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Abstract

INTRODUCTION: Coarctation of the aorta (CoA) is a
congenital malformation consisting in a severe narrowing of
the upper descending aorta, that generates a localised
pressure drop. After surgical repair, patients may present
residual and/or recurrent haemodynamic problems. This
thesis quantitatively compares the outcomes of surgery
performed by end-to-end anastomosis (E/E), Gore-tex graft
interposition (GGI) and Gore-tex graft aortoplasty (GPGA) with
pre-operative and control conditions.

METHODS: Magnetic resonance imaging (MRI) was used to
acquire morphology and blood velocities from swine models
acutely and at four-months post-operatively. The aortic wall
mechanical properties were assessed from mechanical tests
on the tissues of these animals. The data were analysed and
partly used to create computational fluid dynamics (CFD)
models comprising a rigid-wall simulation of healthy
descending aorta with realistic geometry and inflow data; MRI-
based compliant-wall simulations of the repairs with
multiscale-approach active afterload; compliant-wall axi-
symmetric models of the pre- and post-operative conditions
with multiscale active body circulation response.

RESULTS: These different approaches yielded information on
local haemodynamics and pressure/fpower losses; the
evolution of diagnostic parameters as the radio-femoral
gradient; the systemic impact of localised surgery; the effects
of collateral circulation; the aortic wall mechanics and the
effect of tissue interfaces. From the engineering viewpoint
methodologies were developed for arterial geometry
reconstruction, the use of MRI blood velocity datasets in CFD,
the creation of complex models including fluid-structure
interaction alongside multiscale coupling. An index for power
dissipation and a model for suture line stiffness were also
proposed. As a result of this study, E/E appears to be
quantitatively most similar to the healthy state.
CONCLUSIONS: It is hoped that this thesis will contribute to
both clinical research and to Bioengineering applications.
Further study and increased computer power could allow for
the use of better approximations to the real material
characteristics in CFD simulations.
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B1: Coarctation of aorta and aortic arch reconstruction

Fig. B1.1 Schematic representation of coarctation of the aorta

Fig. B1.2 Schematic representation of the procedure for the aortic arch reconstruction by end-to-end
anastomosis

Fig. B1.3 Schematic representation of a Gore-tex graft interposition

Fig. B1.4 Schematic representation of the procedure for the aortic arch reconstruction by Gore-tex
patch aortoplasty

B2: Magnetic Resonance Imaging

Fig B2.1 Spins in phase (left) and out of phase (right)
Fig B2.2 Relaxation of the magnetisation components:decay of M Land M y and recovery of M 2

Fig B2.3 Signal demodulation and fiftering
Fig B2.4 Spin echo experiment

Fig B2.5 Inversion recovery experiment

Fig B2.6 Acquisition and k-space filling

Fig B2.7 Filling of one line in a 3D k-space
Fig. B2.8 T1-weighted TFE with IR pre-pulse
Fig. B2.9 T2-weighted TFE

Fig. B2.10  FFE sequence

B3: Segmentation of medical images

Fig. B3.1 Thresholding: by finding an appropriate splitting signal intensity in the image histogram,
pixels corresponding to the regions-of-interest can be isolated (green).

Fig. B3.2 Region growing: a seed is chosen inside the object (left), and the algorithm assigns all
neighbouring pixels of the same intensity to the same class (right).

Fig. B3.3 Mimics: Thresholding (left); region growing (right). The yellow class is the final
segmentation after region growing.

B4: Mathematics for physical modelling

Fig B4.1 4-node 2D quadrilateral with continuouss pressure (left) or discontinuous pressure (right)
Fig B4.2 8-node brick with continuous pressure (left) or discontinuous pressure (right)
Fig. B4.3 Close circuit (left) and open circuit (right) implementations of multiscale models.

C1: Morphology, velocity and pressure measurements

Fig. C1.1 Surgical view of end-to-end anastomosis in CoA1

Fig. C1.2 Surgical view of Gore-tex patch graft aortoplasty in CoA2

Fig. C1.3 Surgical view of Gore-tex graft interposition in CoA4

Fig. C1.4 MRI derived pre-operative anatomy of CoA1

Fig. C1.5 MR derived post-operative anatomy of CoA1

Fig. C1.6 MR derived pre-operative anatomy of CoA2

Fig. C1.7 MRI derived post-operative anatomy of CoA2

Fig. C1.8.  MRI derived pre-operative anatomy of CoA4

Fig. C1.9 MRI derived post-operative anatomy of CoA4

Fig. C1.10  MRI derived pre-operative anatomy of CoA5

Fig. C1.11  MRI derived post-operative anatomy of CoA5

Fig. C1.12  MRI derived pre-operative anatomy of CoA6

Fig. C1.13  MRI derived post-operative anatomy of CoA6. The cavity seen in the bottom image
corresponds to a clot positioned as shown by the arrow.



