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Abstract
We examined the association between plasma metabolites and abnormal sleep pat-
terns using data from the Southall and Brent REvisited (SABRE) cohort. Nuclear mag-
netic resonance spectroscopy provided 146 circulating plasma metabolites. Sleep 
questionnaires identified the presence or absence of: difficulty falling asleep, early 
morning waking, waking up tired, and snoring. Metabolites were compared between 
the sleep quality categories using the t test, and then filtered using a false discov-
ery rate of 0.05. Generalised linear models with logit-link assessed the associations 
between filtered metabolites and sleep phenotypes. Adjustment was made for im-
portant demographic and health-related covariates. In all, 2,718 participants were 
included in the analysis. After correcting for multiple testing, three metabolites re-
mained for difficulty falling asleep, 59 for snoring, and none for early morning waking 
and waking up tired. After adjusting for sex, age, ethnicity and years of education, 1 
standard deviation increase in serum histidine and valine associated with lower odds 
of difficulty falling asleep by 0.89–0.90 (95% confidence intervals [CIs] 0.80–0.99). 
Branched-chain and aromatic amino acids (odds ratios [ORs] 1.19–1.25, 95% CIs 
1.09–1.36) were positively associated with snoring. Total cholesterol in low-density 
lipoprotein (OR 0.90, 95% CI 0.83–0.97) and high-density lipoprotein (OR 0.88, 95% 
CI 0.81–0.95) associated with lower odds of snoring. In the fully adjusted model, most 
associations persisted. To conclude, histidine and valine associated with lower odds 
of difficulty falling asleep, while docosahexaenoic acid and cholesterol in low-density 
lipoprotein and high-density lipoprotein subfractions associated with lower odds of 
snoring. Identified metabolites could provide guidance on the metabolic pathways 
associated with adverse sleep quality.
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1  | INTRODUC TION

Sleep is a vital component of the human circadian rhythm. 
Abnormal sleep patterns are increasingly common. Two of the 
most prevalent sleep disorders are insomnia and snoring, with re-
cent estimates suggesting insomnia is reported in >30% (LeBlanc 
et al., 2007) and snoring in >20% of the global population (Enright 
et al., 1996).

Sleep is of primordial importance in physiological homeostasis. 
While adverse sleep phenotypes are associated with negative health 
consequences, including cardiovascular disease and cancer (Medic 
et al., 2017), the triggers and pathways that may contribute to abnor-
mal sleep phenotypes and related detrimental health outcomes are 
still “hot” research topics.

Metabolic dysfunction has been previously associated with sleep 
phenotypes (Depner et  al.,  2014). Insomnia and short sleep dura-
tion have been associated with increased odds of developing type 
2 diabetes mellitus (T2DM) (Vgontzas et al., 2009), which could be 
mediated by branched-chain amino acids (BCAAs). Snoring has been 
associated with disordered metabolic processes including insulin re-
sistance, hyperglycaemia and dyslipidemia (high triglycerides, high 
low-density lipoprotein [LDL] cholesterol, and low high-density li-
poprotein [HDL] cholesterol) (Alexopoulos et  al.,  2011; Sharma & 
Kavuru,  2010). However, the directionality of the association be-
tween metabolites and sleep phenotypes is still unclear. Although 
epidemiological studies postulate that disordered sleep may be both 
a cause and a consequence of abnormal metabolism, any potential 
causal effects relating to these claims are still to be elucidated.

Thus, using a metabolomics approach (Fabian et al., 2013) could 
lead to a better understanding of the mechanisms underlying ab-
normal sleep phenotypes, as well as provide a direction for future 
novel guided therapies. Similar approaches have been successfully 
employed, e.g. in characterising novel predictors for heart failure 
(Delles et al., 2018).

In the present cross-sectional study, nuclear magnetic resonance 
(NMR) spectroscopy was used to identify metabolites associated 
with adverse sleep phenotypes (difficulty falling asleep, early morn-
ing waking, waking up tired, and snoring) reported in participants 
from the Southall and Brent REvisited (SABRE) cohort.

2  | METHODS

2.1 | Participants and study design

The SABRE study is a tri-ethnic cohort of European, South Asian 
and African Caribbean participants living in West and North London 
(Southall and Brent districts). Between 1988 and 1991, participants 
aged 40–69 years were randomly selected from 5-year age and sex 
stratified primary care lists (n = 4,063) and workplaces (n = 795). The 
full cohort details have been published elsewhere (Tillin et al., 2012). 
Ethnicity was self-assigned and agreed with the interviewer. South 
Asians and African Caribbeans were all first-generation migrants.

At baseline, participants were invited to a clinic appointment, 
which involved completing a health and lifestyle questionnaire that 
included questions on sleep patterns. Fasting bloods were collected, 
and anthropometrics and blood pressure were measured. Diabetes 
was identified from self-report of physician diagnosis or receipt of 
anti-diabetes medications. In addition, oral glucose tolerance test-
ing was performed. Undiagnosed diabetes was identified retrospec-
tively using World Health Organization (WHO) 1999 criteria (Alberti 
& Zimmet, 1998).

The SABRE baseline study was granted ethics approval from 
Ealing, Hounslow and Spelthorne, Parkside, and University College 
London Research Ethics Committees.

