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ABSTRACT
We present a simulated cosmology analysis using the second and third moments of the weak lensing mass (convergence) maps.
The second moment, or variances, of the convergence as a function of smoothing scale contains information similar to standard
shear two-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The analysis is
geared towards the third year (Y3) data from the Dark Energy Survey (DES), but the methodology can be applied to other weak
lensing data sets. We present the formalism for obtaining the convergence maps from the measured shear and for obtaining
the second and third moments of these maps given partial sky coverage. We estimate the covariance matrix from a large suite
of numerical simulations. We test our pipeline through a simulated likelihood analyses varying 5 cosmological parameters
and 10 nuisance parameters and identify the scales where systematic or modelling uncertainties are not expected to affect the
cosmological analysis. Our simulated likelihood analysis shows that the combination of second and third moments provides a
1.5 per cent constraint on S8 ≡ σ 8(�m/0.3)0.5 for DES Year 3 data. This is 20 per cent better than an analysis using a simulated
DES Y3 shear two-point statistics, owing to the non-Gaussian information captured by the inclusion of higher order statistics. This
paper validates our methodology for constraining cosmology with DES Year 3 data, which will be presented in a subsequent paper.

Key words: cosmology: observations – large-scale structure of Universe – gravitational lensing: weak.

1 IN T RO D U C T I O N

A map of the mass distribution of the Universe, or the large-scale
structure (LSS), contains a vast amount of cosmological information.
A given cosmological model predicts the spatial statistics of the
mass distribution as well as its evolution over time. One of the
cleanest ways to probe the mass distribution in the Universe is
through weak (gravitational) lensing. Gravitational lensing refers
to the phenomenon that light rays from distant galaxies bend as
they travel through space–time, causing distortion of the observed
galaxy images. This is because the space–time is perturbed by mass
distribution between the galaxy and the observer according to Gen-

� E-mail: mgatti@ifae.es

eral Relativity (Einstein 1936). Weak lensing is the regime where this
perturbation is small; its effect is usually much smaller than the noise
on a single galaxy basis, and the signal is extracted statistically using
very large ensembles of galaxies. As lensing is a purely gravitational
effect, it is directly sensitive to the total mass distribution compared
to other cosmological probes that use galaxies as tracers of the
mass density field, such as galaxy clustering (for a review of weak
gravitational lensing see e.g. Bartelmann & Schneider 2001).

A key element of a weak lensing analysis is to have a large
number of galaxies with well-measured shapes. This means that
we need (1) cosmological surveys that collect photons from as many
galaxies as possible, and (2) well-controlled systematic errors in the
shape measurement of these galaxies. Motivated by the potential
cosmological power of weak lensing, photometric galaxy surveys
targeted at weak lensing science have been operating over the past
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two decades. Today, unprecedented large galaxy surveys such as the
Dark Energy Survey (DES; Flaugher 2005), the Hyper Suprime-
Cam (HSC) Subaru Strategic Program (Aihara et al. 2018), the Kilo-
Degree Survey (KiDS; de Jong et al. 2013) are all pushing the limits
of weak lensing measurements.

Most of the current weak lensing analyses have focused on
tomographic two-point correlation measurements (e.g. Hildebrandt
et al. 2017; Troxel et al. 2018; Hikage et al. 2019). With the past two
decades of work, the theoretical modelling of the shear two-point
correlation function has matured significantly. Although there is still
active research on, for example, the modelling of the small scales
and of non-linear lensing corrections, the baseline theory of shear
two-point correlation function is reasonably robust. State-of-the-art
data sets from the first year (Y1) of DES currently give the tightest
constraints from cosmic shear surveys on the Universe’s clustering
amplitude under a Lambda cold dark matter (�CDM) cosmology,
S8 ≡ σ8

√
�m/0.3 = 0.782+0.027

−0.027 (Troxel et al. 2018). The parameter
S8 that is a combination of σ 8 (the amplitude of structure in the
present-day Universe, parametrized as the standard deviation of the
linear overdensity fluctuations on a 8 h−1 Mpc scale) and �m (the
density of the total matter today) is designed to be approximately
the parameter most constrained by weak lensing observations. We
note that these constraints are at a level similar to those provided
by the cosmic microwave background (CMB) from the Planck
satellite S8 = 0.841+0.027

−0.025, when marginalizing over neutrino mass
and considering the same parameter space as DES (see Troxel et al.
2018, table III).

However, there is much more information stored in the matter
fields beyond what can be captured by two-point statistics. Two-point
correlation functions only capture the Gaussian information stored
in the field, while it is well known that the probability distribution
function (PDF) of the galaxy density contrast in the late Universe has
a one-point distribution that is approximated better as lognormal than
Gaussian (Hubble 1934; Coles & Jones 1991; Wild et al. 2005). Over
the years, efforts have been made to explore statistics beyond two-
point for cosmology. These include three-point correlation functions
and bi-spectrum (Takada & Jain 2003, 2004; Semboloni et al. 2011;
Fu et al. 2014), weak lensing peak statistics (Dietrich & Hartlap 2010;
Kratochvil, Haiman & May 2010; Liu et al. 2015; Kacprzak et al.
2016; Martinet et al. 2018; Peel et al. 2018; Shan et al. 2018), higher
moments of the weak lensing convergence field (Van Waerbeke
et al. 2013; Petri et al. 2015; Vicinanza et al. 2016; Chang et al.
2018; Peel et al. 2018; Vicinanza et al. 2018), the PDF of the weak
lensing convergence field (Patton et al. 2016), density-split statistics
(Friedrich et al. 2018; Gruen et al. 2018), Minkowski functionals
(Kratochvil et al. 2012; Petri et al. 2015; Vicinanza et al. 2019;
Parroni et al. 2020), and the Minimum Spanning Tree (MST; Naidoo
et al. 2019). For some of these summary statistics (peak statistics,
Minkowski functionals), one major challenge is that no analytical
theoretical prediction of the target statistics exist and cosmological
constraints must come from a large number of numerical simulations
that span a range of cosmological parameters. In addition, these
simulations also need to be closely matched to data and it is not clear
what the requirements are for the matching between simulation and
data (though there exists some work in systematically addressing
this question, e.g. Bruderer et al. 2016; Kacprzak et al. 2019). With
the increasingly large data sets, the demand for simulations for these
statistics become increasingly hard to meet. For the other statistics
where analytical forms exist (three-point function, higher moments,
PDF, and density split statistics), most of the exploration work has
been carried out with idealized simulations that in many respects
do not represent the survey data. One of the reasons for this is

that once one moves beyond two-point statistics, the computation
of the estimator and the theoretical modelling of the signal become
more complicated. This means that the noise and systematic effects
propagate non-trivially.

In this first paper of a series of two, we focus on developing the
methodology of using the second and third moments of the weak
lensing convergence field to constrain cosmology using the third
year (Y3) of DES data. The modelling of second and third moments
is based on theoretical predictions, rather than relying on large suites
of N-body simulations. The goal of this first paper is to describe and
validate the methodology using simulations, determining the lower
bounds on scales where systematic or modelling uncertainties are
not expected to affect the cosmological analysis. A companion paper
applying this framework to the DES Y3 data will follow, further
discussing observational systematic null tests not addressed here and
testing the consistency of the constraints with the results from other
DES Y3 probes or external data sets (e.g. Planck).

First, studied in Jain & Seljak (1997), the moments of the weak
lensing convergence field is one of the simpler high-order statistics
both in terms of the measurement and in terms of the theoretical
modelling. Several papers (e.g. Gaztanaga & Bernardeau 1998;
Fosalba et al. 2008; Van Waerbeke et al. 2013; Pujol et al. 2016;
Chang et al. 2018) have performed various moments measurements
on simulations and/or data and compared the results with theoretical
predictions, although this information was not then used to place
constraints on cosmological parameters. In Vafaei et al. (2010), the
authors studied the tradeoff between different survey strategies in the
Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) for
combining two- and three-point statistics using simulations. They
concluded that combining two- and three-point statistics of the
convergence field could increase the cosmological constraints by
10–20 per cent, in the case of CFHTLens data. In Petri et al. (2015),
the authors used a set of simulations with different cosmological
parameters to study how the moments of the convergence field can
help constrain the cosmological parameters. They included up to the
fourth moment and showed that the constraints improve by up to
20–30 per cent compared to the power spectrum-only constraints.

We build on the previous work and make several improvements.
First, we use an analytical framework to incorporate the effect of
masking, adapting a well-tested pseudo-angular power spectrum
estimation formalism (pseudo-C� in the following). Secondly, we
include several systematic effects that are commonly accounted
for in shear two-point correlation function measurements and are
key to obtaining unbiased cosmological constraints: namely, shear
calibration bias, photometric redshift calibration uncertainty, and
intrinsic alignment. Thirdly, we test how robust our statistics are to
small scales, higher order lensing corrections such as reduced shear
and source clustering, and to the effect of small-scales baryonic
physics. Finally, we test our framework with two different sets of
simulations (simple lognormal simulations and full N-body simula-
tions that match the characteristics of the data set of interest), each
suited for specific purposes. Although the simulations and analysis
choices here are specific to the DES Y3 data, we note that the general
approach in this paper can be easily transferred to a different data set.

The paper is organized as follows. In Section 2, we describe how to
generate the weak lensing convergence maps from a shape catalogue
using the Kaiser & Squires (1993) algorithm generalized to operate
on a sphere. In the same section, we further show how the second and
third moments of these convergence maps can be modelled, taking
into account the effect of the mask as well as other systematics. In
Section 3, we describe the characteristics and purpose of the two
set of simulations used in this work. We test the validity of our
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modelling with simulations in Section 4 and determine the regime
where our model can correctly predict the second and third moments.
In Section 5, we derive the final components needed for a cosmology
analysis: the covariance matrix and the likelihood. We determine
in Section 6, the final fiducial scale cuts by examining how the
cosmological constraints are biased as a function of scale cuts, and we
present a simulated likelihood analysis the cosmological constraints
for DES Y3 and Y5 data. We summarize our findings in Section 7.

2 MA P M A K I N G A N D T H E O R E T I C A L
M O D E L L I N G

In order to extract cosmological information from weak lensing
convergence maps, we need to first construct the convergence map κ

from the observed weak lensing shear γ . The theoretical modelling
of the moments measured from the convergence map depends on
the particular procedure one took to construct the map. As such,
we first describe in Section 2.1 our map construction procedure and
next introduce in Section 2.2 the theoretical model of our moment
measurements.

2.1 Map making: formalism and map making procedure

We implement a full-sky approach to obtain an estimate of the
convergence field κ from the estimated shear γ (Castro, Heavens &
Kitching 2005; Leistedt et al. 2017; Wallis et al. 2017). Such a full-
sky formalism has been applied to both DES SV and Y1 data (Wallis
et al. 2017; Chang et al. 2018), and it is a generalization of the flat-
sky formalism developed in Kaiser & Squires (1993). In Wallis et al.
(2017), the authors show that the convergence maps constructed using
various flat-sky projection schemes could introduce up to 10 per cent
error in the estimation of the curl-free modes (E modes) of the
convergence and up to 20 per cent for divergence-free modes (B
modes) of the convergence for an area approximately the DES Y3
footprint (5000 deg2). As a result, it is necessary that we use this
full-sky formalism in this work.

At any position in comoving space (χ , θ , φ), one can relate the
lensing potential ψ to the local Newtonian potential  along the line
of sight

ψ(χ, θ, φ) = 2

c2

∫ χ

0
dχ ′ fk(χ − χ ′)

fk(χ )fk(χ ′)
(χ ′, θ, φ), (1)

where fk assumes values of sinχ , χ , sinhχ for a closed (k = 1), flat
(k = 0), and open (k = −1) Universe, respectively. Equation ( 1)
implicitly assumes the Born approximation (i.e. the photons move
along the unperturbed geodesics when computing their deflection
angle). The lensing potential in equation (1) can be related to
convergence κ and shear γ following Castro et al. (2005):

κ = 1

4
(ðð̄ + ð̄ð)ψ, (2)

γ = γ1 + iγ2 = 1

2
ððψ, (3)

where ð and ð̄ are the raising and lowering operators acting on spin-
weighted spherical harmonics defined in, e.g. Castro et al. (2005).
Expanding ψ(χ , θ , φ) in spherical harmonics leads to:

ψ(χ, θ, φ) =
∑
�m

ψ�m(χ )0Y�m(θ, φ), (4)

ψ�m(χ ) =
∫

d�ψ�m(χ, θ, φ)0Y
∗
�m(θ, φ), (5)

where 0Y�m(θ , φ) are the spin-0 spherical harmonic basis set and
ψ�m(χ ) the harmonic coefficients at a given comoving distance.
Analogously, we can expand κ and γ

κ = κE + iκB =
∑
�m

(κE,�m + iκB,�m)0Y�m, (6)

γ = γ1 + iγ2 = 2
∑
�m

γ�m2Y�m, (7)

with 2Y�m spin-2 spherical harmonics. We note that the convergence
field has been divided into curl-free E modes and divergence-free B
modes. One can relate the shear signal to the convergence field as
follow:

κE,�m + iκB,�m = −1

2
�(� + 1)�m, (8)

γ�m = γ̂E,�m + iγB,�m = 1

2
[�(� + 1)(� − 1)(� + 2)]1/2�m (9)

γ�m = −
√

(� + 2)(� − 1)

�(� + 1)
(κE,�m + iκB,�m). (10)

The shear field needs first to be decomposed into spherical
harmonics; then E and B modes of the convergence field follows
from applying equation (10). Curl-free E modes carry most of the
cosmological signal. Divergence-free B modes can arise due to non-
linear lensing corrections (such as deflection along the first-order
Born approximation), clustering of the lenses, and reduced shear cor-
rections (Schneider et al. 1998; Schneider, van Waerbeke & Mellier
2002; Krause & Hirata 2010). These effects are assumed to be small
for current stage III weak lensing surveys (e.g. DES, KIDS, and HSC)
and will not be modelled. Biases in the shear measurement pipeline
or object selection biases can also produce B modes that can affect
the parameters inference by few per cent (Hoekstra 2004; Asgari
et al. 2018). Finally, partial sky coverage can induce mode mixing,
producing spurious B modes in the reconstructed convergence maps
due to E-mode leakage. This will be the only source of B modes that
we will take into account in our modelling.

