whereas human experts 
would have reclassified between four (7%) and 
12 (20%) patients (mean eight patients [SD 3]), with only 
one expert reclassifying fewer patients than machine 
lear ning (appendix p 12). Among all scans (test and 
retest), the percentage of patients with hypertrophic 
cardio myopathy diagnosis by machine learning was 64% 
on average (39 [65%] patients by test scan and 
38 [63%] patients by retest scan), whereas among all 
experts, the range of hypertrophic cardiomyopathy 
diagnoses varied between 27 (45%) patients and 
50 (83%) patients, which represents a 38% absolute 
difference (23 of 60 patients). For an individual patient, 
the minimal detectable change using machine learning 
was 0·4 mm, but varied between 1·0 mm and 3·8 mm 
with human expert analysis (appendix p 13).

Mean (SD) 
MWT, mm

Mean (SD) 
absolute MWT 
difference, 
mm

Bland-Altman 
bias, mm (limits 
of agreement)

Coefficient of 
variation (95% CI)

p value*

Machine 
learning

16·8 (4·1) 0·7 (0·6) –0·1 (–2·0 to 1·7) 4·3% (3·3 to 5·1) ··

Expert 1 16·4 (1·9) 3·7 (2·0)† 0·4 (–5·0 to 5·9) 12·1% (8·2 to 15·0) <0·0001

Expert 2 15·7 (3·9)† 2·0 (1·7)† –1·1 (–5·9 to 3·7) 11·9% (8·8 to 14·4) <0·0001

Expert 3 19·0 (4·7)† 1·6 (1·5)† –0·2 (–4·5 to 4·1) 7·9% (6·1 to 9·4) <0·0001

Expert 4 17·4 (3·9)‡ 1·7 (1·4)† 0·3 (–3·9 to 4·6) 8·7% (7·2 to 10·0) <0·0001

Expert 5 14·9 (4·2)† 1·9 (1·3)† 1·1 (–2·9 to 5·1) 11·2% (9·4 to 12·8) <0·0001

Expert 6 15·8 (4·2)† 1·4 (1·2)† –0·1 (–3·8 to 3·6) 8·3% (6·5 to 9·8) <0·0001

Expert 7 18·9 (4·9)† 1·4 (1·2)† –0·1 (–3·7 to 3·4) 6·7% (5·3 to 7·9) 0·0006

Expert 8 15·8 (4·1)† 1·2 (1·2)‡ –0·2 (–3·6 to 3·2) 8·3% (5·6 to 10·3) <0·0001

Expert 9 18·6 (4·7)† 1·3 (1·2)‡ –0·8 (–4·0 to 2·4) 6·9% (5·1 to 8·3) 0·0003

Expert 10 16·7 (3·9) 1·1 (0·9)‡ 0·0 (–2·8 to 2·8) 5·7% (4·6 to 6·5) 0·034

Expert 11 19·0 (4·7)† 1·3 (1·1)† –1·0 (–3·7 to 1·7) 5·9% (4·5 to 7·1) 0·013

Expert mean 17·1 (4·1)‡ 1·5 (0·6)† –0·2 (–4·0 to 3·7) ·· ··

Mean MWT between test–retest is across all study participants. MWT=maximum wall thickness. *Comparing the 
coefficient of variance with that of machine learning. †p<0·001 vs machine learning using paired Student’s 
t test. ‡p<0·05 vs machine learning using paired Student’s t test.

Table: Test–retest reproducibility of MWT, by observer, and comparison with machine learning
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The maximum recorded difference in the HCM Risk
SCD due to MWT imprecision varied between 0·26 
and 0·59 percentage points among experts, while the 
highest risk score error seen with machine learning 
was 0·19 percentage points, making machine learning up 
to 1·4–3·1 times more consistent (appendix p 19). If using 
the American Heart Associationrecommended cutoff for 

ICD of more than 30 mm, two experts would have 
reclassified one patient, and one expert would have 
reclassified two patients between test and retest scans, 
whereas machine learning would have reclassified none 
(appendix p 12). Using this cutoff point, five of 11 human 
experts would have referred at least one patient for ICD but 
machine learning would have referred none (appendix p 12).

