THE TRANSITION FROM THE MIDDLE TO THE LATE BRONZE AGE IN THE NORTHERN LEVANT: THE EVIDENCE FROM TELL NEBI MEND, SYRIA.

BY

STEPHEN J. BOURKE

THESIS SUBMITTED FOR THE DEGREE OF PH.D AT THE INSTITUTE OF ARCHAEOLOGY, UNIVERSITY COLLEGE, UNIVERSITY OF LONDON
DECEMBER 1991
DEDICATION

For my Mother

Frances Catherine Bourke

(1926-1965)

In partial fulfilment....
ABSTRACT

This thesis consists of six chapters of description and analysis of the Second Millennium architecture and ceramics excavated at Tell Nebi Mend (TNM), ancient Qadesh on the Orontes. Further analysis centres on the problem of the apparent gap in occupation in many of the major sites in north-central Syria between ca. 1750-1550 B.C.

Chapter One describes previous excavation and research into the archaeology of Second Millennium Syria, reviewing main discoveries and the origins of the major research problems in the field.

Chapter Two outlines the history of excavation at TNM and describes in detail the archaeological stratigraphy relevant to Second Millennium investigations, concluding with a summary of stratigraphy and a short comparative analysis of regional site histories.

Chapter Three details the ceramic type series, containing sections on type description, shape, ware, and decoration analysis, and a diachronic study of variation in all of the above over the course of the Second Millennium occupation at the site.

Chapter Four consists of a comparative ceramic analysis. The TNM assemblage is placed in a regional relative and absolute chronological context. A final point demonstrates the importance of comparative ceramic analysis for the elucidation of cultural inter-relationships, and alterations in these over the course of the Second Millennium.

Chapter Five concentrates on the problem of the Syrian MB/LB Gap Hypothesis, and through the medium of a number of archaeological case studies central to the genesis and development of scholarship on the problem demonstrate that the problem is more a function of unnecessary assumptions about the unity of ceramic occurrences, than any real gap in occupation. A concomitant problem, the definition of MB/LB and LB I ceramic assemblages, is shown to arise from unnecessary reliance on rare imported and fine ware ceramics as the determinants of relative and absolute chronology. Local coarseware ceramics, through their ubiquity, are more suitable determinants of chronological inter-relationships.

Chapter Six summarises thesis arguments, and considers the phenomenon of a widespread destruction horizon in both the northern and the southern Levant at the transition from the Middle to the Late Bronze Age. An over-reliance on enigmatic textual sources has tended to obscure the fact that the destruction horizon is too severe and too extensive to be accounted for by the textual sources. It is suggested that the horizon of destruction is likely to be more adequately accounted for by a widespread regional earthquake, similar in severity and extent to a number of historically attested geological events. Although not central to the thesis, it is suggested that this regional earthquake is to be related to the well known MB/LB period eruption of the Thera Volcano.
ACKNOWLEDGEMENTS

A very large number of people have assisted in various ways over the extended period of the writing this thesis. It is not possible to thank them all individually, so I must do so collectively.

My first thanks must go to my supervisor Peter J. Parr, of the Institute of Archaeology, University College London, for suggesting the topic to me, for making available the entire TNM corpus and documentation for this research, and for tolerating endless questions to no apparent purpose.

The thesis was written in part whilst I held a Commonwealth Scholarship to the United Kingdom, and in part whilst a Tutor and Temporary Lecturer in the Dept. of Archaeology of the University of Sydney. I must thank the staff of the Association of Commonwealth Universities at John Foster House, and particularly my Scholarships Officers there, for patience and tolerance of an idiosyncratic Antipodean much taken with Middle Eastern travel. Equally, I must thank Professor J.B. Hennessy for offering me the Tutorship and Temporary Lectureship at Sydney that allowed me to complete this research.

My research on the Busra and Pella ceramics in April of 1987 was made possible by a grant from the Near Eastern Archaeology Foundation of the University of Sydney. My travels to Scandinavia in March of 1988 were made possible by a grant from the Childe Fund of the Institute of Archaeology, and by a grant from the Central Research Fund of the University of London. My travels to the United States in June 1988 were made possible by a second grant from the Near Eastern Archaeology Foundation of the University of Sydney.

In the United Kingdom, I wish to thank Dr. Roger Moorey for patience, firm advice, and personal kindness, when this exercise in endurance came close to floundering; Mr. Jonathon Tubb of the Western Asiatic Section of the British Museum, for discussing the problems of Syrian MBIIA Painted ceramics, and the British Museum excavations at Tell es Saidiyeh; Dr. Rupert Chapman of the Palestine Exploration Fund for granting access to the PEF Library, and for much stimulating discussion on the problems surrounding the MB/LB material from Jericho; Dr. Gerald Cadogan for allowing the author to examine photographs of the Maroni Tomb I material, and for discussing LCIA foreign relations with me; The Hon. Vronwy Hankey for information on matters Mycenaean ceramic from both the Amman Temple and from the Jerash Pella tombs; Dr. Kay Prag of the Manchester University Museum, for allowing me access to the second volume of the Jerusalem excavation reports before such was readily available; Ms. Catriona Bonfiglioli of Oxford for inking a large number of the figures, and for the production of the pie-charts containing the quantitative data on the TNM ceramics.
In Scandinavia, I wish to thank Dr. Ingolf Thuesen of the Carsten Niebuhr Institute of the University of Copenhagen for facilitating access to the Hama ceramics; Dr. John Lund of the Copenhagen National Museum for granting access to the Hama fine wares on display at the museum; Professor Paul Astrom of the Institute of Classical Studies of Gothenberg University for much helpful information on the Tell es Salihiyeh material, and for detailed discussion of the stratigraphic and ceramic materials of the Late Cypriote Bronze Age; Dr. Peter Fischer of Gothenberg University for granting access to the skeletal material from the mass graves at Enkomi, for analysis.

In the United States, I wish to thank Dr. Patrick McGovern for facilitating access to the University Museum collections, particularly the material from Beth Shan, Tell es Saidiyeh and Gibeon, for discussing at length the chronological and cultural problems of the LBIA period in the southern Levant, and for allowing me to examine his unpublished monograph on the Beth Shan IX-VII material; Mr. Ray Tindall, of the Oriental Institute of the University of Chicago, and Dr. Rudolph Dornemann, of the Milwaukee Public Museum, for granting access to the Tell al Judaideh material; Dr. Joanna McClellan, for much personal kindness, for discussing at length the Chicago excavations at el-Qitar, and for granting access to Dr. Thomas McClellan's then unpublished paper on the Atchana sequence; Professor Gus van Beek of the Smithsonian Institution, for allowing me to examine the MB/LB ceramics from Tell Jemmeh, and for discussing Petrie's 'Egypt over the Border' excavations with me; Professor R.H. Smith of Wooster College, Ohio, for discussing at length the largely unpublished MB/LB material from the Wooster excavations at Pella in Jordan.

In the Middle East, I wish to thank Dr. Andrew Garrard, then Director of the British Institute at Amman for Archaeology and History, and Dr. Steven Hart, then Secretary/Librarian of the Amman Institute, for much personal kindness, and for allowing access to the MB/LB material from the Edom Survey Project; Mr. Rob Faulkner, for allowing me to examine the MB/LB ceramics from the Amman Institute's Amman Citadel excavations; Dr. Graham Philip, current Assistant Director of the Amman Institute, for providing me with access to his then unpublished manuscripts on Jericho MBA and Cypriot MB/LB metallurgy, and for discussing with me many difficulties associated with the relative and absolute chronology of Syrian MB/LB metallurgy; Professor C.J. Lenzen, for allowing me to examine the MB/LB material from the Tell Irbid excavations, and for extensive discussions on the problems of the MB/LB transition in Jordan; Professor Helga Seeden of the American University at Beirut, for providing me with a complete set of her then unpublished Busra Bronze Age ceramic figures, and for extensive discussions on the Busra and Hawrani MB/LB material.