2.2 | Exposures

The exposures were 146 NMR measured circulating plasma metabo-
lites including amino acids, small molecules (e.g. glycerol, pyruvate) 
and a detailed lipid profile consisting of 16 lipoprotein subclasses to-
gether with their lipid component concentrations (total cholesterol, 
cholesterol-esters, free cholesterol, total lipids, phospholipids, and 
triglycerides) and particle dimensions (i.e. diameter).

Serum fasting samples were obtained from 3,700 participants 
(from the Southall Centre only) at baseline and were stored at 
−80°C. In 2012, a proton NMR spectrum was employed to detect 
circulating plasma metabolite levels following the signal suppression 
of other molecules according to methodologies previously described 
(Soininen et al., 2009; Würtz et al., 2017). Ratios of metabolites (e.g. 
triglycerides to phosphoglycerides) were excluded as they were be-
yond the scope of our study.

None of the study participants was receiving lipid-lowering med-
ication at the time of the baseline studies.

2.3 | Outcomes

The outcomes of interest were four sleep quality phenotypes: dif-
ficulty falling asleep, early morning waking, waking up tired, and 
snoring.

Participants were asked to rate their sleep quality in the past 
30 days at visit 1 (1988–90) using four questions adapted from the 
validated Jenkins Sleep Questionnaire (JSEQ) (Jenkins et al., 1988). 
They were asked whether they felt they had difficulties falling asleep 
at night, had been waking up too early in the morning, whether they 
woke up feeling tired or had problems with snoring during the night. 
All sleep phenotypes were rated binary (i.e. “No”/0 or “Yes”/1).

2.4 | Covariates

Covariates were selected a priori based on prior associations with 
sleep quality and metabolism. Covariates were recorded at the time 
of the baseline studies (when serum samples were collected for 
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storage) and included: age, sex, ethnicity, years of education, waist–
hip ratio (WHR), body mass index (BMI), cardiovascular disease 
(CVD; coronary artery disease and stroke), T2DM, hypertension 
medication, total number of alcohol units per week, and smoking 
status (never smoked, ex-smoker, current smoker). CVD, T2DM and 
hypertension medication were recorded as binary (i.e. “No”/0 or 
“Yes”/1).

2.5 | Statistical methods

Data distribution was assessed graphically using histograms and sta-
tistically using the Shapiro–Wilk test. Continuous variables were ex-
pressed as medians (interquartile ranges), while categorical variables 
were expressed as counts (percentage).

Metabolite concentrations were log-transformed, mean centred 
and scaled to a standard deviation (SD) of 1 before further analysis.

A t test analysis was used as a screening tool to identify me-
tabolites linked with sleep phenotypes, correcting for multi-
ple testing at a false discovery rate (FDR) of 0.05 (Benjamini & 
Hochberg, 1995). Metabolites that passed this threshold were fur-
ther referred to as “candidate metabolites”. Candidate metabolite 
associations with sleep phenotypes were evaluated using multi-
variable generalised linear models (GLMs) accounting for age, sex, 
ethnicity, and years of education (Model 1). Further adjustments 
were Model 1 plus WHR, CVD, T2DM, anti-hypertensive medica-
tion, alcohol units, and smoking status (Model 2). As BMI captures 
a somewhat different profile of excess weight as compared to the 
WHR, an additional Model 2 where BMI was used instead of WHR 
was fitted. Where multiple metabolites were associated with a 
sleep quality phenotype, a Manhattan plot was used for visual rep-
resentation. In the Manhattan plot, –log10(p values) were plotted 
on the y-axis, while the x-axis consisted of metabolites grouped 
into relevant categories.

About a fifth of all participants reported zero weekly alco-
hol intakes. To account for this high degree of zero-inflation (He 
et  al.,  2014), a modified version of GLM (using template model 
builder [glmmTMB]) was chosen (Appendix S1).Thus, glmmTMB with 
binomial distribution and logit link (equivalent to logistic regression) 
using metabolites as exposures was employed to predict the binary 
sleep phenotypes as outcomes. As snoring was associated with HDL 
and LDL in the same direction, a Pearson’s correlation analysis was 
performed between HDL and LDL subfractions.

The t test is not able to discriminate between groups where 
minor differences exist. This may not identify biologically relevant 
metabolites (Fabian et al., 2013). Thus, we ran the regression models 
for all the available metabolites as a sensitivity analysis.

As sleep health is multi-dimensional (Buysse, 2014), we created 
a composite sleep score. First, we performed a principal component 
analysis (PCA) of the included sleep phenotypes. For each principal 
component, the weights were normalised so that they added up to 1. 
As the first principal component accounts for most variability in the 
indicators (Hosseini et  al.,  2019), we constructed a PCA-weighted 

sleep composite score (wSleep) as the weighted average of the sleep 
phenotypes using the first principal weights. As the sleep composite 
score was discrete rather than continuous, GLMs with Poisson dis-
tribution and log link assessed the associations between metabolites 
and wSleep (Gardner et al., 1995). Regression results were then fil-
tered at a FDR of 0.05.

Statistical analysis was performed in R, version-3.6.0 (R 
Foundation for Statistical Computing, Vienna, Austria), with p < .05 
considered statistically significant.

