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ABSTRACT

We present weak lensing shear catalogues from the fourth data release of the Kilo-Degree Survey, KiDS-1000, spanning 1006 square
degrees of deep and high-resolution imaging. Our ‘gold-sample’ of galaxies, with well-calibrated photometric redshift distributions,
consists of 21 million galaxies with an effective number density of 6.17 galaxies per square arcminute. We quantify the accuracy of the
spatial, temporal, and flux-dependent point-spread function (PSF) model, verifying that the model meets our requirements to induce
less than a 0.1σ change in the inferred cosmic shear constraints on the clustering cosmological parameter S 8 = σ8

√
Ωm/0.3. Through

a series of two-point null-tests, we validate the shear estimates, finding no evidence for significant non-lensing B-mode distortions
in the data. The PSF residuals are detected in the highest-redshift bins, originating from object selection and/or weight bias. The
amplitude is, however, shown to be sufficiently low and within our stringent requirements. With a shear-ratio null-test, we verify the
expected redshift scaling of the galaxy-galaxy lensing signal around luminous red galaxies. We conclude that the joint KiDS-1000
shear and photometric redshift calibration is sufficiently robust for combined-probe gravitational lensing and spectroscopic clustering
analyses.
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1. Introduction

Cosmological information is encoded in the coherent statistical
correlations observed between the shapes of background galax-
ies. This is a consequence of the weak gravitational lensing of
light by foreground large-scale structures. Combining measure-
ments of the correlations between galaxy shapes, referred to as
‘cosmic shear’, the correlations between the galaxy shapes and
the positions of the foreground galaxies, referred to as ‘galaxy-
galaxy lensing’, and the correlations between galaxy positions,
referred to as ‘galaxy clustering’, provides a powerful set of
observables for cosmological parameter inference (Hu & Jain
2004; Joachimi & Bridle 2010; Zhang et al. 2010). The success
of this type of study, however, rests on the robustness and accu-
racy of the core measurement of galaxy shears and 3D positions,
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with the latter estimated through photometric and/or spectro-
scopic redshifts (see Mandelbaum 2018, and references therein).

The Kilo-Degree Survey (KiDS, Kuijken et al. 2019), the
Dark Energy Survey (DES, Drlica-Wagner et al. 2018), and
the Hyper Suprime-Cam Strategic Program (HSC, Aihara et al.
2019) present hundreds to thousands of square-degrees of high-
quality deep ground-based multi-band imaging. Weak lensing
analyses of these surveys have already yielded some of the tight-
est constraints on the clustering parameter S 8 = σ8

√
Ωm/0.3,

where σ8 characterises the amplitude of matter fluctuations and
Ωm is the matter density parameter (Abbott et al. 2018; Troxel
et al. 2018; van Uitert et al. 2018; Hamana et al. 2020; Hik-
age et al. 2019; Hildebrandt et al. 2020a; Tröster et al. 2020).
The success of these investigations builds upon two decades of
work from previous generations of weak lensing surveys (see
Kilbinger 2015, and references therein).
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Comparing KiDS with DES and HSC, we recognise that
the differences between the survey configurations are largely set
by practical considerations associated with instrumentation, re-
sulting in three complementary surveys. While DES covers the
largest area of sky (almost four times the area of HSC and KiDS),
HSC is the deepest, with KiDS and DES at roughly the same
depth. In terms of image quality, HSC has the best seeing con-
ditions with a mean seeing of 0.58 arcsec, followed by KiDS
with 0.7 arcsec and then DES with ∼ 0.9 arcsec. Inspecting the
variation of the point-spread function (PSF) across each survey’s
camera, and seeing variations across each footprint, we conclude
that KiDS has the most homogeneous and isotropic PSF, in com-
parison to DES and HSC. It also has the widest and most exten-
sive matched-depth wavelength coverage, comprising nine bands
from u to Ks. In this paper we present the galaxy catalogue of
weak lensing shear estimates for the KiDS fourth data release
(Kuijken et al. 2019), which totals 1006 square degrees of imag-
ing and hereafter is referred to as KiDS-1000.

The typical distortion induced by the weak lensing of large-
scale structures changes the observed ellipticity of a galaxy by
a few percent. This can be viewed in contrast to the typical dis-
tortions induced by the atmosphere, telescope, and camera, en-
compassed within the PSF, that can alter the observed elliptic-
ity of even a reasonably well-resolved galaxy by a few tens of
percent. Reliable shear estimates therefore require a good under-
standing of the temporal, spatial, flux, and wavelength variation
of the PSF (Hoekstra 2004; Voigt et al. 2012; Massey et al. 2013;
Antilogus et al. 2014; Carlsten et al. 2018) characterised through
images of point-source objects. Efforts to minimise the impact of
uncertainties in the PSF model include the installation of cam-
eras that are designed to produce a stable PSF across the field of
view with minimal ellipticity (Aune et al. 2003; Kuijken 2011;
Flaugher et al. 2015; Miyazaki et al. 2018). A survey strategy
that reserves the best observing conditions for the chosen ‘lens-
ing’ imaging band can also be adopted in order to minimise the
PSF size in one of the many multi-band observations (see for
example Kuijken et al. 2015; Aihara et al. 2018). This approach
is, however, often incompatible with many time domain studies
that require a fixed multi-band cadence.

Shear estimators can be broadly split into two categories:
moments-based approaches or model-fitting methods (see the
discussion in Massey et al. 2007). In this paper we adopt the
lensfit likelihood-based model-fitting method (Miller et al. 2013;
Fenech Conti et al. 2017) which fits a PSF-convolved two-
component bulge and disk galaxy model simultaneously to the
multiple exposures in the KiDS-1000 r-band imaging, returning
an ellipticity estimate per galaxy and an associated weight. This
approach is similar to the IM3SHAPE and NGMIX model-fitting
approaches adopted by DES (Zuntz et al. 2013; Sheldon 2014;
Jarvis et al. 2016; Zuntz et al. 2018), differing in the implemen-
tation and the choice of galaxy model.

One of the most important aspects of accurate shear estima-
tion is to quantify the response of the chosen shear estimator to
the presence of noise in the images, often referred to as ‘noise
bias’. Cases of both uncorrelated noise (Melchior & Viola 2012;
Refregier et al. 2012), and correlated noise, for example from
the blending of galaxies with unresolved and undetected coun-
terparts (Hoekstra et al. 2017; Kannawadi et al. 2019; Euclid
Collaboration et al. 2019; Eckert et al. 2020), need to be con-
sidered. Noise bias is not the only source of systematic error for
shear estimates, however, as during the object detection stage,
photometric noise can lead to a preferred orientation in the selec-
tion for galaxies aligned with the PSF. This results in a non-zero
mean for the intrinsic ellipticity of the source sample (Hirata &

Seljak 2003; Heymans et al. 2006). This same effect arises across
the full multi-band imaging of the survey which can also lead to
photometric redshift selection bias, a bias that is expected to be-
come a significant source of error for next-generation surveys
(Asgari et al. 2019). Model-fitting methods are also subject to
‘model bias’, where inconsistencies between the adopted smooth
galaxy model and the complex morphology of real galaxies can
induce a shear calibration error (Voigt & Bridle 2010; Melchior
et al. 2010).

There are two main shear calibration approaches to mitigate
these sources of bias. The first is to use the data itself, known
as ‘metacalibration’ or ‘self-calibration’. In the metacalibration
approach, successive shears are applied directly to the data, cal-
ibrating the response of the chosen shear estimator at the loca-
tion of each individual galaxy (Sheldon & Huff 2017; Huff &
Mandelbaum 2017). Self-calibration follows a similar philoso-
phy for model-fitting methods, where the initial best-fit galaxy
model, per galaxy, is effectively reinserted into the measurement
pipeline. The difference between the resulting ellipticity mea-
surement and the true input ellipticity is then used as a calibra-
tion correction for that galaxy (Fenech Conti et al. 2017). These
approaches both mitigate noise bias, with metacalibration also
accounting for model bias. Sheldon & Huff (2017) and Sheldon
et al. (2019) demonstrate how the metacalibration methodology
can also be extended to mitigate object and photometric redshift
selection bias.

The second approach to mitigate shear biases relies on the
analysis of realistic pixel-level simulations of the imaging sur-
vey (see for example Rowe et al. 2015) to determine an average
shear calibration correction for a galaxy sample (Heymans et al.
2006; Hoekstra et al. 2015; Samuroff et al. 2018; Mandelbaum
et al. 2018a; Kannawadi et al. 2019). Provided the image simula-
tions are sufficiently realistic, the resulting calibration will cor-
rect for noise bias including blending, model bias and selection
bias. With realistic multi-band image simulations, photometric
redshift selection bias can also be calibrated.

In this paper we adopt a hybrid of both calibration ap-
proaches starting with a ‘self-calibration’ stage. Fenech Conti
et al. (2017) demonstrated that whilst this approach significantly
reduces the amplitude of the noise bias, a percent-level residual
remains which is then calibrated, along with the model and se-
lection bias, using image simulations that emulate r-band KiDS
imaging (Kannawadi et al. 2019).

The conclusion of the shear estimation and calibration analy-
sis follows a succession of ‘null-tests’ to quantify the robustness
of shear catalogue to ensure that it is ‘science-ready’. The accu-
racy of the PSF model and correction can be determined through
a series of PSF residual size and ellipticity cross-correlation
statistics (Paulin-Henriksson et al. 2008; Rowe 2010; Jarvis et al.
2016) and through the cross-correlation of the shear estimates
and PSF ellipticities (see for example Heymans et al. 2012). A
series of one-point null-tests can be defined to ensure that the av-
erage measured shear is uncorrelated with the measured galaxy
flux or the properties of the camera, based on the position of the
galaxy in the field of view (Heymans et al. 2012; Jarvis et al.
2016; Zuntz et al. 2018; Amon et al. 2018; Mandelbaum et al.
2018b). These null-tests can also be extended further to include
the properties of the galaxies. Troxel et al. (2018), for exam-
ple, present two-point cosmic shear measurements differenced
for a range of galaxy properties such as the measured galaxy
size and signal-to-noise. Given the impact of selection bias when
constructing samples from measured, rather than intrinsic galaxy
properties, it is often hard to interpret these galaxy-property level
null-tests (see the discussion in Fenech Conti et al. 2017; Man-
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delbaum 2018). In this analysis we therefore limit our null-test
studies to observables that are clearly uncorrelated with the in-
trinsic ellipticity of the galaxies. We also introduce a new two-
dimensional (2D) galaxy-galaxy lensing null-test to assess the
position dependence of additive biases.

Gravitational lensing only produces detectable E-mode dis-
tortions, while unaccounted systematics in the data can produce
both E- and B-modes of similar amplitude (Crittenden et al.
2002). We can therefore decompose the measured signal into
its E- and B-modes, using the B-modes to assess the quality of
the data (see for example Jarvis et al. 2003). There is a range
of different statistics that can be used to isolate the B-modes in
the inferred cosmic shear signal (see the discussion in appendix
D6 of Hildebrandt et al. 2017). In this analysis we adopt the
‘COSEBIs’ statistic which has been demonstrated to act as both
a stringent tool to detect B-modes, but also as a diagnostic tool
in order to isolate the origin of any B-modes that are detected
(Asgari et al. 2019).

In all of the KiDS-1000 weak lensing analyses, the cata-
logue of shear estimates presented in this paper will be used
in conjunction with calibrated photometric redshift distributions
(Hildebrandt et al. 2020b). By assuming a fiducial cosmology,
the robustness of any joint shear-redshift catalogue can be as-
sessed by cross-correlating shear measurements separated into
tomographic bins with foreground, and background, galaxy po-
sitions (Heymans et al. 2012). Known as the ‘shear-ratio test’,
this combined shear-redshift analysis can provide a final assess-
ment of the input joint shear-redshift catalogue for weak lensing
surveys (Hildebrandt et al. 2017; Prat et al. 2018; Hildebrandt
et al. 2020a; MacCrann et al. 2020).

This paper is organised as follows. We summarise the KiDS-
1000 data set and our lensfit data analysis in Sect. 2. We doc-
ument the PSF modelling methodology and validate the accu-
racy of the PSF model in Sect. 3. Our suite of shear-catalogue
null-tests are presented in Sect. 4, with our joint null-test of the
shear and photometric redshift estimates presented in Sect. 4.3.
Finally, we conclude in Sect. 5. Unless otherwise specified, cal-
culations and figures use the fiducial set of cosmological param-
eters specified in Table A.1 of Joachimi et al. (2020).

2. Data processing and analysis

The Kilo-Degree Survey is a European Southern Observatory
multi-band public survey with optical imaging in the ugri bands
from the 2.6 m VLT Survey Telescope (VST, Capaccioli &
Schipani 2011; Capaccioli et al. 2012). These data are combined
with overlapping near-infrared (NIR) images in the ZY JHKs
bands from the 4.1 m Visible and Infrared Survey Telescope
for Astronomy (VISTA), as part of the VISTA Kilo-degree IN-
frared Galaxy survey (VIKING, Edge et al. 2013). The KiDS-
1000 analyses focus on the fourth KiDS data release, spanning
1006 deg2 of imaging (ESO-KiDS-DR4, Kuijken et al. 2019).

We extract weak lensing measurements from the deep KiDS
r-band observations. These images are taken using the wide-field
optical camera OmegaCAM (Kuijken 2011), during dark time
and under excellent seeing conditions. The image scheduler fol-
lows the requirement that the PSF full-width half-maximum is
below 0.8 arcsec, resulting in a mean seeing for the full survey
of 0.7 arcsec. The median limiting 5σ point-source magnitude (2
arcsec aperture) is r = 25.02 ± 0.13. OmegaCAM features 268
million pixels across 32 CCD detectors, with a 1.013×1.020 deg2

field of view. Data processing for the r-band imaging uses the
weak-lensing optimised THELI data reduction pipeline (Erben
et al. 2005; Schirmer 2013) to produce, tile by tile, an optimised

mean co-addition of the five dithered1 sub-exposures for object
detection, as well as individual unstacked calibrated images for
each sub-exposure for the weak lensing shape measurements.

The multi-band optical ugri imaging is processed through
the ASTRO-WISE pipeline to produce co-added images for each
filter band with improved multi-band photometric accuracy (Mc-
Farland et al. 2013). For the multi-band ZY JHKs imaging we use
the ‘paw print’ data reduction from the VISTA Science Archive
(Cross et al. 2012). Accounting for the area lost to multi-band
masks, KiDS-1000 is fully imaged in nine bands with matched
depths over a total effective area of 777.4 square degrees2. We
refer the reader to Kuijken et al. (2019) and Wright et al. (2019a)
for further details.