Fig. C1.14
Fig. C1.15
Fig. C1.16
Fig. C1.17
Fig. C1.18

Fig. C1.19

Fig. C1.20

Fig. C1.21

Fig. C1.22

Fig. C1.23

Fig. C1.24
Fig. C1.25

Fig. C1.26

MR derived pre-operative anatomy of CoA8

MRl derived post-operative anatomy of CoA8

MR derived pre-operative anatomy of CoA9

MR derived post-operative anatomy of CoA9

MR derived axial velocity profiles in the descending aorta for synchronic case CoA1. Line
plots are along an antero-posterior diameter. Three-dimensional plots refer to the instant
of peak velocity.
MR derived axial velocity profiles in the descending aorta for synchronic case CoA2. Line
plots are along an antero-posterior diameter. Three-dimensional plots refer to the instant of
peak velocity.
MRI derived axial velocily profiles in the descending aorta for synchronic case CoA4. Line
plots are along an antero-posterior diameter. Three-dimensional plots refer to the instant of
peak velocity.

MRI post-operative axial velocity profiles in the descending aorta for diachronic cases.
Line plots are along an antero-posterior diameter. Three-dimensional plots refer to the
instant of peak velocity.

MRI derived antero-posterior velocity profiles in the descending aorta for the synchronic
cases, plotted along a right-left diameter.

Schematic representation of secondary motion in the descending aorta
Pressure waveforms from catheterisms in post-operative cases.

Measured pressures in post-operative cases: average values (dots), and maximum and
minimum values (bars).
Ascending—descending aortic pressure drop. Differences between the means (squares),
maximum values (diamonds) and minimum values (triangles).

C2: Realistic geometrical modelling

Fig. C2.1
Fig. C2.2

Fig. C2.3
Fig. C2.4

Fig. C2.5
Fig. C2.6

Fig. C2.7
Fig. C2.
Fig. C2.9
Fig. C2.10

Fig. C2.11

Interpretation of the MR images. View from the feet heard-ward. (RA: right atrium; RV: right
ventricle ; PA :pulmonary artery ; Tr : trachea)
Part of 90 slice dataset showing slices from the brachiocephalic vessel level (top images)
on to the descending aortic level (bottom images).

Original polylines (left) and result of contour line filtering (right).
Resutlt of lofting and simplification on thre descending aorta contours and surface
rendering.
Result of complete model generated by patching a grid
Result of lofting and simplification on the descending aorta contours and surface
rendering.
Different side views of the model before and after the surface fiftering

Views of the model before and after the surface filtering from above and below.
Detail of the descending aorta before and after the surface filtering.

Original endothelial surface (left) and offset surface (right) representing the outside of the
vesse/ wall.

Thick-wall model of the aortic arch and descending aorta.

C3: Ex vivo assessment of aortic wall mechanical properties and estimation of
suture line stiffness

Fig. C3.1
Fig. C3.2
Fig. C3.3
Fig. C3.4
Fig. C3.5
Fig. C3.6

Fig. C3.7
Fig. C3.8
Fig. C3.9
Fig. C3.10
Fig. C3.11
Fig. C3.12

Specimen derived from CoA4

Samples dissected from an aortic specimen

Mechanical testing apparatus

Locations of samples. Vessel wall is unnwrapped to show the inside face

Maxwell model of viscoelasticity with a spring of stiffness k and a dashpot of viscosity
Relaxation test results truncated along the t axis. The lines are symbol-coded according to
location (PP= 4, PD1=8, PD2=0, D=,,L=+, M=x, R=%).

Failure tensile test resuilts. Acronyms for the sample positions are shown by the curves.
Comparison of sample thickness for different specimens and locations

Linearisation and estimation of E,,,.

Physiological working-point Young modiuli for the different samples

Comparison of time constants for different specimens and locations
A suture line can be seen as the paralled of two rigidities: the arterial wall matrix and the
suture thread.
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C4: MRI-based rigid wall model of descending aorta with realistic geometry
and inflow data

Fig. C4.1 Descending aorta model with hexahedral mesh

Fig. C4.2 Views of the computational mesh

Fig. C4.3 Comparison between measured inlet velocity components. The mean velocities over the
inlet section are plotted against time. The secondary components are not negligible.

Fig. C4.4 Inlet mesh nodes superimposed on a phase image. Each and every node falls within the
aortic lumen and the lumen boundary are as closely matched as possible.

Fig. C4.5 Comparison between measured and imposed data along the y-diameter of the section.
Plots are for peak systole (left) and mid-deceleration (right) and refer to the head-to-feet
velocity component.

Fig. C4.6 Comparison between the measured and imposed values of mean velocity over the inlet
section during the cardiac cycle.