In Australia, I must thank Professor J.B. Hennessy for extensive discussion of the relative and absolute chronological inter-connections between Cyprus and the Levant, for information on Stewart's Ajjul manuscript, which still remains only partially published, for access to his Stephania excavation records,
those of the Sydney University Pella Project, and for permission to comment on
his unpublished manuscript on the fine and imported wares from the Amuq and
Atchana excavations; Ms. Kathryn Eriksson, for extensive discussion on the role
of Cypriot ceramics in Levantine chronological calculations, the importance of the
Cypriot and Aegean ceramics from the EES excavations at Kom Rabia, Memphis,
and for permission to comment on her unpublished manuscript on Cypriot and
Levantine relative and absolute chronology; Dr. Lisa Giddy, then Lecturer in
Archaeology at Sydney University, for providing access to several important
manuscripts on the Kom Rabia ceramics, and for discussing with me the
stratigraphic details of the Kom Rabia sequence; Mr. Russell Workman, Mr. Paul
Donnelly, and Ms. Kathryn Eriksson of the Sydney University Dept. of
Archaeology, for assistance in the photography and inkwork of some of the
figures in this thesis; Dr. G. J. Wightman of the Dept. of Archaeology of the
University of Melbourne, for providing me with a copy of the MB/LB material
from the Melbourne University excavations at Til Barsip, Syria.

Throughout the long course of this work, the faith and support of my
father Jim and my wife Catriona has been of inestimable importance. My final
heartfelt thanks must go to them.
TABLE OF CONTENTS

Title Page 1
Dedication 2
Abstract 3
Acknowledgements 4
Contents 7

CHAPTER 1. Introduction

1.1 Introduction and Geography 10
1.2 Overview of Middle and Late Bronze Age Studies in the Northern Levant 12
1.3 Problem Identification 14
1.4 The MB/LB Gap Hypothesis 14
1.5 Summary of Thesis Aims 16

CHAPTER 2. Tell Nebi Mend: History of Excavation and Site Stratification

2.1 Introduction. Geography and Geomorphology. 18
2.2 History of Archaeological Investigation at the Site. Pézard’s Expedition. 18
2.3 Tell Nebi Mend Project. Introduction and History of Excavations. 20
2.4 Trench I 20
2.5 Trench II 31
2.6 Trench III 37
2.7 Middle and Late Bronze Age Stratigraphic Summary 41
2.8 Stratigraphic Conclusions 43
CHAPTER 3. The Ceramic Type Series

3.1 Historical and Theoretical Background 44
3.2 Coarseware Typologies and the Type Fossil Concept 47
3.3 The Tell Nebi Mend Type Series: Introduction 50
3.4 Shape Typology 52
3.5 Summary of Frequencies. 170
3.6 Ware Analysis 184
3.7 Surface Finish and Decoration 186
3.8 Tell Nebi Mend Typology: Summary 193

CHAPTER 4. Comparative Stratigraphy

4.1 Introduction 194
4.2 Comparative Site Analysis 194
4.3 Summary and Conclusions 246

CHAPTER 5. The Definition of LB I Assemblages and the MB/LB Gap Hypothesis

5.1 The Definition of LBI Assemblages in the Southern Levant. 249
5.2 The Definition of LBI Assemblages in the Northern Levant. 262
5.3 The Syrian MB/LB Gap 266
5.4 MBA Destructions and Egyptian/Hittite Military Action 281
CHAPTER 6. Earthquake Activity and the MB/LB Destructions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>284</td>
</tr>
<tr>
<td>6.2</td>
<td>Archaeological Evidence for MB/LB Earthquake Activity</td>
<td>286</td>
</tr>
<tr>
<td>6.3</td>
<td>The Thera Eruption</td>
<td>287</td>
</tr>
<tr>
<td>6.4</td>
<td>Relative Chronology of the Thera Eruption</td>
<td>290</td>
</tr>
<tr>
<td>6.5</td>
<td>Archaeometric Dating of the MB/LB Destructions</td>
<td>293</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary and General Conclusions</td>
<td>296</td>
</tr>
</tbody>
</table>

Bibliography, Captions and Appendices

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Abbreviations</td>
<td>298</td>
</tr>
<tr>
<td>7.2</td>
<td>Bibliography.</td>
<td>300</td>
</tr>
<tr>
<td>7.3</td>
<td>Cypriot Ceramic Material from Hama Levels H-G.</td>
<td>362</td>
</tr>
<tr>
<td>7.4</td>
<td>Typology of Second Millenium Ceramics from Tell al Judaideh</td>
<td>365</td>
</tr>
<tr>
<td>7.5</td>
<td>Captions to Maps, Figures and Tables.</td>
<td>391</td>
</tr>
</tbody>
</table>
CHAPTER ONE

Research Problems, Aims and Methods

Introduction

Syrian archaeology has long been dependent on southern Levantine and Mesopotamian sequences for its chronological infrastructure and developmental themes. This has led many to regard Syrian archaeological culture as being derivative of southern and eastern forms.¹

Over the last twenty years it has become clear that this view is significantly flawed. It is more profitable to interpret Syrian developmental sequences in a much more localised framework, free of the presuppositions, however well founded, that govern the interpretation of southern Levantine cultural groupings.²

A dearth of reliably stratified, well published Syrian sequences inhibits any desire to examine the northern Levantine sequences anew.

The first requirement of any re-interpretation of Syrian Canaanite culture is to free the northern sequences from their dependence on southern cultural and chronological structures.³

Geography and Geographical Boundaries

The northern Levant⁴ is made up of a series of quite distinct geographical units.⁵ The narrow coastal plain, well watered and rich in alluvium, is set off from the inland regions by a system of north-South mountain ranges, running parallel to the coast.

Access to the interior is limited to three major gaps in the system. They are the Amuq/Orontes gap in the north, the Homs/Tripoli gap in the centre, and that provided by the Esdraelon Valley in the south.

¹ Frankfort (1979), pp. 239-332 for the most overt statement on the derivative nature of Syrian Canaanite culture.
⁴ For the purposes of this analysis 'The northern Levant' is defined as present-day Syria west of the Euphrates, including the Turkish Hatay, The Lebanon, the Huleh Valley and sections of the northern Galilee.
⁵ There are many geographical texts on the region. For a clear summary, see Gerstenblith (1983), pp. 3-4; Wright (1985), pp.1-13.
The western half of the Syrian interior is dominated by two North-South flowing rivers, the Orontes and the Litani, and the rich agricultural lands that their valleys enfold. The main North-South access route from Palestine is through the Huleh Valley up into the Beqa'a, and on through the northern Beqa'a up into the Orontes Valley. The two northern river valleys (Beqa'a & Orontes) certainly, and the southern-most (Huleh) probably, form a second unit, separate from both the coast and the steppic interior, although access to the coast from both is achieved through the Homs and Amuq gaps.

The northern reaches of the Syrian plain are separable by dint of their increased rainfall, a gift of the Taurus rainshadow. The land about Aleppo is sufficiently rich to allow secure dry farming throughout the sowing season. Much river water comes via seasonal streams running south out of the Taurus, providing many difficult, but passable accessways into the uplands of southern Anatolia.