3  | RESULTS

3.1 | Participant characteristics

Of the 4,858 SABRE participants, 3,700 (from the Southall Centre 
only) had stored blood samples with 3,255 being viable for NMR 
analysis. Furthermore, 2,718 had all sleep phenotypes, covariates, 
and metabolites. Of the 2,718 included participants, 2,379 (87.53%) 
were male and 664 (24.43%) were current smokers. The mean (SD) 
age of the cohort was 52.10 (7.18) years and the mean (SD) WHR was 
0.95  (0.08). Difficulty falling asleep was reported in 453 (16.67%) 
participants, early morning waking in 1,108 (40.77%), waking up 
tired in 927 (34.11%), and snoring in 1,051 (38.67%). Participant 
characteristics are summarised in Table 1.

3.2 | Screening for candidate metabolites

Of the 146 available metabolites, 12 metabolites were identified for 
difficulty falling asleep, four for early morning waking, two for waking 
up tired, and 73 for snoring using the t test (Supplementary Table S1). 
After correcting for multiple testing at a FDR of 0.05, histidine, leu-
cine and valine remained as candidate metabolites for difficulty fall-
ing asleep. In addition, 59 metabolites were further considered as 
candidates in association with snoring. Lastly, none remained for 
early morning waking and waking up tired (Supplementary Table S1).

3.3 | Difficulty falling asleep

After adjusting for age, sex, ethnicity and years of education (Model 
1), serum histidine and valine were inversely associated with diffi-
culty falling asleep as follows: 1 SD increases in serum histidine and 
valine were associated with lower odds of difficulty falling asleep 
with an odds ratio (OR) of 0.89 (95% confidence interval [CI] 0.80–
0.99) and 0.90 (95% CI 0.81–0.99), respectively. Associations per-
sisted after further adjustment for covariates in Model 1 plus WHR, 
CVD, T2DM, anti-hypertensive medication, alcohol units, and smok-
ing status (Model 2) (Supplementary Table S2). When we used BMI 
instead of WHR, the results were similar (Supplementary Table S3). 
Individuals experiencing difficulty falling asleep had lower plasma 
levels of histidine and valine (Supplementary Table S4).



4 of 12  |     TOPRICEANU et al.

TA
B

LE
 1

 
Ba
se
lin
e 
de
m
og
ra
ph
ic
 c
ha
ra
ct
er
is
tic
s 
of
 S
ou
th
al
l A
nd
 B
re
nt
 R
ev
is
ite
d 
(S
A
BR
E)
 c
oh
or
t p
ar
tic
ip
an
ts
 s
tr
at
ifi
ed
 b
y 
sl
ee
p 
ph
en
ot
yp
e 
st
at
us

Sl
ee

p 
ph

en
ot

yp
e

D
iff

ic
ul

ty
 fa

lli
ng

 a
sl

ee
p

Ea
rly

 m
or

ni
ng

 w
ak

in
g

W
ak

in
g 

up
 ti

re
d

Sn
or

in
g

O
ve

ra
ll

Ye
s

45
3 

(1
6.

67
%

)

N
o

2,
26

5 
(8

3.
33

%
)

p

Ye
s

1,
10

8 
(4

0.
77

%
)

N
o

1,
61

0
(5

9.
23

%
)

p

Ye
s

92
7 

(3
4.

11
%

)

N
o

1,
79

1 
(6

5.
89

%
)

p

Ye
s

1,
05

1
(3

8.
67

%
)

N
o

1,
66

7 
(6

1.
33

%
)

p
n 

=
 2

,7
18

A
ge
, y
ea
rs
, 

m
ea

n 
(S

D
)

52
.0
8 
(7
.2
7)

52
.1
0 
(7
.1
6)

.9
66

52
.1
5 
(7
.1
1)

52
.0

6 
(7
.2
3)

.7
09

51
.2
5 
(7
.0
5)

52
.5
3 
(7
.2
0)

<
.0

00
1

52
.6

6 
(7
.0
1)

51
.7
4 
(7
.2
5)

.0
01

52
.1
0 
(7
.1
8)

M
al

e 
se

x,
 n
 (%
)

36
1

(7
9.
69
)

20
18

(8
9.
09
)

<
.0

00
1

96
1

(8
6.
73
)

1,
41
8

(8
8.
07
)

.3
27

78
7

(8
4.
89
)

15
92

(8
9.
06
)

.0
04

98
2

(9
3.
43
)

1,
39

7
(8
3.
80
)

<
.0

00
1

2,
37

9
(8
7.
53
)

Et
hn

ic
ity

, n
 (%
)

Eu
ro

pe
an

19
3

(4
2.
60
)

1,
15

9
(5
1.
17
)

.0
02

46
8

(4
2.
24
)

88
4

(5
4.
91
)

<
.0

00
1

45
6

(4
9.
19
)

89
6

(5
0.
03
)

.5
28

51
2

(4
9.
57
)

84
0

(5
0.
39
)

.6
81

1,
35

2
(4
9.
74
)

So
ut
h 
A
si
an

23
8

(5
2.
5)

98
4

(4
3.
44
)

59
1

(5
3.
34
)

63
1

(3
9.
19
)

42
7

(4
6.
06
)

79
5

(4
4.
39
)

48
1

(4
5.
77
)

74
1

(4
4.
45
)

1,
22

2
(4
4.
96
)

A
fr
ic
an
 

C
ar

ib
be

an
22 (0
.0
5)

12
2

(5
.3
9)

49 (4
.4

2
95 (5
.9
)

44 (4
.7
5)

10
0

(5
.5
8)

58 (4
.6
6)

86 (5
.1
6)