To apply equation (10) to data, we need an estimate of the shear
field. In practice, the shear field cannot be directly measured. The
observable is the reduced shear

g = γ

1 − κ
. (11)

Since galaxies have an intrinsic shape, what we actually measure
is the ellipticity, or shape of the galaxy, which is a noisy estimate of
the reduced shear

ε = g + εint + εm

1 + g(εint + εm)
, (12)

where εint is the intrinsic shape of the galaxy, and εm the shape
measurement noise. The above equation holds for reduced shear
less than 1, which is always satisfied in the weak flalensing regime.
The latter two quantities (εint and εm) should average to zero for
large number of galaxies (assuming no shear measurement biases).
Moreover, in the weak lensing regime, γ , κ � 1, so the observed
shape results in a noisy estimator for the shear field ε ≈ γ + εint +
εm (this does not hold in case of intrinsic alignment).

We provide a short description of map making procedure here, as it
has been detailed in previous DES papers (e.g. Chang et al. 2018). The
maps are constructed using HEALPIX pixelization (Górski et al. 2005),
with NSIDE = 1024, corresponding to a pixel size of 3.44 arcmin.

In the case where a mock galaxy catalogue with galaxy shapes
were provided, the first step in the reconstruction of the mass map
would involve making pixelized ellipticity maps ε1 and ε2 from the
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Cosmology with mass maps moments 4063

catalogue. These can be obtained by averaging the two components
of the shape estimate over all the galaxies belonging to a given
HEALPIX pixel. We skip this step in this paper and directly work with
noisy shear maps.

Next, we perform the spin transformation which converts the
ellipticity maps into a curl-free E-mode convergence map κ̂E and a
divergence-free B-mode convergence map κ̂B . We use the HEALPIX

functions MAP2ALM to decompose the shear field in spherical
harmonic space obtaining the coefficients γ̂E,�m, γ̂B,�m and calculate
κ̂E,�m, κ̂B,�m following equation (10). Finally, we use the HEALPIX

function ALM2MAP to convert these coefficients back to the real
space κE and κB maps. Since the convergence reconstruction is
only valid up to a constant due to the mass-sheet degeneracy, all the
recovered maps are mean-subtracted before computing the moments
of the maps.

The above theoretical derivation and map making procedure
describes how to obtain the convergence maps from an estimate of the
shear field. The method we implement in this paper does not assume
any prior knowledge of the convergence field to be reconstructed.
There exist methods, however, which implicitly or explicitly assume
priors that improve the map reconstructions over a range of metrics
(e.g. Jeffrey et al. 2018, 2019; Mawdsley et al. 2019). Some of
these methods will be explored in a future DES Y3 Mass Maps
paper (in preparation). We are not considering these methods here:
in this paper, the convergence moments are modelled from theory,
and including the effects of such priors on the maps moments will be
difficult. On the other hand, these alternative methods are valuable
when N-body simulations are used to model the observables (e.g.
Petri et al. 2015; Fluri et al. 2018).

2.2 Theoretical modelling of convergence moments

We adopt the theoretical model for second and third moments
(variance and skewness) of the convergence field using a non-
linear extension of cosmological perturbation theory (Scoccimarro &
Couchman 2001; Van Waerbeke et al. 2001; Bernardeau et al. 2002).

As we are interested in highlighting the features of our conver-
gence field at different angular scales, we smooth our recovered
convergence fields using a top-hat filter at different angular scales.
We chose a top-hat filter to facilitate the analytical evaluation of third
moments, but different filters with different properties can be chosen
(e.g. Van Waerbeke et al. 2013 used a Gaussian filter). A top-hat filter
W in harmonic space of smoothing length θ0 is defined as

W�(θ0) = P�−1(cos(θ0)) − P�+1(cos(θ0))

(2� + 1)(� − cos(θ0))
, (13)

where P� are Legendre polynomials of order �. The variance of matter
contrast δ smoothed by such a filter at a given comoving distance χ is

〈
δ2
θ0,NL

〉
(χ ) =

∑
�

2� + 1

4π
PNL(�/χ, χ )F 2

� W�(θ0)2, (14)

where F� is the pixel window function (modelled using the pixel
window function provided by HEALPIX) and PNL(�/χ , χ ) the non-
linear power spectrum. For the latter we used HALOFIT as detailed in
Takahashi et al. (2014) and assumed in the fiducial DES Y3 analysis.

For the smoothed version of the third moment (or skewness) of
the matter contrast, at leading order in perturbation theory it reads〈
δ3
θ0,NL

〉
(χ ) = S3

[〈
δ2
θ0,NL

〉
(χ )

]2
, (15)

where S3 is the reduced skewness parameter. The analytical deriva-
tion of the reduced skewness parameter is performed to leading
order, which is linear in the power spectrum, but as such predictions

perform well even in the mildly non-linear regime (k ≈ 0.1 h−1

Mpc; Bernardeau et al. 2002), we assume their validity when a non-
linear power spectrum (the HALOFIT from Takahashi et al. 2014)
is used to compute the variance. We also implement a refinement
(in the form of analytical fitting formulae) of the treatment of the
skewness at small scales based on N-body, CDM-only simulations.
In this paper, we focus on the analytical fitting formulae presented
in Scoccimarro & Couchman 2001 (hereafter SC01) and Gil-Marı́n
et al. 2012 (hereafter GM12), but we note that there are alternative
formulae such as that recently presented in Takahashi et al. (2019).
The SC01 and GM12 analytical refinements come with a modelling
uncertainty (Van Waerbeke et al. 2001; Semboloni et al. 2011; Simon
et al. 2015; Harnois-Déraps et al. 2016), which ultimately depends
on the resolution of the N-body simulations that have been used to
perform the fit and on the flexibility of the formulae to model all
the configurations (e.g. equilateral, flattened, and squeezed) of the
measured bispectrum. In this paper, we implement the analytical
fitting formulae from SC01, as they provide a better fit to the N-
body simulations used in this paper to validate the methodology. The
analytical expression of the reduced skewness parameter is provided
in Appendix A1.

The analytical expression of the second and third moments of the
convergence field for a given redshift distribution are provided under
the Limber approximation (Limber 1953). The Limber approxima-
tion allows us to relate the 3D spatial clustering properties of the
density field to 2D projected quantities. The approximation usually
breaks down at small scales and for narrow redshift distributions.
Under such approximation, the second and third moments read〈
κ2

θ0

〉i,j =
∫

dχ
qi(χ )qj (χ )

χ2

〈
δ2
θ0

〉
(χ ), (16)

〈
κ3

θ0

〉i,j ,k =
∫

dχ
qi(χ )qj (χ )qk(χ )

χ4

〈
δ3
θ0

〉
(χ ). (17)

The superscripts i, j, k refer to different tomographic bins. We have
dropped the subscript NL for brevity. The term qi represents the
lensing kernel and reads

qi(χ ) = 3H 2
0 �m

2c2

χ

a(χ )

∫ χh

χ

dχ ′ni(z(χ ′))dz/dχ ′ χ
′ − χ

χ
, (18)

where H0 is the Hubble constant at present time, c the speed of light,
ni(z) the normalised redshift distribution of a given tomographic bin,
and a(χ ) the scale factor.

We note that the variance and skewness of the convergence field
have differing dependencies on the parameters �m and σ 8 (Seljak &
Zaldarriaga 1996; Bernardeau, van Waerbeke & Mellier 1997).

2.2.1 Effects of masking

One of the problems in estimating the convergence field from the
observed shapes is that we observe only a portion of the sky.
This means that the reconstruction will suffer edge effects, due to
the convolution with a window function representing the survey
footprint. Some methods deal with mask effects at the level of
map making (Pires et al. 2009; Mawdsley et al. 2019), whereas
in this work, we will account for the mask effects in our theoretical
predictions using a pseudo-C� formalism (Brown, Castro & Taylor
2005; Hikage et al. 2011).

The pseudo-C� formalism correctly recovers the shear power
spectrum estimated from the shear field in the case of partial sky
coverage. It also predicts mode mixing (that is, part of the E
modes leaks into B modes and vice versa). In particular, if we
define
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ĈEE
� = 1

2� + 1

∑
m

|γ̂E,�m|2, (19)

ĈEB
� = 1

2� + 1

∑
m

γ̂E,�mγ̂ ∗
B,�m, (20)

ĈBB
� = 1

2� + 1

∑
m

|γ̂B,�m|2, (21)

one can write the masked (pseudo-) spectra as the convolution of the
true spectra with a mode-coupling matrix

Ĉ� =
∑

�′
M��′ C�′ , (22)

where we have introduced the vector C� ≡ (CEE
� , CEB

� , CBB
� ). The

mode–mode coupling matrix M is expressed in terms of M
EE,EE
��′ ,

M
BB,BB
��′ , MEB,EB

��′ , andM
EE,BB
��′ . The mode-coupling matrices contain

information about the survey geometry; analytical expressions for
the mode-coupling matrices in terms of the window function can be
found in Hikage et al. (2011) and in Appendix B. The pseudo-C�

formalism can be incorporated in equation (16) as

〈
κ2

θ0

〉i,j ,EE/BB =
∫

dχ
qi(χ )qj (χ )

χ2

×
∑

�

2� + 1

4π
f −1

� W�(θ0)2
∑

�′
M

EE/BB,EE

��′

×PNL(�′/χ, χ )F 2
�′f�′ . (23)

In the above equations, the factor f� = [(� + 2)(� − 1)]/[�(� +
1)] accounts for the fact that the mode-coupling matrix is applied
to the shear field rather than to the convergence field directly.
Depending on the mode-coupling matrix used (MEE,EE

��′ or M
BB,EE
��′ ),

with equation (23) we can predict the variance of both E and B modes
of the recovered convergence field. As for the third moments, if we
neglect the contribution of the masking to the reduced skewness
parameter S3, we can write

〈
κ3

θ0

〉i,j ,k,EE/BB =
∫

dχ
qi(χ )qj (χ )qk(χ )

χ4

× S3

[〈
δ2
θ0,NL

〉EE/BB
(χ )

]2
. (24)

We note that neglecting the effects of masking on S3 does not imply
we are neglecting the effects on masking on the third moment 〈κ3

θ0
〉

but rather we assume that most of the effect of the mask is included
in the term [〈δ2

θ0,NL(χ )]2. We note that Gil-Marı́n et al. (2015) made
a similar assumption when modelling mask effects in the bispectrum
predictions of SDSS DR11 BOSS galaxies, demonstrating its validity
for modes smaller than the size of the footprint. We show in Section 4
that equation (24) captures the mask effects on the third moment well
for the scales considered in this analysis.

2.2.2 Systematic effects

Astrophysical and measurement systematic effects are modelled
through nuisance parameters. We marginalize over all the nuisance
parameters when estimating the cosmological parameters. Values
and priors are summarized in Table 1.

2.2.2.1 Photometric redshift uncertainties Photometric redshift un-
certainties are parametrized through a shift �z in the mean of the

Table 1. Cosmological, systematic, and astrophysical parameters. The cos-
mological parameters considered are �m, σ 8, �b (the baryonic density in units
of the critical density), ns (the spectral index of primordial density fluctua-
tions), and h (the dimensionless Hubble parameter). The nuisance parameters
are the multiplicative shear biases mi and the mean photometric uncertainties
of the weak lensing samples �zi. The astrophysical parameters AIA, 0 and
αIA describe the intrinsic alignment model. We report the boundaries for both
Flat and Gaussian priors. For Gaussian priors, we also report the mean and
the 1σ in the prior column. Priors are described in Section 2.2.2.

Parameter Range Prior

�m 0.1–0.9 Flat
σ 8 0.4–1.3 Flat
h100 55–90 Flat
ns 0.87–1.07 Flat
�b 0.03–0.07 Flat

m1-m4 × 102 −10.0 to 10.0 0.0 ± 2.3
�z1 × 102 −10.0 to 10.0 0.0 ± 1.6
�z2 × 102 −10.0 to 10.0 0.0 ± 1.3
�z3 × 102 −10.0 to 10.0 0.0 ± 1.1
�z4 × 102 −10.0 to 10.0 0.0 ± 2.2

AIA, 0 −5.0 to 5.0 Flat
αIA −5.0 to 5.0 Flat

redshift distribution

ni(z) = n̂i(z + �z), (25)

where n̂i is the original estimate of the redshift distribution coming
from the photometric redshift code. We assume DES Y1 priors for
the shift parameters.

2.2.2.2 Multiplicative shear biases Biases coming from the shear
measurement pipeline are modelled through an average multiplica-
tive parameter 1 + mi for each tomographic bin. Such parameter
affects our moments in the following way:

〈
κ2

θ0

〉i,j → (1 + mi)(1 + mj )
〈
κ2

θ0

〉i,j
, (26)

〈
κ3

θ0

〉i,j ,k → (1 + mi)(1 + mj )(1 + mk)
〈
κ3

θ0

〉i,j ,k
. (27)

Gaussian priors are assumed for each of the mi.

2.2.2.3 Intrinsic galaxy alignments (IA) IA is modelled according
to the non-linear alignment (NLA) model (Hirata & Seljak 2004;
Bridle & King 2007). It can be incorporated in the modelling by
modifying the lensing kernel

qi(χ ) → qi(χ ) − A(z(χ ))
ni(z(χ ))〈

ni
〉 dz

dχ
. (28)

The NLA model is usually used in the context of two-point
correlation statistics, but the above equation generalizes it to the
third moments case as well. The amplitude of the IA contribution
can be written as a power law

A(z) = AIA,0

(
1 + z

1 + z0

)αIA c1ρm,0

D(z)
, (29)

with z0 = 0.62, c1ρm, 0 = 0.0134 (Bridle & King 2007, Krause et al.
2017) and D(z) the linear growth factor. We marginalize over AIA, 0

and αIA assuming flat priors.
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2.2.3 Moments estimator

To estimate the moments of a smoothed map, we use a simple
estimator

〈
κ̂2

θ0

〉i,j = 1

Ntot

Ntot∑
pix

κi
θ0,pixκ

j
θ0,pix, (30)

〈
κ̂3

θ0

〉i,j ,k = 1

Ntot

Ntot∑
pix

κi
θ0,pixκ

j
θ0,pixκ

k
θ0,pix, (31)

where i, j, and k refers to different tomographic bins. The sum
runs over all the pixel of the sky, also outside the footprint: the
transformation from the shear field to the convergence field is non-
local and some of the power is transferred outside the footprint,
despite most of it remaining confined to the footprint. The lack of
power outside the footprint (due to the fact that the shear field is not
defined there) is taken into account by the mode-coupling matrices
(equations 23, 24).

Due to the presence of shape noise, the measurement of galaxy
shapes will be a noisy estimate of the shear field γ . This also means
that our estimate of the convergence field will be noisy

κE,obs = κE,true + κE,noise, (32)

κB,obs = κB,true + κB,noise. (33)

In the above equations, we omitted the smoothing angle θ0. The
contribution of the noise to the convergence field can be estimated
by randomly rotating the shape of the galaxies and applying the full-
sky spherical harmonics approach to obtain the convergence (Van
Waerbeke et al. 2013; Chang et al. 2018). As the random rotation
should completely erase the cosmological contribution, the resulting
convergence signal will just contain noise and should average to 0
(but with a non-negligible variance).