The Syrian Desert stretches from the margins of the two hundred and fifty millimetre rainfall zone across to the Euphrates system and south to the broken uplands of the Jebel Druse. It has been the domain of nomadic pastoralists from time immemorial. The vast, nearly waterless, desert is sprinkled with underground springs from the relatively rich artesian holdings, a result of the porous limestone substrata that underlie much of the steppe. These make a pastoral life and communication across the sands, from the western Orontes and Damascus Basins to the eastern valleys of the Euphrates, possible. However, it is a relatively infrequently crossed boundary between the Damascus Basin and the Euphrates Valley.

The Euphrates Valley and the land to its east, the modern day Syrian Jezira, is geographically part of Mesopotamia. Rich agricultural lands, and riverine access routes to the south linked these lands to those of the gulf from at least the Fifth Millennium, and possibly before.

The southern Damascus Basin is set off from the Beqa'a Valley by the high peaks of the Anti-Lebanon range, and gains its sustenance from the Barada River, which rises in the Anti-Lebanon, and flows to the east. The area formed is small, and cut off from the major settled units to the north and east by the desert wastes, and from the Beqa'a to the west by the high peaks of the Anti-Lebanon. The only relatively easy access routes are to the west and south. The former links the Damascus Basin with the southern Beqa'a, in the region of Kamid el Loz, and the southern route, through the Dera'a Gap, links the Damascus Basin with the fertile uplands of the North Jordanian Plateau. The more direct access to the coast is achieved via the Yarmuk and Jordan Rivers, linking the basin with the Esdraelon Valley and the Galilean hills, although indirect access through the southern Beqa'a and Huleh valleys was always possible.

Geographical Diversity and Culture Provinces

It has long been suggested that geographical diversity in the Northern
Levant plays no little part in the cultural diversity of the region.\(^6\)

Whilst the existence of distinct culture provinces in the region during the Second Millennium, as in other times, is not to be doubted, the delineation of borders and the determination of the extent of economic and cultural interaction through time, must all ultimately be based on a series of securely dated regional archaeological assemblages. These must provide a sound internal relative sequence, and allow for a generally acceptable comparative stratigraphy. Only with these conditions in place can one hope to examine regional interaction and politico-cultural alterations through time.

Through a short review of Second Millennium archaeological endeavour in the Northern Levant, it will be argued that such conditions have not existed in the past, and that it is necessary to begin any analysis by establishing sound local relative chronological sequences and to determine tightly interwoven comparative chronologies before broader based culture-history can be attempted.

Evaluation of Previous Work

Whilst knowledge of the regional variation in archaeological material culture has undoubtedly improved with the last hundred years of archaeological endeavour, the lack of commitment to deep stratigraphic excavations and the concomitant failure to provide an adequate coverage of local developmental sequences, has led to few clear advances in our understanding of the regional culture processes at work.

Although one must acknowledge the watershed represented by the information yielded from the deep stratigraphic probes at Hama, Tell al Judaidhe and Atchana, as far as the Second Millenium sequences were concerned, the actual increase in knowledge fell far short of the potential.

The Judaidhe sequence has never been published, although it has been the subject of Swift's important PhD. thesis. The Hama sequence was published very incompletely, and in a most unsatisfactory manner in Fugmann's predominantly architectural volume, and, although subsequent studies on the Carlsberg excavations have appeared, including Thuesen's recent volume on the Hama Levels J-M, no detailed study of the MB/LB Levels H-G has ever appeared, nor is one planned.\(^7\) Woolley's publication of the Atchana sequence is widely acknowledged to have been incomplete and overgeneralised in its exposition of the

\(^6\) It is clear that the oft-mentioned dichotomy between the coastal and inland regions of the north could be seen as one major manifestation of these putative culture provinces. An examination of sites in the Amuq/Orontes and the Homs/Tripoli gaps should seek to define any such boundaries between the coastal and hinterland regions, and to estimate the degree of cultural mix observed in what are likely to be boundary zones.

\(^7\) See Thuesen (1988), for the recent publication of the Hama J-M material. I owe the information on the future publication plans of the Carlsberg Expedition to Dr. Thuesen.
typological detail present.

All in all, whilst much important material has been excavated, little of it has been studied, and even less published. Whilst it is fairly easy to demonstrate the failings of northern Levantine research programs, the explanation of any such failure is less easy to identify.

Matthiae, in his majestic summary of the history of archaeological research in Syria ⁸, suggests that the architectural-textual bias of the pre-war researchers became entrenched in Syria. During the inter-war period Palestinian archaeologists honed stratigraphic technique, which in turn resulted in the development of a close relative chronology of sequential material cultures for Palestine. Much comparative ceramic analysis has provided the accurate chronological infrastructure. Advance from such a secure platform has been rapid and continual.

In Syria, the pre-war emphasis on architecture and textual evidence did not wane. Although major stratigraphic probes at Ugarit, Hama, Tell al Judaidah and Atchana did expose long, largely continuous sequences, a combination of technical deficiencies in excavation and the failure to publish excavated sequences adequately led to little advance in chronological definition and concomitant diachronic study.

Indeed, it is to the inter-war period that we can date the beginning of dependence of Syrian workers on the well-excavated sequences in the south. Many survey results were debilitated by an inability to date ceramic sequences with any accuracy.

The reliance on relatively plentiful textual finds and rare imported pottery to date sequences led to a patchy explication of the local sequences. Due to the rarely stated but virtually universal assumption that Syrian and Palestinian local sequences could be taken to be identical in form and evolution, little advance in the understanding of the developmental history and the processes at work in the formation of Syrian urbanism has occurred.

Whilst Dever rightly criticises the overelaboration of Palestinian ceramic typologies ⁹, a generally accepted relative chronology is the veritable backbone on which all other investigative work is built. In Syria, this backbone is absent. It is therefore not surprising that the discipline cannot advance past particularist concerns.

In the Second Millenium, problems with stratigraphic interpretation and the dating of local sequences have led to major disagreements on the site histories at Atchana and Hama, two of the very few sites where any attempt has been made to gain a complete cultural sequence. Almost all disagreements can be traced back to a failure in excavation technique and the absence of a reliable developmental typology for the sites in question.

In some cases, the attempt to apply Palestinian ceramic sequences to

Syrian assemblages in a very simplistic manner has resulted in the quite absurd claims that Syria was deserted during long stretches of occupational history - long stretches to which a large body of textual evidence specifically refers.10

Summary and Problem Identification

One must return to basics. Extensive, well-stratified individual site sequences need to be established. These must be sufficiently long to allow some determination of the genesis, development and chronological range of any given archaeological assemblage/culture on each site. Then, sites in close geographical proximity can be compared, so that levels of intersite variability may be determined, and culture-provincial boundaries defined. Once the boundaries are determined, the level of interaction between provinces can be examined, and changes in these interactive levels over time investigated. Finally, comparison between the archaeologically and textually derived "histories" may be attempted, to see if and where conjunction between the two exists.

The Tell Nebi Mend Project

The Tell Nebi Mend Project was conceived with these major deficiencies in technique and publication in mind.11 Whilst it was hoped to add significantly to the knowledge of many periods, the investigation of problems pertaining to the Second Millenium sequence were high priorities.

One major aim of the project was to provide a reliable ceramic sequence for the site of Qadesh, and through it to explore the regional sequences of the Orontes Valley and beyond. The erection of a reliable ceramic sequence will allow the re-examination of the problematic, but nonetheless crucial, developmental sequences mentioned above, and allow one to come to grips with at least some of the many thorny chronological problems which have bedevilled Syrian Canaanite archaeology from the outset.