14
4

(5
.3
0)

Ye
ar
s 
of
 

ed
uc

at
io

n,
 

m
ea

n 
(S

D
)

10
.9
7 
(3
.2
5)

11
.2
5 
(3
.1
1)

.0
83

11
.1
1 
(3
.1
8)

11
.2

7 
(3
.1
1)

.1
97

11
.1
4 
(3
.2
7)

11
.2
4 
(3
.0
7)

.4
61

11
.0

7 
(3
.1
9)

11
.2
9 
(3
.1
1)

.0
62

11
.2
1 
(3
.1
4)

W
ai
st
–h
ip
 ra
tio
, 

m
ea

n 
(S

D
)

0.
94
 (0
.0
9)

0.
94
 (0
.0
8)

.8
64

0.
95
 (0
.0
8)

0.
94
 (0
.0
8)

.0
00

4
0.
94
 (0
.0
9)

0.
95
 (0
.0
8)

.5
46

0.
96
 (0
.0
8)

0.
93
 (0
.0
9)

<
.0

00
1

0.
95
 (0
.0
8)

C
ar

di
ov

as
cu

la
r 

di
se

as
e,

 n
 (%
)

59 (1
3.
02
)

18
4

(8
.1
2)

.0
01

11
9

(1
0.
74
)

12
4

(7
.7
0)

.0
08

11
2

(1
2.
08
)

13
1

(7
.3
1)

<
.0

00
1

11
4

(1
0.
85
)

12
9

(7
.7
4)

.0
07

24
3

(8
.9
4)

D
ia

be
te

s,
 n
 (%
)

72 (1
5.
89
)

27
6

(1
2.
19
)

.0
38

15
1

(1
3.
63
)

18
7

(1
1.
62
)

.3
13

12
0

(1
2.
95
)

22
8

(1
2.
73
)

.9
22

15
2

(1
4.
46
)

19
6

(1
1.
76
)

.0
46

34
8

(1
2.
80
)

A
nt
i-

hy
pe

rt
en

si
ve

s,
 

n 
(%
)

80 (1
7.
66
)

27
9

(1
2.
32
)

.0
03

17
1

(1
5.
43
)

18
8

(1
1.
68
)

.0
05

14
9

(1
6.
07
)

21
0

(1
1.
72
)

.0
02

16
5

(1
5.
70
)

19
4

(1
1.
63
)

.0
03

35
9

(1
3.
21
)

A
lc
oh
ol
 

co
ns

um
pt

io
n,

 
un

its
, m

ea
n 

(S
D
)

12
.1

4 
(1
7.
63
)

11
.6
7 
(1
5.
24
)

.6
01

11
.9
4 
(1
5.
56
)

11
.6

2 
(1
5.
01
)

.6
10

12
.1

5 
(1
6.
58
)

11
.5
4 
(1
5.
16
)

.3
51

12
.7

1 
(1
6.
78
)

11
.1
4 
(1
4.
88
)

.0
13

11
.7

5 
(1
5.
66
)

Sm
ok

in
g 

st
at

us
, n
 (%
)

N
ev
er

23
1

(5
0.
99
)

1,
21

1
(5
3.
47
)

.0
08

62
2

(5
6.
14
)

82
0

(5
0.
93
)

.0
27

48
2

(5
2.
00
)

96
0

(4
8.
71
)

.0
66

51
8

(4
9.
29
)

92
4

(5
5.
43
)

.0
06

1,
44

2
(5
3.
05
)

Ex
-s

m
ok

er
96 (2
1.
19
)

56
8

(2
5.
08
)

23
1

(2
0.
85
)

38
1

(2
3.
66
)

23
2

(2
5.
00
)

38
0

(2
1.
22
)

25
0

(2
3.
79
)

36
2

(2
1.
72
)

61
2

(2
2.
52
)

C
ur

re
nt

 s
m

ok
er

12
6

(2
7.
82
)

48
6

(2
1.
45
)

25
5

(2
3.
01
)

40
9

(2
5.
41
)

21
3

(2
3.
00
)

45
1

(2
5.
18
)

28
3

(2
6.
92
)

38
1

(2
2.
85
)

66
4

(2
4.
43
)

C
ha
ra
ct
er
is
tic
s 
of
 p
ar
tic
ip
an
ts
 s
tr
at
ifi
ed
 b
y 
sl
ee
p 
ph
en
ot
yp
es
. V
al
ue
s 
ar
e 
pr
es
en
te
d 
as
 m
ea
n 
(S

D
) f
or
 c
on
tin
uo
us
 v
ar
ia
bl
es
 o
r n
 (%
) f
or
 c
at
eg
or
ic
al
 v
ar
ia
bl
es
. T
he
 p

 v
al

ue
s 

w
er

e 
ca

lc
ul

at
ed

 u
si

ng
 t 

te
st

 fo
r 

co
nt

in
uo

us
 v

ar
ia

bl
es

 o
r c

hi
-s

qu
ar

ed
 te

st
 fo

r c
at

eg
or

ic
al

 v
ar

ia
bl

es
. S

ig
ni

fic
an

t p
 v

al
ue

s 
ar

e 
hi

gh
lig

ht
ed

 in
 b

ol
d.



     |  5 of 12TOPRICEANU et al.