In our sample size assessments, we found that 
machine learning analysis of a clinical study would 
require considerably smaller sample sizes than human 
expert analysis for a prespecified MWT change and, as 
this prespecified change decreased, the difference 
between machine learning and the experts increased. 
Sample sizes per observer for different MWT changes 
are detailed in the appendix (p 13). For instance, sample 
size would be on average 2·3 times (range 1·6–4·6) 
smaller using machine learning to detect a 2 mm change 
in MWT (appendix p 13).

We present an example case of extreme left ventricular 
hypertrophy and discordance between experts due to 
exuberant trabeculation (figure 3). Within the same scan, 
experts picked different segments and locations in the 
myocardium and even different slices to measure MWT, 
leading to considerable disagreement in MWT measure
ment (10·8 mm difference in scan A and 13·3 mm 
difference in scan B). Between tests, some experts changed 
their measurement to a completely different location or 
slice, leading to remarkable test–retest differences (varying 
between 0·7 mm and 5·0 mm). Different deg rees of 
trabeculae inclusion can be appreciated. Impor tantly, four 
experts would have recommended ICD for this patient in 
either test based on a 30 mm cutoff point, whereas seven 
experts and machine learning would not. One expert 
would have changed ICD recom mendation between tests. 
Machine learning showed a smaller test–retest error than 
for all experts.

Frequency of error in MWT measurement cannot be 
formally determined among humans, as there is no 
definition of correct or incorrect measurements. We thus 
present a classification of the human variations in MWT 
measurement that can lead to discordance between ex
perts, using examples from our study (figure 4). 
For machine learning, however, two main types of error 
can be identified: Turing test failures—ie, contours that 
are biologically implausible and can be easily identified 
by even nonexperts (who have at least some familiarity 
with the mod ality)—and missegmentation (figure 4). 
Turing test failures were present in eight images, which 
were all excluded from the analysis. Missegmentation is 
similar to human variations and so its occurrences were 
still included in the precision analysis; one investigator 
(JBA) determined the presence of missegmentation in 
five (4%) of 120 scans (selected for image quality 
assessment) assessed by the machine learning algorithm, 
but identification of missegmentation can be subjective 
and thus we included these five scans in our analysis of 
machine learning precision.

Figure 2: Bland-Altman limits of agreement intervals, by observer
Limits of agreement are shown for each expert, the average of all 11 experts, and for machine learning. Bars 
represent the difference between the upper and lower limits (dashed lines represent the limits for machine 
learning) and are centred on the Bland-Altman bias (ie, mean difference between test and retest). 

1 2 3 4 5 6 7 8 9 10 11 Expert
mean

Machine
learning

–7

–5

–3

–1

1
0

3

5

7

Li
m

its
 o

f a
gr

ee
m

en
t, 

m
m

Expert

10·9 8·6 8·0 7·1 6·4 5·46·8 5·6 7·7 3·79·6 8·5 7·4

Figure 3: Example of extreme septal hypertrophy
Machine learning picked phase 30 (out of 30 phases). Nine experts picked phase 1 and two experts picked 
phase 30 but, for illustration purposes, phase 1 is presented for experts. MWT=maximum wall thickness.

Experts Machine learning

Scan A Scan B Scan A Scan B

MWT 25·0–35·8 mm MWT 24·3–37·6 mm MWT 27·4 mm
Difference between scans A and B: 0·7–5·0 mm Difference between scans A and B: 0·6 mm 

MWT 28·0 mm
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Discussion
Both diagnosis and risk stratification of hypertrophic 
cardiomyopathy relies on accurate MWT measurement 
by humans. However, this can be challenging. We present 
an automated machine learning method of measuring 
MWT in hypertrophic cardiomyopathy and have shown 
its superior precision against an international group of 
experts. Widespread adoption of such a tool could affect 
clinical decision making in hypertrophic cardiomyopathy 
by improving precision in diagnosis and risk stratification 
for ICD, while also reducing sample sizes needed for 
clinical trials that use MWT as an outcome measure. 
Further studies are needed to assess implementation in 
clinical practice.