2.1. Photometric redshifts and calibration

Photometric redshift point estimates, zB, are derived using the
Bayesian photometric redshift BPZ method (Benítez 2000) us-
ing the redshift probability prior from Raichoor et al. (2014). The
complete list of settings adopted for the BPZ calculation can be
found in table 5 of Kuijken et al. (2019). We follow Hildebrandt
et al. (2020a) in using these point estimates to define five tomo-
graphic bins between 0.1 < zB ≤ 1.2 (see Table 1), where the
lower and upper zB limits are based on the reliability of the cal-
ibration of these photometric redshifts. For our primary analysis
we estimate the true redshift distributions of the five tomographic
bins using a large sample of overlapping spectroscopic redshifts
and the self-organising map (SOM) methodology of Wright et al.
(2019b). In this analysis, the mapping from multi-dimensional
nine-band KiDS photometry colour-magnitude space to true red-
shift, is trained for each tomographic bin using a sample of over
25,000 spectroscopic redshifts. The SOM allows us to locate
galaxies from the KiDS photometric sample that lie in any part
of colour-magnitude space which is not adequately represented
in the spectroscopic sample. These objects can then be removed
to create an accurately calibrated redshift distribution. We here-
after refer to this SOM-selected photometric sample as the ‘gold’
sample.

The Wright et al. (2019b) analysis of a mock survey
with KiDS properties, based on the MICE simulation (Crocce
et al. 2015), confirms that the SOM approach is more robust
than the direct redshift calibration method (DIR) adopted for
the KiDS-450 and KV450 cosmic shear analyses (Hildebrandt
et al. 2017, 2020a)3. This results in a decrease in the uncer-
tainty on the calibrated mean redshift of each tomographic bin,

1 The five-step dither follows a staircase pattern with steps parallel to
both the RA and declination axes. The step sizes are chosen to match
the gaps between CCDs (25 arcsec in RA, 85 arcsec in declination),
ensuring that all parts of the tile are covered by at least three of the
exposures (de Jong et al. 2015).
2 This effective area is the total survey area that is not excluded by the
nine-band composite ugriZY JHKs mask that identifies image defects
and overlapping regions, in addition to flagging missing data in one or
more of the bands. This mask is defined on the native OmegaCAM pixel
scale of 0.213 arcsec. We note that the KiDS-1000 analysis is based on
the KiDS-ESO data release update DR4.1, correcting for a minor error
in the registration of the multi-band masking since the publication of
Kuijken et al. (2019).
3 The DIR method includes the photometric galaxies that the SOM
flags as problematic, owing to a lack of representation in the spectro-
scopic sample. This results in larger bias and uncertainty for the DIR-
calibrated redshift distributions compared to the SOM distributions in
the MICE mocks (see Wright et al. 2019b, for details). We clarify, how-
ever, that the redshift uncertainties adopted in previous KiDS-with-DIR
cosmic shear analyses, mitigated this bias (Wright et al. 2020).
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from σDIR
z = [0.039, 0.023, 0.026, 0.012, 0.011] to σSOM

z =

[0.010, 0.011, 0.012, 0.008, 0.010]. We note that this reduction
in systematic uncertainty incurs an increase in statistical error,
as the SOM-gold selection reduces the effective number density
of KiDS-1000 galaxies by 20%. This increased statistical error
is tolerable, however, as our primary focus is the mitigation of
systematic errors. We therefore use the gold photometric sample
throughout this paper (see Wright et al. 2020, for the first ap-
plication of the SOM redshift calibration method to the cosmic
shear analysis of KV450). We refer the reader to Hildebrandt
et al. (2020b) for the details of the KiDS-1000 photometric red-
shift calibration analysis, which also includes a secondary cross-
correlation clustering calibration.

2.2. Weak lensing shear estimates and calibration

Weak lensing shear estimates, ε, and associated weights, w, are
derived from the simultaneous analysis of the individual r-band
exposures using the model-fitting lensfit method (Miller et al.
2013; Fenech Conti et al. 2017). For a perfect ellipse with a
minor-to-major axis length ratio, β, and orientation, φ, measured
counter clockwise from the horizontal axis, the ellipticity param-
eters ε = ε1 + iε2 are given by,(
ε1
ε2

)
=

1 − β
1 + β

(
cos 2φ
sin 2φ

)
. (1)

With this ellipticity definition, an estimate of the weak lensing
shear, γ, can be constructed, as 〈ε〉 = γ, to first order (Seitz &
Schneider 1997).

For this KiDS-1000 analysis, we continue to use the self-
calibrating version of lensfit developed for the KiDS-450 data
release, described in Fenech Conti et al. (2017) and evaluated
in Kannawadi et al. (2019). Our PSF modelling strategy is how-
ever updated in Sect. 3, to incorporate information from the Gaia
mission (Gaia Collaboration et al. 2018). With the increase in
the number of galaxies in the KiDS-1000 sample, we are also
able to double the overall resolution, and hence accuracy, of our
empirical weight bias correction scheme. This scheme corrects
for correlations between the lensfit weight, the galaxy elliptic-
ity, and the relative orientation of the galaxy to the PSF. When
aligned in parallel with the PSF, a galaxy will be detected with
a higher signal-to-noise, and hence be assigned a higher weight,
than when it is aligned perpendicularly to the PSF. Consider-
ing galaxies of fixed isophotal area and signal-to-noise, we also
find that galaxies have smaller measurement errors, and hence a
higher-than-average weight, at intermediate values of ellipticity.
These correlations naturally lead to additive and multiplicative
biases in any weight-averaged shear estimator (see section 2.3
of Fenech Conti et al. 2017).

To mitigate the impact of weight bias, we create 250 sub-
samples of the full KiDS-1000 galaxy catalogue with 50 quan-
tiles in the absolute local PSF model ellipticity, |εPSF|, and 5
quantiles in PSF model size. For each sub-sample we map the
mean of the lensfit estimated ellipticity variance as a function
of observed galaxy ellipticity, ε1 and ε2, signal-to-noise ratio
and isophotal area. We then correct the weights, which account
for the measured ellipticity variance, such that the re-calibrated
weights in the sample are not a strong function of the relative
PSF-galaxy position angle or of the galaxy ellipticity. We found
that creating sub-samples in terms of the absolute PSF ellipticity,
in contrast to individual PSF ellipticity components, as in Hilde-
brandt et al. (2017), and then increasing the resolution in the PSF
ellipticity sub-sampling by a factor of ten, resulted in a reduction

in the full survey-weighted average PSF contamination fraction
by a factor of three (see Sect. 3.5 for further details).

As we find no significant changes in the depth and PSF qual-
ity when comparing the KiDS-1000 and KV450 data releases,
we continue to use the Kannawadi et al. (2019) image simu-
lations to calibrate the KiDS-1000 shear measurements. Kan-
nawadi et al. (2019) emulate KiDS imaging using morpholog-
ical information from Hubble Space Telescope imaging of the
COSMOS field (Scoville et al. 2007; Griffith et al. 2012). Adopt-
ing the reasonable assumption that the COSMOS galaxy sam-
ple is representative of those observed in KiDS, the response of
the lensfit shear estimator to different input shears can be de-
termined, under the KiDS observing conditions. The emulated
COSMOS galaxies are also assigned a redshift, zB, obtained
from KiDS+VIKING photometry of the field such that they ex-
hibit similar noise properties to KiDS-1000. A shear calibration
correction m can then calculated per tomographic bin with the
galaxies weighted to match the lensfit observed size and signal-
to-noise distribution of KiDS-1000.

Kannawadi et al. (2019) show that the derived m value is sen-
sitive to the full joint distribution of galaxy size and ellipticity in
the input COSMOS sample. Comparing the fiducial calibration
corrections with values derived when erasing the apparent COS-
MOS size-ellipticity correlations, by randomly assigning galaxy
ellipticities, leads to ∼ 2% differences in the calibration correc-
tions in the first three tomographic bins. For the first two tomo-
graphic bins, ∼ 2% differences were also found when the cali-
bration was derived from the full COSMOS sample, compared
to the fiducial calibration derived from the zB-binned COSMOS
samples. This effect stems from the correlations that exist be-
tween galaxy morphology, physical size and photometric red-
shift. Applying a tomographic zB selection to the galaxy sample
therefore changes the size-ellipticity correlations and the result-
ing shear calibration.

Kannawadi et al. (2019) proposed a conservative approach
for cosmic shear analyses, setting a calibration correction uncer-
tainty of σi

m = 0.02 for all i ∈ {1, . . . , 5} tomographic bins. This
approach was adopted by Hildebrandt et al. (2020a), assuming
100% correlation between the calibration errors in the different
tomographic bins. We review this proposal in light of the insensi-
tivity of the fourth and fifth tomographic bin to the chosen input
COSMOS sample, the fact that ∼ 2% covers the unlikely and ex-
treme case of zero correlation between galaxy size and elliptic-
ity, and the fact that the uncertainty is included in the cosmolog-
ical analysis as a Gaussian of width σm such that more extreme
values of m are still permitted within the tails of the Gaussian
distribution, albeit down-weighted. We therefore revise the cali-
bration correction uncertainty used in Hildebrandt et al. (2020a).
We adopt the largest difference in the estimated m-calibrations
between the fiducial, randomised, and non-zB selected analyses
from Kannawadi et al. (2019), with a minimum value of 1%.
In this case σm = [0.019, 0.020, 0.017, 0.012, 0.010] which we
assume to be 100% correlated in our fiducial cosmic shear anal-
ysis. We note that taking the alternative approach of adopting
uncorrelated and scaled shear calibration errors (see for example
Appendix A of Hoyle et al. 2018) did not lead to any signifi-
cant changes in the resulting KiDS-1000 cosmological parame-
ter constraints (Asgari et al. 2020).

It is clear that the application of the SOM-gold selection for
the KiDS-1000 galaxies is likely to introduce a new selection
effect that needs to be accounted for. We determine the COS-
MOS gold-selection from the KiDS photometry of the COSMOS
field, meaning that we identify which COSMOS galaxies are
poorly represented in our spectroscopic sample. We then mimic
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Table 1: Properties of the KiDS-1000 ‘gold’ galaxy sample in five tomographic redshift bins. For each bin we tabulate: the nominal
photometric redshift range, zB; the effective number density of the gold photometric sample per square arcminute, ngold

eff
; the measured

ellipticity dispersion per component, σε ; the median redshift of the bin, zmedian
SOM , as defined by the SOM calibration; the mean redshift

of the bin, 〈zSOM〉; the accuracy and uncertainty on the mean of the redshift calibration, δz; and the shear calibration correction, m.

Bin zB range ngold
eff

[arcmin−2] σε zmedian
SOM 〈zSOM〉 δz m

1 0.1 < zB ≤ 0.3 0.62 0.270 0.2073 0.2571 0.0001 ± 0.0106 −0.009 ± 0.019
2 0.3 < zB ≤ 0.5 1.18 0.258 0.3590 0.4027 0.0021 ± 0.0113 −0.011 ± 0.020
3 0.5 < zB ≤ 0.7 1.85 0.273 0.5421 0.5636 0.0129 ± 0.0118 −0.015 ± 0.017
4 0.7 < zB ≤ 0.9 1.26 0.254 0.7460 0.7918 0.0110 ± 0.0087 0.002 ± 0.012
5 0.9 < zB ≤ 1.2 1.31 0.270 0.9336 0.9838 −0.0060 ± 0.0097 0.007 ± 0.010

the gold-selection in the fiducial Kannawadi et al. (2019) image
simulations by removing these under-represented galaxies from
the analysis, before weighting the emulated COSMOS galaxies
to match the lensfit observed size and signal-to-noise distribu-
tion of the SOM-gold sample. We find that the gold-selection
changes the m calibration corrections by (mall − mgold) = 0.008,
in the first and fourth tomographic bins, with negligible changes
in the remaining three bins. We adopt these revised gold calibra-
tion corrections, as listed in Table 1.

We verify that the gold selection does not significantly im-
pact on the calibration correction uncertaintyσm, by determining
the gold calibration correction for the fiducial, randomised, and
non-zB image simulations. Overall σm is reduced by ∼ 0.001
in each redshift bin, a reduction that we choose not to include
in our analysis as the impact is so small. We recognise that a
high-accuracy assessment of the impact of a SOM-gold selec-
tion requires full multi-band image simulations. As the changes
to the shear calibration introduced by the SOM-gold selection on
the single-band Kannawadi et al. (2019) image simulations are
within our σm uncertainty limits however, we reserve the quan-
tification of any second-order multi-band selection effects to a
future analysis.

Table 1 presents the average statistical properties of the
KiDS-1000 shear estimates for each gold sample per tomo-
graphic bin4. We list the effective number density of galaxies
per square arcmin, neff , to be taken in conjunction with the mea-
sured ellipticity dispersion, per component, σε . These are two
key quantities for the cosmic shear and galaxy-galaxy lensing
covariance estimates. We refer the reader to appendix C3 and
C4 of Joachimi et al. (2020) where the estimators for these key
quantities are derived for a weighted and calibrated ellipticity
distribution. For an ideal survey with unit shear responsivity es-
timates (such that m = 0) these terms reduce to the expressions
adopted in previous analyses (Heymans et al. 2012).

2.3. Blinding strategy

Blinded weak lensing analyses were first advocated and imple-
mented in Kuijken et al. (2015). Blinding has since become a
standard feature of weak lensing studies in order for researchers
to remain agnostic towards the key cosmological results, until
the methodology and data analysis choices have been finalised.
The KiDS collaboration have adopted two approaches to date,

4 Prior to photometric redshift selection, the KiDS-1000 weighted
galaxy number density is neff = 8.43 per square arcminute. When lim-
iting to the zB range 0.1 < zB ≤ 1.2, the galaxy sample reduces to
neff = 7.66, with the SOM-gold selection introducing a further reduc-
tion with ngold

eff
= 6.17.

blinding the shear measurements and weights (Kuijken et al.
2015; Hildebrandt et al. 2017), or the photometric redshift dis-
tributions (Hildebrandt et al. 2020a). Each time the KiDS team
have analysed three or four versions of the data, where one is
the truth, unblinding the results when every stage of the analysis
has been completed. Muir et al. (2020) presents the multi-probe
blinding strategy for the DES collaboration whereby data trans-
formations are applied to the observed multi-probe data vector to
consistently blind the different observations, in addition to multi-
plicative shear catalogue level blinding. Hikage et al. (2019) dis-
cuss the two-tiered approach of the HSC collaboration whereby
the shear calibration correction m is modified first universally,
and then an additional correction is applied by each analysis
team to facilitate phased unblinding. Sellentin (2020) presents
an alternative approach whereby the cosmic-shear only or multi-
probe covariance matrix is modified. All these approaches can be
tuned to introduce a ∼ ±2σ (or greater) change in the recovered
value of S 8 = σ8

√
Ωm/0.3.