3.4 | Snoring

Of the 59 candidate metabolites, 45 remained associated with snor-
ing in Model 1 (Figure 1). The ORs associated with 1 SD increments 
in each of the 45 metabolites in Model 1 are presented in Table 2 
and visually illustrated in Figure 2. Model 2 results are presented in 
Supplementary Table S2.

The BCAAs (isoleucine, leucine and valine) and aromatic amino 
acids (phenylalanine and tyrosine) were associated with greater 
odds of snoring (ORs in the range of 1.19 to 1.25). Similarly, acetate 
and glycoprotein acetyls associated with 1.12 (95% CI 1.03–1.21) 
higher odds of snoring. In Model 2, associations persisted for all 
except glycoprotein acetyls and tyrosine (Supplementary Table S2).

After adjusting for Model 1, serum apolipoprotein A-I (OR 0.87, 
95% CI 0.80–0.95) and docosahexaenoic acid (DHA; OR 0.90, 95% 
CI 0.83–0.98) were inversely associated with snoring. Total choles-
terol in HDL (OR 0.88, 95% CI 0.81–0.95) and in LDL (OR 0.90, 95% 
CI 0.83–0.97) appeared to be beneficial. Regarding the subfraction 
breakdown, total cholesterol in small, medium and very-large HDL 
(ORs 0.91–0.92, 95% CI 0.84–0.99) and in small, medium and large 
LDL (ORs 0.88–0.91 95% CI 0.81–0.99) were associated with lower 
odds of snoring. In addition, cholesterol-esters, free cholesterol, 
phospholipids and total lipids from certain LDL and HDL subfrac-
tions were also inversely associated with snoring (Figure 2), with the 

lowest OR for lower odds of snoring being observed for cholester-
ol-esters in medium-LDL (OR 0.67, 95% CI 0.47–0.95). The HDL and 
LDL subfractions were mostly positively correlated (Supplementary 
Figure S1). In Model 2, significant associations mostly persisted ex-
cept for the very-large HDL subfractions (Supplementary Table S2). 
When we used BMI instead of WHR, most associations persisted 
except for five metabolites (Supplementary Table  S3). Individuals 
reporting snoring had higher plasma levels of BCAAs and aromatic 
amino acids. In addition, they had lower cholesterol in HDL and LDL 
(Supplementary Table S4).

3.5 | Sensitivity analysis

Additional metabolites that were associated with the sleep phe-
notypes in the fully adjusted models (i.e. Model 2), but which did 
not pass the t test screening stage were identified (Supplementary 
Table S5). A 1 SD increase in glycine, free cholesterol and sphingo-
myelins was related to greater odds (ORs ≅ 1.15) of having difficulty 
falling asleep. Creatinine and valine were associated with lower odds 
(ORs ≅ 0.90) of early morning waking, while albumin and lactic acid 
associated with lower odds (ORS ≅ 0.87) of waking up tired. Free 
cholesterol, phospholipids and total lipids in medium and large LDL, 
small very LDL (VLDL) and very small VLDL; and apolipoprotein B 

F I G U R E  1   Manhattan plot of the associations between plasma metabolites and snoring. Metabolites with a significant association with 
snoring in Model 1 are annotated. The red line corresponds to the significance level of .05. HDL, high-density lipoprotein; s-HDL, small-HDL; 
m-HDL, medium-HDL; l-HDL, large-HDL, xl-HDL, extra-large HDL; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; 
s-LDL, small-LDL; m-LDL, medium-LDL; l-LDL, large-LDL; CE, cholesterol-esters; FC, free cholesterol
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and omega-3 fatty acids were associated with lower odds of snoring 
(ORs ≅ 0.90).

3.6 | Composite sleep score (wSleep)

The first principal weights corresponding to the sleep phenotypes 
were: 0.33 for difficulty falling asleep, 0.30 for early morning wak-
ing, 0.31 for waking up tired, and 0.06 for snoring. The regression 
results for wSleep (calculated as a weighted sum of the first prin-
cipal weights) are presented in Supplementary Table S6. A unit in-
crease in glycoprotein acetyls, sphingomyelins; and triglycerides in 
serum, small and medium LDL, and small, medium, large and very 
large VLDL associated with 3%–4% (95% CIs 0%–8%) higher wSleep 
scores. None remained after filtering at a FDR of 0.05. The second 
principal weights corresponding to the sleep phenotypes were: 0.17 
for difficulty falling asleep, 0.02 for early morning waking, 0.06 for 
waking up tired, and 0.75 for snoring.

4  | DISCUSSION

Using data from the SABRE cohort, we show in this cross-sectional 
analysis that circulating plasma metabolites are associated with dis-
tinct sleep quality phenotypes. In particular, metabolites that were 
associated both with higher as well as lower odds of difficulty falling 
asleep and snoring were identified. In addition, increased levels of 
some of the metabolites were associated with lower odds of early 
morning waking and waking up tired.

