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Abstract 

Similarity measures, the extent to which two concepts have similar meanings, are the key to understand 

how concepts are represented, with different theoretical perspectives relying on very different sources 

of data from which similarity can be calculated. While there is some commonality in similarity 

measures, the extent of their correlation is limited. Previous studies also suggested that the relative 

performance of different similarity measures may also vary depending on concept concreteness and that 

the inferior parietal lobule (IPL) may be involved in the integration of conceptual features in a 

multimodal system for the semantic categorization.  

Here, we tested for the first time whether theory-based similarity measures predict the pattern of brain 

activity in the IPL differently for abstract and concrete concepts. English speakers performed a semantic 

decision task, while we recorded their brain activity in IPL through fNIRS. Using Representational 

Similarity Analysis, results indicated that the neural representational similarity in IPL conformed to the 

lexical co-occurrence among concrete concepts (regardless of the hemisphere) and to the affective 

similarity among abstract concepts in the left hemisphere only, implying that semantic representations 

of abstract and concrete concepts are characterized along different organizational principles in the 

inferior parietal lobule. We observed null results for the decoding accuracy. Our study suggests that the 

use of the Representational Similarity Analysis as a complementary analysis to the decoding accuracy 

is a promising tool to reveal similarity patterns between theoretical models and brain activity recorded 

through fNIRS. 
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1. Introduction 

Similarity/relatedness measures, the extent to which two concepts have similar meaning, can reveal the 

nature of semantic representation: the knowledge we have of the world (Montefinese, 2019; Vigliocco, 

Meteyard, Andrews, & Kousta, 2009). Numerous efforts have been made to understand the nature of 

semantic representation, assessing the extent to which a given theoretically based similarity measure 

predicts patterns in data. Some perspectives focus upon similarity in our affective and sensorimotor 

experience as inferred from verbal features (e.g., featural similarity; Montefinese, Vinson, & 

Ambrosini, 2018; Montefinese, Zannino, & Ambrosini, 2015; Vigliocco, Vinson, Lewis, & Garrett, 

2004) or property ratings (e.g., affective content; Fairfield, Ambrosini, Mammarella, & Montefinese, 

2017; Montefinese, Ambrosini, Fairfield, & Mammarella, 2014; Warriner, Kuperman, & Brysbaert, 

2013), others upon regularities in spoken and written language (e.g., lexical co-occurrence; Andrews, 

Vigliocco, & Vinson, 2009; Griffiths, Steyvers, & Tenenbaum, 2007; Landauer & Dumais, 1997; Lund 

& Burgess, 1996). The similarity relation between two concepts may also be modelled as a measure of 

associative strength that reflects the probability of one concept to evoke another one in a free word 

association task (De Deyne, Navarro, Perfors, Brysbaert, & Storms, 2019; Nelson, McEvoy, & 

Schreiber, 2004). Although these similarity measures are correlated to each other to some extent in 

characterizing semantic representation, they are not entirely overlapping and seem to target different 

aspects of word meaning (Montefinese & Vinson, 2017). This allows us to investigate whether the 

different similarity measures also relate differently to the patterns of brain activity, and to identify which 

theoretical approach relates the most to observed effects of meaning similarity.  

Relative effects of different theory-based similarity measures in predicting the participants’ 

performance in different semantic tasks (such as, for example, lexical decision, Heyman et al., 2015; 

Brunelliere et al., 2017; Vigliocco et al., 2004; Montefinese et al., 2018) may also vary depending on 

concept concreteness: the degree to which a concept denoted by a word refers to an entity that can be 

perceived through the senses (Brysbaert, Stevens, De Deyne, Voorspoels, & Storms, 2014). This 

dimension is usually assessed by participants on Likert scales, in which concrete concepts lie on one 

side of the scale, referring to single, bounded, identifiable referents that can be perceived through the 

senses (Borghi et al., 2017). Abstract concepts lie on the opposite side of the scale and lack clearly 
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perceivable referents (even if they might evoke scenes and emotional experiences) and are more 

strongly reliant on interoception (i.e., sensations inside the body; Connell, Lynott, & Banks, 2018; 

Montefinese, Ambrosini, Visalli, & Vinson, 2020). Indeed, the latter are acquired later and mostly 

through language and social interaction compared to concrete concepts (see recent review by Dove, 

Barca, Tummolini & Borghi, 2020). By contrast, concrete concepts are more imageable (Paivio, 1990) 

and have greater availability of contextual information (Schwanenflugel et al., 1991).   