The primary KiDS-1000 science goals are cosmic shear con-
straints (Asgari et al. 2020) and a joint multi-probe analysis of
KiDS-1000 with BOSS, the Baryon Oscillation Spectroscopic
Survey (Heymans et al. 2020). As a multi-probe blinding analy-
sis is invalidated by the already public nature of the BOSS cos-
mological parameter constraints (Sánchez et al. 2017), we adopt
the shear catalogue level blinding strategy of Hildebrandt et al.
(2017). The null-tests presented in this paper were performed
whilst the KiDS team was still blind, and we note that the con-
clusions we draw from all these tests are unchanged for each of
the three blinded catalogue versions. For full transparency we
record here that in the calculation of the shear calibration cor-
rection for the SOM-gold selection, the unblinding of co-author
Kannawadi was unavoidable. The unblinded SOM-gold shear
calibration corrections for KV450 (Wright et al. 2020) clarified
which KiDS-1000 blind was the truth during the evaluation of
the KiDS-1000 SOM-gold shear calibration correction. This in-
formation, however, was not distributed to the rest of the team.

3. The point-spread function

The atmosphere, telescope, and camera all contribute to the over-
all effective PSF, which is modelled based on the light profile
of calibration point sources observed at various positions in the
field of view. The model is then interpolated to other locations
on the exposure to obtain a model for the full CCD mosaic (see,
for example, Hoekstra 2004; Miller et al. 2013; Kitching et al.
2013; Lu et al. 2017). Galaxy shapes can then be corrected for
this effect.
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3.1. Point source selection

To accurately model the PSF, we require a fully representative
sample of stars, with negligible contamination from galaxies. We
follow Kuijken et al. (2015), by selecting star-like sources, on
individual exposures, based on their location in the (T 1/2, J1/4)
plane, where T is a measure of object size, and J is measure
of the concentration of the light distribution. T is given by the
second-order moments of the 2D angular light distribution, I(θ),
with T = Q11 + Q22, and

Qi j =

∫
d2θw[I(θ)] I(θ) θi θ j∫

d2θw[I(θ)] I(θ)
. (2)

Here w[I(θ)] is a weighting function, which is typically chosen
to encompass the full extent of the light distribution. For the pur-
pose of point source selection, we choose the weight to be an
iteratively centred Gaussian of width 0.62 arcseconds. J is given
by the axisymmetric fourth-order moment of the light distribu-
tion, with

J =

∫
d2θw[I(θ)] I(θ) |θ|4∫

d2θw[I(θ)] I(θ)
. (3)

In previous KiDS analyses, the automatic identification of
stars was carried out using a ‘friends-of-friends’ algorithm to lo-
cate the compact overdensity of stellar objects in the (T 1/2, J1/4)
plane. In this plane, stars have the smallest sizes and the most
concentrated light distributions compared to the full sample of
detected objects. The precise location of the stellar objects in
this plane, however, varies from exposure to exposure and chip
to chip, dependent on the size and shape of the PSF during the
observation.

Automated star-galaxy separation was found to be success-
ful at selecting a clean sample of stars in ∼ 90% of the data,
where the measure of success required the per-chip variance of
the residual between the measured and model PSF ellipticity to
be less than 0.001. This value was chosen as it provided a clean
divide between catastrophic failures, with residual variance at
the level of > 0.0025, and the tail of the typical noise distri-
bution of the KiDS residual PSF ellipticities. Automation was
found to fail in exposures which contained galaxy clusters where
the overdensity of similar-sized galaxies in the cluster resulted in
the automated ‘friends-of-friends’ algorithm selecting the galaxy
cluster overdensity in the (T 1/2, J1/4) plane, rather than the stel-
lar overdensity. To remedy this and avoid the manual interven-
tion required for previous KiDS studies, our KiDS-1000 analysis
incorporates the DR2 point source catalogue from the Gaia mis-
sion (Gaia Collaboration et al. 2018).

Objects detected in the KiDS imaging are cross-matched
with all Gaia-defined point sources. These are primarily stars,
with a low level of contamination from extended sources (Are-
nou et al. 2018). This bright catalogue is too sparse to provide
an accurate model of the spatially varying PSF for each expo-
sure, but it is sufficient to define the size and concentration of
the stellar population in the (T 1/2, J1/4) plane. For each expo-
sure and CCD, we therefore augment the sample of PSF objects
by adding all sources less than three standard deviations away
from the mean in the (T 1/2, J1/4) plane. The standard deviations
and corresponding directions are defined from a principal com-
ponent analysis performed on the Gaia-matched KiDS sources
on the CCD 5. Adopting this methodology satisfied our require-
5 The number of Gaia objects per CCD chip varies across the KiDS
sky coverage, with an average of 90 per chip in the southern stripe and
120 per chip in the equatorial stripe.

ment for low-levels of variance in the per-chip residual between
the measured and model PSF ellipticity for the full KiDS-1000
sample.

Baldry et al. (2010) present a star-galaxy separation tech-
nique based on object size and NIR-optical colour in the (J −
Ks, g − i) colour-colour space. Using spectroscopy from the
Galaxy And Mass Assembly survey (GAMA, Driver et al. 2011),
they demonstrate that their selection criteria result in a galaxy
selection that is 99.9% complete. Figure 1 compares the (J −
Ks, g − i) distribution of the full sample of objects in the equa-
torial KiDS-1000 region (shown as a colour scale) to the distri-
bution of our point-source sample (shown as magenta contours
enclosing 68% and 95% of the sample). We see that this com-
bination of NIR and optical colours defines two distinct pop-
ulations, with very similar results found for the southern KiDS-
1000 region, albeit with a lower stellar density resulting from the
increased distance from the Galactic equator. The stellar locus,
from equation 2 of Baldry et al. (2010), and the GAMA-defined
exclusion criteria are shown as solid and dashed white lines. We
find that the majority of the widening of the contours seen around
(g − i) ∼ 0.5 derives from an increase in the average (J − Ks)
photometric error, σ(J−Ks), and that only 3% of our point-source
sample have colours that are inconsistent, at more than 3σ(J−Ks),
with a Baldry et al. (2010) defined stellar population. We note
that the significant tail of point-source objects extending beyond
(J −Ks) > 0 and (g− i) < 0.5 have colours that are characteristic
of quasars (see for example figure 6 in Baldry et al. 2010). As
high-redshift quasars are suitable point sources to include in our
PSF model6 we conclude that our point-source sample7 is suffi-
ciently pure from contamination of extended sources to permit
accurate PSF modelling.

3.2. PSF modelling: Spatial variation

Following Miller et al. (2013) and Kuijken et al. (2015), our PSF
model is defined on a 32×32 grid of pixels with resolution equal
to that of the CCDs (0.213 arcsec per side). The amplitude of
each pixel is fit with a two-dimensional polynomial of order n,
where the coefficients up to order nc are given the freedom to
vary between each of the ND = 32 CCD detectors in Omega-
CAM. This allows for flexible spatial variation (including dis-
continuities) in the PSF. In each 32 × 32 pixel grid the ampli-
tudes are normalised to sum to unity. The total number of model
coefficients per pixel is given by (Kuijken et al. 2015),

Ncoeff =
1
2

[(n + 1)(n + 2) + (ND − 1)(nc + 1)(nc + 2)] . (4)

The flux and centroid of each star are also allowed to vary in
the fitting, with a sinc function interpolation employed to align
the PSF model grid with the star position. The total number of
coefficients is large, but is sufficiently well constrained by the
number of data points, equal to the number of pixels times the
number of identified stars in each exposure. Figure 2 presents the
average PSF pattern εPSF, the variance in the PSF ellipticity as
measured between the 1006 tiles that comprise KiDS-1000, and
the average PSF residual, the difference between the measured
PSF ellipticity and the model at the location of the stars,
δεPSF = εPSF

true − ε
PSF
model . (5)

6 The wavelength range of the OmegaCAM r-band filter is narrow such
that the PSF is not expected to significantly vary across the band.
7 Point-source samples can be accessed through the KiDS-DR4 full
multi-band catalogue using the column SG_FLAG. Users of the KiDS-
1000 gold-shear catalogue need not apply corrections to excise point-
sources as they are efficiently removed by the lensfit weights.
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Fig. 1: (J−Ks, g−i) distribution of the full equatorial KiDS-1000
catalogue (colour map) revealing two distinct populations, com-
pared to the distribution of objects identified as point sources
(magenta contours enclosing 68% and 95% of the sample). We
find that 3% of our point-source sample has colours that are
inconsistent with the stellar locus and exclusion criteria from
Baldry et al. (2010, solid and dotted white lines). The signifi-
cant tail of point-source objects extending beyond (J − Ks) > 0
and (g − i) < 0.5 have colours that are characteristic of quasars,
which are combined with the stellar sample in our point-source
catalogue.

These diagnostics are shown for both components of the PSF
ellipticity, ε1 (left), and ε2 (right). The mean PSF ellipticity is
at the percent level, with a standard deviation at the few percent
level. The strongest PSF distortion is seen at the edges of the
field of view. These edge distortions are somewhat mitigated,
however, as the KiDS dither strategy is such that the outer ∼ 5%
of all field edges are excised, with the area appearing in a more
central overlap region in an adjacent KiDS-1000 pointing.

One route to test the reliability of the PSF model is to sep-
arate the stellar sample into a training and validation set, where
the PSF model is created from the training sample, and the resid-
ual PSF ellipticities are determined for the validation set (see for
example Jarvis et al. 2016). We do not adopt this approach, how-
ever, as we found that it serves to significantly degrade our PSF
model in low-stellar density regions; constraining the high num-
ber of coefficients in our model requires the maximum number
of stars for the fit. In our analysis the training and validation sam-
ple are therefore the same. This choice restricts the direct detec-
tion of ‘over-fitting’ in the PSF model which, if present, would
imprint PSF ellipticity and size residuals on the inferred galaxy
shapes. Our galaxy catalogue tests for the amplitude of such a
systematic (Sect. 3.5 and Sect. 4.1), however, indirectly demon-
strate that if any PSF model over-fitting is present, the impact is
within our requirements.

For KiDS-1000 we retain the per-chip coefficient of nc = 1,
as in previous analyses. However, we found that we were able to
increase the two-dimensional polynomial order across the field
of view from n = 3 (used in Kuijken et al. 2015; Hildebrandt
et al. 2017) to n = 4. With the improved Gaia-selected point-
source sample, the additional coefficients for this higher-order
model were found to be well constrained. This enhancement re-
sulted in a reduction, by a factor of roughly two, in the amplitude
of the residual PSF ellipticity component, δεPSF

2 , in the upper-
right corner of the field of view. This corner residual is now

Fig. 2: Average KiDS-1000 PSF ellipticity εPSF (upper panels),
the associated standard deviation (middle panels), and the resid-
ual PSF ellipticity δεPSF (lower panels) on the OmegaCAM focal
plane, for the first (left panels) and second (right panels) compo-
nents of the ellipticity. We note that colour-scale changes be-
tween rows.

found at a lower significance, as seen in Fig. 2. Further discus-
sion of the PSF model optimisation is presented in Sect. 3.3.1.

3.3. Quantifying the impact of PSF residuals with the
Paulin-Henriksson et al. systematics model

Paulin-Henriksson et al. (2008, hereafter ‘PH08’) quantify the
impact of residual PSF ellipticity and size on cosmic shear esti-
mates for a shear estimator, eobs, that is given by

eobs =
erawTraw − ePSFTPSF

Traw − TPSF
. (6)

Here e is the ‘polarisation’, measured from the second moments
of the surface brightness profile via

ePSF =
Q11 − Q22 + 2iQ12

Q11 + Q22
, (7)

where the quadrupole moment, Qi j, is given in Eq. (2), and the
object size8 is given by T = Q11 + Q22. Measurements are made
of the PSF-convolved galaxy light distribution, eraw and Traw,
with the PSF polarisation, ePSF, and size, TPSF, at the location
of the galaxy, inferred from the measurements around point-
sources in the field. For the shear estimator in Eq. (6) to hold, the
quadrupole moment weight function in Eq. (2), w[I(θ)] = 1∀θ.
In the case of realistic noisy imaging data, however, unweighted
quadrupole moments formally lead to infinite noise in the shear

8 In the literature, T is also referred to as R2, the radius-squared.
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estimator. This motivates the use of a Gaussian weight function
to isolate each object (Kaiser et al. 1995), and Massey et al.
(2013) discuss the additional scaling factors needed to account
for the bias introduced by this Gaussian weight.

At this point it is relevant to note that the PH08 choice of
shear estimator, eobs, is not fully representative of the model-
fitting lensfit shear estimator ε. The relationship between the po-
larisation shear estimator eobs and shear γ is given by 〈eobs〉 '

2(1 − σ2
e) γ, to first order, where σ2

e is the per-component vari-
ance of the unlensed, noise-free, intrinsic polarisation estimates
(Schneider & Seitz 1995). This can be contrasted with the ellip-
ticity shear estimator ε, which is related to the shear γ as 〈ε〉 = γ,
to first order (Seitz & Schneider 1997). This model nevertheless
allows us to form a framework to provide an indicative estimate
of the impact of PSF modelling errors in our analysis.

Errors in the modelled PSF size and ellipticity can be as-
sessed through a first-order Taylor series expansion of Eq. (6)
(see appendix A of PH08) where

eobs ' eperfect
obs + (eperfect

obs − ePSF)
δTPSF

Tgal
−

TPSF

Tgal
δePSF . (8)

Here eperfect
obs is the perfect systematics-free shear estimator, Tgal

is the true size of the galaxy, meaning the measured size in the
absence of a PSF convolution. Errors in the PSF model are quan-
tified through δTPSF and δePSF, the offset between the true PSF
and the model PSF at the location of the galaxy, for example
δTPSF := TPSF − Tmodel.

Cosmic shear is traditionally detected using the two-point
shear correlation function estimated from the ε-shear estimator
as

ξ̂±(θ) =
Σi, jwiw j(εobs,i

t ε
obs,j
t ± εobs,i

× ε
obs,j
× )∆i j(θ)

Σi, jwiw j∆i j(θ)
, (9)

where the w-weighted sum over the tangential, εt, and cross, ε×,
components of the observed ellipticities is taken over all galaxies
i, j. The angular binning function ∆i j(θ) = 1 when the angular
separation between galaxies i and j lies within the bin centred on
θ, and is zero otherwise. We can use this estimator to construct a
two-point shear correlation function9 with the systematics model
in Eq. (8) as10,

9 We use short-hand notation where 〈ab〉 denotes the two-point corre-
lation function estimator ξ±(θ) in Eq. (9), but with the ε-terms labelled
as sample i, replaced with the complex quantity a. The ε-terms terms
in sample j are then replaced with the complex quantity b. For scalar
quantities, namely size measurements, the notation T denotes the lensfit
weighted value of the scalar quantity T , averaged over the full survey.
10 Here we do not include any null terms which correlate statistically
independent quantities, for example ePSF and eperfect

obs . We also remove

the vanishingly small second-order term
[
δTPSF/Tgal

]2 〈
eperfect

obs eperfect
obs

〉
.