MWT measurement by human experts is prone to 
underdiagnosis or overdiagnosis of hypertrophic 
cardio myopathy. Our machine learning algorithm was 
able to diagnose hypertrophic cardiomyopathy on 64% of 
pat ients based on a 15 mm cutoff, right in the middle of 
the wide range of 45–83% diagnoses reported among 
experts. Importantly, up to one in five patients would 
have a different diagnosis between tests when assessed 
by experts (vs one in 12 using machine learning), high
lighting important inconsistencies in routine analy sis, 
with serious implications for clinical management and 
burden to the healthcare system. Errors in sudden 
cardiac death risk stratification, on the other hand, could 
lead to inappropriate or ineffective therapies. There is 
substantial disagreement among experts, with nearly 
half of our experts recommending ICDs (using the 
30 mm cutoff), three of whom changed their ICD 
recommendations between tests. By contrast, machine 
learning would maintain recommendation between tests 
and be more precise for sudden cardiac death risk 
stratification using the HCM RiskSCD. Sample sizes to 
detect prespecified MWT interval changes in clinical 
trials would also decrease with machine learning. 
Furthermore, machine learning could easily be applied 
(either retrospectively or prospectively) to pivotal clinical 
trials in cardiology and potentially affect research results. 
However, although precision was thoroughly assessed in 
this study, the diagnostic and prognostic implications of 
this tool in clinical practice should be validated.

Machine learning and artificial intelligence are already 
being used in health care and are beginning to show 
their promised value. However, one of the main chal
lenges is wide adoption in clinical practice. Our aim is to 
translate the algorithm into a tool that is routinely used 
in clinical care. We are currently investigating ways of 
achieving this, including inline implementation directly 
on the magnetic resonance scanner and a cloudbased 
platform.

Humans instinctively follow a stepbystep method to 
measure MWT, but each step is prone to errors and 
variation. Accordingly, humans have to make multiple 
choices and identifications: the enddiastolic phase, the 
SAX slice with MWT (usually a quick visual scan is 

performed, but not all slices are measured), the thickest 
myocardial segment within a slice (again, not all seg
ments are measured), two points in each myocardial 
border (which might result in different calliper angles 
between humans), and the calliper length itself (affected 
by problems in blood–myocardium interface definition, 
even in cases without overt left or right ventricle 
trabeculations; appendix p 18). Throughout these steps, 
there might also be clinical bias due to knowledge of the 
clinical status of the patient.

Interestingly, experts were inconsistent with each 
other, drawing MWT in different locations and even 
changing MWT locations in test–retest, highlighting 
how difficult it is to precisely measure MWT. It should 
be noted, however, that these human variations cannot 
be truly quantified as there is no formal definition of 
a correct MWT measurement. In our study, experts were 
allowed to screen all slices and phases for MWT, but very 
rarely was a calliper drawn in all slices; this could be a 
source of imprecision in humans, but also a reflection of 

Figure 4: Variants seen in left ventricular wall thickness measurements
2D=two dimensional. 3D=three dimensional.

Human variants Machine learning variants

Slice selection Mis-segmentation

Biologically implausible contours 
(Turing test failure)

Misalignment with long axis, 
or 3D-to-2D dimensionality reduction

Location within same slice

Phase selection

Extrinsic windowing (blood–myocardium interface)

Lack of reciprocity (different angles)

Trabeculation (left ventricle and right ventricle)

Misalignment with long axis, 
or 3D-to-2D dimensionality reduction

Executive function override (clinical bias)

8·96 9·53

5·10
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what happens in the real world. The machine learning 
algorithm has a clear advantage over humans by 
scanning all slices and segments for the MWT measure
ment. What is more interesting, however, is the superior 
con sistency (ie, precision) of the machine learning 
algorithm.

Several studies compare and validate segmentation 
tools against a single expert (or a small group). Here, we 
used a panel of 11 experts from four continents, to 
account for potential regional differences, and they 
showed a wide discrepancy in precision. It should be 
noted that our machine learning tool was overall superior 
not just to the average expert observer, but to all experts 
here studied. Furthermore, our tool was trained and 
validated in multiple scanners from multiple centres, 
making it more representative of the real world.