Different organisational principles have been argued to govern semantic representations of 

concrete and abstract concepts: concrete concepts are predominantly organized by featural similarity 

and abstract concepts by associative relations (Crutch & Warrington, 2005; Hill, Kiela, & Korhonen, 

2013). It has been proposed that abstract conceptual representation could be based more on linguistic 

information arising through patterns of co-occurrence and syntactic information (Gleitman & 

Papafragou, 2005; Vigliocco, Kousta, Vinson, Andrews, & Del Campo, 2013); however, some studies 

suggest in literature either lexical co-occurrence-based models behave similarly for concrete and 

abstract words concepts (Rotaru, Vigliocco, & Frank, 2018) or account better for concrete than abstract 

concepts (Hill et al., 2013).  

Concrete concepts can be also inscribed into definite domains, such as natural kinds vs. artefacts, 

and they are organized into hierarchical categories, while abstract concepts are considerably more 

variable and not organized into well-defined categories (Borghi et al., 2017). Moreover, participants 

agree more when they produce properties and associations for concrete words like “dog” compared with 

abstract words like “justice” or “freedom” (De Mornay Davies & Funnell, 2000; Tyler, Moss, Galpin, 

& Voice, 2002). Together, these studies suggest indirectly that concepts’ concreteness should be 

considered when comparing theory-based similarity measures.  

In terms of the neural circuitry underlying the semantic system, two meta-analyses of  

neuroimaging studies showed a left-lateralized brain network (Binder, Desai, Graves, & Conant, 2009; 

Wang et al., 2010). Wang et al.’s meta-analysis identified neural differences in abstract and concrete 

concept representations in two main systems, with abstract concepts relying on the verbal-language 

system and concrete concepts relying on the imagery and perceptual systems (Wang et al., 2010). In 

addition, Binder et al.’s meta-analysis showed that the semantic system includes seven brain regions: 
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1) lateral temporal cortex, 2) ventral temporal cortex, 3) dorsomedial prefrontal cortex, 4) inferior 

frontal gyrus, 6) ventromedial prefrontal cortex, 6) posterior cingulate gyrus and 7) inferior parietal 

lobule (IPL) (i.e.,, the angular gyrus and the adjacent supramarginal gyrus; Pulvermüller, 2013). The 

common denominator of these regions is their role in high-level integrative processes. Indeed, they are 

known to receive extensively processed, multimodal and supramodal inputs. In particular, the IPL is 

assumed to have the role of a convergence hub sustaining integration in a multimodal system (Binder 

& Desai, 2011). It has been suggested indeed that IPL may integrate features for semantic categorization 

(Koenig et al., 2005) and enable increasingly abstract, supramodal representations of perceptual 

experience (Binder & Desai, 2011). In other words, this high-level convergence zone binds 

representations from two or more modalities, and the resulting supramodal representations capture 

similarity structures that define categories (Binder & Desai, 2011). The information for encoding 

abstract versus concrete concept representations in this region may thus reflect the abstract/concrete 

distinction on a semantic comparison level, as a consequence of the differences in either sensorimotor 

information from mental imagery or associated verbal contexts (Binder, Westbury, McKiernan, 

Possing, & Medler, 2005; Dhond, Witzel, Dale, & Halgren, 2007; Pexman, Hargreaves, Edwards, 

Henry, & Goodyear, 2007; Sabsevitz, Medler, Seidenberg, & Binder, 2005; J. Wang, Baucom, & 

Shinkareva, 2013; Wang, Conder, Blitzer, & Shinkareva, 2010). For these reasons, here we aim to 

further investigate which kind of information IPL integrates depending on the concept concreteness.  

In recent years, the advancement in analytical approaches for fMRI data, like the development 

of multivariate pattern analysis (MVPA) techniques, has allowed a more direct investigation of abstract 

and concrete conceptual representations by examining, for example, whether the pattern of functional 

brain responses (e.g., fMRI voxels or functional Near Infrared Spectroscopy (fNIRS) channels) can 

discriminate between two stimuli conditions. Being a data-driven analysis, MVPA does not require any 

hypothesis and exhibits a higher sensitivity than traditional univariate statistical methods (Liu et al., 

2013). Recently, this analytical approach has been successfully extended to the analysis of fNIRS data 