It follows that when estimating second and third moments from
noisy convergence maps it is necessary to properly de-noise the
measured moments. Following Van Waerbeke et al. (2013):

〈
κ̂2
〉i,j = 〈

κ2
〉i,j − 〈κκrand〉i,j − 〈κrandκ〉i,j − 〈

κ2
rand

〉i,j
, (34)

〈
κ̂3
〉i,j ,k = 〈

κ3
〉i,j ,k − 〈

κ3
rand

〉i,j ,k

−
[〈

κ2
randκ

〉i,j ,k − 〈
κrandκ

2
〉i,j ,k + cycl.

]
, (35)

where cycl. refers to the cyclic permutation of the indexes i, j, and
k for the terms in parenthesis. In the above equations, the term
〈κ2

rand〉i,j is the noise-only contribution to the second moment of the
tomographic bins i, j; for i �= j it vanishes. The map κ rand represents
the estimate of the shape noise contribution to the convergence map;
it is estimated by randomly rotating the galaxy shapes. The intrinsic
ellipticity distribution of observed galaxies is not expected to be
perfectly Gaussian, but by the central limit theorem, it would be the
correct distribution in the limit of large numbers of galaxies averaged
in the pixels of the convergence map (Jeffrey et al. 2018). If this
holds, also the term 〈κ3

rand〉i,j ,k (which is the noise-only contribution
to the third moment of the tomographic bin i, j, and k) would vanish.
Additional checks will need to be performed on DES Y3 data, as we
do not include potential sources of noise inhomogeneities (e.g. astro-
physical or observational systematics) in this work. Finally, we note
that if the convergence field and the shape noise term in a given map
pixel are uncorrelated, mixed terms should be consistent with zero.

3 SI MULATI ONS

Two different sets of simulations are used to validate our theoretical
approach. These simulations differ in the complexity of the physics
included, and are used to validate different parts of our methodology.
In particular, we make use of:

(i) Flask simulations (Xavier, Abdalla & Joachimi 2016).
These are lognormal realizations, and are used to produce a large
number of realizations (of the order of 1000) of the shear and
convergence fields. They require input power spectra at the redshift
of the observation for their predictions, so they cannot be used to
test the modelling of the second and the third moments, as they are
key ingredients to run the simulations. We use them to model the
covariance matrices of our measurements and to test the modelling
of mask effects.

(ii) Takahashi et al. (2017, hereafter T17) mocks. We use 100 full-
sky gravitational lensing convergence and shear maps obtained from
full N-body simulations and a ray-tracing algorithm described in T17.
We use these to validate the theoretical modelling of second and third
moments over a large number of simulations. We also use them to
check the effect of non-linear lensing corrections in our modelling.

Below we provide a more in-depth description of each of the
simulations.

3.1 FLASK simulations

The FLASK software (Xavier et al. 2016) allows one to rapidly
generate full-sky, lognormal realizations of a given field (in our case,
the convergence field). In particular, FLASK assumes the convergence
field to be described by a zero-mean shifted lognormal distribution,
where the parameters of the lognormal probability distribution
function (PDF) are chosen to match the variance and skewness of
the input. The lognormal approximation is usually adopted for the
density field (Hubble 1934; Coles & Jones 1991; Wild et al. 2005)
and is not expected to exactly hold for the convergence field, as it
is a weighted projection of the mass density field along the line of
sight. Tests on numerical simulations showed a lognormal PDF to
be a reasonable model (e.g Taruya, Hamana & Kayo 2002; Hilbert,
Hartlap & Schneider 2011), although generalized lognormal PDFs
have been shown to improve the fit at the tails of the distribution
(Das & Ostriker 2006; Joachimi, Taylor & Kiessling 2011; Takahashi
et al. 2011). Observational evidences from DES SV (Clerkin et al.
2017) find that at intermediate scales between 10 and 20 arcmin,
the convergence distributions are more lognormal than Gaussian (at
larger scales noise dominates). We show in Section 6.1 that relying
on the lognormal approximation to build our covariance matrix does
not bias the recovery of the cosmological parameters.

The software requires as inputs a set of auto and cross power
spectra and a lognormal shift parameter. This latter parameter is a
combination of the variance and skewness (Xavier et al. 2016) and it
is computed from theory and fixed to the value at no smoothing.
Formally, this means that the third moment computed in FLASK

should match theoretical predictions only at no smoothing. Slight
variations can occur with a non-zero smoothing as the convergence
field is not perfectly lognormal. The second moment should agree
at every smoothing scale as the full power spectrum is provided.
We generated theoretical predictions for the power spectra of the
convergence field for four tomographic bins of our WL source
sample. We used the true redshift distributions of the WL sample as
measured in a fiducial DES simulated sample (DeRose et al. 2019).
Redshift distributions are shown in Fig. 1. We fixed the cosmology
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4066 M. Gatti et al.

Figure 1. Redshift distributions of the 4 tomographic WL bins (and the full
sample), from a fiducial DES simulated sample (DeRose et al. 2019). A bin
width of �z = 0.01 has been used for the histograms.

of our input power spectra to be �m = 0.286, σ 8 = 0.82, �b = 0.047,
ns = 0.96, and h100 = 0.7.1 We generated 1000 realizations of the
convergence fields in the form of HEALPIX maps with NSIDE = 1024.
This resolution is chosen based on the expected number density of
the DES Y3 weak lensing sample. For each of the realizations, we
cut out a DES Y3 footprint using a mask that is close to what will
be used for the DES Y3 weak lensing analysis. We assign shape
noise to each pixel εint of the shear fields based on the expected
per-component shape noise of the full DES Y3 WL sample (σ ε)
and the galaxy number density predicted by FLASK in each pixel
(ng, pix), so as εint,pix = σε/

√
ng,pixApix, with Apix the pixel area. The

average number densities over the full footprint of each bin are,
respectively, 1.38, 1.36, 1.35, 0.86 gal arcmin−2, while the σ ε (the
standard deviation of the two components for the measured galaxy
shapes) are 0.29, 0.29, 0.29, and 0.30. We use such FLASK mocks to
validate our modelling of the mask effects and to generate covariance
matricies for our measurements. In future sections, to quantify the
offset between the third moments generated by FLASK and the theory
predictions, we use the offset function defined as follows:

offset(θ0) ≡
〈
κ3

θ0

〉
FLASK,full−sky

− 〈
κ3

θ0

〉
theory,full−sky〈

κ3
θ0

〉
theory,full−sky

, (36)

such that 〈κ3
θ0

〉theory,full−sky(1 + offset(θ0)) = 〈κ3
θ0

〉FLASK,full−sky. The
offset function is 0 at no smoothing (since the shift parameter
provided to FLASK as input is only valid at no smoothing), and
reaches values up to ∼40 per cent for θ0 ∼ 200 arcmin.

3.2 T17 N-body simulation

The simulations are a set of 108 full-sky lensing convergence and
shear maps obtained for a range of redshifts between z = 0.05 and
5.3 at intervals of 150 h−1 Mpc comoving distance.

Initial conditions were generated using 2LPTIC (Crocce,
Pueblas & Scoccimarro 2006) and the N-body run using L-GADGET2
(Springel 2005), consistent with WMAP 9 yr results (Hinshaw et al.
2013): �m = 0.279, σ 8 = 0.82, �b = 0.046, ns = 0.97, and h = 0.7.

The simulations begin with 14 boxes with side lengths L = 450,
900, 1350, ..., 6300 h−1 Mpc in steps of 450 h−1 Mpc, with six
independent copies at each box size and 20483 particles per box.
Snapshots are taken at the redshift corresponding to the lens planes
at intervals of 150 h−1 Mpc comoving distance. The authors checked

1The values of the cosmological parameters used to compute the covariance
are slightly different than the ones of the mocks used to validate the modelling
of second and third moments. These values have been chosen to facilitate the
comparison with other simulated cosmological analysis for DES Y3.

that the agreement of the average matter power spectra with the
revised HALOFIT (Takahashi et al. 2012) was within 5 per cent for k
< 1 h Mpc−1 at z < 1, for k < 0.8 h Mpc−1 at z < 3, and for k <

0.5 h Mpc−1 at z < 7. Weak lensing quantities were estimated using
the multiple plane ray-tracing algorithm GRAYTRIX (Hamana et al.
2015), and shear and convergence HEALPIX maps with resolution
NSIDE = 4096 are provided. Haloes are identified in the simulation
using the public code ROCKSTAR (Behroozi, Wechsler & Wu 2013).
The simulations do not come with a galaxy catalogue. For each of
the 108 realizations, we produced convergence maps for the 4 WL
tomographic bins by stacking the convergence snapshots taking into
account the redshift distributions of the bins. We used the same
redshift distribution as that used in the FLASK simulations.

4 MODEL VA LI DATI ON W I TH SI MULATIO NS

In this section, we present a series of validation tests with simulations
to show that our model presented in Section 2.2 does indeed model the
second and third moments of the convergence maps. We first validate
our model for the effect of masking (i.e. the mode-coupling matrix
approach) in Section 4.1, then validate the remaining components of
the modelling of the second and third moments in Section 4.2. In
Section 4.3, we estimate the potential impact of baryonic feedback
at small scales; finally, in Section 4.4, we assess the impact of higher
order lensing corrections (such as reduced shear or source crowding)
not included in our modelling.

4.1 Testing mask effects

We first considered the case of no shape noise. We used 1000 FLASK

realizations of the DES Y3 footprint, and measured the convergence
field starting from the shear field using the method explained in
Section 2.1. This has been done for the four tomographic bins and
the non-tomographic sample. We then smoothed the map with a top
hat filter at different smoothing scales. We choose as an interval θ0

∈ [3.2, 220] arcmin, and we used 10 equally (logarithmic) spaced
scales (even though we expect scales close to the pixel size, which is
≈3.4 arcmin, to not contain much information).

The (smoothed) second moments, both for the E and B modes,
are shown in the top and middle panels of Fig. 2 and compared with
theoretical predictions. In the figure, we just show automoments (i.e.
moments obtained from maps of the same tomographic bin). We also
show the average of the 1000 partial-sky FLASK realizations, which
agrees to better than 0.5 per cent with the theoretical modelling.
Without the mode-coupling matrices, we would have not been able
to predict any B modes. Moreover, our theoretical predictions for the
E modes would have been biased high, as no leakage of E modes into
B modes would have occurred. We note that in Fig. 2 we do not show
uncertainties for the average measurements, as they are negligibly
small; on the other hand, the amplitude of the measurement uncer-
tainty from a single realization is represented by the shaded region.

The third moments are shown in the lower panel of Fig. 2. We just
show E modes as B modes are not measured at any statistical signif-
icance. We cannot directly compare third moments measured from
partial-sky FLASK mocks to masked theory predictions: as explained
in Section 3.1, flaSk simulations are expected to recover the input
third moments only at no smoothing; for larger smoothing scales,
we expect (and measure) an offset with respect to theoretical predic-
tions such that 〈κ3

θ0
〉FLASK,full−sky ∼ 〈κ3

θ0
〉theory,full−sky[1 + offset(θ0)].

To check that we correctly model third moments mask effects
in the partial-sky predictions, we need then to verify that the
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Cosmology with mass maps moments 4067

Figure 2. Second moments (E and B modes) and third moments (E only) measured in FLASK simulations from partial-sky coverage realizations of the DES
Y3 footprint. The convergence maps are obtained from the realizations of the FLASK shear fields configured as explained in Section 3.1. Mask effects are
included in the theory modelling (black dots, equations 23 and 24). The ‘offset’ term in the theory predictions for the third moments refers to the function
that accounts for the (known) fact that FLASK fails to produce the correct third moments for a given input cosmology (see text for more details). Grey bands
represent the measurement from one (taken at random) noiseless FLASK realization, together with its uncertainty (measurements uncertainties are estimated
in Section 5.1). Light blue bands also include shape noise. The average of the measurement over 1000 FLASK realizations are shown by the blue lines (error
bars are omitted). The numbers 11, 22, 33 etc. in each plot refers to the combination of tomographic bins considered to compute the moments, while ‘full’
refers to the non-tomographic case. Only autocorrelations are shown. Upper panels: second moments, E mode of the convergence maps. Middle panels: second
moments, B mode of the convergence maps. B modes are much smaller than E modes and are due to mask effects. Lower panels: third moments, E mode of the
convergence maps. Third moments measured in FLASK simulations are not expected to match the input theory perfectly (see text for more details); here, the
theoretical predictions for the third moments are replaced by the average measurement of third moments in 1000 full-sky FLASK realizations.

third moments computed from partial-sky FLASK realizations fol-
low 〈κ3

θ0
〉FLASK,partial−sky ∼ 〈κ3

θ0
〉theory,partial−sky[1 + offset(θ0)]. This is

shown in the lower panel of Fig. 2. The FLASK third moments theory
lines include the offset function. These agree with the average of 1000
DES Y3 (partial-sky) FLASK realizations within 3 per cent, which is
much smaller than the observational uncertainties. We conclude that
our mode-coupling matricies deal efficiently with mask effects also
for the third moments.

We next consider a more realistic scenario in which shape noise is
included. In this case, we need to perform the de-noising procedure
(equations 34 and 35), which subtracts the shape-noise contributions
from the measured moments. For the second moments, we first

checked that the mixed terms (〈κ randκ〉i, j and 〈κ randκ〉j, i) averaged
to zero, while the terms 〈κ2

rand〉i,i (corresponding to the noise-only
second moments) did not and needed to be subtracted. As for
the third moments, we found out that mixed terms of the form
〈κκ2

rand〉i,j ,k did not vanish for some choice of indices and needed
to be subtracted. This is due to source galaxy density–convergence
field correlations that do not vanish at third order. All the other
terms, including 〈κ3

θ0,rand〉i,i,i , averaged to zero and did not need to be
subtracted.

The de-noised measurements are shown again in Fig. 2 (light
blue shaded regions). The measurements are clearly noisier than the
previous case, but we verified that when the averages over the 1000
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4068 M. Gatti et al.

Figure 3. Second moments and third moments (E modes) measured in the T17 simulations from partial-sky coverage realizations of the DES Y3 footprint.
The convergence maps have been obtained starting from a realization of the DES Y3 shear field. Mask effects are included in the theory modelling (black dots,
equations 23 and 24). The label of the theory modelling points specifies ‘theory T17’ to differentiate it from the flask theory lines, since the two sets of
simulations have a slightly different cosmology. Grey bands represent the measurement from one (taken at random) noiseless T17 realization, together with
its uncertainty (measurements uncertainties are estimated in Section 5.1). Red bands also include shape noise. The average of the measurement over 100 T17
realizations are shown by the red lines (error bars are omitted). The numbers 11, 22, 33 etc. in each plot refers to the combination of tomographic bins considered
to compute the moments, while ‘full’ refers to the non-tomographic case. Only autocorrelations are shown. Upper panels: second moments, E modes of the
convergence maps. Lower panels: third moments, E modes of the convergence maps.