Second Millenium Problems: The MB/LB Gap Hypothesis

The Second Millenium archaeological sequence is dogged by many problems centring on chronology and cultural continuity.

Before the Second World War, sufficiently little was known about the

10 Dever (1985), p. 81, fn. 2 and Dever (1990), p. 77, for his suggestion of widespread desertion in MBIIIC north Syria; Dever (1990), p. 80, fn.11, where he refers to Sauer's extensive, but unpublished, surveys in 'North Syria'. These purport to show that northern Syria was deserted between 1650-1550 B.C., apparently due to the wars of Hattusilis I and Mursilis I.

11 See Parr (1983), pp.103-104, for a statement of aims; Mathias and Parr (1989), for recent Third Millenium excavations in Trench VIII.
cultural sequence to keep disagreements to a minimum. After the publication of the Danish work at Hama, discrepancies began to appear.

The site had been excavated by Ingbølt, who published a full preliminary account, suggesting, on the grounds of the paucity of imported Tell el Yahudiyeh ware pottery, that there was a significant hiatus in occupation, placed between the early Second Millenium Level H and the Late Second Millenium Level G. The size of this gap was thought to be something in the order of two hundred and fifty years, ca. 1750-1500 B.C. Most workers accepted this finding, and, through the comparison of other local assemblages with that from Hama, and a similar scarcity of Tell el Yahudiyeh ware, Schaeffer, for example, claimed that a similar gap existed in the Ras Shamra sequence. The difficulty arose when Fugmann, the architect of the Hama project, published his final report on the architecture, and specifically denied any significant gap in occupation between levels H and G. He marshalled cogent architectural arguments against the gap-hypothesis, by detailing reuse of Level H walls and silos in the succeeding Level G, adding notes on the significant architectural similarity in layout and city function, all things unlikely to have occurred after a two hundred and fifty year hiatus.

At about the same time, Kantor and Amiran were casting doubt on the ceramic evidence, with both cautioning against the use of Tell el Yahudiyeh Ware as the determining factor in any equations.

Parr was the first to point a way out of the apparent dilemma, when he suggested that the problem lay more with the faulty methodology of ceramic comparison than with any site-specific difficulty. He suggested that the inland Syrian cultural provinces seemed likely to have had a different developmental sequence from the coastal Syrian and Palestinian sequences, rendering invalid any attempt at a 'straight-line' comparison of the two regions. He further suggested that the apparently wholly MBIIA ceramic sequence at Hama might well span the entire Middle Bronze Age, due to the fact that the MBIIB and MBIIC phases identified at Tell Beit Mirsim and Megiddo might be an entirely southern, Palestinian phenomenon.

Since that time, North and Courtois have re-examined the Ras Shamra sequence, and now seems less convinced that any significant gap in occupation exists. Although Drower's authoritative summary of the evidence reaffirmed Ingbølt's line, it was quickly challenged by Astour, who provided strong historical evidence in favour of continuity.

Tubb's work has demonstrated the existence of distinct culture provinces in

12 Ingbølt (1940), pp. 65-66, and fn.2.
15 Parr (1968), pp. 34-35, and especially fn. 108.
the Painted wares of north Syria and Cilicia. Strangely, he ignores the clear implications of his own findings on the extent of regionalism in MBIIA ceramic variability, and restated Ingel's conclusions on the duration of the Hama H sequence, favouring the existence of a considerable gap occupation after the end of Hama H1, due to the absence of 'more developed' MBIIB-C ceramics from the site. Whilst Gerstenblith's major synthesis on the MBIIA period in Syria might seem to agree with Tubb's analysis, her agreement is heavily qualified, as she does not deny the possibility that the apparent occupational gap may be more the function of invalid typological assumptions than diachronic assemblage differences.

Recently, Sauer is reported to have proposed that large parts of the North Syrian Plain were deserted during the last century of the Middle Bronze Age. This opinion was based on the absence of apparently diagnostic MBIIC ceramic forms in the material surveyed.

The problem is therefore thrown into stark relief by the recent opinions of Tubb and Sauer. One school of thought, espoused by Parr, Courtois, Fugmann and Astour, would detect no significant gap in the developmental sequence in Second Millennium Syria, whilst the other major point of view, that held by Ingel, Schaeffer, Drower, Tubb and Dever/Sauer, would claim a pronounced gap in the developmental sequence.

Crucial to any attempt to establish a reliable sequence at Tell Nebi Mend, and the use of this sequence to re-examine the central Orontes Valley series and those beyond, must be a new investigation into this central problem of interpretation.

Summary of Thesis Aims

The thesis will have four major concerns.

(1) The first will seek to present a reliable stratigraphic sequence at Tell Nebi Mend, and through it to obtain a detailed ceramic typology for the Second Millennium.

17 Tubb (1981), on the regional distribution patterns in the so-called 'Syro-Cilician' painted ware. See also Tubb (1983), on MBIIA regionalism in general. Note most recently Beck (1985), for an analysis of the coarseware parallels of the MBIIA Aphek sequence. He recognises regional variation as the major contributing factor to the apparent disjunction of synchronous ceramic assemblages.

19 Gerstenblith (1983), pp. 45-46 on the absence of southern Levantine MBII forms at Hama, but more importantly note the heavy qualification of this conclusion on p. 57, fn. 73.

20 As yet the survey results are unpublished, but are reported in Dever (1985), p. 81 fn.2 and Dever (1990), p. 80, fn.11.
(2) The second will be the exploration of synchronic and diachronic ceramic variability in the northern and central Levant, aiming at establishing a reliable inter-regional comparative stratigraphy, and to begin the delineation of the main culture provinces in the region.

(3) The third concern will be the examination of the evidence for the apparent MB/LB gap in occupation in many of Northern Levantine sites. Here one would seek to evaluate the nature of the phenomenon and veracity of the explanations proposed.

(4) The fourth focus will attempt to integrate the northern and southern Levantine ceramic sequences of MB/LB date, and to provide a tentative archaeological history of the period, accounting for the major variations detected in the foregoing analyses.
CHAPTER TWO

TELL NEBI MEND: INTRODUCTION AND SITE STRATIGRAPHY

Introduction

Tell Nebi Mend is a mound of approximately ten hectares in size, located in the Upper Beqa’a Valley, at the confluence of the Orontes River (Nahr al Asi) and one of its main tributaries, the Mukadiyah (Ain et Tannur).

The site is strategically situated at the point at which the east-west Homs/Tripoli road meets the major inland north-south highway that runs along the Upper Orontes Valley and on into the Northern Beqa’a Valley. The site is bound on two sides by water, and combines the advantages of a rich agricultural plain with an easily defensible site. The mound rises some 30 metres above the surrounding flat plain, dominating it and effectively controlling the important trade routes which run by the site.¹

French Excavations (1921-1922)

The first exploration of the site began with the short-lived French Mission under Maurice Pézard, which worked at the site over two field seasons during the years 1921 and 1922.²

Investigations were concentrated on the north-east quadrant of the main tell, in two contiguous irregular exposures.