Fig. C4.7 Spatial orientation and temporal position of the plots in Fig. C4.8a and C4.8b

Fig. C4.8a  Flow field plots during the cardiac cycle

Fig. C4.8b  Transverse Flow field plots during the cardiac cycle

Fig. C4.9 Inlet-outlet pressure gradient during cardiac cycle and polynimial fitting.

Fig. C4.10  Power loss during cardiac cycle

Fig. C4.11  Peak (peak systole) wall shear stress distribution

C5: MRI-based FSI models of reconstructed aortic arches with active
afterload

Fig. C5.1 Muttiscale coupling of three-dimensional model with a lumped parameter net working as
an active afterload

Fig. C5.2 Three-dimensional model of aortic arch and descending aorta with uniform wall (HUW)

Fig. C5.3 Three-dimensional model of aortic arch and descending aorta with E(E repair . Suture line
mesh shown in the bottom image.

Fig. C5.4 Three-dimensional model of aortic arch and descending aorta with GGI-S repair. Suture
and Gore-tex graft meshes are shown in the bottom images.

Fig. C5.5 Three-dimensional model of aortic arch and descending aorta with GPGA repair . Gore-tex
patch mesh shown in the bottom image.

Fig. C5.6 Three-dimensional model of aortic arch and descending aorta with GG/ repair . Gore-tex
graft mesh shown in the bottom image.

Fig. C5.7 Linearised mechanical properties used for the SDM.

Fig. C5.8  Block diagram of the LPM afterload (R: viscous resistances, C: compliances, L:
intertances, U: pressure generators)

Fig. C5.9:  Longitudinal blood velocities in the HUW model

Fig. C5.10  Secondary velocities in the HUW modef

Fig. C5.11  Longitudinal blood velocities in the E/E model

Fig. C5.12  Secondary velocities in the E/E model

Fig. C5.13  Longitudinal blood velocities in the GGI-S model

Fig. C5.14  Secondary velocities in the GGI-S model

Fig. C5.15 Longitudinal blood velocities in the GPGA model

Fig. C5.16  Secondary velocities in the GPGA model

Fig. C5.17 Longitudinal blood velocities in the GG/ mode!

Fig. C5.18  Secondary velocities in the GGI model

Fig. C5.19  Comparison of vortex permanence time in the sagittal and coronal planes

Fig. C5.20 Comparison of ascending aortic pressure in the different models

Fig. C5.21  Comparison of the inlet cross-section variations during the cardiac cycle for the different
models

Fig. C5.22  Comparison of the outlet flow waveform in the different models

Fig. C5.23  Comparison of the femoral arterial and thoracic aortic waveforms in the different models

Fig. C5.24  Example of local pressure drop waveform and sixth-order polynomial fitting. HUW case
shown.

Fig. C5.25 Compatrison of local pressure drop waveforms in the different models.

Fig. C5.26  Comparison of power loss in the different models.

Fig. C5.27  Peak (peak systole) wall shear stress in the HUW model

Fig. C5.28  Peak (peak systole) wall shear stress in the E/E model

Fig. C5.29  Peak (peak systole) wall shear stress in the GGI-S model

Fig. C5.30  Peak (peak systole) wall shear stress in the GPGA model
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Fig. C5.31
Fig. C5.32
Fig. C5.33
Fig. C5.34
Fig. C5.35
Fig. C5.36
Fig. C5.37

Peak (peak systole) wall shear stress in the GG model

Peak (systolic deceleration) von Mises stress in the HUW model
Peak (systolic deceleration) von Mises stress in the E/E model
Peak (systolic deceleration) von Mises stress in the GGI-S model
Peak (systolic deceleration) von Mises stress in the GPGA model
Peak (systolic deceleration) von Mises stress in the GG/ model
Comparison of peak displacements in the four model

C6: Multiscale model of CoA and its repairs, and interaction with the rest of
the body

Fig. C6.1
Fig. C6.2

Fig. C6.3
Fig. C6.4

Fig. C6.5

Fig. C6.6

Fig. C6.7

Fig. C6.8

Fig. C6.9

Fig. C6.10

Fig. C6.11

Fig. C6.12

Fig. C6.13

Fig. C6.14

Fig. C6.15

Fig. C6.16

Fig. C6.17

Fig. C6.18

Fig. C6.19

Muttiscale model: a lumped parameter net (LPM) describing the circulatory tree and an
axi-symmetric model of the descending aorta (ASM).

Axi-symmetric models of the descending aorta. (W: vessel wall, B: blood, F: fibrotic tissue,
S: sutures, G: Gore-tex)

Linearised mechanical properties used for the ASM.,

Examples of sensitivity analysis results.: peak systolic outlet profile (left) and peak systolic
radial displacement along the wall (right).