(Emberson, Zinszer, Raizada, & Aslin, 2017; Zinszer, Bayet, Emberson, Raizada, & Aslin, 2017). In 

particular, MVPA has been used in fNIRS studies for different purposes, such as to discriminate 

children with attention-deficit/hyperactivity disorder from healthy controls during a working memory 
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task (Gu et al., 2018), to decode visual and auditory stimuli in infants (Emberson et al., 2017), or to 

classify activation patterns associated with spoken and signed language in monolinguals (Mercure et 

al., 2020). To date, Zinszer and colleagues’ study (2017) is the only one that investigated whether 

semantic representations are encoded in fNIRS neuroimaging data in a semantic task. The authors 

examined if participants’ neural response to spoken words and their corresponding pictures predicts the 

pattern of similarity between concepts computed as a lexical co-occurrence measure. Results showed 

that neural activity pattern in the occipital cortex was predicted by the lexical co-occurrence across 

concepts. This work represents a substantial step forward in the investigation of semantic representation 

with fNIRS, moving from the conventional univariate analyses, typically used to localize which brain 

region is involved in semantic tasks by analysing one measurement location or channel at a time (e.g., 

Amiri et al., 2014), to multivariate methods, that consider the full spatial pattern of brain activity and 

channels simultaneously (Haynes and Rees, 2006). 

Within this framework, Representational Similarity Analysis (RSA) (Kriegeskorte & Mur, M., 

& Bandettini, 2008), may represent a promising tool for fNIRS-based decoding of brain activity, 

enabling the comparison between data from different sources. For instance, the semantic similarity 

structure of a word set (that can be modelled in various ways) can be correlated with the similarity 

structure of the regional hemodynamic response pattern elicited by the same words. RSA was 

demonstrated to be particularly fruitful for fMRI research in investigating the relation between the 

functional response pattern and higher-level semantic representations between concepts, with a heavy 

focus on concrete knowledge (Devereux, Clarke, Marouchos, & Tyler, 2013; Fairhall & Caramazza, 

2013; Kriegeskorte & Mur, M., & Bandettini, 2008; but see e.g., X. Wang et al., 2017 for abstract 

concepts). Here, we aim to further expand and show the potential of MVPA-based methods to decode 

brain activity patterns from fNIRS data.  

Whilst there are limitations to fNIRS, such as the lack of anatomical information, a lower spatial 

resolution, and the ability to record only from the surface of the cortex, it presents some advantages that 

allow novel cognitive neuroscience investigations (Emberson et al., 2017; Pinti, Scholkmann, 

Hamilton, Burgess, & Tachtsidis, 2019; Zinszer et al., 2017). For example, unlike fMRI, fNIRS does 

not require participants to lie in a confined scanner environment, and it is more robust to movements, 
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making it suitable for a wide range of participant populations and tasks (Pinti et al., 2019). However, 

being a relatively recent technology, fNIRS still lacks standardized analysis procedures (Hocke et al., 

2018; Pinti et al., 2019) and sophisticated analytical approaches comparable to those used for fMRI.   

The specific question that we seek to answer is whether theory-based similarity measures predict 

the pattern of brain activity in IPL, and whether this differs for abstract and concrete words as recorded 

by fNIRS. By taking the finding from Zinszer et al. (2017) as a starting point, i.e., that fNIRS can be 

used successfully to predict neural patterns from concept similarity, we address this question by 

advancing in several ways by: 1) using a larger sample of stimuli, 2) comparing directly abstract and 

concrete concepts and alternative semantic models, 3) employing RSA which is particularly appropriate 

for comparing similarity patterns between data sets which can be from very different sources. 

We hypothesize that MVPA can be used to classify brain activation in response to abstract and 

concrete words. We also predict that the IPL encodes different kinds of similarity measure depending 

on the word concreteness. Moreover, we hypothesize that information in the left hemisphere will be 

more critical than the one in the right hemisphere to this classification and similarity pattern. 

2. Method  

2.1. Participants 

Thirteen healthy adults (four females; mean age = 26.7 years; range: 20 – 40 years) took part in the 

fNIRS study, which included two experimental sessions. A sensitivity power analysis (G*Power 3 

software; Faul, Erdfelder, Lang, & Buchner, 2007) revealed that our sample size was large enough to 

have a statistical power of .80 to detect the significant (α = .05, two-tailed test) within-subject 

differences of interest (i.e., a main effect of hemisphere, word Category, or their interaction; see section 

2.5.2) in either representation similarities or decoding accuracies with a medium effect size (Cohen’s f 

= 0.3) assuming a correlation between repeated measures of .75. 

All participants were right-handed, healthy and native English speakers with no history of 

neurological or psychiatric disorders and normal or corrected-to-normal vision. They were compensated 

for their participation and gave written informed consent to the experimental protocol approved by the 

University College London local research ethics committee. Due to technical issues, one participant 
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completed 4 out of 6 runs (1 run in session 1, 3 runs in session 2) and another participant 3 out of 6 runs 

(3 runs of session 1). 