Tranche A, a roughly seventy by fourteen metre cut running East-West through the body of the mound, exposed materials dating from the Middle Bronze Age through to the Early Byzantine periods.³

Pézard separated the material into four main architectural horizons roughly corresponding to Middle Bronze II ("Amorite"/Niveau Inferieur), Late Bronze II ("Syro-Hittite"/Niveau 4), Iron Age II ("Syro-Phenicien"/Niveau 2-3) and Late Hellenistic ("Niveau Seleucides"/Niveau Superieur).⁴

Tranche B, is an irregular pentagonal exposure stretching from the northern edge of the tell around the north eastern margins, skirting the modern Islamic

¹ For site topography and geographical context, see Parr (1983), pp.100-103. See also, Figs. 1 & 2 below.
² Pézard (1931), passim.
³ ibid., pp. 3-11.
⁴ ibid., pp. 3-75
cemetery, and finally abutting the Tranche A exposure. At its northern edge it runs some thirty metres north-south into the tell, and for forty metres to the eastern edge of the tell. It stretches some sixty-five to seventy metres around the north eastern margins to abut Tranche A. Pézard removed all Hellenistic, Iron Age and some of the Late Bronze II strata from this area.\(^5\)

Finds were disappointing, although the upper half of a stela of Seti I, found out of context in an Iron Age ("Syro-Phenicien") dwelling in the far north western quarter of Tranche A, provided one of the few highlights.\(^6\)

Pézard's excavations must be considered in the context of the knowledge available at the time of excavation. In the early 1920's the whole of the Orontes Valley was terra incognita, and Pézard's excavations among the very first to plumb Second Millenium deposits. His technique, whilst very loose seen against present practice, compares well with du Mesnil du Buisson's work at Qatna, and is not so very inferior to that of Braidwood at Judaidah and Ingolt at Hama. Certainly, any evaluation of the published findings should bear in mind that they were put together by strangers to the excavation, after the death of Pézard in 1923. His separation of the archaeological strata into the four main periods mentioned above are not violently at odds with the findings of the present British Mission, and should be seen in context as a considerable achievement.

Pézard's work on the ceramic typology, although much abridged in the publication, holds up fairly well against present findings, and many of his opinions on typological development are well founded.\(^7\)

Although not violently awry on the dating of the upper strata, Pézard's absolute chronology for the Second Millenium strata is generally set aside today, due to his insistence on dating terminal Middle Bronze Age deposits on the presence and absence of rare imported Tell el Yahudiyeh material. This tendency to wed northern sequences to those of the south, with its willingness to allow often very rarely occurring southern imports to be the arbiters of northern phasing, is the leitmotif of

\(^5\) ibid., pp.11-12
\(^6\) ibid., pp.19-22
\(^7\) See further Matthiae (1980a), p. 24; Whilst Matthiae criticises Pézard for his failure to make more of his discoveries, one should note that the excavator's premature death led to most of his results being written up by people inexperienced in his work. Equally, Pézard's observations on the pottery of the Middle and the Late Bronze Age, particularly his comments on the possible chronological division of incised ware motifs, and his notes on the relationship of the LB Black Polished wares to the MB Tell el Yahudiyeh pottery, broke new ground at the time, and were considerably in advance of Ingolt's better publicised observations on the Hama H and G material.
northern Levantine method in the field of chronological studies, and sets the pattern for the inter-war period.

Given the soundness of the vast majority of what were only preliminary observations, Pezard's achievements were considerable, and must be acknowledged to have provided an important foundation on which later French, American and Danish archaeologists have built.

British Excavations (1975-1990)

The second mission to the site, from the Dept. of Western Asiatic Archaeology of the Institute of Archaeology, University College London, under the direction of Peter J. Parr, began excavation in 1975. To date, there have been ten field seasons (1975, 1977-9, 1981-2, 1984, 1986, 1988 and 1990), although some have been very short.8

Excavations on the main mound have been concentrated on two major exposures. The first, of four Trenches (I, II, V and VIII) is located on the northeastern slopes of the mound, within (Trench I) and to the east (Trench VIII) of Pezard's Tranche A, and within the southern margins (Trench II) and slightly upslope to the west (Trench V) of the more irregular Tranche B. The second main focus of excavation on the upper mound (Trench III) is located on the western slope of the tell, south of Pézard's cut on the eastern side.9

Second Millenium deposits have been revealed in three of the Trenches (I, II and III)10, with I and III displaying relatively complete sequences and Trench II confined to the second half of the Late Bronze Age.

Trench I: Introduction

Trench I is a roughly fifteen metre square exposure within the eastern end of Pézard's "Tranche A". The trench was placed here to explore the Middle Bronze Age fortification system exposed by Pézard (Mur X), and to focus on the problems associated with the later history of the complex.11

8 For a preliminary report on seasons 1975-82, see Parr (1983); For seasons 1984-86 see Mathias & Parr (1989).
9 For location of trenches, see Parr (1983), p.113, Fig. 2; See also Fig. 2, below.
10 See Fig. 2, below, for the location of the London Trenches I-II and Pezerd's Tranches A and B.
11 For the location of Trench I, see Figs. 2 & 3, below; for Trench I investigations, see Parr (1983), p.106; for a plan of exposures up to the end of the 1982 season, see
The London excavations commenced where Pézard's exploration had left off, at some indeterminate stage in the Middle Bronze Age. The original exploration was designated Area 100. Subsequently Areas 110, 150, 160, 170, 410, 500, 600 and subdivisions were added to the original sounding in the base of Pézard's trench.

Shortly after excavation began, it became clear that some investigation of the later deposits, removed by Pézard, was necessary for a full understanding of the unexpectedly complex history of the fortification system. It was decided to expand the Trench I exposure some four metres into the irregular north face of Pézard's trench to recover some of the missing later strata. This expansion was designated Area 200. Subsequently, a deep probe into the northern-most pre-Pézard Middle Bronze Age deposits in Area 150, was integrated into the contiguous Area 200 sequence.

These predominantly Late Bronze Age investigations were supplemented by a two to three metre expansion into the south face of Pézard's Tranche A, initially designated Area 510, for those deposits above the base of Pézard's Tranche A, and subsequently Area 170 and subdivisions, for the excavations below the limit of Pézard's Tranche.12

Two exposures to the east of the main fortification wall (Pézard's Mur X), were opened as Areas 300 and 400, but these contained little other than wash/debris layers associated with the wall.

Trench I Sequence: Phasing

There are eight main architectural phases in the Trench I material studied below, with the uppermost of them (Phase A) confined to the Area 200 extension. The two earliest phased deposits (Phases G-H) studied in detail appear across the Trench I exposure, with the Phase G material predominating everywhere, and the earliest (Phase H) material touched on in probes below Phase G walls and floors.13

Parr (1983) p.114, Fig. 3; for a plan of Trench I, Phases G-H, excavated between 1984-88, see Figs. 11 and 12, below.

12 See Fig. 6, below, for all Area 510 and Area 170 phasing.

13 During the 1986 season, a South Probe was instituted (Area 171-4) which has penetrated into an architectural phase lower that H, thus "J". This material has not yet been studied in detail, but seems good late MBA, Albright's MBA, equivalent to Gophna and Beck's "Post-Palace" material at Aphek. For the Trench I South Section, which illustrates the relationship of Phase J to the later phases, see Fig. 6, below. In the 1988 and 1990 seasons, a companion North probe (Area 182-4) penetrated much deeper, linking the Trench I sequence securely with that from Trench VIII; Several
Although most of the upper six phases in the Trench I exposure are touched on in the Area 510 excavations, most secure stratigraphy is to be found in the Area 200 exposure. Work in Area 510 was very much a 'baulk straightening' exercise in the upper strata, and little significant architectural exposure was achieved.

The Area 200 North Face excavations cover some 15 metres east-west by 4 metres north-south, and consists of a series of irregular adjacent plots (200, 201-203, 230/151 and 250) situated along the northern edge of Pézard's "Tranche A". These plots were excavated over six field seasons (1975, 1979, 1981, 1984, 1986 and 1988).