Block diagram of the LPM (R: viscous resistances, C: compliances, L: intertances, D:
localised disturbances, X: mass-free vaives, U: pressure generators)

Flow field in the HUW model with no collaterals (NC). The plots start just before the
cardjac systole (top) and run through the cycle to end diastole (bottom), as shown in the
top left graph.

Flow field in the HUW model with mild presence of collaterals (C). The plots start just
before the cardiac systole (top) and run through the cycle to end diastole (bottom), as
shown in the top left graph.

Flow field in the HUW model with good presence of collaterals (CC). The plots start just
before the cardiac systole (top) and run through the cycle to end diastole (bottom), as
shown in the top left graph.

Flow field in the CoA60 model with no collaterals (NC). The plots start just before the
cardiac systole (top) and run through the cycle to end diastole (bottom), as shown in the
top left graph.

Fiow field in the CoAB0 model with mild presence of collaterals (C). The plots start just
before the cardiac systole (top) and run through the cycle to end diastole (bottom), as
shown in the top left graph.

Flow field in the CoA60 model with good presence of collaterals (CC). The plots start just
before the cardiac systole (top) and run through the cycle to end diastole (bottom), as
shown in the top left graph.

Flow field in the CoA80 model with no collaterals (NC). The plots start just before the
cardiac systole (top) and run through the cycle to end diastole (bottom), as shown in the
top left graph.

Flow field in the CoA80 model with mild presence of collaterals (C). The plots start just
before the cardiac systole (top) and run through the cycle to end diastole (bottom), as
shown in the top left graph.

Flow field in the CoA80 model with good presence of collaterals (CC). The plots start just
before the cardiac systole (top) and run through the cycle to end diastole (bottom), as
shown in the top left graph.

Flow field in the E/E model with no collaterals (NC). The plots start just before the cardiac
systole (top) and run through the cycle to end diastole (bottomn), as shown in the top left
graph.

Flow field in the E/E model with mild presence of collaterals (C). The plots start just before
the cardiac systole (top) and run through the cycle to end diastole (bottom), as shown in
the top left graph.

Flow field in the E/E model with good presence of collaterals (CC). The plots start just
before the cardiac systole (top) and run through the cycle to end diastole (bottom), as
shown in the top left graph.

Flow field in the GGl model with no collaterals (NC). The plots start just before the cardiac
systole (top) and run through the cycle to end diastole (bottom), as shown in the top left
graph.

Flow field in the GGI model with mild presence of collaterals (C). The plots start just before
the cardiac systole (top) and run through the cycle to end diastole (bottom), as shown in
the top left graph.
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Fig. C6.20

Fig. C6.21
Fig. C6.22

Fig. C6.23
Fig. C6.24
Fig. C6.25
Fig. C6.26
Fig. C6.27
Fig. C6.28
Fig. C6.29
Fig. C6.30
Fig. C6.31

Fig. C6.32
Fig. C6.33

Fig. C6.34
Fig. C6.35
Fig. C6.36

Fig. C6.37
Fig. C6.38

Fig. C6.39

Fig. C6.40

Uoah

D ¥

Flow field in the GGI model with good presence of collaterals (CC). The plots start just
before the cardiac systole (top) and run through the cycle to end diastole (bottom), as
shown in the top left graph.

Vortex endurance in the cardiac cycle is shown by the horizontal bars for E/E and GG/
Quantification of flow in proximal descending aorta (aortic arch), distal descending aorta
(thoracic aorta), and collectively in the collateral circulation: with lesser (C) and greater
(CC) abundance of collaterals. Percent increase in proximal descending aortic flow
correlates with the abundance of collaterals and the severity of stenosis.

Average flow in the intercostal arteries. After surgery the flow reverses to positive as in the
healthy subject irrespective of the abundance of collaterals or surgical technique.
Comparison between average flow in the collaterals for the control case and the post-
operative models

Comparison of the pressure differences between femoral and radial peak systolic
pressures in the healthy subject, in CoA and after repair, with variable collateralisation.
Comparison between aortic, femoral and radial pressures in the healthy subject, with no
collaterals and with abundance of collaterals,

Pulsation domain analysis of the Subclavian vs. Aortic arch, and Thoracic aorta vs. Aortic
arch pressure transfer functions.

Comparison between aortic, femoral and radial pressures in the heafthy subject, in CoA
and after repair.

Pressure drop waveforms during one cardiac cycle, plotted fro different degrees of
collateralisation. Only the plots for CoA60 and CoA80 models are labelled, as no real
distinction can be made between HUW, E/E and GGI.

Decrease in power losses after surgical correction

Comparison between the E/E and GGl techniques and normality.

Times of occurrence of maximal dissipation.