We choose to ignore any potential correlations between galaxy shape,
eperfect

obs , and size, Tgal, which would lead to a position-dependent mul-
tiplicative bias. Kitching et al. (2019) distinguishes between spatially
varying and constant sources of bias which impact the first term in
Eq. (10). Provided that spatially varying biases in the model PSF size
are small, however, they conclude that the average bias, as given in
Eq. (10), is sufficient to model the multiplicative errors for the two-point
shear correlation function.

〈eobseobs〉 '

1 + 2
δTPSF

Tgal

 〈eperfect
obs eperfect

obs

〉
(10)

+

 1
Tgal

2

〈(ePSF δTPSF) (ePSF δTPSF)〉

+2
 1

Tgal

2

〈(ePSF δTPSF) (δePSF TPSF)〉

+

 1
Tgal

2

〈(δePSF TPSF) (δePSF TPSF)〉 .

We note that Eq. (10) differs from similar derivations in Massey
et al. (2013), Melchior et al. (2015) and Jarvis et al. (2016), as
we choose to keep all terms that may couple within the corre-
lation function. Specifically we include the possibility where er-
rors in the PSF polarisation, δePSF, are correlated with the PSF
size, TPSF. Furthermore, Jarvis et al. (2016) choose to link the
PH08 systematics model in Eq. (8) with a first-order systemat-
ics model (see Sect. 3.5) by connecting the (δTPSF/Tgal)ePSF term
with a fractional residual PSF term αePSF measured directly from
the data. We discuss this further in Sect. 3.5. We recognise the
third and fourth terms in Eq. (10), as the Rowe (2010) statistics,
scaled by PSF and galaxy size ratios. These terms join the sec-
ond term in acting as an additive shear bias, in contrast to the
first systematic term in Eq. (10), which acts as a multiplicative
shear bias.

3.3.1. Constraints on the Paulin-Henriksson et al. model

We measure each term in Eq. (10) directly from the data, with the
exception of the perfect systematics-free shear estimator term,
〈eperfect

obs eperfect
obs 〉. This term is given by the theoretical expectation

for ξ+(θ) for the KiDS-1000 redshift distributions from Hilde-
brandt et al. (2020b) and our fiducial set of cosmological param-
eters.

We calculate the PSF polarisation, ePSF, and size, TPSF, for
each object in our stellar sample using a weight function, w[I(θ)]
in Eq. (2), given by an iteratively centred Gaussian of width 0.5
arcseconds. This weight function is necessary to minimise the
impact of noise in the wings of the PSF. To be consistent, we ap-
ply the same weight function in the model PSF measurements,
emodel and Tmodel, even though the PSF model is noise-free. For
a circular Gaussian PSF, the weighted and unweighted polari-
sation measurements are equal in the absence of noise. For the
low-ellipticity seeing-dominated OmegaCAM PSFs, we are rel-
atively close to this regime. The weighted size estimate is, how-
ever, artificially reduced in comparison to the unweighted size
estimate with the size of the reduction dependent on the rela-
tive size of the PSF to the width of the weight function (Duncan
et al. 2016). Massey et al. (2013) estimate that for small galax-
ies, weighted size estimates are underestimated by a factor of
approximately two, and we adopt this factor to roughly correct
our TPSF size estimates. We also divide each PSF polarisation
term, ePSF, by a factor of two to account for the factor of ap-
proximately two in the polarisation-shear relation for this shear
estimator (Schneider & Seitz 1995).

We estimate the average unconvolved galaxy size, 1/Tgal, by
taking the lensfit-weighted average of Tgal = 6r2

s where rs is the
exponential disk scalelength of each galaxy as determined from
the best-fit galaxy model. The factor of six results from the re-
quirement for consistent size definitions between the PSF and
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galaxy, and is calculated analytically from Eq. (2), with the 2D
surface brightness profile I(θ) ∝ exp (−θ/rs), following an ex-
ponential profile of scalelength rs. We argue that this approach
is an improvement over the alternative of fixing TPSF/Tgal = 1
(Jarvis et al. 2016; Mandelbaum et al. 2018b), which inappro-
priate for a lensfit weighted approach, where small galaxies are
downweighted in the analysis.

We compute δξ± = 〈eobseobs〉−
〈
eperfect

obs eperfect
obs

〉
, using the same

short-hand notation from Eq. (10). The correlations are mea-
sured using Eq. (9), with a unit weight for all stars. The Omega-
CAM PSF has equal tangential and radial distortions (see for
example, Kuijken et al. 2015), such that we find ξPSF,PSF

− (θ) to be
consistent with zero for all θ. We therefore limit our systematics
analysis to the ξ+(θ) correlation function.

We analyse four different PSF models characterised by the
polynomial orders n:nc = 3:1, 4:1, 3:2 and 5:1 (see Eq. 4). We
find that although the PSF is accurately modelled in all four
cases, as determined by the low-level measurement of δξ+(θ),
the 3:1 model, used for the previous KiDS data releases (Kui-
jken et al. 2015; Hildebrandt et al. 2017), does not perform as
well as the other three cases. The level of systematics indicated
by the PH08 model are very similar for the 4:1, 3:2 and 5:1 mod-
els and we therefore adopt the 4:1 model for KiDS-1000, given
that it has the least number of coefficients.

The measured δξ+(θ), and the amplitudes of the different
contributing terms in Eq. (10), are shown in Fig. 3 for the fifth to-
mographic bin, with similar results found for the other bin com-
binations. All the individual contributing terms, and the sum,
are within the Mandelbaum et al. (2018b) defined requirement
limits, shown as a yellow shaded region, and discussed further
in Sect. 3.3.2. We note that Fig. 3 uses a symlog scale for the
vertical axis as these statistics can be negative; the transition
from logarithmic to linear is indicated by the solid horizontal
lines. The error bars (too small to be seen in some cases) come
from a jackknife resampling, whereby the field is divided into
Njk = 49 segments which are removed one-by-one, with the dif-
ferent terms calculated from the remaining Njk − 1 segments at
each iteration.

Figure 3 shows that the most dominant systematic derives
from the first term in Eq. (10) (shown dotted) which is a multi-
plicative bias, arising from PSF size modelling errors. For tomo-
graphic bins 2, 4 and 5, we find δTPSF/Tgal ∼ (−2± 0.02)× 10−4.
This term is consistent with zero, however, for tomographic bins
1 and 3. The average residual size modelling error is taken over
the full point-source sample, and the reported error on the mean
does not include any errors that arise from the flux-dependent bi-
ases discussed in Sect. 3.4.2. We remind the reader that the value
is also dependent on the size of the weight function used to es-
timate TPSF in Eq. (2). We currently only approximately account
for the impact of this weight function using the ‘small-galaxy’
correction factors from Massey et al. (2013). Nevertheless we
note that in the Asgari et al. (2020) KiDS-1000 cosmic shear
analysis, we marginalise over the uncertainty in the calibration
bias correction m, per tomographic bin i, with δi

m ∼ 0.01 − 0.02
(see Table 1). As the calibration correction to the shear corre-
lation function ξ

i j
± (θ), given by (1 + δi

m)(1 + δ
j
m), is larger than

the measured amplitude of the first term in Eq. (10), we con-
clude that the δm-marginalisation will mitigate the presence of
the multiplicative systematics that we find associated with PSF
size modelling errors.

3.3.2. Accuracy requirements for the PSF model

The procedure for establishing requirements for the PSF mod-
elling, in terms of the additive bias δξ+, is an open question (see
for example the discussion in Kitching et al. 2019). Zuntz et al.
(2018) note that requirements are specific to individual science
cases, but provide a guide that it should be less than 10% of the
weakest tomographic cosmic shear signal. Mandelbaum et al.
(2018b) set the requirement that each of the individual terms in
Eq. (10) will not exceed 0.5σξ+

, where σξ+
is the standard devi-

ation of ξ+ in each tomographic bin.
Figure 3 compares the amplitude of each term in Eq. (10) to

0.5σξ+
(yellow band) where, in contrast to Mandelbaum et al.

(2018b), we take σξ+
to be the error for a non-tomographic anal-

ysis. As we find the PSF errors contaminate each tomographic
bin fairly equally, we argue that any requirements based on the
measured noise on the correlation function, σξ+

, must use a more
stringent requirement set by the noise from a non-tomographic
analysis. We find that the level of systematics in KiDS-1000, as
predicted by PH08, meets this requirement.

Troxel et al. (2018) verify that their measured amplitude of
δξ+(θ) does not significantly bias the DES Year 1 cosmological
constraints, through a parameter inference analysis of a biased
mock cosmic shear data vector. We adopt a similar philosophy,
but given the computational expense of full MCMC parameter
inference analyses we introduce an initial rapid χ2 analysis of a
series of noisy mock data vectors to first flag problematic sys-
tematic signals. Any systematics that raise a flag are referred to
the computation-intensive MCMC analysis in order to quantify
the resulting bias on the cosmological parameters.

For our rapid χ2 test we define the following χ2-statistics

χ2
perfect

j
= ηT

j C−1 η j

χ2
sys

j
= (η j + δξ)T C−1 (η j + δξ)

χ2
high/low

j
= (η j + ξhigh/low − ξ)

T C−1 (η j + ξhigh/low − ξ). (11)

Here ξ is the tomographic cosmic shear data vector for the fidu-
cial cosmology, η j is the j’th realisation ( j ∈ [0, 5000]) of
the noise on ξ, sampled from the full KiDS-1000 tomographic
cosmic shear covariance matrix C, described in Joachimi et al.
(2020), δξ is the expected systematic bias vector from Eq. (10),
replicated for each tomographic bin combination, and finally
ξhigh/low is the tomographic cosmic shear data vector with S 8
increased/decreased relative to the fiducial cosmology by a vari-
able factor11 of ±AσS 8 of the KiDS-1000 S 8 constraint in Asgari
et al. (2020), where σS 8 ' 0.02. The χ2

perfect values are those that
would be measured for KiDS-1000 in the case of perfect shear
measurement across a series of random noise realisations. The
χ2

sys values determine the χ2 offset introduced when the system-
atic PSF model bias is included in the measurements, for the
same series of noise realisations. This offset quantifies the re-
duction in the goodness-of-fit of the perfect cosmological model
to the observed signal which includes systematics.

An initial estimate for the impact of the systematic signal
on the inferred cosmological parameters is determined by com-
paring the offset, ∆χ2

sys = χ2
sys − χ

2
perfect, to the χ2 offset intro-

duced when changing the underlying S 8 cosmology by ±AσS 8 ,
through a series of different χ2

high/low values. As such, we are as-
suming that the bias in the goodness-of-fit caused by the system-
atic, mimics a change in the S 8 parameter. In reality, however, a
11 A was chosen to span a reasonable range with A =
0.1, 0.15, 0.2, 0.3, 0.4.
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Fig. 3: Contributions to the additive systematic, δξsys
+ (θ), from the PH08 systematics model. The four terms from Eq. (10), shown

in varying shades of blue/green (see legend for details), cause 〈eobseobs〉 to deviate from 〈eperfect
obs eperfect

obs 〉. The total systematic δξsys
+

(red), given by the summation of these four terms, can be compared to the yellow band which encloses half the uncertainty on ξ+,
assuming a non-tomographic cosmic shear analysis. As the correlations can be negative, the vertical axis has a symlog scale with
black lines indicating the transition from the logarithmic to linear scale. The apparent asymmetry of the error bars (computed via
jackknife realisations) is just an artefact of them crossing the log-linear scale boundary. The PH08 systematics model (red) can
be compared to the magenta curve, which shows the expected contribution to the cosmic shear signal from the detector-level bias
found in 3/32 OmegaCAM CCDs (see Sect. 3.4.1). This figure presents the analysis of the fifth tomographic bin; similar results are
obtained for the other bins.

given PSF systematic could induce changes in the best-fit values
of multiple cosmological and nuisance parameters, or could al-
ter the χ2 without introducing any bias in the best-fit parameters
(Amara & Réfrégier 2008). Our χ2 test therefore only serves as a
benchmark for the impact of a PSF systematic on the inference of
the S 8 parameter. If the systematic is found to induce significant
changes in the goodness-of-fit, the systematic can then move up
to the next stage of testing using a full MCMC analysis.

Specifically, we calculate the mean of each χ2 distribution,
and find the lowest amplitude A, where the shift between the
‘perfect’ and ‘sys’ hypotheses, ∆χ2

sys, is smaller than the shifts
induced between the perfect and ‘high’ or ‘low’ hypotheses,
∆χ2

high,low. As the values of ∆χ2
sys,high,low vary slightly with the

shot noise η, we measure the average shifts over 20 iterations
of the χ2 distributions, each consisting of 5000 noise realisa-

tions. For the systematic bias vector given in Eq. (10), we find
∆χ2

sys = 0.001 ± 0.001 which is smaller than the shifts induced
between the perfect and high or low hypotheses with A = 0.1,
where ∆χ2

high = 0.016 ± 0.004 and ∆χ2
low = 0.022 ± 0.004. We

therefore conclude that the low-level imperfections in our PSF
modelling, seen in Fig. 3, induce a change in the goodness of fit
that is significantly less than the change induced if the underly-
ing S 8 cosmology changes by 0.1σS 8 = 0.002.

Joachimi et al. (2020) determine a requirement for system-
atics to induce a < 0.1σ change on S 8. This limit corresponds
to the typical variance between the values of S 8 recovered from
a series of converged MCMC parameter inference chains that
analyse the same mock KiDS-1000 data vector, but with differ-
ent random seeds. Based on the results of our rapid χ2 analy-
sis, we find that there is no necessity to run an expensive full

Article number, page 10 of 23



Giblin, Heymans, Asgari & the KiDS collaboration et al.: KiDS-1000 Shear Catalogues

MCMC analysis to accurately quantify the bias incurred as a re-
sult of the presence of the additive bias δξ+ shown in Fig. 3. At
the estimated level of < 0.1σ differences, any small offsets in
the MCMC results could simply be attributed to noise in the pa-
rameter estimation. We therefore conclude that the accuracy of
the KiDS-1000 PSF model, as quantified with the PH08 method,
is well within our requirements for KiDS-1000.

3.4. Detector-level effects

The discussion thus far has assumed that the PSF is the only
source of instrumental bias, such that, in the absence of noise,
Eq. (6) provides an unbiased estimate of the galaxy shape. Im-
perfections in the detector are not captured by this equation,
however, and they can also introduce biases in the measured
shapes of galaxies (Massey et al. 2013).

One of the best-known examples of a detector-level distor-
tion is ‘charge transfer inefficiency’ (CTI), which is particularly
relevant for space-based lensing studies where the background is
low (see for example Miralles et al. 2005; Rhodes et al. 2007). In
this case not all the charge in a pixel is transferred at each read-
out cycle, and the trapped charge is released some time later,
with the release probability determined by the type of defect in
the silicon lattice. Traps with release times similar to the clock-
ing time cause a trail that increases with a given object’s distance
to the readout register (see for example Massey et al. 2010). Al-
though prominent in space-based observations, it is a common
feature of all CCD detectors.