2.2. Stimuli 

The experimental stimuli consisted of 160 English words denoting 80 abstract and 80 concrete concepts 

derived from the English semantic feature norms (Buchanan, Holmes, Teasley, & Hutchison, 2013; 

Buchanan, Valentine, & Maxwell, 2019; McRae, Cree, Seidenberg, & Mcnorgan, 2005; Vinson & 

Vigliocco, 2008). The words were assigned to abstract/concrete type based on a cut-off value estimated 

from the distribution of the 5-point concreteness ratings for English language (Brysbaert et al., 2014) 

for all words in the English semantic norms (Buchanan et al., 2014). In particular, the visual inspection 

of the distribution of concreteness ratings (estimated using a gaussian kernel smoothing function with 

an optimized bandwidth) indicated bimodality, which was confirmed by the Hartigan’s dip test of 

unimodality (p < .001), suggesting the existence of (at least) two sub-distributions reflecting 

concreteness ratings for abstract and concrete words. The distribution was thus submitted to a gaussian 

mixture analysis, which confirmed that two sub-distributions were required to fit the data (R2 = .97; a 

model including a third sub-distribution did not significantly increase the fit, p > .05). The cut-off value 

was then estimated as the concreteness value corresponding to the intersection of these sub-

distributions.  

The selection of experimental stimuli was restricted to the nouns for which the following English 

norms and measures were available that were necessary to compute the similarity measures for the RSA 

analysis (see below): semantic norms (Buchanan et al., 2013), lexical British National Corpus (Leech, 

Garside, & Bryant, 1994), association norms (De Deyne et al., 2019); affective norms (Warriner et al., 

2013). In order to obtain a more representative set of abstract and concrete concepts while maximizing 

their variability (and, thus, RSA efficiency; see e.g., Meersmans et al., 2020), abstract and concrete 

concepts were selected based on a series of clustering analyses performed on the measures mentioned 

above, so that they could be grouped into four categories each, composed by a variable number of words 

(for the abstract concepts: social constructs, social attributes, cognitive events/states, and other abstract 

constructs; for the concrete concepts: professions, animals, vehicles, and buildings). The small number 

of words for each category, and their uneven number across categories, prevented us to further 
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investigate between-categories differences. Moreover, the experimental stimuli were selected so to 

maximize the range in semantic similarity within abstract and concrete stimuli while keeping 

correlations among the semantic, lexical, and association similarities as low as possible (see below). A 

complete list of the selected stimuli is provided in the Supplementary Material. 

A two-tailed independent t-test confirmed the significant difference between abstract and 

concrete words for the concreteness measure (abstract: M = 2.72, SD = 0.73, concrete: M = 4.61, SD = 

0.35; t(78) = 26.305, p < .0001, Cohen’s d = 3.296). Abstract and concrete stimuli were naturally balanced 

for word length, word frequency, valence, and dominance (Brysbaert et al., 2014; Warriner et al., 2013); 

as shown by two-tailed independent t-test comparisons (t(78) = 1.524, p > .132, Cohen’s d < .241). 

However, we refrained to balance them for further semantic-lexical variables. Indeed, as already noted, 

it is important to select variable stimuli for RSA (e.g., Meersmans et al., 2020) and matching abstract 

and concrete concepts on all semantic-lexical variables would have resulted in a stimuli set including 

highly specific concepts, which would have lowered RSA efficiency. 

We obtained five types of representational dissimilarity matrices (RDMs) for abstract and 

concrete words, one for each of the similarity measures considered here, i.e. featural similarity, 

association strength, lexical co-occurrence, affective ratings, and orthographic similarity (as a control 

model). Each RDM is a symmetric n × n matrix, where n is the number of experimental conditions (i.e., 

n = 160 words in this study) and each off-diagonal element indicates the distance for each pair of words 

in a given measure. We maximised the range in semantic similarity within the concrete and abstract 

stimulus group as we assumed that a wider range of semantic similarities might increase the sensitivity 

of the representational similarity analysis of the fNIRS patterns (e.g., Meersmans et al., 2020). 

The five similarity measures were computed as follows. The featural similarity measure was 

derived from English semantic norms in which participants were asked to list the properties of each 

word, such as its physical, functional, and categorical properties (Buchanan et al., 2013); it was 

calculated as the cosine angle between vectors for each pair of words (Buchanan et al., 2013). The 

association strength values were gathered by a continuous association task on large scale for English 

words (i.e., to produce multiple associations for each cue word) (De Deyne et al., 2019). Association 

strength was computed as the proportion of participants that gave the target response to a given cue 
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word. The lexical co-occurrence was computed as the natural logarithm of co-occurrence frequency 

plus one of each word pair in a symmetrical 5-word window in the British National Corpus (Leech, 