Comparison of WSS distributions in the various models at time when it is maximal. All have
mild presence of collaterals (C) apart from standard HUW-NC. Pre-operative (top); post-
operative (bottom)

Post-operative von Mises stresses along E/E-C and GGI-C compared

Principal stress components in the E/E model. x is the axial direction and y is the radial
one. The plots refer to the instant of maximal stress value.

Principal stress components in the GGI-S model. x is the axial direction and y is the radial
one. The plots refer to the instant of maximal stress value.

Principal stress components in the GG/ model. x is the axial direction

Shear stress concentration in the wall in the presence of a GGI. This is present during the
whole length of the cardiac cycle with variable intensity.

Displacement of the internal wall along the ASM: Maximal value (systolic deceleration - left)
and in diastole (right).

Displacement of the internal wall during the cardiac cycle: at half-length (top) and at the
outlet section (bottom).
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Tab B2.1 Isotopes used in MRI
Tab B2.2 Typical values of T, and T, at 1.5T, 37°C.
Tab B2.3 Guidelines for generating tissue contrast

Tab. C1.1 Animal experiment log including types of measurements carried out

Tab. C3.1 Locations represented for each specimen
Tab. C3.2 Values of physiological working-point Young moduli for the different samples.

Tab. C6.1 Length powers corresponding to the fluid dynamic and geometric parameters of a LPM
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MZABEYWZEB-
That all things are not the same is the nature of things.
{Mengzi)

A chyn chwannocket vu ef y welet yr hyn a weles ac y denessawd nes nes.

And so desirous was he of seeing what he saw that he approached nearer and nearer.
(Seint Greal 56.10)

3335 8m03608B0, dMZHION O3ZOMKROM, YOPOBIHO
35mb-coaliB7o > 35BMBgo.

Gather your wits, observe life, weigh everything up and down and measure it.
(Javaxisvili)

Only after weighing it will you know its exact weight.
(Méngzi)

arggg'umm'tfeggmu‘
uqr:'asmux'gﬁn]n%‘

Those who succeed in a work
without having thought about it cannot be wise men.

(Sakya Pandita)

14



1 should Iike to thank my supervisors Prof. Marc de Leval and Prof. Frank Smith, for their support.
Special gratitude goes to Dr. Francesco Migliavacca from Politecnico di Milano who was not only a
source of inspiration and knowledge, but also a good friend to me; to Prof Gabriele Dubini for his
guidance; to Miss Rossella Balossino and Dr. Katia Lagana for their kind help in times of trouble.
My greatest appreciation goes to Mr. Torben Friind (his lovely wife Vibeke and little daughter
Annika), to Dr. Vibeke Hjortdal, to Dr. Erik Morre-Pedersen and to Dr. Morten Smerup from
Arhus University Hospital for their invaluable contribution to my work and their warmth.

1 also felt very fortunate to meet Dr. Yun Xu who gave me very good advice and put me on the
right track at the beginning of my research and later encouraged me whenever we met.

Last but not least I owe particularly to Ms Jenny Porter and above all Miss Faith Hanstater my
survival through the unending meanders of bureaucracy and the snares of the English language. 1
thank them for their help, support and patience.

I sincerely commend the help of all those who sustained me, rekindled my confidence when it was
waning and lived through every moment of this experience with me. First of all my beloved
Carlorta whose life was shaken because of me but never gave in and always loved me, cheered me

up and shared my struggle and my joys; my parents who stood by me, helped me in all sorts of
ways and backed my decisions; Max, Golnar, Jacquie, Sudha, Alex and all my London friends that
took care of me and filled my life. I also want to thank Carlotta’s family for being a second family
to me.

15



Research questions in Congenital Heart Disease

The important role played by haemodynamics in determining a patient’s state in the
context of pathological or post-surgical circulatory conditions has long been recognised.
Anomalous blood vessel connections, stenoses, aneurysms, partial or total occlusions,
compromised vessel wall properties can all severely impair the normal blood flow patterns,
flow repartition and pressure and energy drops. More subtly, endothelial physiology can
also be affected as a result of disturbed blood motion and the vessel wall functionalities may
be prejudiced.

In light of this, it is fundamental to be able to assess qualitatively and quantitatively
the amount of disturbance caused by disease primarily, and also by the modifications
introduced at the time of surgery or interventional cardiology through resections,
reconstructions, graft insertion and the deployment of implants and biomedical devices. A
quantitative analysis of haemodynamics could lead to a different kind of classification of
disease severity and of surgical efficacy.

The objective of this thesis is the study of blood motion and vessel wall mechanics in the
reconstructed aorta. Surgical treatments of this kind are necessary in the case of congenital
heart disease (CHD), when the aorta is obstructed, e.g. due to a severe stricture (coarctation)
or an interruption in the vessel continuity. The existence of different techniques for this type
of repair, the relative frequency of their application with respect to other procedures, and the
recurrence of post-operative problems impose that studies in this field be continued and a

deeper insight be gained in their comparative advantages.