Difficulty falling asleep is one of the most frequent symptoms 
reported by patients with insomnia (Lombardero et al., 2019). Our 
present results show that increased levels of histidine, isoleucine 
and valine were associated with lower odds of difficulty falling 
asleep, even after adjusting for the relevant covariates. Interestingly, 
all three are essential amino acids, which means that they cannot be 
synthesised de novo, and therefore, they may be linked to a defi-
cient diet. Histidine is a precursor of histamine, which has been pro-
posed as a regulator of wakefulness (Thakkar, 2011). Isoleucine and 

F I G U R E  2  Forest plot of the ORs and 95% CIs for the association between plasma metabolites and snoring which were significant in 
Model 1 (adjusted for age, sex, ethnicity and years of education). OR, odds ratio; CI, confidence interval; HDL, high-density lipoprotein; 
s-HDL, small-HDL; m-HDL, medium-HDL; l-HDL, large-HDL, xl-HDL, extra-large HDL; IDL, intermediate-density lipoprotein; LDL, low-
density lipoprotein; s-LDL, small-LDL; m-LDL, medium-LDL; l-LDL, large-LDL; CE, cholesterol-esters; FC, free cholesterol
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TA B L E  2  Associations between the metabolites who have passed the screening stage and the sleep phenotypes

Sleep phenotype Metabolite Multivariable adjusted OR (95% CI) p

Difficulty falling asleep Histidine 0.89 (0.80–0.99) .031

Leucine 0.92 (0.82–1.03) .148

Valine 0.90 (0.81–0.99) .045

Snoring Acetate 1.12 (1.04–1.21) .005

Creatinine 1.01 (0.93–1.11) .754

Glucose 1.04 (0.96–1.13) .322

Glutamine 0.94 (0.87–1.01) .106

Glycoprotein acetyls 1.12 (1.03–1.21) .006

Isoleucine 1.25 (1.14–1.36) <.0001

Lactate 1.05 (0.97–1.14) .238

Leucine 1.19 (1.09–1.29) <.0001

Phosphatidylcholine 0.95 (0.88–1.03) .180

Phenylalanine 1.24 (1.15–1.35) <.0001

Tyrosine 1.15 (1.06–1.25) .0007

Valine 1.22 (1.12–1.33) <.0001

Total cholines 0.95 (0.87–1.02) .166

Apolipoprotein A-I 0.87 (0.80–0.95) .0009

Docosahexaenoic acid 22:6 0.90 (0.83–0.98) .012

Linoleic acid 18:2 0.94 (0.87–1.02) .137

Polyunsaturated fatty acids 0.93 (0.86–1.01) .092

Serum cholesterol 0.90 (0.83–0.97) .009

Serum cholesterol-esters 0.90 (0.83–0.95) .009

Free cholesterol 0.91 (0.84–0.99) .021

Serum triglycerides 1.03 (0.95–1.12) .421

Total cholesterol in HDL 0.88 (0.81–0.95) .002

Total cholesterol in HDL2 0.88 (0.82–0.96) .003

HDL diameter 0.90 (0.82–0.97) .009

Total cholesterol in small HDL 0.92 (0.85–0.99) .031

Cholesterol-esters in small HDL 0.91 (0.84–0.99) .024

Triglycerides in small HDL 1.13 (1.04–1.22) .003

Total cholesterol in medium HDL 0.92 (0.85–0.99) .036

Cholesterol-esters in medium HDL 0.92 (0.85–0.99) .037

Free cholesterol in medium HDL 0.92 (0.85–0.99) .046

Total lipids in medium HDL 0.93 (0.86–1.01) .078

Concentration of medium HDL particle 0.93 (0.86–1.01) .092

Phospholipids in medium HDL 0.94 (0.87–1.02) .142

Total cholesterol in large HDL 0.95 (0.85–1.05) .289

Cholesterol-esters in large HDL 0.92 (0.85–0.99) .034

Free cholesterol in large HDL 0.95 (0.87–1.04) .248

Total lipids in large HDL 0.91 (0.84–0.99) .025

Concentration of large HDL particle 0.91 (0.84–0.99) .029

Phospholipids in large HDL 0.91 (0.84–0.99) .021

Total cholesterol in very large HDL 0.91 (0.84–0.98) .019

Cholesterol-esters in very large HDL 0.91 (0.84–0.99) .022

Free cholesterol in very large HDL 0.91 (0.84–0.99) .026

(Continues)
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valine are precursors of both glutamate and gamma-aminobutyric 
acid (GABA) (Sweatt et al., 2004), the main excitatory and inhibitory 
neurotransmitters. By restoring the inhibition:excitatory ratios, their 
supplementation could restore normal sleep patterns. In the present 
study, we report that BCAAs are associated with lower odds (OR 
≅ 0.90) of difficulty falling asleep. To date, BCAAs such as leucine 
and valine have been successfully trialed to improve sleep quality in 
certain population groups, such as patients with cirrhosis (Ichikawa 
et al., 2010).

We also observed that in SABRE snoring was associated with 31 
metabolites, suggesting a potential complex metabolic disturbance. 
In addition, the PCA revealed that snoring could potentially be a 
sleep dimension in itself. Most of these metabolites are from the lipid 
profile and include serum lipid extracts (such as DHA, polyunsatu-
rated fatty acids) and cholesterol, cholesterol-esters and phospho-
lipids in small/medium/large LDL and HDL fractions. Although the 
snoring–insulin resistance–dyslipidaemia connection has previously 
been reported (Alexopoulos et al., 2011), the novelty of the present 
study comes from the detailed lipoprotein analysis that identified 
specific lipoprotein components. Our present data show that both 
higher LDL and HDL associate with lower odds of snoring. The ef-
fect of HDL is consistent with the existing literature (Alexopoulos 
et al., 2011), but the effect of LDL is not. Although an inverse cor-
relation between HDL and LDL is to be expected (Supplementary 
Figure S1), it should be noted that lipoproteins in the metabolism are 
in a constant state of flux with complex interactions, rather than dis-
crete measures. In addition, although LDL-cholesterol is considered 

to be the most atherogenic, there is no robust evidence to suggest it 
has a negative impact on sleep quality.