FLASK realizations are considered, the match with the theory shows
the same level of agreement as the noiseless case.

4.2 Testing second and third moments modelling

To validate our modelling of the second and third moments we
need a full N-body simulation. In particular, we need to validate
the E modes, as they will be used in the cosmological analysis (B
modes have a low signal to noise, and they will be mainly used as
a diagnostic). To do this, we use 100 realizations of the shear field
obtained using the T17 simulations. The comparison with the theory
(second and third moments, E modes) is shown in Fig. 3. In the
same figure, we also show the average of the 100 realizations of
the DES Y3 footprint. For the second moments, the match with
the theory is better than 1 per cent at large scales (comparable
with the uncertainties in the modelling of mask effects) and it is
at the level of 2–3 per cent at small scales (comparable with the
accuracy of the simulations at low redshift). The good match at
large scales also justifies the use of the Limber approximation in our
modelling.

For the third moments, the theory matches the measurement to
better than 10 per cent at all scales. The modelling at small scales is
obtained including the SC01 analytical refinement based on N-body,
CDM-only simulations. We note that without the SC01 formulae,
the predictions of the third moments from perturbation theory only
would start departing from the T17 measurement at ∼30–40 arcmin,

reaching a disagreement of 80 per cent at 5 arcmin in the first
tomographic bin.

4.3 Baryonic effects

We discuss in this and in the next subsection the impact of a number
of effects not included in our fiducial modelling. Ultimately, the
impact of these effects (together with the comparison with T17 sims
from the previous section) will directly determine the scales to be
used in the cosmological analysis.

We consider here the possible contamination of our data vector
by baryonic feedback effects at small scales. Including baryonic
feedback models in the theoretical modelling is an on-going issue
in current cosmic shear analyses, due to the uncertainties in current
baryonic feedback models. The strategy adopted by DES (in the
Y1 and Y3 analyses) is to not model baryonic feedback effects, but
to exclude the scales of the data vector possibly contaminated by
baryonic feedback.

To this aim we contaminate a data vector by the effects of baryonic
feedback as estimated from the OWLS ‘AGN’ simulations (Schaye
et al. 2010; van Daalen et al. 2011). We note that the OWLS suite
is not the only set of simulations including baryonic effects (see e.g.
EAGLE simulation, Hellwing et al. 2016, IllustrisTNG simulations,
Springel et al. 2018, Horizon simulations, Chisari et al. 2018). The
impact of baryons on the dark matter power spectrum in the OWLS
simulations is large compared to other simulations, though more
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Cosmology with mass maps moments 4069

Figure 4. Impact of baryonic effects (from OWLS simulations) and two non-linear lensing corrections to (E modes) moments. The blue line (OWL) refers
to the rescaled predicted moments including baryonic contributions from AGN feedback. The orange line (label RS) shows the contribution to reduced shear
correction, as measured in simulations. The green line refers to source-lens clustering (label SL), as measured in simulations. The grey shaded regions represent
the angular scales cut out from the analysis (see Section 6.1; as the scales cut is determined only for the tomographic version of the data vector, we do not show
any shaded region for the non-tomographic case).

extreme models exist. We use the OWLS predictions to contaminate
our data vector and use them as an upper limit on the magnitude of
baryonic effects.

To contaminate the data vector, we proceed in similar fashion to
what was done in the DES Y1 cosmic shear analysis (Troxel et al.
2018). We rescale the power spectrum so as to include contribution
from the OWLS ‘AGN’ sub-grid prescriptions

PNL(k, z) → PDM+baryons

PDM
PNL(k, z), (37)

where PDM is the OWLS power spectrum due to dark matter, and
PDM + baryons is the OWLS power spectrum including the ‘AGN’
feedback prescription. Applying such contamination procedure to
the power spectrum should account for most of the baryonic effects
on the third moments as well (Foreman et al. 2019 show that baryonic
contributions to the bispectrum go as P 2

DM+baryons/P
2
DM, at least for

the scales under study here).
The effects of contaminating a theoretical data vector with

baryonic feedback are shown in Fig. 4, where we show the ratio
between a contaminated, theoretical data vector and one that is not
contaminated. The OWLS power spectrum dampens the measured
moments at small smoothing scales, whereas the effect is almost
negligible at larger scales. This implies that a range of small scales
needs to be excluded from the cosmological analysis: including such
scales could introduce biases in the cosmological inference. The
angular scales cut that safeguards against possible baryonic effects
is shown in Fig. 4 (grey-shaded regions) and it is quantitatively
determined with a simulated likelihood analysis in Section 6.1.

Last, we note that from Fig. 4 it is not straightforward to compare
the smoothing scales at which the OWLS power spectrum starts
affecting the moments with the angular scales used in the DES Y1
cosmic shear analysis (Troxel et al. 2018), as the two probes get
contributions from the high multipoles in harmonic space differently.

4.4 Higher order lensing corrections

We next verify the impact of a number of higher order lensing
corrections to our theoretical modelling (Schneider et al. 1998,

2002; Schmidt et al. 2009; Krause & Hirata 2010). As we have
not implemented theoretical modelling of the following effects, we
resort to simulations to asses their impact on the data vector. We
look at three different effects: reduced shear, source-lens clustering,
and magnification bias. The first is due to the fact that we cannot
directly observe the shear field, but rather we observe the reduced
shear (equation 11). Source-lens clustering is due to the correlation
between source galaxies and lensing potentials along the line of
sight. The convergence field traces the integrated density contrast up
to the position where the sources are detected. Since we estimate the
convergence field from an ensemble of sources at different redshifts,
and the source galaxies are not uniformly distributed along the line
of sight, this affects the estimated convergence values. The effect
is enhanced in case of broad redshift distributions. We note that
fluctuations in the density field are also caused by magnification
effects (magnification bias).

The simulation set-up of the tests shown in Section 4.2 did not
include such higher order effects. In order to include the reduced
shear contribution, we start from equation (11) and note that in the
weak lensing limit 1/(1 − κ) ∼ 1 + κ . It follows that the observed
shear has an additional contribution that can be modelled as

γobs → γ (1 + κ). (38)

Source-lens clustering and magnification effects can be modelled by
accounting for the effect of the density fluctuations along the line of
sight when estimating the shear field

γobs → γ (1 + δobs), (39)

where the δobs ≡ 1 − Nobs/〈N〉 is the estimated density contrast (Nobs

is the number of galaxies along the line of sight and 〈N〉 is the
average number of galaxies). The fluctuations in the density field
are due to source galaxies overdensities and lensing magnification
effects. Lensing magnification enhances the flux of galaxies and this
can locally increase the number density, as more galaxies pass the
selection cuts/detection threshold of the sample; at the same time,
the same volume of space appears to cover a different solid angle
on the sky, causing the observed number density to decrease. At
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first order, the impact of source galaxies overdensities and lensing
magnification effects can be modelled as

δobs = δgal + qκ, (40)

with q expected to be of order unity (see Schmidt et al. 2009 for an
approximate description of the term q). Summing up equations (38)
and (39)

γobs = γ [1 + δgal + (1 + q)κ]. (41)

Reduced shear contributes as ≈1 + κ , magnification effects as ≈1
+ qκ , lens-source clustering as ≈1 + δgal. To test the impact of these
effects, we used the T17 simulations. Using the full-sky spherical
harmonics approach laid out in Section 2.1, we generated for every
redshift layer of the simulations: (1) shear field γ distributions
starting from the convergence maps κ; (2) shear field distributions
with 1 + κ and 1 + δgal contributions (equations 38 and 39); (3)
density contrast field distributions 1 + δobs. We then stacked the
redshift layers together according to the redshift distributions of the
WL tomographic bins, and generated the following maps:

〈γ 〉pix(θ ) ≈
∫

dzn(z)γ (z, θ )∫
dzn(z)

, (42)

〈γ 〉RS
pix(θ ) ≈

∫
dzn(z)(1 + κ(z, θ ))γ (z, θ )∫

dzn(z)
, (43)

〈γ 〉SL
pix(θ ) ≈

∫
dzn(z)(1 + δ(z, θ ))γ (z, θ )∫

dzn(z)(1 + δ(z, θ ))
. (44)

Equations (42), (43) and (44) are, respectively, the shear fields with
no non-linear lensing corrections, with reduced-shear contributions,
and source-lens clustering. As for the latter, we divided by the
integrated density field to mimic the map making process, where each
pixel contains the average of the shear field along the line of sight.

The impact of such corrections on E modes is shown in Fig. 4.
We estimated the moments from a full-sky, noise-free realization
of the simulation. For the reduced shear and source-lens clustering,
we considered as a ‘theory’ the moments estimated from the same
realization of the simulations using equation (42) to estimate the
shear field. We do not show error bars for the moments measurement
as we expect them to be much smaller than DES Y3 uncertainties.2

We also do not show magnification effects as they are of the same
order as the reduced-shear correction (assuming q of the order of
unity). We find that these non-linear lensing corrections are much
smaller then DES Y3 uncertainties and sub-dominant with respect to
baryonic effects. We checked that the small bias due to source-lens
clustering at very large scales of the third moments does not affect
the cosmological analysis (at very large scales, the signal to noise
for the third moments is much smaller than 1, thus, a 5 per cent bias
on the signal does not bias the cosmological constraints).

5 C OVA R I A N C E A N D L I K E L I H O O D

5.1 Covariance estimation

To correctly infer cosmological parameters from our data, we need
an accurate estimate of the measurement uncertainty. We estimate

2First, since we are considering the full sky, we expect the covariance of
the moments measurement to be roughly ≈8 times smaller. Secondly, as we
are using the moments of the same realization with no non-linear lensing
corrections as the ‘theory’, we can expect the measurements to be highly
correlated, and the uncertainties in their ratio should be very small as cosmic
variance would cancel.

Figure 5. Measured correlation matrix of second and third moments from
1000 FLASK simulations (lower right triangle) and from 100 T17 simulations
(upper left triangle). A 24 h−1 Mpc scale cut has been applied.

the covariance from 1000 independent realizations of the FLASK

simulation. For each FLASK realization, we measure the second and
third moments of the smoothed convergence field as explained in
Section 4.1. We then build our covariance matrix as

Ĉ = 1

ν

Ns∑
i=1

(d̂i − d̂)(d̂i − d̂)
T
, (45)

where ν = Ns − 1 with Ns the number of realizations, d̂i the data
vector measured in the i-th simulation and d̂ the sample mean. The
data vector is made of a combination of second and third moments
as measured at different smoothing scales.

Within single realizations, variations in the measured moments
among different simulations are mostly due to two different contri-
butions: (1) a combination of galaxy intrinsic shape and measurement
noise, or ‘shape noise’, and (2) the cosmic density field inside
the DES Y3 footprint is a random realization of the underlying
cosmology, or ‘cosmic variance’. For third moments, we also include
in our covariance a ‘modelling uncertainty’ related to the analytical
fitting formulae describing the third moments at small scales. To
this aim, we add to the diagonal part of the covariance the difference
between SC01 and GM12 squared (this approach is similar to the one
adopted by Simon et al. 2015, who included a 20 per cent r.m.s in the
covariance to take into account small-scale modelling uncertainties in
the bispectrum). We note that for the scale cuts used in this analysis,
the contribution of such modelling uncertainty to the error budget is
small (see Fig. 6 and Appendix A2).

The measured correlation matrix is shown in Fig. 5. The matrix was
obtained using equation (45) and selecting the data vector elements
passing a 24 h−1 Mpc scale cut (we selected the scales θ0 such that
θ0 > R0/χ (〈z〉), where χ (〈z〉) is the comoving distance of the mean
redshift of a given tomographic bin and R0 = 24 h−1 Mpc). Values
at different smoothing scales for the same moment are highly corre-
lated. Fig. 5 also shows that second and third moments are not very
correlated. This is mostly due to shape noise and third moment mod-
elling uncertainties at small scales that wash out existing correlations.

The values of the diagonal elements of the covariance matrix,
relative to values of their data vector entries, are shown in Fig. 6,
for both FLASK and T17 simulations. We also show the errors due
to the finite number of simulation realizations. One can see that for
both second and third moments the intermediate scales are the ones
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Cosmology with mass maps moments 4071

Figure 6. Diagonal elements of the covariance of the second and third moments estimated from FLASK simulations. The x-axis shows the corresponding data
vector entries. We show separate contributions due to shape noise and cosmic variance. For the third moments, we also show the modelling uncertainties related
to the small scales analytical fitting formulae. For comparison, we also show the covariance estimated from the T17 simulations. For the total covariance, we
show uncertainty due to the finite number of simulation realizations. The shaded regions represent the scales excluded in the cosmological analysis (a 24 h−1

Mpc scale cut has been applied).

with better signal to noise, and that in general second moments have
a much better signal to noise than third moments.

The sample variance part of the covariance is cosmology de-
pendent and dominates at large scales. We do not expect this
cosmological dependence to significantly impact the recovery of
cosmological parameters (see discussion in Section 6.1). We also
note here that the lognormal approximation assumed by FLASK needs
to be checked for the sample variance part of the covariance for
third moments. However, the scales dominated by sample variance
have a smaller signal to noise for the third moments; moreover,
despite FLASK limitations, Fig. 6 shows that the FLASK and T17
covariances agree within uncertainties. In Appendix C, we provide
further evidence that the uncertainties in the modelling of the third
moments covariance have little effect on the cosmological inference.

We therefore decided to rely on FLASK simulations to build
our fiducial covariance because the cosmological parameters can be
easily changed and we can produce a large number of simulations.
The T17 simulations have a fixed cosmology, and, above all, are
limited in numbers, causing the inverse of the covariance matrix to
be extremely noisy (and biased, see e.g. Hartlap, Simon & Schneider
2007). However, in the next section we show an implementation of
a data-compression algorithm that greatly reduces the size of the
data vector (and the noise in the covariance due to the paucity of
simulations). The data compression algorithm is implemented in our
fiducial analysis and in principle allows us to run our cosmological
pipeline also using the T17 covariance (although it will still be
noisier than the FLASK covariance). While we still use FLASK as
our fiducial covariance, we show in Appendix C that the differences
in the recovered cosmological parameters between using the T17
covariance (in combination with the data compression algorithm) or
FLASK covariance are small.