Garside, & Bryant, 1994). Since the results may be severely compromised whether these measures of 

similarity were too highly correlated, we tried to keep these correlations as low as possible (the within-

domain correlations between the three measures of similarity were all lower than .27); we also selected 

materials that, while still representing high levels of similarity overall, varied substantially within each 

domain (i.e., abstract, concrete) in relative similarity according to the three measures. The affective 

similarities were calculated as the Euclidean distance in the three-dimensional space characterized by 

valence (the way an individual judges a situation, from pleasant to unpleasant), arousal (the degree of 

activation an individual feels toward a given stimulus, from calm to exciting) and dominance (the degree 

of control an individual feels over a specific stimulus, from out of control to in control) measured on a 

9-point scale (Warriner et al., 2013). Finally, the orthographic distance values were calculated as the 

Levenshtein distance (OLD20, Yarkoni, Balota, & Yap, 2008) between each pair of words, reflecting 

the number of deletions, insertions and substitutions necessary to turn a word of the pair into the other 

one (for example, the orthographic distance between “career” and “deer” is three, reflecting two 

deletions (“c” and “a”) and a substitution (from “r” to “d”). 

2.3. Procedure 

The experimental task consisted of a semantic decision task in which the participants were asked 

to assess the concreteness (abstract vs. concrete) of the word stimuli. The words were presented at the 

centre of the screen in black helvetica font against a grey background.  

Each subject participated to six 12-min fNIRS runs divided in two sessions, which were 

performed in separate days, one week apart. In each run, all the 160 experimental stimuli (word trials) 

were presented exactly once along with 40 interspersed null trials (consisting in the presentation of a 

fixation cross), whose orders were pseudorandomized so that there were no more than three concepts 

in a row from the same category (abstract, concrete) and no null event repetitions. By repeating 

experimental stimuli six times, but in different runs, we were able to maximize design efficiency (and 

the precision of the estimates) while avoiding temporal clustering, which is undesirable in this kind of 

design (Kriegeskorte et al., 2008). Different trial orders were used per subject.  
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The trial duration was 3 s, during which a fixation cross (200 ms) preceded the stimulus (i.e., a 

word or a null event, presented for 500 ms) which in turn was followed by the blank screen (ITI: 2300 

ms) in which participants could make their response by pressing the right or left arrow keys on a 

computer keyboard. The input key mapping was counterbalanced across participants. Participants were 

required to perform a semantic decision task, in which they judged whether the word denoted an abstract 

or concrete concept. 

The fact that each word was repeated six times during the experiment introduces a possible source 

of noise because of novelty effects on the first presentation. We therefore asked participants to perform 

a paper-and-pencil version of the semantic decision task on the same stimuli of the computerized 

version at the beginning of the first experimental session to reduce any novelty signals during the fNIRS 

session. 

2.4. fNIRS data acquisition 

fNIRS, like fMRI, is a neuroimaging technique based on neurovascular coupling that measures the 

changes in brain hemodynamics (oxyhemoglobin -HbO2- and deoxyhemoglobin -HbR) following 

neuronal activations using near-infrared light (Pinti et al., 2019). brain hemodynamic and oxygenation 

changes were recorded over the inferior parietal cortex bilaterally using a wearable fNIRS device 

(LIGHTNIRS, Shimadzu Corp., Kyoto, Japan). The fNIRS system is equipped with 8 light sources, 

emitting light at 780, 805, and 830 nm, and 8 light detectors that were split and arranged into two 4 × 2 

arrays as shown in Figure 1. The source-detector separation was set at 3 cm. Raw intensity signals were 

sampled at 13.33 Hz from 20 measurement channels, 10 per hemisphere. 

For each participant, the coordinates of the fNIRS optodes and of the 10-20 standard anatomical 

landmarks (Nasion, Inion, right and left pre-auricular points, Cz) were recorded using a 3D magnetic 

digitizer (Liberty, Polhemus, Vermont). These were used to co-register the fNIRS channels locations 

onto a standard brain template using the SPM for fNIRS toolbox 

(https://www.nitrc.org/projects/spm_fnirs). The MNI coordinates and the anatomical locations of each 

channel were then estimated. The median group MNI coordinates, the corresponding anatomical 

locations, and the atlas-based probabilities are listed in Supplementary Table 1. 

 

https://www.nitrc.org/projects/spm_fnirs
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Figure 1. Schematic representation of the fNIRS channel configuration. Sources (red circles) and 

detectors (blue circles) are arranged in a 4 x 2 configuration on each hemisphere, creating 20 

measurement channels (white circles) in total. The channels of interest, covering the left and right IPL, 

are indicated in green. 