The deposits may be apportioned in the following way:

Phase A

Architecture:
Wall 200A; Bench (?) 200B
Levels:
200.50

The first architectural phase below topsoil and Pézard scree consists of a very short section of north/south walling, projecting some 10 centimetres south of the north baulk. Wall 200A is some 80-90 centimetres wide, built of well-formed red mudbricks, and is preserved to a height of 80 centimetres above a stone foundation course of medium-sized, basalt boulders.

The very disturbed nature of the wall stub, due to Pézard's trenching and its proximity to the surface, has resulted in all but a few traces of occupational surfaces associated with the wall being swept away. Level 200.50 is primarily the foundation trench material, but a few traces of occupational debris may have been removed with it.

Additional phases have been identified, with Phases K and L best paralleled at Aphek by "Pre-Palace" and "Palace" deposits respectively. The sequence probably extends back into the late Third Millennium, as the earliest Phase M material contains good EBIV material to parallel Hama J and Mardikh Palace G; See Parr (1983), p. 106 for further details; It is likely that this material is contemporaneous with Mathias and Parr's "Final Building Phase" Level, and contemporary with their "Transitional" Phase, Mathias & Parr (1989), p. 20. For a plan of Phase H remains, see Fig. 12, below.

14 For all Area 200 phases, especially A-G, see North Section, Fig. 4, below.
Phase B

Architecture:
Walls 22A and 22B
Levels:
200.15-19; 200.51-61; 510.2.

Phase B remains are also dominated by a single wall stub (Wall 22), although another small wall stub [un-numbered] probably existed in the Area 510 exposure before being robbed out. In the Area 200 exposure, Wall 22 has been rebuilt on the same line at least once. It is convenient to divide Phase B into an earlier Phase B(i) and a later Phase B(ii).

Phase B(i) consists of Wall 22A, makeup levels 200.21/200.62, and a series of floor surfaces 200.16-19, 200.58-61 and 200.15.

Phase B(ii) is made up of Wall 22B, a rebuild of 22A directly on top of the former, and a series of good floor and occupation debris levels 200.51-57. Floor 510.2 seems best associated with this latter phase.

In the terminal floor deposit of Phase B(ii) in the Area 200 exposure, Level 200.51, a small body sherd from the shoulder of a Mycenaean IIIIB1 stirrup jar (FS 182/183?) \(^{15}\) was recovered. This would suggest a date within the Thirteenth Century for the Phase B material.

Phase C \(^{16}\)

Architecture:
Walls 200D, 200E; Walls 24-26; Wall 510.9; Hearth 201.6
Levels:
200.23-27, 200.29-38, 200.64-67, 201.4-8; 510.3-4,

A series of northeast/southwest running walls (200D, 200E, Wall 24 and Wall 26) and east/west Wall 25 are linked together by well-laid pebble makeup and rammed grey clay floors, containing much pottery and occupation debris. It is with this architecture that northeast/southwest running Wall 510.9 is best placed.

This series can be further subdivided into four subphases.

\(^{15}\) Furumark (1941), p. 43 and Fig. 12; See further Mountjoy (1986), pp.106-107.
On her criteria the vessel might be better classified FS 171 or 173; either way, the chronology of the piece is not affected.

\(^{16}\) For a plan of Phase C in the Area 200 exposure, see Fig. 7, below.
Phase C(i) consists of Walls 200D and 200E, pebble pavements 200.66-67 and 200.34-36, on makeup layers 200.37-8.

Phase C(ii) sees the construction of Walls 24-26. The foundations of these walls cut through the first series of pebble pavements. Floors and occupational debris layers associated are 200.26, 200.29-32, 200.64, as well as Hearth 201.6 and fill layer 201.8. It is here that good floor 510.3 is best placed.

Phase C(iii) consists of a series of mudbrick collapse layers, 200.25, 200.27 and 200.63. It represents the abandonment of the Phase C structures.

Phase C(iv) is made up of the single deposit, 200.24. This is best seen as a large robber trench, cut through the abandonment/debris layers of C(iii), into the body of Wall 24. It represents a short interval after the abandonment of the Phase C structures, before the construction of the succeeding Phase B complex.

Where superstructures are preserved, walls are of well formed red and yellow mudbricks, laid on small to medium basalt and conglomerate fieldstone foundations. All walls are trench built, and range in width from sixty centimetres (200D) to ninety-five centimetres (Wall 24). In general, the rebuilding phase is the more substantial.

Although difficult to interpret, it seems likely that the Phase C remains, especially Phase C(ii), are to be associated with Pézard's "Niveau 4" subphase of his "Syro-Hittite" Stratum. It is probably to be dated within the Fourteenth Century B.C., during the LBIIA period.

Phase D

Architecture:
Walls 23 and 32; Wall 200F; Walls 510.18 and 510.19;
Pit Installation 200.6 /200.11/201.3

Levels:
200.5, 200.7-10, 201.2, 201.7, 201.9-10, 201.12-14, 201.22; 202.1-202.12, 200.38, 200.70-72, 510.5-7.

This is a very disturbed phase, which cuts into the preceding Phase E and suffers considerable levelling off before the construction of the succeeding Phase C. It seems best to divide the phase into three subphases.

Phase D(i) consists of makeup levels 200.10, 201.12 and 201.21-22, Walls 23 and 32, good floor 201.10, and occupation above it, 201.9. Included with the complex is the pit Installation 200.6/200.11/201.3 cut into floor 201.10.

17 For a plan of Phase D, see Fig. 8, below.
As well as this material to the east of Wall 32, in the same phase is that to
the west, probably representing some less permanent structure (food preparation and
cooking area?) that lies outside the structure represented by Walls 23 and 32. It
consists of floor surfaces 202.4/7 on ashy, clayey makeup layer 202.12, postholes
cut into this floor, 202.3, 202.6, 202.8, 202.9-10, hearth 202.5, and occupation
above the floor, 202.2, as well as the fragmentary wall stub Wall 200F.

Within the Area 510 exposure, the makeup level 510.7, good floor 510.6,
and Wall 510.19 18 are best associated with this subphase.

Phase D(ii) represents the destruction and abandonment of the D(i) structures,
and is made up of mudbrick collapse levels 200.5, 201.2 and 202.1. It is probable
that Wall stub 510.19 19 and debris layer 510.5, which seals the Area 510 Phase D
deposits, is placed in this phase.

Phase D(iii) consists of the single deposit, 201.14, which may be seen as a
large robber trench into Wall 32, cutting through the destruction/abandonment debris
of Phase D(ii) into the wall itself.

The Phase D Area 200 complex consists of two parallel northeast/southwest
running walls (Walls 23 and 32), and the less substantial structure outside the walls,
to the west. The walls are trench built, of neat brown and yellow mudbricks on
small, medium and large conglomerate and basalt fieldstone foundations. Floors are
of rammed grey clay, and are generally well laid on pebbly, clayey makeup. The Area
510 exposure is too meagre to add much to this.

This phase represents something of a break with the preceding Phase E. A
date somewhere around the transition from the LB I to the LB II period, or around the
end of the Fifteenth or early in the Fourteenth Century B.C. might be suggested on
archaeological and historical grounds.

Phase E 20

Architecture:
Walls 200G, 200I, 200J, 200K, Wall 510.20; Windbreak 200H; Tabun
Installation 201.27; Pit Installation 200.69.

18 Unnumbered in the field, as it represented more a cleaned section through a wall
than any remaining structure itself. It was given this number by the author for ease of
reference. The designation was not in doubt in the excavator's mind.

19 Unnumbered in the field, given this designation by the author. Both this, and the
later Wall 510.18 barely extended beyond the baulk line, having been shorn off by
Pezard's cut, and subsequent erosion.