The directionality of the associations between snoring, T2DM, 
WHR and metabolites is still a matter of debate as complex met-
abolic interactions exist (Figure  3). Lastly, the inverse association 
between DHA and snoring severity has previously been reported 
(Ladesich et al., 2011). Beneficial effects of ω-3 fatty acids in terms 
of reduced daytime sleepiness have been observed after supple-
mentation in deployed soldiers (Dretsch et  al.,  2014). DHA is an 
important component of neural membranes, which has been postu-
lated to be both a synaptic and a neuromodulator altering the levels 
of glutamate, monoamines, acetylcholine, and endocannabinoids in 
the brain (Tanaka et al., 2012).

All BCAAs and phenylalanine were found to be associated with 
snoring. Phenylalanine is a precursor to dopamine and noradrenaline, 
which have been shown to be downregulated in sleep deprivation 
(Volkow et al., 2012). Interestingly, higher valine has been associated 
with snoring (higher odds), early morning waking (lower odds), and 
difficulty falling asleep (lower odds) making it more likely to be a key 
biological player in regulating sleep. Given the wide-ranging effects, 
it could be that valine operates within a narrow homeostatic window 
with higher levels promoting sleep (lower odds of difficulty falling 
asleep and early waking), but if they are too high snoring could arise. 
This theory is supported by its involvement in multiple important 
processes, such as protein synthesis, energy production, glutamate 
compartmentalisation, and indirect control of serotonin, dopamine, 
and noradrenaline neurotransmitter synthesis (Fernstrom,  1539S). 

Sleep phenotype Metabolite Multivariable adjusted OR (95% CI) p

Total lipids in very large HDL 0.90 (0.83–0.98) .012

Concentration of very large HDL particle 0.90 (0.83–0.98) .013

Phospholipids in very large HDL 0.91 (0.84–0.98) .021

Free cholesterol in IDL 0.92 (0.85–0.99) .041

Total cholesterol in LDL 0.90 (0.83–0.97) .009

LDL diameter 1.12 (1.04–1.22) .004

Total cholesterol in small LDL 0.88 (0.81–0.95) .002

Cholesterol-esters in small LDL 0.90 (0.83–0.97) .007

Free cholesterol in small LDL 0.90 (0.82–0.97) 0.010

Total lipids in small LDL 0.90 (0.84–0.98) .012

Concentration of small LDL particle 0.91 (0.84–0.98) .018

Phospholipids in small LDL 0.92 (0.85–0.99) .040

Total cholesterol in medium LDL 0.90 (0.83–0.97) .006

Cholesterol-esters in medium LDL 0.67 (0.47–0.95) .026

Free cholesterol in medium LDL 0.91 (0.84–0.98) 0.019

Total cholesterol in large LDL 0.91 (0.84–0.99) .018

Free cholesterol in large LDL 0.92 (0.85–0.99) .038

All analyses reported here consisted of generalised linear mixed models with binomial distribution and logit link (i.e. logistic regression). Model 1 was 
adjusted for age, sex, ethnicity and years of education. Model 2 results are presented in Supplementary Table S2. Significant p values are highlighted 
in bold.
OR, odds ratio; CI, confidence interval; HDL, high-density lipoprotein; IDL, intermediate-density lipoproteins; LDL, low-density lipoprotein.

TA B L E  2   (Continued)
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Lastly, as acetate generates acetyl coenzyme A, it has been pro-
posed as an epigenetic metabolite to regulate lipid synthesis under 
hypoxia (Xue et al., 2016), which can occur during snoring.

Recently, metabolomics-based risk scores have been developed 
to predict obstructive sleep apnea (OSA) (Ferrarini et  al.,  2013; 
Lebkuchen et al., 2018; Xu et al., 2016). Similarly, we also identified: 
isoleucine and valine, but in our present study, lactate, sphingomye-
lins and phosphatidyl cholines were not associated with snoring. The 
remainder of the metabolites were not available in our present data.

Our sensitivity analysis revealed that higher creatinine and valine 
were associated with lower odds of early morning waking. A positive 
relationship between creatinine and long sleep duration has been 
previously reported (Choi et  al.,  2017). Creatinine is a breakdown 
product of creatine phosphate. The latter is of neurophysiological 
importance acting as an antioxidant, a neuromodulator [of GABA 
A (GABAA) and of N-methyl-D-aspartate (NMDA) receptors] and a 
regulator of neuronal energy metabolism. It has been postulated to 
neutralise the negative effects of reactive oxygen species that occur 
on the background of chronic psychological stress (Allen, 2012). To 
date, it has been successfully trialed to improve mood and perfor-
mance after sleep deprivation (McMorris et al., 2006). Its potential 
for the prevention of early morning waking has not been yet ex-
plored in clinical studies. However, as our present cohort consisted 
mostly of middle-aged individuals, poor kidney function may intro-
duce confounding bias for the observed differences in creatinine 
levels between those who reported snoring and those who did not.