5.2 Data compression

To reduce the noise in our covariance matrix estimated from FLASK

mocks, we implement the MOPED data-compression algorithm

(Tegmark, Taylor & Heavens 1997; Heavens, Jimenez & Lahav 2000;
Gualdi et al. 2018). We follow Heavens et al. (2000) and include a
data-compression scheme based on the Karhuned–Loève algorithm.
The algorithm works by assigning weights to each element of the
data vector that are proportional to the sensitivity of the element to
the variation of a given model parameter. In such a way, it is possible
to reduce the dimension of the data vector to the number of model
parameters considered. The compressed data vector can be written as

d
compr
i = 〈d〉T,i Ĉ−1d ≡ bid, (46)

where d is the full-length data vector, Ĉ is the measurement covari-
ance and d

compr
i is the i-th element of the compressed data vector. The

index i refers to the i-th model parameter p considered, and 〈d〉T
,i is

the derivative of the model data vector with respect to that parameter.
The above equation assumes that the dependence of the covariance

on cosmological parameters is mild (∂ln C/∂ln pi � 1). While being
reasonable, we do not explicitly check the latter assumption as
it would require producing many covariance matricies, which is
computationally expensive. We also note that for the compression
algorithm to be lossless, the likelihood of the non-compressed data
vector must be Gaussian. We check this in Appendix C, and we show
that the uncompressed data vector shows only mild deviations from
Gaussianity. We note, however, that we expect the compressed data
vector to have a more Gaussian distribution, due to the central limit
theorem (Heavens et al. 2017). We show this in Section 6.1.

In general, if one or more assumptions underlying the data-
compression algorithm are violated, we can expect the compression
to be not optimal. In this case, the credible regions would be larger
than they could be (Heavens et al. 2017; Alsing, Wandelt & Feeney
2018), but the parameter inference would still be valid.

To implement the algorithm described in equation (46), we use
the FLASK covariance, and we estimate the derivative of the data
vector using a five-point stencil derivative centred on the true value
of the simulation parameters. As model parameters we use the five
cosmological parameters and all the nuisance parameters described in
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4072 M. Gatti et al.

Section 2.2.2. The compressed covariance can be easily obtained as

Ĉ
compr
ij = bT

i Ĉbj . (47)

We defer the validation of the compression algorithm to Appendix C,
where we compare the posterior distributions obtained with and
without the data-compression algorithm. In general, we find smaller
contours for the chains run with the compressed data vector, as
expected by the lower noise in the covariance (we explain how we
deal with the noise in the covariance in the next section).

5.3 Data vector and likelihood

The final data vector includes all the ‘auto’ moments of different
tomographic bins (e.g. [1, 1], [1, 1, 1], [2, 2], and [2, 2, 2]) and the
‘cross’ moments (e.g. [1, 2], [1, 1, 2], and [1, 2, 2]), for a total of
10 combinations for second moments and 20 combinations for third
moments. The full data vector is shown in Appendix D. The scale
cuts are discussed in the next section.

We evaluate the posterior of the parameters conditional on the data
by assuming a Gaussian likelihood for the data, i.e.

− 2 ln L = f2f1[d̂ − M(p)]Ĉ−1[d̂ − M(p)]T (48)

(see Section 6.1 for an investigation of this assumption). Here, M(p)
is our theoretical model, d̂ is the data vector, and Ĉ−1 is the inverse
of our covariance estimate. The posterior is then the product of the
likelihood and the priors. Note that the quantities M(p), d̂, and Ĉ−1

in equation (48) are to be considered compressed quantities, and we
have dropped the superscript ‘compr’ for brevity. The terms f1 and f2

account for noise introduced when the covariance matrix is estimated
from random realizations of the data. Even if a covariance estimate
Ĉ from Nsims random realizations is an unbiased estimate of the true
covariance of the data, its inverse Ĉ−1 is only a biased estimate of
the true precision matrix C−1 (Hartlap et al. 2007). This bias can be
corrected with the multiplicative factor

f1 = Nsims − Ndata − 2

Nsims − 1
, (49)

where in our case the number of independent realizations used to
estimate the covariance is Nsims = 1000, and Ndata is the length of
the data vector. Note that this is just an approximate treatment of
the noise in the covariance matrix, since the data likelihood depends
on the precision matrix in a non-linear way. Sellentin & Heavens
(2016) have devised a more accurate treatment, taking into account
the impact of the covariance estimation noise on the entire likelihood.
We investigate their alternative likelihood in Appendix C and find
that after our data compression it has a negligible effect.

There is a second – and often more severe – problem in estimating
the likelihood of data from a finite number of random realizations
that is not solved by the likelihood of Sellentin & Heavens (2016).
This problem is that the noise in a covariance estimate does not
just change the width of parameter contours but also their location
(Dodelson & Schneider 2013, see also fig. 1 in Friedrich & Eifler
2018 for a simple demonstration of the effect). An approximate way
to take this into account is to multiply our loglikelihood by

f2 =
[

1 + (Ndata − Npar)(Nsims − Ndata − 2)

(Nsims − Ndata − 1)(Nsims − Ndata − 4)

]−1

. (50)

This correction (dubbed Dodelson–Schneider-factor by Friedrich &
Eifler 2018) assumes the model to be linear in all the parameters
and widens the contours to encompass the additional noise in the
parameter estimates (Dodelson & Schneider 2013). We note that as

the data-compression greatly reduces the length of the data vectors,
f1 and f2 become close to 1.

To sample the posteriors of our parameters, we generate Monte
Carlo Markov chain (MCMC) samples that map out the posterior
space leading to parameter constraints. To this aim, we use the
public software package EMCEE (Foreman-Mackey et al. 2013),
which is an affine-invariant ensemble sampler for MCMC. To test
the convergence of our MCMC chains, we adopted the Gelman &
Rubin (1992) test.

For the cosmological parameters, we assume a flat �CDM cos-
mology and vary five parameters: �m, σ 8, �b (the baryonic density
in units of the critical density), ns (the spectral index of primordial
density fluctuations), and h (the dimensionless Hubble parameter).
We assume wide flat priors on �m and σ 8 and adopt the informative
priors in h, ns, and �b that that were used in the DES Y1 two-point
function analysis (see Table 1). When constraining cosmological
parameters, we marginalize over nuisance parameters describing
mean photo-z uncertainties, multiplicative shear biases and IA effects
in our measurements. The modelling of our nuisance parameters is
described in Section 2.2.2. As at the time of finishing this work,
the DES Y3 priors were not finalized yet, so we again assume DES
Y1 priors for all the nuisance parameters (priors are summarized
in Table 1). Photo-z uncertainties are parametrized by a shift in the
mean of the distribution (one for each tomographic bin). Priors for
the shifts come from redshift distributions of a matched sample of
galaxies in the COSMOS survey and angular cross-correlation with
redMaGiC galaxies (Hoyle et al. 2018). Multiplicative shear bias
priors are described in Zuntz et al. (2018). We also assume wide flat
priors for intrinsic alignment.

Due to the fact that the theory predictions described in Section 2.2
can be quite time consuming to compute due to the large number of
cross-correlations and integrations involved, we further implemented
an emulator (Heitmann et al. 2006; Habib et al. 2007) to speed up
the calculations. In our implementation, the emulator provides fast
theoretical predictions by interpolating over a number of predictions
computed at some training points spanning the parameter space
of interest. In particular, the training of our emulator requires to
interpolate over 500 training points, and it provides fast theoretical
predictions as a function of five different (cosmological) parameters.
The speedup stems from the fact that the time-consuming part of
the calculation is substituted by an interpolation over few training
points. The speedup achieved by using the emulator is of two orders
of magnitudes, with a negligible impact on the accuracy of the
theoretical predictions. We note that emulators are often implemented
when N-body simulations are used to model the data vector (e.g.
Knabenhans et al. 2019) due to the impracticability of producing a
simulation for every point of the parameter space. In our case, even
if we do not directly use any N-body simulation to model the data
vector, we take advantage of the computational speed up provided
by the emulation of our own theoretical model. More details are
provided in Appendix E.

6 C O S M O L O G I C A L C O N S T R A I N T S FRO M
M O M E N T S O F TH E C O N V E R G E N C E F I E L D

6.1 Fiducial scale cuts

The last analysis choice to make before presenting the final cos-
mological constraints of the second and third moments of the
convergence field is which scales are to be used for the analysis. The
scale cuts we use are determined based on two tests. First, we check
that our theoretical modelling is adequate to describe the data vectors

MNRAS 498, 4060–4087 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/3/4060/5902403 by U
C

L, London user on 08 D
ecem

ber 2020



Cosmology with mass maps moments 4073

Figure 7. The 1σ marginalized constraints on cosmological parameters for a number of different scale cuts. In the upper plot, the average of 100 T17 simulations
has been used as the data vector. In the lower plot, the constraints are obtained by using a theory data vector contaminated with the OWLS AGN power spectrum.
Data points represent the mean of the 1D marginalized posterior, while for the confidence interval we show the two-tail symmetric intervals. The vertical dashed
lines in the first three columns represent the input values of cosmological parameters. The column �χ2 represents the χ2 of the data vector contaminated with
baryonic effects or from the average of T17 sims with respect to a theory data vector. The χ2 best-fitting column represents the χ2 of the best-fitting cosmology
from the MCMC chain. The vertical line in the last column marks the χ2 = 1.6 boundary.

as obtained from the average of many N-body simulations from T17.
Secondly, we check that the impact of baryons on our data vector is
not significant. We recall that we adopt a strategy to mitigate baryonic
effects which aims at excluding the scales potentially affected by
baryonic feedback, without trying to model such effects. For both
tests, we run MCMC chains for different combinations of scale cuts.
For the former test, we use a data vector from T17 simulations; for
the latter, we use a baryons-contaminated data vector (obtained using
the outputs of the OWLS simulation, as explained in Section 4.3),
which should represent a reasonable upper limit to the magnitude of
baryonic feedback effects in real data. We vary the scales under study
and we require the resulting constraints on cosmological parameters
not to be biased against the truth, to check our modelling is adequate
for the range of scales considered.

For a combination of scales to be acceptable, we require the mean
of the marginalized 1D posterior of �m, S8 = σ 8(�m/0.3)0.5 to be
within 0.3σ of the values obtained with a ‘theory’ data vector. As we
partially constrain ns, we also require the posterior of ns to be within
0.5σ of the baseline value.

We also adopt a second criterion on the χ2 of the best-fitting
cosmology. When analysing the data, the best-fitting χ2 is used for
hypothesis testing and as a proxy of the adequacy of the data vector
modelling. A bad best-fitting χ2 implies that either our covariance or
the parametrization of the data vector is not adequate to describe the
measurement. Since we do not model baryonic effects or the small

discrepancies between our theoretical predictions and the data vector
from T17 simulations, we should expect the best-fitting χ2 from the
data to be biased. By adopting a criteria on the χ2 of the best-fitting
cosmology of the contaminated data vector we make sure the biases
from these two effects are small. In particular, we require the χ2 of the
best-fitting cosmology obtained from a contaminated data vector to
be within 0.3 of the expected spread of the χ2 distribution. Therefore,
since the length of the compressed data vector is 15, we require the
best-fitting χ2 < 1.6. Ideally, for negligible contamination we expect
a best-fitting χ2 = 0, as we are using a theory data vector as a
baseline (whereas using a noisy data vector would give, on average,
χ2 ∼ d.o.f.). We note that in what follows we never consider the
reduced χ2, but only the χ2 statistics; the reported χ2 might seem
small due to the small number of d.o.f (due to data compression) and
due to the lack of measurement noise in the input data vectors.

In this section, scale cuts are expressed in terms of a specific
comoving scale R0; the relation with the smoothing scale θ0 is given
by θ0 = R0/χ (〈z〉), where χ (〈z〉) is the comoving distance of the mean
redshift of a given tomographic bin. In the case of moments from
different tomographic bins, we took the average of the 〈z〉 of the bins.

The tests run on the data vectors obtained from the average of
the T17 simulations are shown in the upper plot of Fig. 7. As we
estimated the bias in the cosmological parameters induced by the
emulator in Appendix E, we re-scaled the measured data vector
by the ratio between an emulated theory data vector and a non-
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4074 M. Gatti et al.

Figure 8. Top panels: residuals (i.e. the difference between the measurement signal in a FLASK simulation and the simulations mean value) of individual data
points in units of their expected standard deviation for a compressed data vector. We compare to a Gaussian with zero mean and unit standard deviation. Bottom
panels: Distribution of the χ2 of each realization of the FLASK simulations, compared to a theoretical χ2 distribution.

approximated one predicted at the T17 cosmology. This assumes the
emulator uncertainties propagate linearly to the data vector; this is
justified as at the T17 cosmology the emulator accuracy is below
the per cent level.

There are different known reasons why the data vector from the
average of T17 might differ from our theoretical predictions: inac-
curacies of the simulations or in the modelling of the third moments
at small scales (Sections 3 and 4.2), inaccuracies in accounting for
mask effects (Section 4.1), inaccuracies in the covariance modelling
(Section 5.1), etc. In the past sections, we showed (or discussed) these
differences to be small at the level of the data vector, but here we
want to assess the impact on the cosmological parameters posteriors.

Fig. 7 shows the marginalized 1D posterior for three out of five
cosmological parameters under study. We do not show constraints for
�b and h100 because the posteriors are heavily prior dominated. For
each parameter, we show the mean of the posterior and the symmetric
1σ confidence interval. We note that ns is mildly constrained and its
posterior is partially dominated by the prior (which is assumed to be
flat with ns ∈ [0.87, 1.07]; see Table 1). The constraints from second
moments and from the combination of second and third moments are
close to the input cosmology, and pass our 0.3σ criteria at all scales.
We note that the values of �m from the third moments are biased.
This is due to the fact that the posterior is strongly asymmetric. We
checked that the posterior of a theory data vector shows the same
level of shifts in the mean value of �m for the third moments, and
the difference with respect to the results from the T17 data vector are
much smaller than 0.3σ .

In Fig. 7, we show both the difference �χ2 of the T17 data vector
and the theory data vector, and the χ2 of the best-fitting cosmology.
The former quantity gives a rough idea of the discrepancy of the
data vector with respect to the truth: a variation of �χ2 = 1 could,
in the worst case possible, cause a 1σ shift in the marginalized 1D
posterior of one of the parameters probed. Usually the difference is
absorbed and shared across all the parameters probed (and this is the
case). The values of best-fitting χ2 for the T17 data vectors also pass
our 0.3σ criteria, being always χ2 < 1.6.