20 For a plan of Phase E, see Fig. 9, below.
Levels:
200.37-38; 200.73-93; 201.22; 510.8, 510.10-11.

As only a few fragments of walls 200F and 200K remain, the rest having been removed by Pézard's cut, most coherent architecture is associated with the northeast/southwest running Wall 200J, southeast/northwest Wall 200I, Windbreak 200H and the Tabun 201.27, all linked together by the good hard burnt floor 200.74/85. This floor, constructed on several layers of pebble makeup, 201.22, 200.86, 200.92-93, is cut by a series of shallow pits, 200.84, 200.87 and 200.90, which are, in turn, sealed by occupation and debris layers 200.73, 200.78 and 200.80-83.

Very little of the Phase E exposure remains from Area 510 as Pézard's irregular baulk was severely undercut at this point, and much has eroded into the post-Pézard topsoil layers deposited in the base of his Tranche A. What remains is the fairly clear evidence of an almost completely destroyed north/south wall line 510.20,21 and a series of surfaces going with it. Makeup layer 510.11, good floor 510.10 and occupational debris layer 510.8 should all be associated with the Phase E material from Area 200.

Area 200 Walls are trench built, constructed of yellowish-brown mudbricks, well laid on medium fieldstone foundations. Most are preserved to a height of between 60 and 90 centimetres, and all tend to be approximately 60 centimetres in width.

Although difficult to date with any certainty, it seems likely that the Phase E material dates to somewhere within the Fifteenth Century, in the second half of the Late Bronze I period. Certainly, the succeeding Phase D remains represent a construction on a different plan, if not necessarily used for a different purpose. This might suggest some slight lapse in time between the end of Phase E and the construction of the succeeding Phase D.

Phase F 22

Architecture:
Walls 200L and 200M
Levels:

The material from this phase can be divided into two subphases, associated

21 Unnumbered in the field, given this designation by the author.
22 For a plan of Phase F, see Fig. 10, below.
with the single complex of walls. Most difference lies between two very clear floor levels, although a series of wash layers off the preceding Phase G destruction level, all some metres to the east of the Phase F complex, are probably to be attributed to this phase.

Phase F (i) consists of Walls 200L and M, good hard black clay floor 200.120 linking them together, and occupation debris above this floor, 200.116.

Also likely to be associated with this subphase are ashy surfaces 201.24 and 230.5, and occupation/debris layers 230.14-7.

A series of thick ashy surfaces in the Area 510 exposure, numbered 510.13, should probably be associated with this subphase.

Phase F(iii) consists of abandonment/fill layers 200.100, 200.102, 200.106, 200.109, and 200.114-5.

201.23 is probably associated with this subphase, as an abandonment surface. It seems likely that 230.2 and 230.9-13 also belong with F(iii), as abandonment surfaces. Equally, a series of abandonment/wash layers in the Area 510 exposure, numbered 510.12, should probably be associated with this abandonment phase.

Phase F remains are all situated in the western half of Areas 200 and 510, and represent the first rebuild after the major destruction of the preceding phase.

Phase F walls in Area 200 are of yellow and brown mudbrick on small and medium fieldstone foundations. They are rarely more than 40 centimetres wide, with construction tending to be poorly executed and insubstantial.

This phase traces the first reoccupation in Trench I, after the destruction and/or abandonment of the late Middle Bronze Age fortification system, represented by the preceding Phase G. Wall alignments and general layout differ considerably between the two phases, and represent a major discontinuity in the sequence.

The dating of Phase F is linked to the question of the date of the destruction/abandonment of the Phase G fortifications, and the length of any possible abandonment of the site after that event. Two pieces of what seem likely to be an early Chocolate-on-White variant from floor/surface 230.5, favour a date in the LBI period 23. Present indications are that the material from Phase F is best placed

23 Whilst a Late Middle Bronze Age date would still be possible, given the late MBIIIC appearance of CoW at Shechem, Tell el Ajjul and Gezer, the best parallels for the piece, a shoulder fragment of a large jug, lie with the extensive LBI deposits of CoW found in Pella T. 62. For the date of CoW, see Hennessy (1985), pp. 107-110.
For the tomb deposit Hennessy et alii. (1989), pp. 420-421 and Fig. 6:2, and Potts in
之内，第十六世纪 B.C.，期间的晚期青铜 I 期。

Phase G 24

Architecture:
Wall 1/33 (Pézard"Mur X'); Wall 2, Wall 5/9/11/15, Wall 7/151 Wall 1, Wall 8, Wall 12/27/28/29, Wall 16 (Pézard Mur Y)/510.16, Wall 17, Wall 18, Wall 19, Wall 20, Wall 21, Wall 151.23, 151.27, Wall 230A, Wall 230B/151.53; Buttress 151.63; Benches 100.6/140.3, 112.6, 151.21, 151.39, 151.40, 162.3, 162.8/170.7, 162.9/170.6, 230.23;

Levels:
100.0-100.19; 110.1-110.5; 111.1-111.2; 112.1-112.9; 140.1-140.7; 150.1-150.5; 151.38, 151.41, 151.44, 151.46, 151.51; 152.1, 152.7, 152.9-10, 152.23; 160.1-160.2; 161.1-161.2; 162.1-162.12; 163.1; 164.1-164.5; 170.1-170.8; 172.1-172.7; 190.0; 230.1, 230.3-4, 230.6-8, 230.18-20, 230.22, 230.25; 250.1-4; 400.0-400.4; 410.0-410.12; 500.0-500.10; 510.14-510.17; 600.0-600.1; 601.1; 602.1-602.9; 603.1-603.5; 604.1-604.9; 700.0.

The Phase G remains are the first to be preserved over the entire expanse of Trench I. Below post-Pézard wash/scree deposits, they represent the limit of Pézard's excavation in Tranche A.

This phase represents the last constructional phase and use of the fortification system that dominates Trench I. All walls are of neatly laid multicoloured mudbricks on small, medium and large fieldstone foundations. Walls range in width from 50-70 centimetres, barring the major fortification Wall 1 (Mur X), which is preserved to a width of slightly over 3 metres. Many of the interior walls have plaster-lined mudbrick benches against their inner faces. Floors are of rammed earth, generally on a thick pebble and rubble makeup.

Deposits within the phase can be divided into four major subphases.

Phase G (i) sees the construction of Wall 2, Wall 230A, Wall 230B, Wall 250C, Wall 250O, Wall 5/11/15, Wall 6, Wall 7/151 Wall 1, Wall 8, Wall 29 and Wall 151.27 and Benches 100.7/140.3, 112.6, 151.21, 151.39, 151.40 against and

McNicoll et alii. (in press), pp. 125-129 and Table 1. See also, Fig. 64: 2, below.

24 For a plan of Phase G, excavated between 1975-1982, see Parr (1983), Fig. 3; for a plan of the northern reaches of Phase G, excavated between 1984-88, see Fig. 11, below. For north, central and southern sections across Phase G, see Figs. 4-6, respectively, below.
to the west of the large fortification wall, Wall 1/Mur X.

The walls are laid on thick ashy/bricky foundation layers 112.5, 112.8-9, 140.1, 140.4, 140.7, 150.4-5, 151.34, 151.36, 151.44, 151.46, 151.51 and 152.9.

Floors associated with the construction are 100.4, 100.16, 110.5, 111.1, 112.1, 112.3, 151.26, 151.32, 151.38, 152.1, 152.18, 162.7, 230.19, 230.22 and 500.9.

The floors are laid on thick pebble makeup/fill layers 100.10-11, 112.4, 140.5, 151.33, 230.25 and 500.6-7.