Waking up tired has been associated with chronic fatigue syn-
drome. Our sensitivity analysis identified that higher albumin and 

lactic acid are related to lower odds of waking up tired. Lower albu-
min correlates with fatigue in patients with chronic kidney disease 
(Jhamb et al., 2014). We are the first to generalise this association 
in a large-scale, predominantly healthy cohort. Although we did not 
specifically measure tryptophan, the observed effect might be me-
diated by this albumin-bound amino acid, as it has been linked to a 
higher serotonin:dopamine ratio leading to central, as opposed to 
peripheral fatigue (Meeusen,  2009). Serum lactate has previously 
been reported as a possible sleep/wake biomarker with higher lev-
els during wakefulness; and persistent and sustained decline during 
non-rapid eye movement sleep (Naylor et al., 2012). Serum lactate 
could potentially be extended as a biomarker for the early morning 
waking phenotype. It could also be that central fatigue may stem 
from a lower neuronal glucose consumption translating into lower 
plasma lactate levels.

There are a limited number of studies investigating the relation-
ship between metabolites and sleep phenotypes. One such study 
in post-menopausal women concluded that higher triglycerides are 
associated with poor sleep quality (Huang et  al.,  2019). Similarly, 
our present data show that higher triglycerides in serum or certain 
subfractions of LDL and VLDL were associated with higher wSleep 
scores.

The NMR quantification of serum metabolites offers a novel ap-
proach for the granular investigation of the molecular associations 
between a range of biomarkers and sleep phenotypes. However, our 
NMR database itself does not capture the whole metabolome, as it is 
mostly limited to amino acids, lipids, and small molecules. In addition, 
the present study also did not take advantage of the quantitative 

F I G U R E  3  Directed acyclic graph for snoring. Low HDL, high LDL, high waist–hip ratio (WHR) and type 2 diabetes mellitus (T2DM) 
have been shown to be associated with snoring. However, a high WHR is associated with T2DM and both variables are associated with 
dyslipidaemia. In addition, low HDL and high LDL are also common in T2DM. This directed acyclic graph highlights the complex interactions 
which exist within this system. HDL, high-density lipoprotein; s-HDL, small-HDL; m-HDL, medium-HDL; l-HDL, large-HDL, xl-HDL, extra-
large HDL; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; s-LDL, small-LDL; m-LDL, medium-LDL; l-LDL, large-LDL; CE, 
cholesterol-esters; FC, free cholesterol
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data (i.e. levels of metabolites) as they were log-transformed, mean 
centred and scaled to a SD of 1 before further analysis. Lastly, me-
tabolites are prone to biological variation and measurement error, 
which we were not able to assess. Such errors could bias the esti-
mates presented and should be a consideration when evaluating the 
relationship between plasma metabolites and sleep phenotypes. We 
present associations in a tri-ethnic UK cohort, but further analysis in 
similar cohorts would be required before reliably extending findings 
to wider, non-UK populations. Another limitation was the long-term 
storage of samples (>20 years) before NMR analysis.

The snoring phenotype is representative of a middle-age co-
hort in terms of prevalence, which is highlighted by the relatively 
high number of associated metabolites passing a robust statis-
tical analysis, most of which have been previously reported (Xu 
et al., 2016; Zhang et al., 2017). Although there are more objective 
tests to assess for adverse sleep phenotypes, especially for snor-
ing (Arnardottir et al., 2016), our present study used self-reported 
measures. Although females under-report the prevalence of snoring, 
that is not the case for males (Westreich et al., 2019). However, dif-
ficulty falling asleep, early morning waking and waking up tired are 
more subjective and could be both under- and over-reported (Bianchi 
et al., 2013; Landry et al., 2015; L. Zhang & Zhao, 2008). A limita-
tion of wSleep is masking individual sleep quality phenotypes, each 
of which is capturing a different aspect of sleep. Moreover, it does 
not form a validated scale, as it contains only four questions from 
the JSEQ scale (Jenkins et al., 1988). In addition, there were only a 
few women included due to the study design (Tillin et al., 2012). As 
such, it is not surprising that difficulty falling asleep was under-rep-
resented (Tang et al., 2017), occurring only in 17% of individuals.

Poor self-reported sleep quality has also been suggested as an 
epiphenomenon for underlying mental health problems, such as 
depression and anxiety (Bower et al., 2010). Many of the metabo-
lites we identified to be associated with our sleep phenotypes have 
previously been associated with depression (Bot et al., 2020; Huang 
et al., 2020). Examples of these include amino acids (e.g. valine, tyro-
sine etc.), small molecules (e.g. acetate, glycoprotein acetyls etc.) and 
lipids (e.g. cholesterol, triglycerides etc.). As mood-related factors 
were not explored in the present study, our present results may re-
flect overlapping metabolic signatures between self-reported sleep 
quality phenotypes and depression or anxiety.

Limitations to the present study include its inherent cross-sec-
tional nature and the failure to capture longitudinal effects or to 
support causality. The directionality of the associations between 
metabolites and sleep phenotypes is still a matter of debate and 
whether metabolites cause or are a consequence of abnormal sleep 
is yet to be elucidated.

5  | CONCLUSION

Histidine and valine associated with lower odds of difficulty fall-
ing asleep, while BCAAs were positively associated with snoring. 
Total cholesterol in certain HDL and LDL subfractions appeared 

beneficial in terms of snoring. Although the present evidence is 
unable to support causality, the identified metabolites could pro-
vide a direction for future studies to further understand abnormal 
sleep patterns.
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