The ‘brighter-fatter effect’ (BFE) introduces another distor-
tion. Here the build-up of charge in a given pixel acts to inhibit
said pixel’s capture of further incident photons, such that they are
captured by the surrounding pixels. This results in a broadened
PSF for brighter objects (Antilogus et al. 2014). The flux depen-
dence of the effect is typically different for the parallel and serial
readout directions, modifying both the PSF size and ellipticity as
a function of the pixel count value.

Lesser-known effects include ‘pixel bounce’, which is sim-
ilar to CTI, and could be caused by dielectric absorption in the
read-out electronics (Toyozumi & Ashley 2005). Here, capaci-
tors in the circuit do not reset to the reference bias voltage suf-
ficiently quickly. If the voltage is too low, the recorded pixel
value is biased high. The excess signal depends on the counts
in the previous pixel inducing a distortion along the readout di-
rection. Unlike CTI, however, the bias in the object shape does
not depend on the distance to the readout register. The trail is
also shorter. Additionally, there is the so-called ‘binary offset ef-
fect’ (Boone et al. 2018) which results in a shift of charge, by
up to three pixels, as a result of the digitisation of the CCD out-
put voltage. Hoekstra et al. (in prep.) have detected this effect in
OmegaCAM data, but conclude that it is irrelevant given the sky
background levels in the KiDS r-band data.

These detector-level distortions are all dependent on the flux
of the object. Any model for the PSF derived from measurements
of bright stars may therefore be inappropriate for faint galaxies.
A biased PSF correction then leads to biased galaxy shape mea-
surements (Melchior et al. 2015).

Hoekstra et al., (in prep.) present a detailed study of pixel
correlations in flat-field exposures from OmegaCAM, detecting
increased noise-covariance at bright fluxes, a clear signature of
BFE. Given the thinned OmegaCAM CCDs, however, the fluxes
where the effect becomes significant are high, and the impact
on the shape and ellipticity of the PSF itself was found to be
very small for stars with magnitudes r > 18. This bright limit
was therefore adopted in our PSF modelling. In the same anal-

ysis, Hoekstra et al. (in prep.) study CTI in the OmegaCAM se-
rial readout direction, detecting a low-level signal that does not
vary significantly between detectors. They conclude, however,
that the CTI distortion is at level that does not affect the shape
measurements.

3.4.1. Quantifying PSF flux dependent additive bias

We investigate detector-level distortions in Fig. 4, which shows
the average residual PSF ellipticity, δεPSF, as a function of stellar
r-band magnitude for the 32 OmegaCAM CCD chips for our
star sample with 18 < r < 22.5. For the δεPSF

2 component, we
find very low levels of flux dependence for all of the CCD chips
ranging from 〈δεPSF

2 〉(r=18) = (2±1)×10−5 to 〈δεPSF
2 〉(r=22) = (−4±

2) × 10−5. For the majority of chips, the flux dependence is also
low for the δεPSF

1 component which ranges from 〈δεPSF
1 〉(r=18) =

(−2.3 ± 0.4) × 10−4 to 〈δεPSF
1 〉(r=22) = (2.2 ± 0.4) × 10−4. Three

of the OmegaCAM CCD chips in Fig. 4 do, however, exhibit
significant flux dependence in the δεPSF

1 component of the PSF
ellipticity, chips with CCD IDs12 15, 21, and 30.

To explore the flux dependence of the PSF further, we anal-
ysed cosmic rays in all the OmegaCAM dark frames, which con-
tain no other objects. Figure 5 shows the stack of all cosmic rays
with counts between 250 and 800 for the most offending detec-
tor, CCD ID 15. We find trailing in the serial direction, which
is flipped in the upper half of OmegaCAM relative to the lower
half, supporting a hypothesis that this effect is caused by CTI
and/or pixel bounce in the readout register. By inspecting the de-
pendence on the distance to the readout register, we find that the
CTI distortion in this CCD is an order of magnitude smaller than
the dominant source of the distortion which we therefore infer
arises from pixel bounce.

We model the systematic error introduced by the flux de-
pendence of the PSF seen in Fig. 4 following Hildebrandt et al.
(2020a), fitting a linear relation to the per-chip δεPSF residual
ellipticities as a function of r-band magnitude. We estimate a
field-of-view position dependent δεPSF(x, y) model for the typi-
cal KiDS galaxy by extrapolating the linear magnitude relation-
ship to r = 24. We mimic the dithering and stacking of ex-
posures, by combining five dithered δεPSF(x, y) maps (see fig-
ure 2 in Hildebrandt et al. 2020a). Residual PSF ellipticity con-
tributes to the observed cosmic shear signal with an amplitude
δξ± ≈ 〈δε

PSFδεPSF〉 (see for example the discussion in PH08;
Zuntz et al. 2018). We find that |δξ+|< 5.1× 10−7, with the angu-
lar dependence of the function shown in Fig. 3 (magenta curve).

We quantify the impact of the flux dependence of the
PSF distortions on our cosmological parameter constraints us-
ing the methodology from Sect. 3.3.2. We find the change in
the goodness-of-fit of the fiducial cosmological model, given a
pixel-bounce biased data vector, is consistent with the change
in the goodness-of-fit when the value of S 8 in the cosmological
model changes by 0.15σS 8 , (see Eq. 11). This result is consis-
tent with Asgari et al. (2019) who only see a significant impact
in their mock data analysis if they artificially increase the mag-
nitude of this detector effect by a factor of five. This difference
is just outside our tolerance requirement of systematics inducing

12 The THELI CCD naming convention IDs 15, 21, and 30 correspond
to the ESO CCD IDs 74, 84, and 91, where the conversion between the
two naming schemes is given by,

IDESO = 16 [(IDTHELI − 1) //8] + 73 − IDTHELI ,

with // designating integer division.
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Fig. 4: Average KiDS-1000 PSF ellipticity εPSF (left panels, di-
vided by a factor of ten) and residual PSF ellipticity δεPSF (right
panels), indicated by the colour bar, as a function of stellar r-
band magnitude and CCD chip ID. A flux dependence of the
PSF residual δεPSF

1 is seen in CCD chip IDs 15, 21, and 30, indi-
cating the presence of strong detector-level systematics in these
three CCDs.

less than a 0.1σS 8 change in S 8, however. As we discuss fur-
ther in Sect. 3.5.2, we do not find evidence in the data to support
the residual PSF ellipticity model analysed here, with the data
favouring a significantly lower amplitude. We remind the reader
that our faint galaxy residual PSF ellipticity model is derived
from a linear fit to the effect determined from stars with magni-
tudes ranging from 18 < r < 22, extrapolated to r = 24. The
fact that the faint galaxy data does not support this extrapolated
model is an indication that the impact of the effect diminishes as
the galaxies approach the background noise level, resulting in a
non-linear relationship between the residual PSF ellipticity and
galaxy magnitude.

We note that the results of the PH08 model analysis in
Sect. 3.3.1 do not predict the level of additive bias anticipated
from the estimated detector-level systematic. This is because
our PH08 model analysis is incomplete, as it neglects any flux-
dependence in the measured quantities. We therefore caution that
future systematic tests with the PH08 model should build in a
flux-dependent dimension, evaluating Eq. (10), as a function of
magnitude (see the discussion in Massey et al. 2013; Cropper
et al. 2013). We recognise, however, that this development is
non-trivial as the various quantities measured in Eq. (10) become
progressively noisier as we reach the stellar magnitude limit for
the sample of r & 22 (see Fig. 4). To extend beyond this limit
towards typical galaxy magnitudes, we have relied on linear ex-
trapolation, the accuracy of which we test in Sect. 3.5.2. In the
future it is likely that we will become reliant on detailed simula-

Fig. 5: Counts per pixel for a stacked image centred on cosmic
rays detected in dark frames from OmegaCAM THELI CCD
ID 15 (also referred to as ESO CCD ID 74). A distortion can be
seen along the serial direction to the read-out amplifier, which we
interpret as primarily arising from pixel bounce. We note that this
effect is found to be significantly lower in all other OmegaCAM
detectors.

tions in order to model and quantify the impact of these system-
atic effects (Euclid Collaboration et al. 2020).

3.4.2. Quantifying PSF flux-dependent multiplicative bias

Detector-level distortions impact both the ellipticity and size of
the PSF as a function of flux. As we can see from the first term
in Eq. (10), errors in the PSF size, δTPSF = T data

PSF − T model
PSF , re-

sult in a multiplicative bias on the cosmic shear measurement.
There are, however, two challenges in accurately determining
δTPSF as a function of stellar magnitude. The first is a form of
noise-bias where, as the PSF becomes progressively fainter, the
wings of the distribution dip below the background. In this case,
the T -size estimate is unable to distinguish between a narrow
high surface brightness PSF, or an extended lower surface bright-
ness PSF, as the part of the PSF that we observe above the noise
threshold appears to be the same size (Duncan et al. 2016). The
second involves the choice of weight function in Eq. (2), which
introduces a bias in the recovered object’s size. This bias de-
pends on the relative size of the object to the weight function,
hampering efforts to detect size variation as a function of flux
when using a fixed weight size. Given the difference between
TPSF values measured at different fluxes, compared to the cho-
sen weight radius, however, the impact of the weight function
bias is expected to be weak. These challenges currently preclude
an accurate quantification of the multiplicative bias that we in-
cur from the weak flux dependence of the PSF seen in Fig. 4. We
can however make a rough calculation based on the data to hand,
which is expected to overestimate the amplitude of this effect13.

13 The BFE results in fainter stars that are narrower than bright stars.
The T -size estimate underestimates the size of an object as its flux de-
creases, which mimics BFE.
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Extrapolating measurements of δTPSF/TPSF as a function
of stellar r-band to r = 24, we estimate that −0.005 <
〈δTPSF/TPSF〉(r=24) < 0. At the faint end of the galaxy popula-
tion, the lensfit weighted 〈TPSF/Tgal〉(r=24) ∼ 1, where we in-
clude the ‘small-galaxy’ correction factor from Massey et al.
(2013) to account for the weight bias in TPSF. Combining these
estimates we can conclude that the impact of flux dependent
multiplicative bias on the two-point shear correlation function
ξ±, as quantified through the first term in Eq. (10), is −0.01 <
2〈δTPSF/Tgal〉(r=24) < 0. The Kannawadi et al. (2019) uncer-
tainty on the calibration correction to the shear correlation func-
tion ξ

i j
± (θ) is given by (1 + δi

m)(1 + δ
j
m), where the uncertain-

ties are treated as being 100% correlated between tomographic
bins, with δi

m listed in Table 1. As this is a factor of two to four
times larger than the measured amplitude of the first term in
Eq. (10), we conclude that the δi

m-marginalisation in any cos-
mic shear analysis will mitigate the presence of the multiplica-
tive systematics that we find associated with flux-dependent PSF
size modelling errors.

We note that, as in Sect. 3.4.1, we have adopted linear ex-
trapolation to model the flux dependence of the residual PSF
size δTPSF. As faint galaxy data does not support this extrapo-
lated model, in Sect. 3.5.2, the multiplicative bias estimate that
we have presented here is very likely to be a worse-case sce-
nario. It nevertheless highlights the necessity to develop a new
strategy for including an accurate flux-dependent dimension in
future systematic tests with the PH08 model.

3.5. Quantifying the impact of PSF residuals with a
first-order systematics model

In this section we directly test for PSF residual ellipticities in
the KiDS-1000 shear catalogue using a first-order systematics
model applied to the weighted lensfit galaxy shear estimates.
This is in contrast to the PH08 model analysis from Sect. 3.3
which provides an indirect test of the shear catalogue through
the PSF model. Here systematic errors are parameterised using
a first-order expansion (Heymans et al. 2006) of the form

εobs = (1 + m)(ε int + γ) + αεPSF + βδεPSF + c , (12)

where εobs is the observed ellipticity, that is the shear estima-
tor, m is a multiplicative bias, ε int is the intrinsic ellipticity, γ is
the cosmic shear term that we wish to extract, α and β are the
fractions of the PSF ellipticity εPSF, and the residual PSF ellip-
ticity δεPSF, that remain in the shear estimator, and finally c is
an additive term that is uncorrelated with the PSF. We note that
the ellipticity, shear and additive terms in Eq. (12) are written
in complex form, for example ε = ε1 + iε2. The terms α, β and
m, however, are typically treated as scalars, scaling both of the
ellipticity components equally.

In the first-order systematics model, a non-zero α can be at-
tributed to an error in the deconvolution of the PSF from the
galaxy ellipticities and/or noise-bias. A non-zero δεPSF can be
associated with how well the model fits the true effective PSF.
Zuntz et al. (2018) argue that in this case, a value of order β ∼ −1
is expected as PSF model errors propagate into an error of the
same magnitude, but opposite sign, in the shear estimate. A non-
zero c could be associated with detector level effects such as
charge transfer inefficiencies.

Taking the first-order systematics model from Eq. (12) under
the assumption that m, α and c are constant across the full survey,
we find the two-point shear correlation function estimator ξ̂± (see

Eq. 9), is given by

ξ̂± = (1 + m)2〈εperfectεperfect〉 + α2 〈εPSFεPSF〉 (13)

+ 2αβ 〈εPSFδεPSF〉 + β2 〈δεPSFδεPSF〉 + cc± .

Here we follow the short-hand notation from Eq. (10), where, for
example, 〈εperfectεperfect〉 = ξ

γγ
± , the cosmic shear two-point corre-

lation function which is directly related to the non-linear matter
power spectrum and its associated cosmological parameters. We
also define cc± for the contribution of the scalar c-term to ξ̂±.
Here cc+ = c2

1 + c2
2, and cc− = 0, by definition.

Bacon et al. (2003) define the following systematics estima-
tor to determine the level of contamination to the two-point shear
correlation function estimator ξ̂± from any residual PSF elliptic-
ity in the shear estimate

ξ
sys
± = 〈εobsεPSF〉2/〈εPSFεPSF〉 , (14)

where 〈εobsεPSF〉 is the ‘star-galaxy’ cross-correlation function,
measured between the observed and PSF ellipticities. If the
model in Eq. (12) provides a good representation of the system-
atics in the data, then ξsys

± = α2〈εPSFεPSF〉 when δεPSF ∼ 0. We
note that any significant additive biases, c, do not contribute to
the ξsys

± estimator as, by definition, c is uncorrelated with the PSF.