 

2.5. fNIRS data pre-processing and analysis 

The Homer2 software package (Huppert, Diamond, Franceschini, & Boas, 2009) was used to preprocess 

the fNIRS signals. Raw intensity data were first visually inspected and the presence of the heart beat 

frequency (~1 Hz) in the signal power spectral density was assessed in order to identify the channels 

showing poor signal-to-noise due to detectors saturation or poor optical coupling (Pinti et al., 2019). 

No channels were excluded from further analysis due to poor signal quality. Raw intensity signals were 

converted into optical density changes (Homer2 function: hmrInteensity2OD) and motion artifacts were 

corrected using the wavelet-based approach (Homer2 function: hmrInteensity2OD; iqr = 1.5; Molavi & 

Dumont, 2012). In order to reduce high-frequency (e.g., heart rate) and very low frequency noise, a 

band-pass filter was applied (Homer2 function: hmrBandpassFilt; order: 3rd; band-pass frequency range 

[0.01 0.6] Hz) and the concentration changes of HbO2 and HbR were then calculated with the modified 

Beer-Lambert law (Homer2 function: hmrOD2Conc; DPF = 6). The correlation-based signal 

improvement (CBSI, Cui, Bray, & Reiss, 2010) was used to combine HbO2 and HbR into the so-called 

‘activation signal’ (Scholkmann et al., 2014). This was done to infer functional brain activity on one 

signal including both HbO2 and HbR at the same time that can help in reducing false positives at the 

statistical analysis stage (Tachtsidis & Scholkmann, 2016).  

2.5.1. Contrast effects analysis 

A General Linear model (GLM) approach (Friston et al., 1994) was adopted to estimate the first-level 

(or single-subject) β-values on the CBSI signals. This was done using the SPM for fNIRS toolbox on 

the fNIRS activation signals, downsampled to 3 Hz, and for each of the 6 runs individually. Specifically, 

our design matrix included 160 regressors, one for each word, computed through the convolution of the 
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events timeline (modelled as stick functions) with the canonical hemodynamic response function. The 

regressors were used to fit to the fNIRS activations signals and the single-subject β-values were 

estimated. Then, for each word we computed the t-statistics on the 𝛽 estimates testing for the hypothesis 

that that word was significantly related to the CBSI signal. This was carried out on the channels covering 

the IPL bilaterally (green-filled circles in Figure 1).  

2.5.2. Representational Similarity Analysis and multivariate classification analysis 

We performed a Representational Similarity (RS) Analysis based on Spearman partial correlations 

computed between, on the one side, a similarity matrix based on the neural activity patterns (brain) and, 

on the other side, the similarity measures across abstract and concrete concepts (models). The brain 

similarity matrix was computed as the correlation between the neural activations for each pair of words. 

The five theoretical models were based on featural similarity, word association, lexical co-occurrence, 

affective content, and orthographic similarity (control model), as detailed in the Stimuli section. We 

also performed a leave-one-out item-level multivariate classification analysis, carried out using the 

procedure in Emberson et al. (2017; see also, Anderson, Zinszer, & Raizada, 2016) to decode the 

concreteness category of single words (trial-level decoding).  

Subject-wise RSs and mean trial-level decoding accuracies were compared between hemispheres 

and abstract and concrete categories with within-subjects GLM analysis. Post-hoc one-tailed one-

sample t-tests were performed to test for simple effects (i.e., RSs and decoding accuracies significantly 

higher than 0 and .5, respectively). The same analysis was carried out on HbO2 and HbR separately and 

results are included in the Supplementary Material. 

3. Results  

3.1. Representational Similarity Analysis 

We found different brain-model RSs for co-occurrence between abstract and concrete words, regardless 

of the hemisphere [F(1,12) = 16.00, p = .002, Cohen’s f = 0.55; Figure 2]. This was due to a greater (and 

significant) RS for concrete [t(12) = 2.13, p = .027] as compared to abstract words [t(12) = -2.76, p = .955]. 

The hemisphere by concreteness interaction was not significant [F(1,12) = 0.20, p = .662, f = 0.06]. 

We also found different brain-model RSs for affective content between hemispheres and word 

concreteness [hemisphere by concreteness interaction: F(1,12) = 6.62, p = .024, f = 0.36]. This interaction 
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was explained by a significantly greater (and significant) RS for abstract [t(12) = 2.02, p = .033] as 

compared to concrete [t(12) = -1.20, p = .873] words for the left hemisphere; the RSs for the abstract [t(12) 

= -1.44, p = .913] and concrete [t(12) = 0.83, p = .210] words were not significant for the right hemisphere.  