We next test the impact of baryonic effects, by contaminating a
theory data vector with the effects from the OWLS AGN simulation,

as described in Section 4.3. The results are shown in the lower
panel of Fig. 7. The impact on the data vector from baryons is more
pronounced than from the T17 data vector, as shown by the larger
�χ2 values, and it is more important at small scales. This translates
in a bias in ns at small scales. Second moments pass our scale cuts
criteria starting from 20 h−1 Mpc, while the combination of second
and third moments from 24 h−1 Mpc. As for the third moments,
they pass our criteria at all the scales probed here (similarly to the
T17 data vector test, the values of the mean of the �m posteriors
show a negligible shift with respect to the values obtained using
a theory data vector). At all scales and for the combinations of
second and third moments, our criteria on the best-fitting χ2 is
passed.

We note that we performed these tests adopting a FLASK covari-
ance, which has a slightly different cosmology with respect to the T17
data vector. This, however, did not significantly bias our posteriors,
as shown in the upper panel of Fig. 7.

Based on these tests, we adopt the following fiducial scale cuts:
20 h−1 Mpc as a minimum smoothing scale for second moments,
12 h−1 Mpc for third moments, and 24 h−1 Mpc when second
and third moments are combined. We note that the scale 24 h−1

Mpc translates into a cut at ≈33 (8) arcmin for the first (fourth)
tomographic bin, while 12 h−1 Mpc translates into a cut at ≈16
(4) arcmin for the first (fourth) tomographic bin. As there is no
significant information below twice the pixel size (i.e. <7 arcmin)
and most of the constraining power comes from the two high redshift
tomographic bins, we have not considered scales smaller than 12 h−1

Mpc in the above tests.
With the final scale cuts determined, we perform extra checks on

the covariance and data vector. We checked that the mean χ2 of
the 1000 FLASK realizations agreed within errors with the number
of degree of freedom of our data vector. The distributions of the
measured χ2 are shown in the bottom panels of Fig. 8. We also
verified that the distribution of the residuals (i.e. the difference
between the measurement signal in a FLASK simulation and the
simulations mean value) for each entry of our data vector followed
a Gaussian distribution. This is shown in the top panels of Fig. 8.
We note that the data-compression algorithm surely helps in giving
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Cosmology with mass maps moments 4075

Figure 9. Cosmological parameter posteriors obtained from the simulated likelihood analysis. We marginalize over nuisance parameters as explained in
Section 5.3. We show constraints from second moments, third moments, and second and third moments combined, along with constraints from a shear two-point
correlation function analysis.

the compressed data a more Gaussian distribution, due to the central
limit theorem (Heavens et al. 2017).

6.2 Simulated likelihood analysis

We simulate a DES Y3 likelihood analysis and show the expected
constraints for DES Y3 in Fig. 9, for five cosmological parameters.
All the tests shown in this section use a theory data vector that
includes all the ‘auto’ moments of different tomographic bins (e.g.
[1,1], [1,1,1], [2,2], [2,2,2]) and the ‘cross’ moments (e.g. [1,2],
[1,1,2], [1,2,2]), for a total of 10 combinations for second moments
and 20 combinations for third moments. The fiducial scale cuts
determined in the previous section have been adopted (20 h−1

Mpc for second moments, 12 h−1 Mpc for third moments, and 24
h−1 Mpc when second and third moments are combined). For the
data vector, a fiducial T17 cosmology is assumed, with nuisance
and astrophysical parameters (photo-z biases, multiplicative shear
biases, intrinsic alignment IA) assumed to be null, and no baryonic
contamination. We adopted the FLASK covariance described in
Section 5.1, and compressed our data vector following Section 5.2.
When estimating parameters posterior, we further marginalize over
nuisance parameters as explained in Section 2.2.

As we commented in the previous section, second and third
moments mostly constrain �m and σ 8, while ns is partially affected
by the prior and h100 and �b are prior dominated. In general,

third moments are less constraining than second moments; how-
ever, they contain additional non-Gaussian information and they
have a slightly different degeneration axis in the �m–σ 8 plane
compared to second moments. This helps breaking the degeneracy
when the two are combined, delivering tighter constraints. This
is also shown in Fig. 10, where we show results in the �m–S8

plane.
We report in Table 2 the constraining power of moments for �m, S8,

and ns; the level of improvement when the moments are combined
(quantified as the ratio between predicted confidence intervals) is
reported in Table 3. Secondly, third moments and their combination
constrain �m to 17 per cent, 66 per cent, and 10 per cent, respectively,
and S8 to 1.8 per cent, 3.6 per cent, and 1.5 per cent, respectively.
These particular values are obtained specifically for DES Y3 and
depend on the particular scales and the noise properties of the sample
considered.

We also show in Table 3 how much we expect to improve our
constraints when moving to the final DES release, which will include
all the data from the 5 yr (Y5) of observations. This is quantified
in terms of the ratio between predicted confidence intervals. The
values have been obtained by assuming the expected DES Y5 number
density (which should roughly double DES Y3 one) and the same
DES Y3 scale cuts and tomographic binning. We did not take into
account the possibility of having more than four tomographic bins,
which would be possible having a deeper sample. In general, we
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Figure 10. Same as Fig. 9, but now a zoomed in version of the S8–σ 8–�m

plane.

Table 2. DES Y3/Y5 simulated likelihood analysis comparison. Fractional
accuracy (1σ marginalized posterior confidence intervals over input value)
for �m, S8, and ns. DES Y5 constraints are obtained with the expected DES
Y5 number density and DES Y3 scale cuts and tomographic binning.

�m S8 ns

2 moments (Y3) 17 per cent 1.8 per cent 6.9 per cent
3 moments (Y3) 66 per cent 3.6 per cent 7.9 per cent
2 + 3 moments (Y3) 10 per cent 1.5 per cent 6.5 per cent
2pt function (Y3) 12 per cent 1.8 per cent 6.4 per cent

2 moments (Y5) 14 per cent 1.5 per cent 6.0 per cent
3 moments (Y5) 48 per cent 2.8 per cent 7.9 per cent
2 + 3 moments (Y5) 8 per cent 1.4 per cent 5.7 per cent

Table 3. DES Y3/Y5 simulated likelihood analysis comparison. We show
the ratio between the 1σ marginalized posterior confidence intervals for �m,
S8, and ns for a number of cases (a value of <1 indicates improvement). DES
Y5 contraints are obtained with the expected DES Y5 number density and
the same DES Y3 scale cuts and tomographic binning.

�m S8 ns

(ratio) (ratio) (ratio)

2 (Y3) → 2 + 3 (Y3) 0.57 0.79 0.97
2 (Y5) → 2 + 3 (Y5) 0.58 0.89 1.01
2 (Y3) → 2 (Y5) 0.85 0.86 0.83
3 (Y3) → 3 (Y5) 0.78 0.80 0.99
2 + 3 (Y3) → 2 + 3 (Y5) 0.87 0.97 0.89

can expect to further improve our constraints by 10–20 per cent with
respect to DES Y3.

We overlay in Figs 9 and 10, the expected posteriors from the
DES Y3 shear two-point correlation function analysis. Such analysis
includes the same combination of tomographic bins considered in
the analysis of second moments ([1,1], [2,2], [1,2], .., for a total of
10 combinations). Scale cuts for the two-point correlation function

analysis have been chosen by contaminating a shear two-point data
vector with the effect of baryons and looking at the bias in the
parameters’ posteriors, in a fashion similar to what has been done in
Section 6.1. The minimum angular scale depends on the particular
pair of tomographic bins and whether we are considering ξ+ or ξ−.
In particular, the minimum scales considered for ξ+ are 10, 10, 10,
10, 10, 8, 8, 6, 4, and 4 arcmin, whereas the minimum scales for ξ−
are 170, 170, 120, 120, 120, 90, 90, 72, 72, and 72 arcmin for the
tomographic bin pairs [1, 1], [1, 2], [1, 3], [1, 4], [2, 2], [2, 3], [2, 4],
[3, 3], [3, 4], and [4, 4]. The minimum scales considered for ξ− are
substantially larger due to the fact that ξ− probes higher multipoles in
harmonic space compared to ξ+ and it is more affected by baryonic
effects. We note that it is difficult to directly compare these scales to
the minimum smoothing scales considered for the moments analysis,
as these statistics probe scales differently.

The measurement covariance has been obtained using jackknife
resampling and a fiducial DES Y3 simulation (DeRose et al. 2019).
The shear two-point analysis delivers slightly tighter posteriors than
second moments alone, but is less constraining than the combination
of second and third moments. Indeed, we find it to constrain �m and
S8 at the level of 12 per cent and 1.8 per cent; the combined second
and third moments result is 20 per cent more constraining. Without
measuring the cross-covariance between moments and shear two-
point correlation function, it is hard to quantitatively explain why the
latter is more constraining than second moments alone. One reason
could be that they have access to the same information (the power
spectrum), but they probe scales differently (the two-point correlation
function is more localized in harmonic space, whereas moments get
contributions from a broader range of multipoles, being prone to
baryonic effects at all smoothing scales). A different sensitivity to the
effects that drives the scale selection can limit the constraining power
of a probe compared to others (see e.g. Asgari et al. 2019). More in
general, a different sensitivity to angular scales might cause different
observables to be only weakly correlated, even if they belong to the
same category of two-point statistics (see e.g. Hamana et al. 2019).
Future works will investigate further the correlation between two-
point correlation function and second and third moments.

One relevant feature that can be observed from Figs 9 and 10, is
that shear two-point correlation function has a similar degeneracy
direction compared to second moments only. Combining shear two-
point correlation function with any other probes sensitive to the
bispectrum (such as the third moments) is likely to significantly
improve the constraints due to the different degeneracy direction of
their constraints.

7 SU M M A RY

In this paper, we have presented a simulated cosmology analysis
using the second and third moments of the weak lensing mass
(convergence) maps. We targeted the analysis at the 3 yr (Y3) data
from the DES, but the methods developed here are general and can
be applied to other data sets. The goal of this paper was to describe
and validate the methodology using simulations, determining the
lower bounds on scales where systematic or modelling uncertainties
are not expected to affect the cosmological analysis. A companion
paper, applying the methodology to DES Y3 data, together with ob-
servational systematic checks (e.g. potential systematic effects such
as modelling errors in the point spread function, inhomogeneities
in the noise, and spurious dependencies of shear with observing
conditions) and consistency checks with the results from other DES
Y3 probes and external data sets, will follow.
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The second moment of the convergence as a function of smoothing
scale contains similar information as the standard two-point shear
correlations. The third moment, or the skewness, contains additional
non-Gaussian information of the field. We described how the con-
vergence maps are constructed starting from the shear catalogue
using a full-sky Kaiser–Squires (Kaiser & Squires 1993; Chang et al.
2018) formalism. We obtain analytical predictions for the second and
third moments using perturbation theory. We included the effects of
partial sky coverage in the theoretical modelling of the moments
using the pseudo-C� formalism. We validated the modelling of the
convergence moments using a large suite of simulations, including
the effects of the survey mask and non-linear lensing corrections
(such as reduced-shear and source crowding). We used the same
simulations to estimate the covariance. We furthermore showed how
the computation of theoretical predictions can be sped up without
introducing biases in the cosmological analysis by implementing a
5-parameter emulator.

We tested our pipeline through simulated likelihood analyses
varying five cosmological parameters (�m, σ 8, ns, �b, and h100)
and 10 nuisance parameters (modelling redshift uncertainties, shear
biases, and intrinsic alignments). We determined the scale cuts based
on the impact of baryonic physics and modelling inaccuracies of the
third moments at small scales.

We then simulated the constraints achievable with a DES Y3
analysis. We found that second moments, third moments, and their
combination constrain �m to 17 per cent, 66 per cent, and 10 per cent,
respectively, and S8 to 1.8 per cent, 3.6 per cent, and 1.5 per cent,
respectively. The combination of second and third moments provides
improved constraints with respect to second moments due to the
extra non-Gaussian information probed by the third moments and
the different inclination of the degeneracy axis in the σ 8–�m plane
of the two probes. For DES Y5, where we expect to have a data set
with higher galaxy density, we forecast a further improvement in the
constraining power at the level of 10–20 per cent.

We also compared with a simulated shear two-point analysis for
DES Y3, which yields constraints at the level of 12 per cent and
1.8 per cent for �m and S8. The combined second and third moments
result is about 20 per cent more constraining. This analysis shows
the importance of including in the analysis probes of higher order
statistics to improve the cosmological constraints.
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APPEN D IX A : SKEWNESS PARAMETER

A1 Skewness derivation using perturbation theory

In perturbation theory, the Fourier space equations of motion for the
matter density contrast δ and the divergence of the velocity field θ =
∇v are (Bernardeau et al. 2002)

∂δ(k, τ )

∂τ
+ θ (k, τ )

= −
∫

d3k1d3k2δD(k − k12), α(k1, k2)δ(k1, τ )θ (k2, τ )

≡ α[δ, θ, k], (A1)

∂θ (k, τ )

∂τ
+ Hθ (k, τ ) + 3�mH 2

0

2a
δ(k, τ )

= −
∫

d3k1d3k2δD(k − k12), β(k1, k2)θ (k1, τ )θ (k2, τ )

≡ β[δ, θ, k], (A2)

with τ being the conformal time, a the scale factor, H = d
dτ

ln a,
k12 = k1 + k2 and α and β defined by

α(k1, k2) = 1 + 1

2

k1k2

k1k2

(
k1

k2
+ k2

k1

)
, (A3)

β(k1, k2) = 1

2

k1k2

k1k2

(
k1

k2
+ k2

k1

)
+ (k1k2)2

k2
1k

2
2

. (A4)

The matter density contrast and the divergence of the velocity field
can be expanded as

δ(k, τ ) =
∑
n=1

δn(k, τ ), (A5)

θ (k, τ ) = −∂lnD+(τ )

∂τ

∑
n=1

θn(k, τ ), (A6)

Table A1. Values of the coefficients for the fitting formula described in
equations (A14), (A15), and (A16) from SC01 and GM12.

Coefficient SC01 GM12

α1 0.25 0.484
α2 3.5 3.740
α3 2 − 0.849
α4 1 0.392
α5 2 1.013
α6 −0.2 − 0.575
α7 1 0.128
α8 0 − 0.722
α9 0 − 0.926

where n indicates the order at which the fields are approximated and
D+ is the linear growth factor. At linear order, δ1(k, τ ) = θ1(k, τ ) =
D+(τ )δ1(k).