Other semiautomated tools can measure wall thick
ness, but these still rely on human corrections that are 
prone to variability. Machine learning is automated and 
more consistent than humans. First, the machine 
learning algorithm used is deterministic and thus intra
observer variability is absent (if one gives the algorithm 
the same image twice, it will give an identical solution). It 
should be said, however, that in this study the input was 
varied between test and retest, so the machine learning 
algorithm and humans were on equal ground. Second, 
it seems that the algorithm does not measure too much 
or too little as the average machine learning MWT lies 
at the midpoint of the experts’ average range. Importantly, 
there is no established rule as to how clinicians should 
measure wall thickness. Here, we present a way of stand
ardising wall thickness measurement using Laplace’s 
equation.

Finally, in the absence of a ground truth, human errors 
cannot be formally defined and thus error rate cannot be 
determined. Nevertheless, we presented a classification 
of the variations that can be found in MWT measurement 
among humans. For machine learning, the algorithm 
produced a very low rate (0·6%) of biologically implaus
ible contours.

We propose that the left ventricle should first be 
segmented by the machine learning tool in all cases. The 
machine learning output for each patient consists of an 
image file with the enddiastolic MWT in each slice. 
Humans (even those with minimal experience in cardiac 
imaging) can easily check if each of these calliper 
positions are biologically plausible and if they are (which 
we found to be true for 99% of the images corresponding 
to 96% of patients), then left ventricular MWT is noted. 
We suggest that if any of the segmentations are not 
plausible (Turing test failure), manual measurement 
should be performed instead. In this study, we opted to 
include the MWT measurements corresponding to the 
eight scans that had biologically implausible callipers, as 
the region of maximal thickness was clearly not affected, 
but we acknowledge that this could introduce variation in 
clinical practice. Notwithstanding, the expected precision 

yield in clinical practice from having to manually 
measure only 4% of cases would still be considerably 
high. It should be noted that the supposed mis
segmentations seen with machine learning can also be 
seen in humans and, as with human variations, it is 
difficult to ascertain exactly what segmentations are 
correct or incorrect. As such, these images were not 
excluded in the precision analysis.

We found scan–rescan variability to be lower for 
machine learning than for our 11 experts. Differences in 
test–retest would be zero by machine learning if the 
input given was the same (given the deterministic nature 
of machine learning), but this was not the case in this 
study because the images in our test and retest sets were 
fundamentally different due to variation in slice prescrip
tion by the radiographer between tests (see appendix p 4 
for examples). We kept biological differences to a min
imum (eg, haemodynamics) by doing test and retest 
scans sequentially on the same day.

Our study has several limitations. The machine learn
ing tool is not fully automated, as humans still retain a 
quality control role. We expect implementation in clinical 
practice to be interactive: machine learning outputs 
image files with the left ventricular segmentation, which 
humans check for any Turing test failures. It might be 
possible to build an endtoend neural network that can 
estimate MWT directly, without the need for segmen
tation, but we have chosen the approach described here 
since it is fully explainable, allowing clinicians to directly 
visualise how the thickness measurement was made, 
engendering trust and avoiding a blackbox app roach 
that clinicians, patients, and the public dislike when it 
concerns critical health issues. Only bSSFP cine images 
were used to train the CNN and some additional training 
images would be needed if we wished to use other cine 
sequences (eg, real time, gradient echo). Additionally, 
machine learning performance has not been tested in 
scans with poor image quality (eg, patients with inability 
to hold their breath, or patients with atrial fibrillation or 
implantable devices).

In conclusion, we have shown how an automated 
machine learning tool for MWT measurement in hyper
trophic cardiomyopathy is feasible and more precise than 
an international group of experts. Precision is the first step 
in machine learning MWT measurement. The next step is 
to validate this tool for outcome prediction on a separate, 
ideally more heterogeneous, population—repre senting 
different centres (and thus multiple scanners and imaging 
parameters) and left ventricular hypertrophy patterns. 
This will provide effectiveness, safety and acceptability. A 
tool that is more precise, as shown here, and is at least 
noninferior to human experts at predicting outcomes 
should, in principle, be the new gold standard. Widespread 
adoption of such a tool could help to improve hypertrophic 
cardiomyopathy diagnosis and sudden cardiac death risk 
stratification and sub stantially decrease sample sizes 
needed for clinical trials.
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