No significant concreteness effect or hemisphere by concreteness interaction was found for the 

brain-model RSs for featural similarity [respectively, F(1,12) = 1.00 and 0.19, p = .337 and .067, f  = 0.14 

and 0.06], word association [respectively, F(1,12) = 1.81 and 0.07, p = .203 and .792, f = 0.19 and 0.04], 

and orthographic similarity [respectively, F(1,12) = 1.51 and 2.31, p = .241 and .155, f = 0.17 and 0.21]. 

 

Figure 2. RSA results. The plots in the upper row show the mean representational similarity (RS, 

Spearman partial correlations) as a function of word concreteness (Abs, abstract; Conc, concrete) and 

hemisphere (left, in red; right, in blue) for each of the five theoretical models. The plots in the lower 

row show the corresponding differences between RSs in the left and right hemisphere as a function of 

word concreteness. Error bars represent within-subjects standard errors of the mean (Morey, 2008). 

 

3.2. Decoding Analysis 

No significant concreteness effect or hemisphere by concreteness interaction was found for the brain-

model RSs for featural similarity [respectively, F(1,12) = 4.09 and 0.01, p = .066 and .958, f = 0.28 and 

0.01], co-occurrence [respectively, F(1,12) = 0.14 and 1.02, p = .717 and .333, f = 0.05 and 0.14], and 

orthographic similarity [respectively, F(1,12) = 3.95 and 0.92, p = .070 and .356, f = 0.28 and 0.13].  A 

significant concreteness effect was found for word association [F(1,12) = 17.40, p = .001, f = .58], but the 

decoding accuracy was not significantly above chance level for both abstract and concrete words (all 

ps > .621). Moreover, a significant hemisphere by concreteness interaction was found for affective 

content [F(1,12) = 6.14, p = .029, f = .34], but again the decoding accuracy was not significantly above 

chance level in any case (all ps > .104). 

4. Discussion 



Similarity for abstract and concrete words in IPL 

15 

 

In this study we tested for the first time whether theory-based similarity measures predicted the pattern 

of brain activity in the IPL differently for abstract and concrete words. To this aim, we asked native 

English speakers to perform a semantic decision task requiring an explicit coding of the concreteness 

dimension of the words, while we recorded their brain activity in IPL through fNIRS. Using RSA on 

fNIRS data, we found that the neural representational similarity in IPL conformed to the lexical co-

occurrence among concrete concepts (regardless of the hemisphere) and to the affective similarity 

among abstract concepts in the left hemisphere only. This concordance between neural and semantic-

affective relationships within supramarginal and angular gyri suggests that these regions encode 

semantic-affective information depending on word concreteness. 

The role of the IPL in semantic processing has been supported by convergent evidence from 

human functional imaging studies (Binder & Desai, 2011; Binder et al., 2009; J. Wang, Conder, Blitzer, 

& Shinkareva, 2010), implicating this region in semantic representational aspects. Although this 

evidence would suggest that IPL may encode feature similarity among concepts, our results do not 

confirm this assumption. Indeed, we did not find a significant similarity pattern between feature 

similarity between concepts and neural activation pattern in IPL. Rather we found a similarity pattern 

in this region with lexical co-occurrence between concrete concepts in IPL for both hemispheres. These 

results appear consistent with a meta-analysis of 120 fMRI and PET studies on semantic processing 

that identified the bilateral angular gyrus to be consistently engaged more in concrete than in abstract 

concept processing (Binder et al., 2009), but this does not explain why we found a reliable similarity 

pattern only for lexical co-occurrence and not for feature similarity. The IPL also responds to statistical 

regularity of meaningful events (words/pictures sequences) (Hoenig & Scheef, 2009; Kuperberg et al., 

2003; Tinaz, Schendan, Schon, & Stern, 2006; Tinaz, Schendan, & Stern, 2008) and it is part of a 

context-related processing network (Bar, Aminoff, & Schacter, 2008; Fornito, Harrison, Zalesky, & 

Simons, 2012). As lexical co-occurrence captures statistical regularities in language and reflects co-

occurrence of words in similar contexts, IPL may be sensitive to regularities in written and spoken 

language as well as to the spatial and temporal regularities of events. Support for this view comes from 

a body of evidence revealing that the text-based model predicted activity in a distributed network 

extending to the bilateral inferior parietal lobule during language and semantic processing (Anderson, 
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Bruni, Lopopolo, Poesio, & Baroni, 2015; Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016) 

Indeed, like in our study, Huth and colleagues (2016) found that semantic representation of concepts 

modelled as a corpus-based space recruits both hemispheres for comprehension of natural speech. But 

this does not explain why we only observed a reliable similarity pattern only for concrete, and not also 

for abstract words. This result was unexpected and at odds with the view that sensorimotor properties 

would be more relevant in IPL for concrete concepts, and linguistic (or at least relational) properties 

would be more relevant for abstract (Crutch & Warrington, 2005). If confirmed in future studies, this 

result would highlight the importance of the linguistic and context information for concrete concepts as 

well.  