At second order, the Fourier equations of motion are solved by

δ2(k, τ ) = D2
+(τ )α[δ1, δ1, k] + D2(τ )(β[δ1, δ1, k] − α[δ1, δ1, k]),

(A7)

with D2 the solution of the following differential equation:

∂2D2(τ )

∂2τ
+ H

∂D2(τ )

∂τ
− 3�mH 2

0

2a
D2(τ ) =

(
∂D+(τ )

∂τ

)2

(A8)

Lastly, we define the following quantity μ, as it will enter in the
modelling of the third moment:

μ ≡ 1 − D2/D
2
+. (A9)

At leading order in perturbation theory, one can compute the
variance of the dark matter density field smoothed by a top hat
filter as〈
δ2
θ0,lin

〉
(τ ) = 1

2π

∫
dkkW (k, θ0)2Plin(k, τ ); (A10)

while the skewness will be described by the following equation:

〈
δ3
θ0,lin

〉
(τ ) = 6

(2π)3

∫
d2k1d2k2W (k1, θ0)W (k2, θ0)W (k1 + k2, θ0)

× Plin(k1, τ ), Plin(k2, τ )F2(k1, k2, τ ), (A11)

where Plin(k, τ ) is the linear power spectrum and W(k, θ0) is the top
hat filter described in equation (13). The term F2(k1, k2, τ ) reads

F2(k1, k2, τ ) = 1

2

[(
1 + k1

k2
cosφ

)
+

(
1 + k2

k1
cosφ

)]

+ [1 − μ(τ )](cos2φ − 1), (A12)

with φ the angle between k1 and k2. We implement here a refinement
of the term F2 based on N-body simulations (while equation A12 has
been obtained, so far, exclusively relying on perturbation theory).
The refinement we are implementing here has been first obtained by
Scoccimarro & Couchman (2001; hereafter SC01) and later on by
Gil-Marı́n et al. (2012, hereafter GM12) fitting an analytical formula
to the non-linear evolution of the bispectrum based on a suite of
cold dark matter N-body simulations. Implementing such corrections,
equation (A12) becomes

F2(k1, k2, τ ) = 1

2
b1b2

[(
1 + k1

k2
cosφ

)
+

(
1 + k2

k1
cosφ

)]

+ [1 − μ(τ )]c1c2(cos2φ − 1) + [a1a2μ(τ ) − b1b2

+ [1 − μ(τ )]c1c2]. (A13)

The terms a, b, c are taken from GM12; their subscripts in the above
equations indicate if they refer to k1 or k2. In particular

a(n, k, τ ) = 1 + (σ8D+)a6 [0.7(4 − 2n)/(1 + 22n+1)]1/2(qa1)n+a2

1 + (qa1)n+a2
,

(A14)

b(n, k, τ ) = 1 + 0.2a3(n + 3)(qa7)n+3+a8

1 + (qa7)n+3.5+a8
, (A15)

c(n, k, τ ) = 1 + 4.5a4/[1.5 + (n + 3)4(qa5)n+3+a9

1 + (qa5)n+3.5+a9
. (A16)

In the above equations, n is the slope of the linear power spectrum at
scale k and q ≡ k/kNL, where kNL is the scale where non-linearities
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Figure A1. Comparison between measured third moments in T17 simulations (red line) and theoretical predictions using different modelling choices for the
small-scales regime: SC01 fitting formulae (black points), GM12 fitting formulae (green points), and the perturbation theory prediction obtained using the
non-linear power spectrum (NL, blue points). The red shaded region corresponds to the 1σ uncertainty of the measurement. The grey shaded regions indicate
the angular scales excluded in the main cosmological analysis when combining with second moments (i.e. a 24 h−1 Mpc scale cut).

start to be important and it is defined so that k3
NLP (k, τ )/2π2 = 1.

We report in Table A1, the values of the coefficients a1, ..., a9 as from
SC01 and GM12. Implementing these corrections in equation (A11)
leads to

〈
δ3
θ0,lin

〉
(τ ) = 6

(4π2)

∫
dk1dk2W (k1, θ0)W (k2, θ0)

× Plin(k1, τ ), Plin(k2, τ )
∫

dφW

×
(√

k2
1 + k2

2 + 2k1k2cosφ, θ0

)

× F2(k1, k2, φ, τ ). (A17)

The integral on the angle φ can be written as

∫
dφW

(√
k2

1 + k2
2 + 2k1k2cosφ, θ0

)
F2(k1, k2, φ, τ )

= 1

2
b1b2

∫
dφW

(√
k2

1 + k2
2 + 2k1k2cosφ, θ0

)

×
[

2 +
(

k1

k2
+ k2

k1

)
cosφ

]

+
∫

dφW

(√
k2

1 + k2
2 + 2k1k2cosφ, θ0

)

× [(1 − μ)c1c2(cos2φ − 1)]

+
∫

dφW

(√
k2

1 + k2
2 + 2k1k2cosφ, θ0

)

× [a1a2μ − b1b2 + (1 − μ)c1c2]. (A18)

For brevity, we omitted the dependence on τ in μ. The three integrals
in equation (A18) can be solved as

b1b2[2πW (k1, θ0)W (k2, θ0) + π

2

∂

∂θ0
(W (k1, θ0)W (k2, θ0))]

− c1c2[π (1 − μ)W (k1, θ0)W (k2, θ0)]

+ 2π [a1a2μ − b1b2 + (1 − μ)c1c2]W (k1, θ0)W (k2, θ0)

= π

2
b1b2

∂

∂θ0
[W (k1, θ0)W (k2, θ0)]

+π [2a1a2 − (1 − μ)c1c2]W (k1, θ0)W (k2, θ0). (A19)

After some algebra, one can express equation (A17) as

〈
δ3
θ0,lin

〉
(τ ) = 6

[∫
dkkaW (k, θ0)2Plin(k, τ )

]2

− 3

[∫
dkk(1 − μ)cW (k, θ0)2Plin(k, τ )

]2

+ 3

4

∂

∂lnθ0

[∫
dkkbW (k, θ0)2Plin(k, τ )

]2

, (A20)

〈
δ3
θ0,lin

〉
(τ ) = 3[2(

〈
δ2
θ0,lin,a

〉
(τ ))2 − (1 − μ)(

〈
δ2
θ0,lin,c

〉
(τ ))2

+ 3

2

∂
〈
δ2
θ0,lin,b

〉
(τ )

∂lnθ0
. (A21)

In the above equation, we have defined

〈
δ2
θ0,lin,X

〉
(τ ) = 1

2π

∫
dkkX(k, τ )W (k, θ0)2Plin(k, τ ), (A22)

with X that can be either a, b, or c. We finally define the reduced
skewness parameter as

S3 ≡
〈
δ3
θ0,lin

〉
(τ )[〈

δ2
θ0,lin

〉
(τ )

]2 . (A23)

The original perturbation theory result can be obtained noting that
in the limit of a, b, c → 1 we have δ2

θ0,lin,a , δ2
θ0,lin,b, δ2

θ0,lin,c → δ2
θ0,lin;

in this case, the reduced skewness parameter assumes the following
form:

S3 ≡
〈
δ3
θ0,lin

〉
(τ )[〈

δ2
θ0,lin

〉
(τ )

]2 = 3(1 + μ) + 3

2

∂ln
〈
δ2
θ0,lin

〉
(τ )

∂lnθ0
. (A24)
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Figure A2. Left-hand panel: forecast posteriors obtained assuming three different theory data vectors using different modelling choices for the third moments
small scales (the SC01 and GM12 models and the simple non-linear theory prediction). The three data vectors have been analysed assuming as true model
the SC01 model. The data vectors include second and third moments and assume the fiducial scale cut (i.e. a 24 h−1 Mpc scale cut). Central panel: same as
left-hand panel, but assuming a large scale cut (50 h−1 Mpc) for third moments. Right-hand panel: comparison between forecast posteriors obtained assuming
a theory data vector, a fiducial scale cut (24 h−1 Mpc) and including (or not including) third moments modelling uncertainties in the covariance.

The equations above for the third moments hold in the linear
regime, but they are usually extrapolated to the mild non-linear
regime using predictions of the non-linear power spectrum.

A2 Impact of different fitting formulae on the predicted third
moments

The exact value of the predicted third moments at small scales
depends on the particular fitting formulae chosen for the modelling
of the skewness parameter. We note here that there is up to a
30 per cent difference between SC01 and GM12 fitting formulae at
small scales (∼5 arcmin for the first tomographic bin). This is shown
in Fig. A1, along with the predicted third moments obtained without
implementing the small-scales refinement (i.e. assuming the standard
F2 kernel and the non-linear power spectrum). In our main analysis,
we used the fitting formulae from SC01 because they provide a better
fit to our simulations, but in order to be conservative, we included the
difference between the SC01 and GM12 models in our covariance
in order to account for the small-scales modelling uncertainty of the
skeweness. In Fig. A2 (left-hand panel), we further show the level
of bias we expect in the parameters posterior if the real Universe
followed a model different than SC01 for the third moments (which
implies the simulations we used to validate our modelling are not
accurate enough for validating third moments). For this test, we used
a theory data vector that combines second and third moments: it
includes all the ‘auto’ moments of different tomographic bins (e.g.
[1,1], [1,1,1], [2,2], [2,2,2]) and the ‘cross’ moments (e.g. [1,2],
[1,1,2], [1,2,2]) and it assumes a fiducial scale cut-off (24 h−1 Mpc).
All the other nuisance parameters have been set to their nominal
value (zero). We prepared three data vectors using the SC01, the
GM12 and the standard non-linear prediction for the third moments
(NL). The level of bias in the parameters posterior is around ∼1σ

when analysing the GM12 and NL data vector with the SC01 model.
We note that a more conservative scale cut for the third moments (50
h−1 Mpc) would strongly decrease the bias (central panel of Fig. A2).
This would also lower the constraining power of the combined second
and third moments, but the gain compared to using second moments
only would still be considerable (∼30 per cent for �m, ∼10 per cent
for S8).

Finally, the right-hand panel of Fig. A2 shows the change in
the parameters posterior when including (or not) the third moments

modelling uncertainty in the covariance; the change in the posterior
obtained combining second and third moments is minimal, for the
scales used in the fiducial analysis.

A P P E N D I X B: MO D E – M O D E C O U P L I N G
MATRI CES

We provide here mathematical recipes for the mode–mode coupling
matrices M used in Section 2.2 to account for masking effects. Such
matrices are developed in the contest of pseudo-power spectrum
estimators (e.g. Wandelt, Hivon & Górski 2001; Brown et al. 2005;
Hikage et al. 2011; Hikage & Oguri 2016). In particular, we strictly
follow here section 2.1 of Hikage et al. (2011).

In the presence of a window function (in our case, the DES Y3
footprint) K(θ , φ), the shear field assumes the following expression:

γ̄1(θ, φ) + γ̄2(θ, φ) = K(θ, φ)(γ1(θ, φ) + γ2(θ, φ)). (B1)

When the shear field is transformed into its spherical harmonic
counterpart (equation 7), it obtains an additional contribution due to
the convolution with the footprint mask

ˆ̄γE,�m ± i ˆ̄γB,�m =
∫

d�[K(θ, φ)(γ1(θ, φ) + γ2(θ, φ))]±2Y
∗
�m(θ, φ).

(B2)

The quantities ˆ̄γE,lm and ˆ̄γB,lm are called pseudo E and B modes
(as they are convolved with the footprint mask) and their relation
with the true E and B modes can be written as

ˆ̄γE,�m ± i ˆ̄γB,�m =
∑
�′m′

(γ̂E,�m ± iγ̂B,�m)±2W��′mm′ , (B3)

where ±2W��′mm′ is a convolution kernel

±2W��′mm′ =
∫

d�±2Y�′m′ (θ, φ)K(θ, φ)±2Y
∗
�m(θ, φ)

=
∑
�′′m′′

K�′′m′′ (−1)m
√

(2� + 1)(2�′ + 1)(2�′′ + 1)

4π

×
(

� �′ �′′

±2 ∓2 0

)(
� �′ �′′

m m′ m′′

)
, (B4)
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with

(
� �′ �′′

m m′ m′′

)
Wigner 3j symbols and K�m =∫

d�K(θ, φ)Y ∗
�m(θ, φ), the harmonic transform of the window

function. Defining

ĈEE
� = 1

2� + 1

∑
m

|γ̂E,�m|2, (B5)

ĈEB
� = 1

2� + 1

∑
m

γ̂E,�mγ̂ ∗
B,�m, (B6)

ĈBB
� = 1

2� + 1

∑
m

|γ̂B,�m|2, (B7)

we can write the masked (pseudo-) spectra as the convolution of the
true spectra with a mode–mode coupling matrix

Ĉ� =
∑

�′
M��′ C�′ , (B8)

where we introduced the vector C� ≡ (CEE
� , CEB

� , CBB
� ). The mode–

mode coupling matrix M is expressed in terms of M
EE,EE
��′ , MBB,BB

��′ ,
M

EB,EB
��′ , M

EE,BB
��′

M
EE,EE
��′ = M

BB,BB
��′

= 2�′ + 1

8π

∑
�′′

(2�′′ + 1)K�′′ [1 + (−1)�+�′+�′′
]

×
(

� �′ �′′

2 −2 0

)2

, (B9)

M
EE,BB
��′ = M

BB,EE
��′

= 2�′ + 1

8π

∑
�′′

(2�′′ + 1)K�′′ [1 − (−1)�+�′+�′′
]

×
(

� �′ �′′

2 −2 0

)2

, (B10)

M
EB,EB
ll′ = 2�′ + 1

4π

∑
�′′

(2�′′ + 1)K�′′

(
� �′ �′′

2 −2 0

)2

, (B11)

with K� = 1
2�+1

∑
m K�mK∗

�m.

APPE N D IX C : C ONSTRAINTS W ITH
DATA -COM P R ESSION AND ALTERNATIVE
C OVA R I A N C E M AT R I X

Our fiducial analysis has been carried out using a covariance matrix
obtained from multiple FLASK realizations (see Section 3.1). FLASK

is a lognormal simulation, where the only required inputs are the
desired auto and cross power spectra of the convergence fields and
the so-called lognormal shift parameters (which effectively set the
skewness of the simulated fields at one scale, see e.g. Friedrich et al.
2018; Gruen et al. 2018). No additional physics is encoded in the
FLASK maps. This means that our FLASK realizations reproduce the
correct second moments set by our �CDM input spectra, but has
only limited accuracy in its third moments. We have shown that this
does not strongly bias the recovery of input cosmological parameters
once applied to N-body simulations (see Section 6.1).

In this section, we show how to obtain cosmological constraints
from our pipeline using the T17 covariance and compare them to the
ones obtained from the flask covariance, using a data compression
algorithm (described in Section 5.2). We also validate the efficiency

Figure C1. Measured compressed correlation matrix of second and third
moments from 1000 FLASK simulations. A 24 h−1 Mpc scale cut has been
applied (see Section 6.1 for a definition of the scale cuts). The entries of the
correlation matrix are shown with respect to the parameter used to compress
the data vector.

of the data compression algorithm and show how it helps to reduce the
noise in the inferred parameters caused by the paucity of simulations
used to estimate the covariance matrix.