3.5.1. Constraints on the parameters of the first-order
systematics model

We constrain the amplitude of the PSF leakage term α, and
the additive parameter c, in Fig. 6, by fitting Eq. (12) to the
w-weighted KiDS-1000 shear measurements, in the case of
position-independent parameters. In this analysis we note that
for the large KiDS area, 〈ε int + γ〉 ≈ 0. We also fix δεPSF = 0,
which is a good approximation when considering the average
PSF modelling error across the full survey (see Fig. 2). We refer
the reader to Sect. 3.4, however, where we quantify the impact of
low-level flux dependent PSF modelling errors in the three out
of the 32 CCDs in OmegaCAM which display strong detector
level effects.

We find that α is consistent with zero, at the 2σ level, when
considering the full survey (see the shaded region in Fig. 6),
and also the first three tomographic photometric redshift bins
with zB < 0.7. For the two highest redshift bins we find |α|∼
0.04± 0.01, with consistent PSF residual fractions when consid-
ering the ε1 and ε2 components independently. This validates our
model in which α is treated as a scalar, modulating both elliptic-
ity components equally.

Turning to the additive bias c = c1 + ic2, we find c1 is con-
sistent with zero when considering the full survey (see the pink
shaded region in Fig. 6), but with significant detections in the
third and fifth tomographic bins. We find a significant detection
of c2 at the level of c2 ∼ (6 ± 1) × 10−4 across all but the first
tomographic bin. The presence of a significant c2 term is ex-
pected from lensfit analyses of image simulations where Kan-
nawadi et al. (2019) measure c2 in the range of [5, 10] × 10−4.
From this image simulation analysis we can conclude that a low-
level additive systematic bias, that is uncorrelated with the PSF,
is inherent to the software that we have used14. This is supported
by an analysis of the shear catalogue as a function of object po-
sition within the field of view, finding no significant variation of
c across the camera.
14 We note that lensfit remains under development, and the origin of
the c2 term is now known to lie in the likelihood sampler. An updated
version of lensfit will be used for the analysis of the full KiDS survey
area (Data Release 5).
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Fig. 6: Systematics parameters: the amplitude of the PSF resid-
ual fraction α, and the additive parameter c, from Eq. (12), as
a function of tomographic photometric redshift bin, zB. The to-
mographic measurements can be compared per ellipticity com-
ponent, ε1 (closed, pink) and ε2 (crosses, grey), and with a non-
tomographic measurement (shown as coloured grey/pink bars of
width 1σ).

Based on these results, we choose to empirically correct the
observed shear estimates such that εobs

corr = εobs−εobs, where εobs is
the weighted average ellipticity of the relevant tomographic bin.
It is these empirically corrected shear estimates that we use in the
cosmic shear analysis of Asgari et al. (2020), which includes a
nuisance parameter δε2 for each tomographic bin to marginalise
over our uncertainty in the accuracy of the empirical calibration
correction. The prior for δε2 is given by a zero-mean Gaussian of
widthσ = 7.5×10−8, corresponding to the largest variance, mea-
sured from any tomographic bin, between 300 bootstrap sam-
ple measurements of 〈εobs

1 − εobs
1 〉

2 + 〈εobs
2 − εobs

2 〉
2. We note that

this prior is roughly twice the size of the nuisance prior adopted
in Hildebrandt et al. (2020a), as it accounts for correlations be-
tween the empirical corrections that were previously neglected.

In the first three tomographic bins where α ∼ 0, the empiri-
cal correction that we apply corresponds to the additive c-term,
that is εobs ≡ c. In the highest two tomographic bins, however,
εobs ≡ αεPSF + c. This correction therefore also accounts for the
average offset induced from the PSF residual ellipticities which
is of similar amplitude to the c-terms15. We note that we choose
not to implement an additional empirical PSF-dependent correc-
tion for the PSF contamination, as our αmeasurements are noisy.
Furthermore, if α is not a constant, and is instead correlated with
galaxy properties, atmospheric seeing, or image depth, for ex-

15 The average PSF ellipticity is εPSF
1 = 0.005± 0.001, εPSF

2 = −0.005±

0.001 for the KiDS-1000 equatorial field, and εPSF
1 = 0.003 ± 0.001,

εPSF
2 = 0.001 ± 0.001 for the KiDS-1000 southern field.

ample, applying an average correction would artificially imprint
a PSF-correlation across our full data set that could potentially
be more problematic than the low-level average bias that we cur-
rently detect.

3.5.2. Accuracy requirements and validation of the
first-order systematics model

In Fig. 7 we compare two measured star-galaxy cross-correlation
functions with the amplitudes predicted by the linear systematics
model from Eq. (12). The standard star-galaxy cross-correlation
function, 〈εobs

corr ε
PSF〉, is related to the linear systematic model pa-

rameters as16

〈εobs
corr ε

PSF〉 = α〈εPSFεPSF〉 + β〈εPSFδεPSF〉 − αεPSF εPSF
± . (15)

We can also construct a residual star-galaxy cross correlation
function 〈εobs

corr δε
PSF〉, where

〈εobs
corr δε

PSF〉 = α〈εPSFδεPSF〉+β〈δεPSFδεPSF〉−αεPSF δεPSF
± . (16)

As with previous sections, we focus on the ξ+(θ) term only, as
the ξ−(θ) term is consistent with zero for the OmegaCAM PSF.

Figure 7 shows reasonable agreement between the mea-
sured star-galaxy correlation function (shown dark blue), with
the model prediction (blue band, Eq. 15) which we calculate
by taking α from Fig. 6, β = −1, δεPSF from the detector level
model in Sect. 3.4, and the other terms measured directly from
KiDS-1000. We note that the band encompasses the 2σ uncer-
tainty from the measurement of α. All other error terms are sub-
dominant.

In contrast we find little agreement between the measured
residual star-galaxy correlation function (shown pink), with the
model prediction (grey dotted line, Eq. 16). This suggests that
our faint magnitude linear extrapolation of the residual PSF el-
lipticity, δεPSF, is not representative of the detector level bias that
the galaxies have experienced. We find that the average residual
star-galaxy correlation is significantly lower than the expecta-
tion from the extrapolated chip-dependent residual PSF elliptic-
ity model. We therefore conclude that whilst we find significant
flux dependence in the PSF residual ellipticity for 3/32 Omega-
CAM chips (see Fig. 4), there is no evidence in the shear cat-
alogue that this leads to a significant bias in the cosmic shear
measurements. As such we conclude that there is no necessity
for Asgari et al. (2020) to follow Hildebrandt et al. (2020a) in
introducing a nuisance parameter in the fiducial KiDS-1000 cos-
mological parameter inference, to marginalise over this 2D resid-
ual PSF distortion. For future surveys, with decreased statistical
noise, this conclusion should, however, be reviewed.

Based on these results, we conclude that the linear system-
atics model provides a good representation of the systematics in
our data, when δεPSF = 0. As such we can use the Bacon et al.
(2003) systematics estimator ξsys

± (θ) (Eq. 14, analysing the cor-
rected shear estimator εobs

corr) to empirically estimate the system-
atic contribution to the measured cosmic shear signal.

In Fig. 8 we compare the measured ξ
sys
+ (θ) for each tomo-

graphic bin combination with the amplitude of the expected fidu-
cial cosmic shear signal, presenting the ratio of the two quanti-

16 Here we use the same notation as Eq. (13), with ab± = a1b1 ± a2b2.
We also adopt the notation from Eq. (10), where εi indicates the lensfit
weighted average value of the scalar quantity εi, and ε = ε1 + iε2 . For
completeness we remind the reader that εobs

corr = εobs − εobs.
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Fig. 7: Comparison of two star-galaxy cross-correlation func-
tions with their corresponding linear systematics model predic-
tions (Eqs. 15 and 16) for the five tomographic bins. The star-
galaxy cross correlation function 〈εobs

corr ε
PSF〉 (dark blue) is in rea-

sonable agreement with the model (blue bar), where the width of
the model reflects the 2σ uncertainty. The residual star-galaxy
cross correlation function 〈εobs

corr δε
PSF〉 (shown pink), and corre-

sponding model (grey), are scaled by a factor of ten in order to
display the measurements on the same scale. We also scale the
correlation functions by

√
θ to aid visualisation of the large-scale

signal.

ties17. This can also be compared to the expected noise in KiDS-
1000, where we show ±10% of the standard deviation of the cos-
mic shear signal (Joachimi et al. 2020) as a blue shaded region.
In the majority of cases we find that the systematic bias remains
within ∼ 10% of the statistical noise. For the highest redshift
bins, which carry the main cosmological constraining power for
the survey, we typically find the systematic contribution to be
less than ∼ 2% of the cosmic shear signal (shown as dashed
lines). The exceptions are the large-scale, θ > 60 arcmin, signal

17 We note that we do not also show ξ
sys
− (θ), as this is a very noisy quan-

tity. Both the numerator and denominator in Eq. (14) are essentially zero
for the ξ−(θ) estimator.

Fig. 8: Ratio of the predicted systematic contribution to the ex-
pected amplitude of the cosmic shear signal, ξsys

+ (θ)/ξΛCDM
+ (θ),

for 15 different tomographic bin combinations (as denoted in the
lower left corner of each panel). The systematic contribution is
typically either less than ∼ 2% of the cosmic shear signal (shown
as dashed lines), and/or within 10% of the expected noise on the
measurement (blue shaded region).

in some bins where the expected fiducial cosmic shear signal is
small and the statistical noise is high.

Using our rapid χ2 analysis (Eq. 11) we assess the impact of
this systematic by inspecting the goodness-of-fit of the fiducial
cosmological model, given a ξsys

+ (θ) biased data vector. We find
the change in the goodness-of-fit to be consistent with the change
expected when the data vector is instead drawn from a cosmolog-
ical model where S 8 changes by 0.4σS 8 compared to the fiducial
case. This systematic appears therefore to exceed our tolerance
requirement of PSF modelling errors inducing less than a 0.1σS 8

change in S 8. As such this systematic is flagged by our rapid
χ2-test and referred to a complete bias impact assessment. We
follow Troxel et al. (2018) by conducting a full MCMC cosmo-
logical inference analysis of a ξsys

± corrected KiDS-1000 cosmic
shear data vector (see Asgari et al. 2020; Joachimi et al. 2020,
for details of the inference pipeline). Comparing the resulting
constraints on S 8 to the fiducial cosmic shear constraints we re-
cover a bias of 0.06σS 8 in the value of S 8. This is well within
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our requirements and consistent with noise in the final converged
MCMC chain (Joachimi et al. 2020).

To reconcile the two different conclusions from our rapid
and full impact analysis, we remind the reader that they are test-
ing different aspects of the analysis. The χ2 test questions the
goodness-of-fit of the model. The MCMC analysis quantifies
how the offsets found between the model and data transpire to
bias the inferred cosmological parameter constraints. For sys-
tematics that do not have the same angular or redshift scaling
behaviour as the cosmological signal, the impact in terms of pa-
rameter bias is expected to be weak (see for example Amara &
Réfrégier 2008). For KiDS-1000, the changing sign in α from the
fourth to the fifth bin results in a signal that adds to the auto-bins,
and subtracts from the cross-correlation. This type of behaviour
predominantly impacts the intrinsic alignment modelling rather
than the ΛCDM parameters. Marginalising over the many differ-
ent nuisance parameters in the MCMC analysis therefore allows
for some degree of marginalisation over this systematic effect,
albeit reducing the goodness-of-fit of the model which our χ2

test is based upon. It is also worth noting that the MCMC in-
ference analyses the full ξ±(θ) data vector, where ξ−(θ) is un-
affected by this systematic, in contrast to our χ2 analysis from
Eq. (11), which focuses on the impact from ξ+ alone. As the
MCMC analysis provides a direct estimate of the S 8-bias in-
troduced by the significant but low-level KiDS-1000 first-order
systematics model, we conclude that the KiDS-1000 shear cat-
alogue meets our current requirements. Future improvements to
minimise α are however likely to be required as the statistical
power of the survey increases.

3.6. Comparison of the Paulin-Henriksson et al. and
first-order systematic models

Before concluding this section it is worth pausing to review the
different systematic contributions to the two-point shear corre-
lation function estimator as predicted by the PH08 model and
the first-order systematics model. Given that these two mod-
els have the same format (compare Eqs. 10 and 13), it may be
tempting to link the different parameters where m ≡ δTPSF/Tgal,
α ≡ δTPSF/Tgal and β ≡ TPSF/Tgal. We find, however, that these
quantities have very different amplitudes. The empirical mea-
surement of α, shown in Fig. 6, and the shear calibration bias
m, calibrated through image simulations, are both two orders of
magnitude larger than the equivalent PH08 model terms.

It is therefore important not to forget that the PH08 model,
also referred to in other studies as the ‘ρ-statistics’ (Rowe 2010),
was only ever intended to capture the contributions to the cosmic
shear signal that arise from errors in the PSF modelling. In the
case of KiDS-1000, we find that the low-level PSF modelling
errors are harmless in terms of the accuracy of the observed cos-
mic shear signal. In contrast, however, there are other factors in
the shear measurement that imprint PSF residual distortions and
calibration biases in the shear estimator, such as object selection
and noise bias (see for example the discussion in Kannawadi
et al. 2019), in addition to weight-bias (discussed in Sect. 2.2).
These factors are not captured by the PH08 model, and by us-
ing empirical estimates and image simulations we find that these
factors are significant, adding to the cosmic shear signal at the
level of a few percent.

We therefore recommend that the PH08 model is only used
for its original intention, which is to optimise the functional form
of the PSF model (as in Sect. 3.2), and to validate the final PSF
model. For the validation of the shear catalogues, extra null-tests

need to be undertaken, and our preferred approach is to adopt the
linear systematics model with the parameters empirically deter-
mined from the catalogues. Once the model is validated with the
data (see for example Fig. 7), the Bacon et al. (2003) systematics
estimator can then be used to determine the level of systematics
that contribute to the observed cosmic shear signal.

4. Two-point null-tests

In this section we extend our validation of the KiDS-1000 shear
catalogue by presenting three additional two-point null-tests:
analysis of B-modes, galaxy-galaxy lensing in the camera ref-
erence frame, and a shear-ratio test.

4.1. COSEBIs B-modes

Figure 9 presents the B-mode signal, measured for each tomo-
graphic bin combination, using Complete Orthogonal Sets of
E/B Integrals (COSEBIs, Schneider et al. 2010). The COSEBIs
formalism allows for the clean and complete separation of the
KiDS-1000 lensing E-modes (presented in Asgari et al. 2020)
from any non-lensing B-modes. It is therefore our preferred B-
mode null-test statistic (see the discussion and comparison of
B-mode statistics in Asgari et al. 2019, which concludes that the
COSEBIs methodology provides the most sensitive and stringent
method to detect B-mode distortions).