It is also worth noting that single word processing in a semantic task (as in our study) elicits 

more context-related information (Price, 2010) compared to the processing of a word embedded in a 

sentence. Concrete concepts are strongly associated to a limited number of contexts compared to 

abstract concepts (i.e., abstract concepts have greater contextual diversity; see Brysbaert et al., 2014; 

Schwanenflugel, 1991) and are thus processed more efficiently, particularly when little or no context is 

provided with the concept presentation. This characteristic is also reflected in our set of stimuli (two-

tailed independent t test on contextual diversity values shows a difference between abstract and concrete 

concepts: t(78) = 3.80, p < .001, d = .589). On this view, in our study the greater availability of context 

information for concrete concepts conveyed by lexical co-occurrence may have determined the 

similarity pattern between corpus-based space and activity pattern of IPL for concrete concepts only. It 

remains to be seen whether this is an important representational difference, related to this broad 

difference between concrete and abstract concepts overall, or a product of this characteristic of our 

stimulus set. 

We also found a similarity pattern between affective content-based model and activity pattern 

in IPL for abstract concepts. While we did not have a strong hypothesis about the IPL’s role in abstract 

representation, this pattern of results was not surprising: while concrete concepts usually have direct 

sensory referents (Crutch & Warrington, 2005; Montefinese, Ambrosini, Fairfield, & Mammarella, 

2013b, 2013a), abstract concepts tend to be more emotionally valenced (Crutch, Troche, Reilly, & 

Ridgway, 2013; Kousta et al., 2011; Montefinese et al., 2020; Vigliocco et al., 2014) and have low 
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sensorimotor grounding (for a concise review, Montefinese, 2019). Indeed, several authors have 

emphasized the peculiar role of affective and social experiences in semantic representation of abstract 

concepts (Binder et al., 2016; Borghi, Flumini, Cimatti, Marocco, & Scorolli, 2011; Katja Wiemer-

Hastings & Xu, 2005; Kousta et al., 2011; Vigliocco et al., 2009; Zdrazilova & Pexman, 2013). brain 

activations in the left (or bilateral) IPL have been observed in response to emotional salience of words 

(Kensinger & Schacter, 2006; Kensinger & Corkin, 2004; Skipper & Olson, 2014). brain activations in 

the left IPL have also been shown to be modulated by the presence of both valence and arousal 

dimensions of the word (Kensinger & Corkin, 2004). 

Together, the results of our study indicate that the IPL represents distributional and affective 

information depending on the word concreteness, implying that semantic representations of abstract 

and concrete concepts are characterized along different organizational principles in the IPL. Although 

some fMRI studies found a similarity pattern between the word association based-model and other brain 

regions (Liuzzi et al., 2019; Meersmans et al., 2020), we did not find a significant similarity pattern 

between this model and activity pattern in the IPL. These results suggest that the association strength 

for written words could represent less similarity between concepts compared to the other measures in 

the IPL. However, future research is needed to confirm this conclusion.  

We also observed unexpected, null results for the decoding accuracy: i.e., the decoding 

accuracy was not significantly above chance level with any semantic model. This could be related to 

the intrinsic limitations of the fNIRS technology and the low number of encoding channels we used. In 

fact, fNIRS instruments are typically equipped with a limited number of channels and, in general, brain 

activity is sampled at sparse and discrete locations of the cortex, with optodes placed 2-3 cm apart from 

each other. fNIRS has also a spatial resolution of 2-3 cm and recordings are much less finely grained 

than fMRI (Emberson et al., 2017). Therefore, MVPA is applied on a lower number of encoding 

channels than fMRI and these include information from a bigger brain volume than the fMRI voxels, 

which can impact the performance of the decoding procedure. Nonetheless, our study showed that the 

use of the RSA as a complementary analysis to the decoding accuracy is a promising tool to reveal 

similarity pattern between theoretical models and brain activity recorded through fNIRS. Future 

technological advances can help in improving the performance of MVPA-based analyses on fNIRS data 
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and fully establish multivariate analyses as a solid method for fNIRS-derived brain decoding. For 

instance, the development of whole-head diffuse optical tomography systems can increase the data 

quality, depth and spatial resolution of fNIRS recordings by using dense grids of sources and detectors 

with different separations and overlapping measurements at different depths (Zhao & Cooper, 2017). 
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