Bioengineering contributions and the computational approach

Although the value of clinical investigation in this respect is remarkable, there are
instances in which this approach cannot suffice, given the insurmountable limits posed by
ethics and by the state of current measurement techniques. Especially when faced with very
complex diseases, it is very difficult for a researcher to be able to collect reliable
measurements for all the variables of interest in all the implicated districts. In fact, this task
can often become impossible even in relatively simple settings when the accuracy and
resolution requirements are high, mainly due to the characteristics of the available machinery
or the long acquisition times.

When clinical tests fail to describe circulatory variables in an acceptable way for the
needs of a certain research, or when it is impossible to simulate particular physiological or

anatornical conditions; when abstraction from subject individuality is required or a validation
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Introduction

of uncertain clinical results is sought, computational modelling can be an alternative path
which can help shed light on obscure areas in the physiology and surgery of blood

circulation.

General bibliographical references on recent resuits of Haemodynamics

The work done in the last twenty-five years by biomedical scientists in the field of
Haemodynamics an in particular Computational Fluid Dynamics (CFD) is remarkable and
many steps forward have been taken thanks to the collective endeavours of skilled and
creative groups internationally.

I shall only mention a few articles here as a general reference to various aspects of this

art, but more extensive bibliography will be found quoted in the chapters of this thesis.

The first and most widespread applications of fluid dynamics to biology have been in the
field of atherosclerosis and ageing."® The major interest in the study of regions of disturbed
flow has followed as a consequence of such works. Early in vitro work by Ku and Giddens® is
a proof of this. Perktold’s group in Graz was among those that opened the path to CFD in
this type of studies with investigations of aneurysm flow''" and carotid bifurcation. Leading
authorities on this subjects are currently Xu and Long'*® at Imperial College, and Steinman'®

Bin Canada.

The aorta (or better its districts), is another region of the circulatory tree to have been
given the most attention through the years, due to its intrinsic importance as the main artery
of the human body. Most literature refers only to the physiological condition of the aortic
flow,2*?® as the very good paper by Wood, Weston and Gosman,® which also draws
inspiration from the excellent MRI studies conducted by Kilner and Mohiaddin.** An
interesting example of an article dealing with the effects of a common ageing-related

pathology like aneurysm was published by Di Martino, Guadagni and Redaelli from Milan.*'

Papers such as those mentioned collectively demonstrate the amount of interdisciplinary
knowledge and of very different practical skills necessary to create good fluid dynamic
models of the blood circulation. Some technical aspects of this knowledge are briefly
discussed hereafter, with examples of their applications taken from the literature.

The asymmetry that may arise by considering the blood vessels in their full three-
dimensional nature (i.e. not allowing for simplifications such as axi-symmetry or planarity)
may change the haemodynamics radically. Some have tried to study this effect using simple
pipe-like models that have the advantage of avoiding too many geometrical complications
and to concentrate on the issue of three-dimensionality. A good example is a paper on aortic

arch curvature by Yamaguchi’'s group ? on the other hand, MRI image processing is

17



Introduction

particularly useful for producing smooth models of realistic anatomies, which are needed for
some types of CFD simulations. It is vital to have reliable methods for image segmentation
and good criteria for establishing accuracy during acquisition and post-processing. This
research topic is currently pursued in parallel by MRI technicians and clinicians, and by
biomedical engineers.®%

The use of MRI in connection to biomedical CFD calculations can actually help far
beyond the mere acquisition of data on the geometrical domain. It can contribute to the
determination of the boundary conditions (BCs) of the problem.

Many have ftried to establish how to obtain good BCs from classic clinical
measurements® or have proposed approximate solutions making very strong assumptions
as to the nature of the pressure waveforms and the velocity profiles on the borders. This
strongly theoretical approach is nicely exemplified by an old paper on inlet flows by Fung’s
group, from the time when CFD was yet to bloom.®

The advent of phase-contrast MR/, as well as providing medics with a new tool for clinical
investigation, has made it possible to gain information on blood velocity and blood flow from
non-invasive routine investigations.*** Particularly interesting in this respect are the
aforementioned papers by Kilner and Mohiaddin of the early ‘90s. MRI scanners are now
capable of mapping the three components of the velocity vector in every sample volume of
blood tissue in a body slice and encoding them in a convenient digital format that can be
postprocessed and used as BC by fluid-dynamicists. This CFD practice is becoming
increasingly widespread but nice papers on the imposition of MR-derived boundary
conditions were published by Long which are still worth considering.*** The duration of the
scan is still an obstacle, however, and it carries with it the necessity to work with images
which are not entirely satisfactory in terms of spatial definition. The velocity can often only be
sampled on a too coarse grid and there is therefore a need to interpolate the measurements
in order to obtain a useful velocity profile to impose as a condition on the model. Moreover,
with velocities as well as in the case of the geometrical domain, there is a loss in the signal,
produced by noise and artefacts and very difficult to control, which poses questions about
the accuracy of the data used for the calculations. This is still a matter of concern for the
specialists in this field and literature is being produced on this topic by both clinical*® and
CFD scientists® (particularly by Xu's**® and Steinman’s®*° groups, again).