The COSEBIs B-mode estimator is given by an integral over
the two-point shear correlation function, ξ±(θ) from Eq. (9), as

Bn =
1
2

∫ θmax

θmin

dϑϑ
[
T+n(ϑ)ξ+(ϑ) − T−n(ϑ)ξ−(ϑ)

]
, (17)

where the logarithmic COSEBI mode filter functions that we
use, T±n, are given in equations 28 to 37 of Schneider et al.
(2010). We set θmin = 0.5 arcmin, and θmax = 300 arcmin, span-
ning the full angular range used in the cosmic shear analysis of
Asgari et al. (2020). We measure ξ±(θ) from Eq. (9), using 4000
bins equally spaced in log θ, and calculate Bn from Eq. (17) by
approximating the integral as a discrete sum over the 4000 angu-
lar bins. Although it is tempting to analogise the COSEBI mode
n with the Fourier mode `, COSEBIs exist neither in Fourier nor
real space, but in their own ‘COSEBI space’ with each mode
having contributions from a range of scales. n should therefore
be thought of as the index of the (generally oscillatory) filter
functions used in converting the real-space ξ+(ϑ), ξ+(ϑ) statistics
to the COSEBI-space Bn (as well as its E-mode counterpart En;
see equation 1 of Schneider et al. 2010).

We assess the significance of the measured B-modes using
an analytical covariance matrix from Joachimi et al. (2020), that
has been verified through a series of mock simulation analyses,
in addition to an empirical ‘spin-test’ whereby the shape-noise
component of the covariance is validated through numerous re-
analyses of the survey with randomised ellipticities (Troxel et al.
2018). We note that ‘chi-by-eye’ is dangerous with the COSEBIs
statistic as the modes are highly correlated.

We find that the measured B-modes, Bn, are consistent with
zero with a p-value18 of p = 0.38 considering the full data vector
of n = 20 modes and 15 different tomographic bin combinations.
This corresponds to an insignificant 0.3σ deviation from a null

18 The p-value is equal to the probability of randomly producing a B-
mode that is more significant than the measured B-mode signal, for
the model that Bn is drawn at random from a zero-mean Gaussian
distribution.
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Fig. 9: KiDS-1000 B-mode null-test: the COSEBIs Bn modes are
shown for each tomographic bin combination (denoted in the up-
per left corner of each panel). The measured B-modes are con-
sistent with random noise, as determined through the p-values
shown in the upper right corner of each panel. Considering the
full data vector of n = 20 modes and 15 different tomographic
bin combinations, we find p = 0.38 corresponding to an insignif-
icant 0.3σ deviation from a null signal. We caution the reader
against ‘chi-by-eye’ as the Bn modes are highly correlated.

signal. Analysing each tomographic bin combination separately
we find that all the B-modes are consistent with zero, (see the
p-values reported in the upper right corner of each sub-panel in
Fig. 9). The lowest p-value of p = 0.04 is found for the auto-
correlation of the fifth tomographic bin, corresponding to a 1.8σ
deviation from a null signal. With 15 different bin combinations,
however, we do expect to find approximately one bin combi-
nation with a ∼ 2σ deviation from the null case. We therefore
conclude that the measured KiDS-1000 B-modes are consistent
with statistical noise.

Asgari et al. (2012) show that the first n = 5 E-modes contain
almost all the cosmological information. It is therefore relevant
to also limit the B-mode null-test to the first n = 5 B-modes. In
this case our conclusions remain unchanged, finding p = 0.02,
which is consistent with zero B-modes at the ∼ 2σ level. In-
spection of the 15 different bin combinations for the first n = 5
B-modes, yields two ∼ 2σ deviations from the null case in the
2_2 and 3_5 combinations with p = 0.02, 0.01, respectively. For
the 5_5 bin combination highlighted as a potential outlier in the
n = 20 B-mode test, we note that p = 0.23, in the n = 5 B-mode
test.

Asgari et al. (2019) demonstrate that some systematics in-
fluence the E-modes and B-modes differently, and, as such, it is
necessary to pass both these tests, which we do. Interestingly,
they note that PSF residual distortions typically impact the low-
n modes. The decrease in the p-values seen between the n = 20
and the n = 5 null-test, may therefore be a reflection of the
significant, but low-level, PSF residual distortions detected in
Sect. 3.3.1.

4.2. Galaxy-galaxy lensing in the OmegaCAM pixel
reference frame

Galaxy-galaxy lensing measures the azimuthally averaged tan-
gential shear of background galaxies relative to foreground
galaxies (Brainerd et al. 1996). In contrast to cosmic shear mea-
surements, where systematics increase the amplitude of the ob-
served signal (Eq. 13), this azimuthal averaging typically results
in a cancellation of additive systematics. As such, galaxy-galaxy
lensing is often regarded as a truly robust weak lensing probe
(Mandelbaum et al. 2013).

In Fig. 10 we present the galaxy-galaxy lensing of KiDS
sources around foreground luminous red galaxies from BOSS
(Alam et al. 2015), using the 409 deg2 of overlapping survey area
between the equatorial KiDS-1000 region and BOSS. We com-
pare the standard one-dimensional (1D) azimuthally averaged
measurement with the signal measured on a 2D grid, within the
reference frame of OmegaCAM19. As expected, the 2D measure-
ment (upper panels) is noisier than the 1D measurement (second
panels). We can use the residual between these two measure-
ments, however, to search for new systematic errors (third panel),
finding no significant features.

This result is consistent with expectations from the low-level
systematics detected in Sect. 3. As a new null-test, it does how-
ever allow us to explore alternative systematics that are specific
to galaxy-galaxy lensing studies. The featureless 2D residuals
allow us to rule out any significant differences in the behaviour
of systematic errors in regions near bright objects, (see for exam-
ple the discussions in Sheldon & Huff 2017; Sifón et al. 2018).
We can also rule out any significant impact from detector level
defects, such as charge transfer inefficiencies, in the region of
the bright BOSS galaxies. This analysis therefore provides ad-
ditional confidence in the standard ‘1D’ azimuthally averaged
galaxy-galaxy lensing measurements that are part of our joint
KiDS-BOSS multi-probe lensing and clustering cosmological
constraints presented in Heymans et al. (2020).

Fig. 10 presents the result for the fifth tomographic bin, as
this has the strongest PSF contamination fraction α (see Fig. 6),
out to a maximum radius of 5 arcmin from the central BOSS
galaxy. Our conclusions are unchanged when analysing each of
the other tomographic bins or the full source sample, and when
extending the analysis to 30 arcmin. We remind the reader that
we have empirically corrected the source catalogue ellipticities
(see Sect. 3.5.1). Given the featureless residuals (third panels),
and the featureless 2D signal measured around random points
(lower panels), we conclude that our approximation that the ad-
ditive c-term is constant across the survey, is also appropriate in
the regions around bright galaxies.

4.3. Galaxy-galaxy shear-redshift scaling

For a fixed lens population, the ratios of the azimuthally aver-
aged tangential shear, γt, from different source populations is
sensitive only to the ratios of the angular diameter distances be-
tween the source and lens planes. This ‘shear-ratio test’ was orig-
inally conceived as a cosmological probe through the distance-
redshift relation (Jain & Taylor 2003), although it was subse-
quently found that the cosmological dependence is rather weak
(Taylor et al. 2007). This approach was therefore proposed as
a unique joint null-test of the accuracy of the estimated source
galaxy redshift distributions and the redshift-dependent shear
19 All measurements are made using TREECORR (Jarvis et al.
2004; Jarvis 2015), with the 2D measurement facilitated by the
bin_type=TwoD mode.
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Fig. 10: KiDS-BOSS galaxy-galaxy lensing in the OmegaCAM
pixel reference frame for the tangential, εobs

t (left), and cross, εobs
×

(right - null-test), components of the observed ellipticities in the
fifth tomographic bin with 0.9 < zB < 1.2. Upper: 2D correla-
tion functions centred on the BOSS lenses with 0.2 < z < 0.7.
Upper-middle: azimuthally averaged 1D correlation functions
around BOSS lenses, projected onto the 2D grid. Lower-middle:
the featureless residual 2D signal. Lower: 2D correlation func-
tions centred on random positions.

calibration correction (Hoekstra et al. 2005; Heymans et al.
2012).

4.3.1. The shear-ratio test: Measurement and modelling

Adopting an isolated singular isothermal sphere (SIS) as a model
for the lens density profile, the mean tangential shear within an
annulus of angular size θ, γt,SIS(θ), is given by

γ
i j
t,SIS(θ) =

2π
θ

(
σi

v

c

)2

βi j , (18)

where σi
v is the velocity dispersion of the lens galaxies in bin i,

and j denotes the source redshift bin (Bartelmann & Schneider
2001). The lens-averaged lensing efficiency, βi j is given by

βi j =

∫ ∞

0
dzl ni(zl)

∫ ∞

zl

dzs n j(zs)
D(zl, zs)
D(0, zs)

, (19)

where D(za, zb) is the angular diameter distance between red-
shifts za and zb, and ni(z) and n j(z) are the redshift distributions

of the lenses and sources, respectively. The recovery of a consis-
tent set of constraints on the velocity dispersion σi

v using a range
of different tomographic source bins, j, serves as a validation of
the shear and redshift estimates (Heymans et al. 2012).

There are four key assumptions made when using Eq. (18)
to model measurements of tangential shear around lens galax-
ies. In this equation the lens is assumed to have a perfect SIS
density profile. It is considered isolated, an assumption which
is only reasonable to make on small scales (see for example
Velander et al. 2014). Any intrinsic alignment (IA) terms be-
tween the source and lens galaxies are neglected (see for ex-
ample Joachimi et al. 2015). The weak lensing magnification of
background sources by the matter associated with the foreground
lenses is also neglected (Unruh et al. 2019).

To address the issue of the choice of lens model, we fol-
low Hildebrandt et al. (2017) who developed the shear-ratio test
such that it was agnostic to the galaxy halo density profile by
modelling the tangential shear γi j

t (θ) = Ai(θ) βi j. Here Ai(θ) is a
θ-dependent set of free parameters for each lens bin i (see also
Prat et al. 2018, who choose to model Ai(θ) as a power law).

To address the IA terms in the observed signal, our fiducial
analysis includes the ‘NLA’ intrinsic alignment model from Bri-
dle & King (2007) with a fixed IA amplitude AIA = 1.0, and a
linear galaxy bias of b = 2.0, which are reasonable amplitudes
for the KiDS source and BOSS lens populations that we study
(Joachimi et al. 2020). For this model we find that the IA contri-
bution is non-negligible for the source-lens combinations where
there is significant overlap between the source and lens samples
(see the cyan lines in Fig. 11). As such it is important to include
this additional IA signal in our null-test. Our adopted model for
the shear-ratio test is therefore given by

γ
i j
t (θ) = Ai(θ) βi j − AIA

∫ ∞

0

`d`
2π

J2(`θ) Ci j
gI(`) , (20)

where J2 is the second order Bessel function of the first kind,
and CgI(`) denotes the angular power spectrum of the intrinsic
ellipticity alignment of source galaxies, that are physically close
to the lenses20.

To explore our sensitivity to weak lensing magnification bias,
and in order to verify our methodology, we analyse mock KiDS
and BOSS galaxy catalogues constructed from the MICE2 sim-
ulation (Fosalba et al. 2015a; Hoffmann et al. 2015; Carretero
et al. 2015; Crocce et al. 2015; Fosalba et al. 2015b) using the
pipeline21 from van den Busch et al. (2020). MICE2 is based on
an N-body dark matter simulation, which is used to derive an all-
sky lensing mock catalogue between 0.1 ≤ z ≤ 1.4, along with
mock galaxy catalogues. These catalogues are sampled to care-
fully match the properties of KiDS and BOSS, including their
redshift distributions, overlap and sample selection (see Wright
et al. 2019a; van den Busch et al. 2020, for details). As MICE
allows for the inclusion or exclusion of weak lensing magnifica-
tion, this mock also allows us to quantify the impact of neglect-
ing magnification in our shear-ratio model. For the source and
lens samples used in this analysis, we find that the magnifica-
tion bias is sufficiently small to be considered negligible given

20 This term is defined in, for example, equation 24 of Joachimi et al.
(2020). We note, however, that we have taken the scaling factor of −AIA
out to the front of the integral in order to clarify that CgI(`) scales lin-
early with this free parameter, and that it serves to reduce the amplitude
of the observed signal.
21 The van den Busch et al. (2020) KiDS-MICE mock catalogue
pipeline can be downloaded from https://www.github.com/
KiDS-WL/MICE2_mocks.git
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the signal-to-noise of our analysis, changing the amplitude of the
galaxy-galaxy lensing signal by (0.04± 0.03)σγt , per bin, where
σγt is the measured error for a θ and source-lens bin. Whilst
the effect of IAs and magnification on the tangential shear are
comparable in size, the latter contributes most strongly at scales
where the galaxy-galaxy lensing signal itself is large. Magnifica-
tion therefore has a significantly smaller relative impact on our
shear-ratio null-test, compared to IAs.

With our model in place, we analyse the galaxy-galaxy lens-
ing signal around luminous red galaxies from the BOSS spectro-
scopic survey (Alam et al. 2015), divided into five narrow red-
shift bins of width ∆z = 0.1 between 0.2 ≤ z ≤ 0.7, for the five
KiDS-1000 tomographic bins in Table 1. The lens bins were cho-
sen to be sufficiently narrow to minimise galaxy bias evolution
across the bin, but also sufficiently broad to produce a reasonable
signal-to-noise null-test. We adopt the Mandelbaum et al. (2005)
galaxy-galaxy lensing estimator,

γ̂t(θ) =
1

1 + ms

( ∑
ls wl ws εt,l→s ∆ls(θ)∑

rs wr ws ∆rs(θ)
Nrnd (21)

−

∑
rs wr ws εt,r→s ∆rs(θ)∑

rs wr ws ∆rs(θ)

)
,

where ms is the shear calibration correction for source bin s, εt,l→s
is the tangential shear measured around lenses, εt,r→s is the tan-
gential shear measured around random points within the BOSS
footprint, ∆(θ) is the angular binning function (see Eq. 9), and
the sums with indices l, s, and r run over all objects in the lens,
source, and random catalogues, respectively. The normalisation
term Nrnd :=

∑
r wr/

∑
l wl reduces to the oversampling factor of

the random catalogue with respect to the catalogue of lens galax-
ies, for unit weights. In this analysis we use roughly 100 times as
many random points as lenses. Finally, the weights consist of the
source lensfit weights ws, and the BOSS completeness weights
for the galaxy sample, wl, and random catalogue, wr, which have
unit value for all random points.