All the tests shown in this section use a theory data vector that
includes all the ‘auto’ moments of different tomographic bins (e.g.
[1,1], [1,1,1], [2,2], [2,2,2]) and the ‘cross’ moments (e.g. [1,2],
[1,1,2], [1,2,2]), for a total of 10 combinations for second moments
and 20 combinations for third moments. Depending on the test, we
show results from second moments, third moments or the combina-
tion of the two. We use the fiducial scale cuts determined in Section 7,
of 20 h−1 Mpc for second moments, 12 h−1 Mpc for third moments,
and 24 h−1 Mpc when second and third moments are combined. For
the data vector, a fiducial T17 cosmology is assumed, with nuisance
and astrophysical parameters (photo-z biases, multiplicative shear
biases, intrinsic alignment IA) assumed to be null, and no baryonic
contamination. When estimating parameters posterior, we further
marginalize over nuisance parameters as explained in Section 2.2.

We show the compressed correlation matrix in Fig. C1. The
correlation matrix has now 15 entries, as many as the number of
parameters we constrain in our analysis. Interestingly, the correlation
between the different elements of the compressed data vector reflects
the correlation between parameters. For instance, �m and σ 8 show a
significant correlation, as expected from Fig. 9. The anticorrelation
between the mean shift �z and the multiplicative shear biases m is
due to the fact that the amplitude of the moments depends on the
mean redshift of the source distribution (see e.g. Bernardeau et al.
1997); due to our definition and code implementation, a positive δz

shifts the mean of the distribution to lower redshift and lowers the
amplitude of the moments, while a positive m has the opposite effect.

We next perform here several tests to validate our compression
algorithm. First, we run two forecast chains using the compressed
and uncompressed FLASK covariance and compare the contours.
This is shown in the top left panel of Fig. C2, for the �m and S8

parameters. In this first test, we did not apply any correction for
the noise in the inverse of the covariance (equations 49 and 50),
as we are interested in validating the compression algorithm only.
The marginalized 1D posteriors of �m and S8 have similar width,
showing that the data compression implemented is basically lossless.
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Cosmology with mass maps moments 4083

Figure C2. Posterior of �m and S8 for four different cases. Top left: posteriors obtained using the uncompressed and compressed FLASK covariance, without
applying any corrections due to noise (equations 49 and 50). Top right: posteriors obtained using uncompressed FLASK covariance, with a number of corrections
to account for the noise in the estimated covariance matrix. ‘Hartlap’ refers to the Hartlap et al. (2007) correction (equation 49), ‘DS’ refers to the Dodelson &
Schneider (2013) correction (equation 50), while ‘SH’ refers to the Sellentin & Heavens (2016) likelihood (see text in Appendix C for more details). Bottom
left: same as the top right panel, but for compressed data vectors. Bottom right: posteriors obtained using the compressed FLASK and T17 covariances. 1000
FLASK simulations have been used for these tests.

As a caveat, we remind the reader that we assume the likelihood to
be Gaussian, which in the case of the uncompressed data vector is
only an approximation (see below).

Second, we show in the top right panel of Fig. C2 how the con-
straints degrade once the uncertainties in the inverse of the covariance
matrix are taken into account. The Hartlap et al. (2007) and Dodel-
son & Schneider (2013) corrections (equations 49 and 50) noticeably
enlarge the contours, the net effect depending on the number of
simulations used to estimate the covariance matrix. We also show, for
comparison purposes, how the posteriors would look if the likelihood
from Sellentin & Heavens (2016) was used. Sellentin & Heavens
(2016) argue that when the covariance matrix is estimated from sim-
ulations, the likelihood is no longer Gaussian but rather is described
by an adapted version of a multivariate t-distribution, a fact not taken
into account by the Hartlap et al. (2007) correction. They suggest that
marginalizing over the true covariance produces a tighter posterior
close to the peak compared to the simple Hartlap et al. (2007) correc-
tion, which according to Sellentin & Heavens (2016) overestimates

its size. This is confirmed by the top right panel of Fig. C2. We
note, however, that the additional scatter in the parameters posterior
encoded by the Dodelson & Schneider (2013) correction is not
accounted for in the Sellentin & Heavens (2016) framework.

The lower left panel of Fig. C2 is the same as the top right panel
but for the compressed data vector. The compression greatly reduces
the noise in the estimated covariance matrix and equations (49) and
(50) approach ∼1. Also the Sellentin & Heavens (2016) likelihood
approaches a multivariate Gaussian, becoming almost indistinguish-
able from the no correction case.

Lastly, in the lower right panel of Fig. C2, we show the contours
obtained using the compressed T17 covariance matrix. The Hartlap
et al. (2007) and Dodelson & Schneider (2013) corrections are
applied here, even though their effect is negligible, as shown above.
We expect the shape of the posterior to be different when using the
compressed T17 covariance and th FLASK covariance in two ways.
First, the cosmology of the T17 simulations is slightly different from
the FLASK one. Secondly, third moments should be more accurately
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4084 M. Gatti et al.

Figure C3. This figure is the same as Fig. 8 but for a uncompressed data vector. Upper panels: residuals (i.e. the difference between the measurement signal
in a FLASK simulation and the simulations mean value) of individual data points in units of their expected standard deviation. We compare to a Gaussian with
0 mean and unit standard deviation; we also compare to a Gaussian corrected by the first term of the Edgeworth expansion of the likelihood (see text for more
details). Bottom panels: Distribution of the χ2 of each realization of the FLASK simulations, compared to a theoretical χ2 distribution.

modelled in the T17 simulations a FLASK does not contain the physics
to model the third moments beyond the lognormal shift. Differences
in the widths between the two compressed covariances are smaller
than 2 per cent, suggesting that the two factors considered above have
a modest impact.

Finally, we comment on the more Gaussian nature of the com-
pressed data vector compared to the uncompressed one. This is
shown in Fig. C3. The residuals (i.e. the difference between the
measurement signal in a FLASK simulation and the simulations mean
value) of the uncompressed data vector appear much less Gaussian
for the third moments and the combination of second and third
moments compared to what we found for the compressed data vector
in Fig. 8 (no significant difference in the distribution of the residuals
is seen when only second moments are used). We compute how the
distribution of residuals would look if the likelihood were not purely
Gaussian, by means of a multivariate Edgeworth expansion of the

likelihood (e.g. Amendola 1996)

L = G(x, C)

[
1 + 1

6
kijk

x hijk + ...

]
, (C1)

with

hijk = (−1)3G−1(x,C)∂ijkG(x, C), (C2)

where G(x, C) is the Gaussian part of the likelihood, x and C are the
data vector and its covariance, respectively, and kijk

x = 〈xixj xk〉 is
the third-order cumulant of the data vector (which can be measured
in simulations). The predicted distribution of residuals in Fig. C3
obtained with the first term of the Edgeworth expansion is in better
agreement with the one measured in FLASK simulations.

Figure D1. Second and third moments data vector. The red line represents a theory data vector (obtained assuming the fiducial values for the nuisance parameters
and a T17 cosmology) and the red shaded regions the 1σ measurement uncertainty from the T17 N-body simulations. Grey shaded regions show the angular
scales not included in the fiducial analysis.
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APPEN D IX D : FULL DATA V ECTO R AND
S I G NA L TO N O I S E

We show in Fig. D1 the full data vector, including tomographic
cross-correlation terms. The total signal-to-noise ratio (defined as
SNR ≡ √

dT C−1d), for a 24 h−1 Mpc scale cut, is 51.5, 10.4, and
66.3 for second, third, and combination of second and third moments,
respectively. If all the scales are considered (down to 3 arcmin), the
signal-to-noise ratio increases to 59.3, 15.4, and 106.0. Among the
second moments bins, the 11, 22, 33, and 44 bins have signal-to-noise
ratio of 8.8, 13.3, 25.2, and 24.5; as for the third moments, the 111,
222, 333, and 444 bins have signal-to-noise ratio of 2.1, 2.8, 4.6, and
3.9. The signal-to-noise ratio of the cross-moments is somewhat in
between the values of the corresponding automoments.

APPEN D IX E: FAST EMULATO R THEORY
P R E D I C T I O N S

The theory prediction described in Section 2.2 can be quite time-
consuming due to the large number of cross-correlations and
integrations involved. In order to speed up this calculation, we
implemented an emulator (Heitmann et al. 2006; Habib et al. 2007).
Typically, emulators in the cosmology context are used when an
expensive calculation is needed in a large parameter space, but the
variation of the calculation over the parameter space is smooth. A
primary example is predicting the dark matter power spectrum given
cosmological parameters (Heitmann et al. 2009; Kwan et al. 2015).
The power spectrum is computed to high accuracy at a given number
of points in the cosmological parameter space and an interpolator
is used to derive the power spectrum at some arbitrary point in the
parameter space.

In our case, the quantities we wish to emulate are the second
and third moments of the matter density field once the mask edges
are accounted for, namely 〈δ2

θ0,NL〉EE/BB (χ ) and 〈δ3
θ0,NL〉EE/BB (χ ),

as a function of the 5 cosmological parameters under study and for
a large number of (fixed) redshifts. We first compute their values
at specific points in our parameter space, and then we build an
interpolator that provides fast prediction at any point of the 5-
parameter space (and as a function of redshift). We also build a
separate emulator for each smoothing scale considered. The fact that
such quantities are emulated at a fixed range of redshifts allows us to
compute the second and third moments of the convergence field for
a given tomographic bin after the emulation step, by integrating over
the redshifts and taking into account the lensing kernel (and other
nuisance parameters).

To decide which points to use for building the interpolator, we
sampled our parameter space using a Latin hypercube (McKay,
Beckman & Conover 1979), which is a scheme that provides good
space-filling properties. We sampled the space delimited by the priors
defined in Table 1, and chose 500 points. For each point of the
Latin hypercube, we predicted the second and third moments of the
dark matter density field (equations 14 and 15) with a resolution
of δz = 0.01 up to redshift 4, for 12 equally logarithmic spaced
smoothing scales between θ0 = 0 and θ0 = 220 arcmin. For
each smoothing scale, we organized the predictions of our second
and third moments in a matrix of dimensionality nz × npoints =
400 × 500. Since interpolating a 400 × 500 matrix as a function
of cosmological parameters would be impractical, we further reduce
the dimensionality using the singular value decomposition. We define
η = UBVT, where U has dimensionality nz × nz and V nz × npoints. B
is a diagonal matrix of singular values. We defined the basis vectors

� = 1√
nz

UB and weights ω = √
nzVT . Then, we kept only the first

p < nz principal components of our basis vectors〈
δ2
θ0,NL

〉EE/BB
(χ (z),�m,�b, σ8, ns, h100)

=
p∑

i=0

ω
δ2,θ0
i (�m, �b, σ8, ns, h100)�δ2,θ0

i (χ (z)), (E1)

〈
δ3
θ0,NL

〉EE/BB
(χ (z),�m,�b, σ8, ns, h100)

=
p∑

i=0

ω
δ3,θ0
i (�m, �b, σ8, ns, h100)�δ3,θ0

i (χ (z)), (E2)

where the basis and weights are different for the second and third
moments and depend on the smoothing scale. We found that setting
p = 15 and p = 45 retains most of the information in the moments
(99.9 per cent and 99.7 per cent for second and third moments,
respectively), so we can neglect the other components. The third
moments require more components due to the complex dependence
on cosmological parameters at small scales.

After the singular value decomposition, we are left to interpolate,
as a function of five cosmological parameters, 60 weight functions

in total between ω
δ2,θ0
i and ω

δ3,θ0
i measured at 500 different points in

our parameter space. We opted for a Gaussian process (Rasmussen &
Williams 2006) interpolation scheme. A Gaussian process is a
stochastic process where any finite subset forms a multivariate
Gaussian distribution. At each reconstruction point x = (�m, �b,

σ 8, ns, and h100) of our parameter space, the weights ω
δ2,θ0
i , ωδ3,θ0

i are
modelled as multivariate Gaussian distributions with a given mean
value and Gaussian errors. The latter is determined by a covariance
function k(x; x

′
) that correlates the function at different points.

The covariance function depends on only two hyperparameters (the
amplitude and the typical scale of the correlation) which are fixed
during the training phase.

We tested the accuracy (defined as the mean relative discrepancy
between the emulator predictions and the validation model over all
the smoothing scales and redshifts considered) of our interpolation
scheme by training and validating over two different sets of 500
points determined using two different Latin hypercubes. The re-
sulting accuracy is shown in Figs E1 and E2. The performance
of the emulator is generally better than 1 per cent. The recovery
gets worse close the edges of the priors. This is particularly evident
for σ 8 and �m (Fig. E2) as these two are the parameters to which

Figure E1. Accuracy of the emulator for the second and third moments. We
tested the emulator using a validation sample of 500 points. Each entry of
the histogram refers to the mean relative discrepancy between the emulator
predictions and the validation model over all the smoothing scales and
redshifts considered. The vertical dashed lines show the error introduced
by selecting only 15 principal components.
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Figure E2. Accuracy of the emulator for the second and third moments as a function of four cosmological parameters. We tested the emulator using a validation
sample of 500 points. Each entry of the scatter plots refers to the mean relative discrepancy between the emulator predictions and the validation model over all
the smoothing scales and redshifts considered. Training points are shown in grey.

Figure E3. Forecast posteriors for cosmological parameters, obtained with
a theory data vector and an emulated data vector (see Section E). We
marginalize over nuisance parameters as explained in Section 5.3. Constraints
with the second and third moments combined are shown in the S8–�m plane.

our measurement is most sensitive. The emulator performs slightly
worse for the third moment, due to a more complex dependence on
the cosmological parameters. We note that Figs E1 andE2 report the
mean accuracy of the emulator across smoothing scales and redshifts.
While for the second moments, the accuracy does not strongly depend
on the smoothing scales or redshift, we found that the emulator
for the third moments performs slightly worse at low redshift and
intermediate scales, where the accuracy is around ∼3 per cent, still
well below observational uncertainties. The speedup achieved by
using the emulator is of two orders of magnitudes.

After predicting the masked second and third moments of the
dark matter density field with the emulator, we took into account
the lensing kernel of the samples and the nuisance parameters as
described in Section 2.2. We checked that the emulated theory data
vector causes small variations in the χ2 with respect to a theory data
vector obtained without approximations. For the fiducial cosmology,

such variations are of the order of �χ2 ∼ 0.2–0.4, the exact value
depending on the particular scale cut combination of second and third
moments considered. We also verified that the difference between
the maximum of the 1D marginalized posterior of the cosmological
parameters obtained running an MCMC chain on an emulated theory
data vector and on a non-approximated one are much smaller than
the parameters’ 1σ confidence intervals. This is shown in Fig. E3,
and the differences are at the level of <1.5 per cent for �m and
<0.3 per cent for S8 = σ 8(�m/0.3)0.5.
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22Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José
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