Pressure waveforms can also be used as BCs and help control the solution in terms of
flow separation among the outlet branches or to fix a reference pressure inside the model.
While the sphygmomanometer can give an idea of the systolic, diastolic and mean blood
pressures, and Doppler ultrasound provides data for fairly efficient predictions of pressure
drops, the methods generally available in hospitals for the measurement of pressure
timecourses tend to be invasive, but very accurate (pressure gauge catheterisation). There
are, however, techniques based on plethismography,* applanation tonometry,%**°' or mixed

methods®® sometimes involving wave propagation theories,” 72 that allow us to record or
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predict pressure distal and central waveforms non-invasively. An interesting paper by
Ursino’s group at Bologna presents a mathematical model of pressure measurement.”

In the last ten years or so, CFD specialists in the biomedical field also began to consider
ways of taking into account the properties of the vessel wall and its motion in order to
improve the similitude of the mathematical models with the in vivo reality (FSI: Fluid-Structure
Interaction). Many have imposed the wall motion by taking data from clinical imaging, thus
using geometrical domains that change in time during the calculation.”*”® However, the
current aim is towards a coupled simulation of the equations of the fluid and the wall modeis.
Some trials have already been undertaken.”® A compromise is the iterative solution of the
fluid and the structural subsystems in several steps. During these steps, the partial solution
of one subsystem is alternately passed over as a boundary condition on the other, until both
subsystems converge to a single solution.”

Early examples of CFD simulations including vessel wall mechanics (FSI) were proposed
by Perktold, with Rappitsch’ and with Friedman and collaborators™. More recently the
abovementioned paper by Di Martino, Guadagni and Redaelli®® applies the same
methodology to the complex case of an aortic aneurysm. Also in the aortic district Leuprecht
and Perktold employed shell models for the wall modelling.? If one chooses to impose the
domain motion, the structural part of the problem is not treated but its solution in terms of
wall displacement, is provided by clinical imaging. However, if equations for the wall are
included in the model, it becomes essential to estimate (if possible, non-invasively) the wall
mechanical properties that are parameters in these equations and, of course, boundary
conditions for the solid. There is fairly extensive literature covering those issues.”® The
aortic tissue is treated as a matter of particular interest for the overall importance of the
vessel 2598

Very recently the work done on multiscale modelling in fluid dynamics by Quarteroni’s
group is finding application in the medical field and is providing an alternative to the use of
clinically-derived boundary conditions. Furthermore, multiscale models make it possible to
investigate the impact of local fluid dynamics on larger systems. Some items of literature
dealing with aspects of this methodology are being published by Formaggia, Veneziani, and
bioengineers from Politecnico di Milano (Pietrabissa, Migliavacca, Dubini, Lagana).®*®

Recent reviews of the different obtainable results of CFD applied to the biomedical field
were published by Liepsch,® and by Steinman, Vorp and Ethier.* A nice technical analysis in

two parts of the CFD-FSI methodologies was proposed by Zhao, Xu and Collins.®#

Scale: requirements and limitations of the computational approach in CHD
The formulation of mathematical models is based on the use of certain governing
equations and the assignment of appropriate conditions that describe univocally the

research question. In the case of blood circulation the elements that play a role in the
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problem definition greatly depend on the scale of the model required: at nano-level, electrical
charges, molecular structure and substrate characteristics; at micro-level, cellular and
macromolecular mechanical properties. Considering larger scales at tissue-level (and
occasionally organ-level), the tissue global mechano-physical properties become important
as well as the geometry, the mutual position of different tissues and the interactions with
neighbouring anatomical structures. Finally, at body-level, very often only averaged
properties for relatively large structures, roughly the size of major blood vessels, organs or
circulatory districts can be accounted for; geometrical factors often have to be neglected
altogether, or largely approximated.

Congenital heart disease (CHD), is the general name given to all affections of the
cardiovascular system that originate from genetic disorders. Some defects are isolated, but
more frequently they are parts of complex anomalies or syndromes.