The galaxy-galaxy lensing estimator in Eq. (21) automati-
cally corrects for dilution-effects arising from the source galax-
ies that are clustered with the lens22. Here the angular depen-
dence of the clustering of galaxies modifies the average red-
shift distribution of source galaxies as a function of their angular
separation from the lens, with close-separation source-lens pairs
more likely to be sampled from the source n(z) at the location of
the lens (see for example Hoekstra et al. 2015). By also includ-
ing a ‘random correction’, the second term in Eq. (21), we reduce
the sampling noise terms that arise from the large-scale structure
(Singh et al. 2017). We also reduce the shape noise terms that
arise from the different fraction of unique sources used in each
θ-bin (see figure E.1 in Joachimi et al. 2020). We follow Hilde-
brandt et al. (2017) by using four angular scales logarithmically

22 This can be seen by recasting the first term in Eq. (21) as the simple
γt estimator with γt(θ) = (

∑
ls wl wsεt)/

∑
ls wl ws scaled by the ratio be-

tween the weighted number of galaxy pairs in the source-lens,
∑

ls wl ws,
and source-random sample

∑
rs wr ws, modulo the normalisation term

Nrnd. In the case where the source and lens samples are unclustered,
for example at large angular separations, this normalised ratio is unity,
and the estimator in Eq. (21) returns to the simple format. In the case
where the sources and lenses physically cluster, the effective pair count
is higher in the source-lens sample than in the source-random sample.
The inclusion of this term therefore boosts the simple γt signal by a
factor that accounts for the small fraction of sources that are physically
connected to the lens and are thus diluting the overall signal. With this
correction, the effective redshift distribution of the sources is given by
the average source redshift distribution at each angular scale.

spaced between 2 and 30 arcminutes, where the scales were cho-
sen to minimise the amplitude of these boost and random correc-
tion terms (see Blake et al. 2020, for further discussion on these
points). This results in 100 data points (four per lens-source bin,
with 25 lens-source bin combinations), to which we simultane-
ously fit a 20-parameter Ai(θ) model (one per lens bin i, with
four θ scales).

One of the most challenging aspects for this null-test is the
determination of an accurate covariance matrix, as the Limber
equation is an approximation that becomes less accurate as the
width of our lens bins narrow (Giannantonio et al. 2012; Kil-
binger et al. 2017). This precludes the use of fast Limber approx-
imated analytical covariances (although see Fang et al. 2020, for
new efficient beyond-Limber calculations to mitigate this issue
in the future). Even with the MICE2 simulation’s angular size
spanning an octant of the sky (∼ 5000 deg2), a single realisation
provides insufficient area to construct a covariance matrix from
these mocks that can be accurately inverted. We therefore follow
Troxel et al. (2018) in determining a covariance from 500 ‘spin’
realisations of the shear field, whereby each source galaxy is ran-
domly rotated, resulting in a nulled, noisy signal. This approach
results in a conservative covariance estimator that does not in-
clude sampling variance, rendering the shear-ratio test a more
challenging test to pass. We note however that for the θ-scales
used in our analysis, the sampling variance terms are expected
to be sub-dominant (see Joachimi et al. 2020, for details).

Figure 11 presents the KiDS-BOSS galaxy-galaxy lens-
ing measurements between five spectroscopic lens bins (left
to right), and five tomographic source bins (upper to lower).
The measurements can be compared to the best-fit model from
Eq. (20) (shown red), calculated using the redshift distributions
of the SOM-gold sample described in Sect. 2.1. We calculate
the χ2 goodness of fit, and recast this as a p-value which de-
scribes the probability of the data being drawn from the model.
We find that the 5-bin model provides a reasonable fit to the data,
with p = 0.050, such that the 5-bin null-test is consistent with
the model expectation at the 1.6σ level23. We recognise that the
three highest redshift bins contribute the majority of the cosmo-
logical constraining power for KiDS-1000. It is therefore also
prudent to conduct a shear-ratio test for these three bins alone. In
this 3-bin null-test we find a good fit to the data with p = 0.299,
such that the 3-bin null-test is consistent with the model ex-
pectation at the 0.5σ level. With this degree of consistency, for
both the full 5-bin null-test and the restricted 3-bin null-test, we
conclude that the KiDS-1000 joint shear and redshift calibra-
tion has passed this final null-test. We refer the reader to As-
gari et al. (2020), who carry out a complementary cosmic shear
consistency test for the different tomographic bins following the
methodology of Köhlinger et al. (2019).

23 We note that when conducting a similar analysis using spectroscop-
ically confirmed lens galaxies from GAMA, we find a good fit of the
5-bin model to the data, with p = 0.185, confirming the KV450 analy-
sis of Hildebrandt et al. (2020a). This is expected as the overlap between
KiDS-1000 and GAMA is unchanged from the previous KiDS data re-
lease. Hildebrandt et al. (2020a) also find a reasonable model fit for a
shear-ratio test conducted with KV450 and BOSS. With the overlapping
KiDS-BOSS area doubling in KiDS-1000, our KiDS-BOSS shear-ratio
null-test is now more constraining, improving our ability to detect any
inconsistencies in our data set.
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Fig. 11: Azimuthally averaged tangential shear around BOSS galaxies (blue data points) for each tomographic (labelled ‘t 1-5’) and
spectroscopic (‘sp 1-5’) redshift bin combination. These can be compared with the best-fit Ai(θ) with IA model (red lines) which
is consistent with the data at the 1.6σ level. The cyan lines display the predicted contribution to the tangential shear model from
intrinsic alignments, scaled by a factor of five to aid visualisation.

4.3.2. The shear-ratio test: Sensitivity to shear-redshift
calibration errors and the intrinsic alignment model

In order to establish the sensitivity of the KiDS-1000 shear-
ratio test to shear and redshift calibration errors we determine
p-values for a series of test cases. We start with our fixed fidu-
cial intrinsic alignment model, and coherently bias the mean esti-
mated redshift of each tomographic bin with an increase of 5σz,
where σz is given in Table 1. In this case we find p = 0.024.
Coherently decreasing the mean estimated redshift of each to-
mographic bin by 5σz, we find p = 0.047. Constructing an in-
coherent model, where the estimated n(z) are biased alternately
by ±5σz we find p = 0.016. Turning to the shear calibration
correction, m, we increase the calibration correction by ±5σm in
alternating bins, where σm is given in Table 1. In this case we
find p = 0.012.

From these tests one can conclude that the shear-ratio test
is fairly insensitive to calibration errors in the shear and mean
redshift at less than the 5σ level in the case of a known intrinsic
alignment model. The inability of the shear-ratio test to discrim-

inate between these systematics, given the level of statistical un-
certainty in KiDS-1000, means that although our data is shown
to meet the null-test requirements (see Sect. 4.3.1), this fact does
not necessarily eliminate the prospect of such biases residing in
our data.

In Asgari et al. (2020) the uncertainty on the amplitude of the
intrinsic alignment model AIA is accounted for by marginalising
over AIA with an uninformative top-hat prior ranging from −6 <
AIA < 6. We estimate the impact of marginalising over this level
of uncertainty in our shear-ratio test by increasing the errors on
γt(θ) by a factor given by the expected IA signal with AIA = 6. In
this case our fiducial analysis passes with p = 0.913. We can also
adopt a more realistic, but informative prior with −2 < AIA < 2,
motivated by the ±3σ constraints on AIA in Wright et al. (2020).
In this case our fiducial analysis passes with p = 0.179. When
including an uncertainty in the intrinsic alignment model, we
find all our 5σ test sensitivity cases, as described above, pass
with p > 0.033.
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We pause to note that marginalising over the uncertainty
in the IA model is particularly relevant for the first two tomo-
graphic bins, which, when analysed alone present a moderate
tension between the data and model expectation with p = 0.009.
With the inclusion of the IA model uncertainty, the shear-ratio
test for the first two tomographic bins alone pass with p = 0.024.

This study demonstrates that in order to exploit shear-ratio
observations to provide a precise validation of the calibration of
shear and redshift estimates, these small θ-scale galaxy-galaxy
lensing observations must be used in conjunction with other cos-
mological probes in order to constrain the intrinsic alignment
terms in the model (MacCrann et al. 2020). A joint simultane-
ous analysis also removes the necessity to assume that the shear-
ratio test is insensitive to cosmology, as this assumption is fur-
ther challenged by the introduction of intrinsic-alignment mod-
elling. Furthermore, the minimal impact of shear and redshift
estimation biases on the results of the shear-ratio test demon-
strated here, is evidence of the limitations of this test to validate
weak lensing catalogues given the statistical power of the current
stage-III surveys.

5. Conclusions and summary

In this analysis we have presented the shear catalogues for the
fourth data release of the Kilo-Degree Survey24, KiDS-1000.
This survey spans 1006 square degrees with high-resolution
deep imaging down to r = 25.02 ± 0.13 (5σ limiting magni-
tude in a 2 arcsec aperture with a mean seeing of 0.7 arcsec).
Over a total effective area of 777.4 square degrees, accounting
for the area lost to multi-band masks, KiDS-1000 is fully im-
aged in nine bands with matched depths that span the optical
to the NIR (ugriZY JHKs). KiDS overlaps with a wide range of
complementary spectroscopic surveys. We additionally observe
4 square degrees of matched nine-band imaging targeting deep
spectroscopic survey fields outside the KiDS footprint. KiDS-
1000 therefore represents a unique survey of large-scale struc-
ture, owing to its design that mitigates two of the greatest chal-
lenges in weak lensing studies. These are accurate shear mea-
surements, facilitated by high signal-to-noise, high-resolution
and stable imaging, as well as accurate photometric redshift es-
timation, aided by the extended wavelength coverage and ex-
tensive calibration fields (Wright et al. 2019b). The different
trade-offs between area covered, depth attained, image quality
delivered and wavelength range covered make KiDS-1000 nicely
complementary to the other concurrent Stage-III weak lensing
surveys, DES and HSC. With the development and application
of a myriad of analysis tasks and tools, required to realise robust
cosmological information from pixel-level imaging, the three-
pronged approach of these independent Stage-III teams opti-
mally serves the cosmological community in the final phases be-
fore the next generation of ‘full-sky’ imaging surveys see first
light over the coming few years.

This paper presents a series of null-tests to verify the robust-
ness of the KiDS-1000 shear measurements, estimated using the
model-fitting pipeline lensfit (Miller et al. 2013; Fenech Conti
et al. 2017; Kannawadi et al. 2019). The developments since the
previous KiDS-450 release focus on upgrading the star selec-
tion for PSF modelling in Sect. 3.1, PSF model optimisation in
Sect. 3.2, detailed studies of detector level effects in Sect. 3.4,
and improvements in our weight bias correction in Sect. 2.2.

24 The KiDS-1000 shear catalogue is publicly available at
kids.strw.leidenuniv.nl/DR4/lensing.php

We review two approaches to set requirements on the accu-
racy of a shear catalogue. The Paulin-Henriksson et al. (PH08,
2008) systematics model, also referred to in other studies as the
ρ-statistics (Rowe 2010), captures the contributions to the cos-
mic shear signal that arise from errors in the PSF modelling.
Using a simple χ2 test to quantify the impact of the inferred sys-
tematic contributions, in Sect. 3.3.2, we find that the accuracy
of the KiDS-1000 PSF model is well within our requirements of
not introducing more than a 0.1σS 8 change in the recovered cos-
mological parameter S 8 = σ8

√
Ωm/0.3. This 0.1σ limit is the

typical variance between different MCMC parameter inference
analyses using different random seeds (Joachimi et al. 2020). As
the PH08 test does not capture other factors in the shear measure-
ment that imprint PSF residual distortions and calibration biases
in the shear estimator, however, we therefore also review a lin-
ear systematics model in Sect. 3.5 where the parameters are esti-
mated empirically from the catalogues. We verify that this model
provides a suitable description of the systematics in the KiDS-
1000 catalogues through a series of one-point and two-point con-
sistency tests, enabling the use of the Bacon et al. (2003) estima-
tor to determine the resulting systematic contribution to the cos-
mic shear signal. Our simple χ2 test, which quantifies the change
in the goodness of fit of the cosmological model to the observa-
tions, raises a flag at the level of systematics identified in this
analysis. To quantify the bias that these systematics introduce in
the inferred cosmological model, we conduct a full MCMC anal-
ysis of the KiDS-1000 cosmic shear data vector with the mod-
elled systematic correction applied. As the shape and amplitude
of the detected PSF residual systematics across the tomographic
bin combinations are sufficiently different from the behaviour of
the cosmological parameters (see for example the discussion in
Amara & Réfrégier 2008), we find that the systematic-corrected
analysis differs by less than 0.06σS 8 from the fiducial analysis.
From this we conclude that for the statistical noise levels in the
KiDS-1000 data, the low-level PSF-residual systematics that we
uncover in our analysis make a negligible impact on our cosmo-
logical parameter constraints. This is supported by our B-mode
analysis in Sect. 4.1, where we decompose the signal into its
cosmological E-mode and non-lensing B-modes, finding the B-
modes to be consistent with pure statistical noise.

Our final null-test scrutinises both the shear and photomet-
ric redshift estimates, finding consistent constraints on the prop-
erties of BOSS luminous red galaxies from a series of dif-
ferent tomographic source samples. This ‘shear-ratio’ test, in
Sect. 4.3 simultaneously validates the redshift-dependent shear
calibration correction from Kannawadi et al. (2019) and the self-
organising map photometric redshift calibration from Wright
et al. (2019a). We recognise that the shear-ratio null-test, where
low photometric-redshift source galaxies are placed in front of
high-redshift lenses, currently provides our primary test of the
accuracy of the high-redshift z > 1.4 tail of the photometric red-
shift distributions. The z > 1.4 galaxy sample is a redshift regime
that we are currently unable to examine through other routes
owing to a lack of mock galaxy catalogues that reliably extend
galaxy colours beyond z > 1.4 (Fosalba et al. 2015a; DeRose
et al. 2019), and a lack of signal-to-noise in our cross-correlation
analysis (Hildebrandt et al. 2020b). In this analysis, however, we
find that when accounting for the contribution to the signal from
the intrinsic alignment of galaxies, without a strong prior on the
amplitude of the intrinsic alignment model, the shear ratio test
becomes significantly less sensitive to biases in the redshift or
shear calibration. The MacCrann et al. (2020) proposal to incor-
porate the small θ-scale shear-ratio test into a multi-probe data
vector for cosmological inference analyses therefore presents a
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promising route forward for upcoming studies. Future work to
calibrate the zB > 1.2 galaxy sample in KiDS also necessitates
the analysis of new high-redshift mock galaxy catalogues (for
example the Euclid Flagship simulations from Potter et al. 2017).

KiDS completed survey observations in July 2019, spanning
1350 square degrees of imaging with a second pass in the i-band
to facilitate a long-mode transient study. Additional survey time
was awarded to expand the overlap of nine-band imaging with
deep spectroscopic surveys. This includes ∼ 12 square degrees
targeting the VIPERS fields (Guzzo et al. 2014) and ∼ 4 square
degrees targeting additional VVDS fields (Le Fèvre et al. 2013).
We therefore look forward to the fifth and final release and anal-
ysis of the ESO public KiDS, along with new results from DES
and HSC, as well as the first-light imaging from the upcoming
Euclid survey and the Vera C. Rubin Observatory Legacy Survey
of Space and Time.
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