Very often cardiovascular malformations need surgical or interventional correction. In
both cases, the procedures involve manipulation of cardiovascular structures at organ level,
and possibly the substitution or reinforcement of the native tissue with biological or synthetic
devices. Once the operation is completed, the local anatomy is expected to have its
physiological functionality restored and the local problem should be solved. There are
however many aspects of these procedures that are not completely understood. For
example, the role played by pre-operative adaptation to the malformation on the post-
surgical condition; the biological/biochemical effect of tissue manipulation; the influence of
local intervention on the global body circulation. Some of these problems may be tackled
utilising computational methodologies that concentrate primarily on tissue-organ-body level.

The simulations contained in this thesis deal with the effects of surgical procedures at
local organ level and with the impact of local modifications on the system.

At these scales blood vessel segments, circulatory districts, or the whole blood
circulation can be modelled, naturally with different degrees of detail. Hence the need for
specific conditions for these types of problems.

For the tissue-organ level, axi-symmetric and 3D models are often the best choice.
Physical parameters, such as the blood density and its elastic or visco-elastic characteristics,
must be chosen. When modelling CHD repairs, analogous characteristics are also required
for the graft materials employed. All these parameters can be determined by physical
examination, mechanical testing, or can often be derived from the published literature.
Moreover, boundary and initial conditions have to be selected. For these types of problems
boundary conditions are generally in the form of velocity profiles on the inlets, and pressures
on the outlets, or, alternatively, pressures on both inlets and outlets. Furthermore, if apart
from the blood motion, the interaction between the vessel wall and the fluid is also modelled
(FSI), then displacement and/or velocity conditions may be necessary to limit the structure
deformation and roto-transiation. Obviously, all these conditions must be determined for the

specific problem, mainly by clinical measurements, which in some occasions can be
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problematic, especially if there are non-invasiveness constraints. The use of magnetic
resonance imaging (MRI!) was recently recognised as one of the best methods for acquiring
velocity data and realistic geometrical (anatomical) information at the same time. For this
purpose Doppler ultrasound may also be useful in certain settings. As for the pressure
waveform acquisition, catheterisation is frequently the only option, even though alternative
non-invasive techniques such as applanation tonometry may be considered in particular
cases.

The difficulty of acquiring reliable boundary and initial conditions is one of the limitations
of computational methodologies together with a strong dependence on computer power
availability. On the other hand, the use of CFD definitely cuts down on the number and
extent of measurements required to characterise a certain haemodynamics state because,
apart from the boundary and initial conditions, all the other variables of interest can be
calculated. An attempt to free CFD modelling of the limitations imposed by boundary
condition acquisition is the use of multiscale computing, in which parts of the system beyond
the boundaries of the tissue-organ model are also accounted for, generally by a body-scale
representation.

Body scale models are useful not only in the context of multiscale methods but also as
full models in their own right, when the research object corresponds to some very extended
portion of the circulatory tree. These models are generally based on the definition of
equations dependent on time alone (0D) or, at most, on time and a longitudinal dimension
along the blood circuit (1D). the parameters in these equations are global quantities
describing the viscous resistance encountered by blood in its movement through the
compartments of the circuit; the inertia that, at various locations, opposes variations in blood
speed; the compliances of the vessel walls, and so on. Such a model may or may not require
any boundary conditions, depending on whether it is an open- or a close-circuit. The
problem here lies in the estimation of all the parameters needed, which is ultimately based
on clinical measurements and their mathematical elaboration. Computation time is generally
not an issue in this type of models, and the main drawback is the limited detail provided,

although it may well be sufficient for several applications.

CFD simulations of vascular surgery conducted using the various types of approaches
described can be found in the literature. A good work showing the advantages of
computational methods for the comparison of surgical techniques was published by Taylor’s
group at Stanford.® Another nice article of this kind always on adult surgery but using 0D
technology, was published by Pietrabissa’s and Menicanti’s groups.®

There is extensive literature about CFD methodologies for the assessment of surgical
corrections, also in paediatric cases. Particular attention is given to congenital heart disease.
This corpus may be used as a guide, not only in the choice of the appropriate computational
strategy, but also in the way of drawing conclusions about surgical performance from the
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simulation outcomes; in particular, a number of studies have been done on the Fontan type
operations by the Politecnico di Milano group in collaboration with Great Ormond Street
Hospital,'®'* and by other groups. %'

in relation to coarctation of the aorta and aortic arch reconstruction it is possible to find
both clinical and computational results. Some of these specifically deal with tissue properties
and wall deformation.*'>" Among these a paper by McGiffin''? is particularly interesting
because of the computational approach, though the methodology only includes structural
mechanics and does not comprise fluid dynamics. Another paper by Smaill, of the same
group, analyses this issue by an in vitro technique.'®

Others are concerned with haemodynamics and circulatory physiology. There are also
few CFD papers about the consequences of coarctation or aortic grafting, mainly using a 0D
approach. 2124
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