Occupation on these first floors sealed by later construction are 151.25, 151.31, 162.10, 164.3-4, 510.6-7, 510.10 and 510.15.

Phase G (ii) sees the rebuilding of Wall 29 as Wall 27/28/12, Wall 15 as Wall 9, and the construction of Wall 16 (Pézard "Y"/510.16) Walls 17-21, Wall 151 Wall 2, 151 Wall 3, Wall 151.23, Wall 510.9 and Benches 151.7, 162.8/170.7 and 162.9/170.6 and Tannur 602.5.

With these are the second phase floors 151.11, 151.14, 151.19, 161.2, 162.6, 164.2, 170.8, 172.7, 230.8, 250.4, 510.17, 602.2, 603.5 and 604.9. These are laid on make-up/construction layers 151.12, 151.33 and 151.35.

Occupation/debris on these second phase floors, and final occupation on first phase floors, is represented by 100.9; 110.4; 112.2; 151.10, 151.15, 151.18, 151.25, 151.28-29, 151.31, 162.4, 172.6, 230.6-7, 230.18, 250.2-3, 400.4, 500.11, 510.15, 602.4, 602.7, 604.3 and 604.8.

Phase G (iii) sees the destruction/abandonment of the complex. It consists of destruction/collapse levels 100.3, 100.8; 110.3; 150.3, 151.1-2, 151.6, 151.8-9, 151.13, 151.16, 151.30, 162.2, 162.5, 170.4, 172.3, 172.5, 230.1, 230.3-4, 250.1, 410.3, 410.9, 500.5, 510.14, 602.3 and 603.3.

Phase G (iv) consists of a series of small pits and two burials from above Phase G, the context of which has been destroyed by Pézard's excavations. These are 111.2, 151.17, 151.24, 164.5 [Burial], 172.2, 500.10, 510.11, 602.8-9, 603.2, 603.4 [Burial], 604.2 and 604.5-6.

Above all these layers are the unphased wash/scree levels which accumulated in the roughly fifty year period between the French and British excavations. They are 100.0-100.2, 110.1-2, 150.1-2, 160.1-2, 161.1, 162.1, 164.1, 170.1-3, 170.5, 172.1, 190.0, 400.0-3, 410.0-2, 410.6-7, 500.1-4, 600.0-1, 602.1, 604.1, 604.4 and 700.0.

From the destruction debris layer 250.1 several pieces of an early Chocolate-on-White variant, and fragments of a Grey Burnished juglet favour a transitional MB/LB date for this material. Supporting this are two further examples of an early Chocolate on White ware variant from Phase F surface 230.5.

For early, MBIIC, occurrences of the Syrian variety of CoW, termed 'Levantine
The construction of the Phase G complex is considerably more substantial than that of the succeeding Late Bronze Age Phase F remains, and represents the latest Middle Bronze Age occupation in the Trench. The construction and occupation is best placed within the last phase of the Middle Bronze Age, within the Seventeenth Century B.C. The destruction or abandonment that ended occupation seems likely to have occurred late in the Seventeenth or early in the Sixteenth Century B.C. Whilst the length of the subsequent abandonment is difficult to fix, it is unlikely to span more than a generation, and probably falls within the first half of the Sixteenth Century B.C.

Phase H 26

Architecture:
Wall 1/Mur X, Wall 4; Walls 151.45, 151.48, 151.54; Walls 152.1, 152.2, 152.3; Bench 151.62.
Levels:
100.12-14; 151.36 (lower), 151.41-61; 152.3-6, 152.8, 152.11-21, 152.24-31; 230.26-29;

The Phase H material comes from a series of narrow soundings below the Phase G construction layers, to explore the pre-fortification occupation in Trench 1. Four separate probes, below Phase G(i) floor makeup layers 100.10-11, 150.4-5 (abutting 151 Wall 1/Wall 7 to the south), 230.25 (abutting Wall 1/Mur X to the west) and 152.1 (abutting Wall 151 Wall 1/Wall 7 to the north),

Although not extensive, the Phase H remains can be divided into three distinct subphases.

Phase H (i) sees the construction of Walls 151.45, 151.48, 151.54, 152 Wall 2 and Bench 151.62, on makeup layers 151.52 and 152.21. Floor surfaces 151.61 and 152.30 are associated with this construction. Occupation/debris on these floors consists of 151.36 (lower), 151.37 and 152.29.

Phase H (ii) consists of the construction of Wall 4, 152 Wall 1 and 152 Wall

Painted ware' by Tubb (1981) and (1983), at Tell Tuqan and from the "Tomb of the Lord of the Goats" at Ebla, see Matthiae (1989), pp. 307-313 and Figs. 5-7. For CoW in general, see Hennessy (1985), passim; For early, MBIIC, CoW at Shechem, see Matthiae (1984), p.22; Toombs & Wright (1963), pp. 56-60, Fig. 24:30, Fig. 25:46 and Fig 26: 1-7. For MBIIC CoW at Ajjul, see Petrie (1931), p.10. For possible occurrences in Cyprus, see Berghoffen (forthcoming).

26 For a plan of Phase H, see Fig. 12, below.
3, floor levels 151.50, 151.42, 152.6/8, 152.12, 152.25 and occupation/debris layers 151.41, 151.43, 152.5, 152.11 and 152.24.

Phase H (iii) sees the construction of terminal Phase H floors 100.15, 152.4, 152.15, 152.20 and 230.27 and the fiery destruction that brings this phase to an end. Thick burnt ashy layers 100.12-13, 152.2-3, 152.19, 230.26 and 230.28-9 seal all walls and floors.

From the evidence of four very limited soundings, Phase H architecture seems closely related to that of the succeeding Phase G, both in form and orientation. Walls are built of neatly laid multicoloured mudbricks on small fieldstone foundations. Only some of the walls are trench built. Several of the smaller walls seem to have been laid directly onto a prepared surface. Widths vary from forty to sixty centimetres. Floors are of rammed clay, often on a well-laid pebbly makeup layer. Benches against inner wall faces are common, and many bench and lower wall surfaces are plastered.

The Phase H occupation seems to have commenced somewhere early within the second half of the Middle Bronze Age, probably during the Eighteenth Century B.C., and stretched on into the Seventeenth Century B.C. The fiery destruction that brings the phase to an end seems likely to have occurred sometime around the middle of the Seventeenth Century B.C.

Trench I: Summary of Stratigraphy

This completes the preliminary phasing of the Trench I sequence. There are eight major architectural phases identified, and some twenty subphases within them. Relative chronological considerations suggest that six phases (A-F) are best seen as Late Bronze Age in date, whilst two (G-H) seem likely to date to the second half of the Middle Bronze Age. There are two main discontinuities in the sequence of architectural phases. The first falls between Phases G and F, and is placed somewhere around the transition from the Middle to the Late Bronze Age, at some stage within the Sixteenth Century B.C. The second occurs between phases E and D, towards the end of the Late Bronze Age I period, at some stage in the second half the Fifteenth Century B.C. In both cases the succeeding phases (F and D) are less substantial, suggesting some relatively major change in function or circumstance in each case.

Trench II: Introduction

Trench II is an irregular exposure, covering roughly twenty metres by twenty, situated immediately to the north of, and partly contiguous with, the Trench I Area 200 sequence.
There are four major exposures in the Trench II sequence. They are Areas 100, 200/300, 400 and 500.

Area 100, the initial eleven metre by six metre exposure in Trench II, was excavated during the 1975 season. It was from the eastern half of this square that the LBIIA tablets were recovered. The 1977 excavations concentrated on the western half of the square, designated as the Area 200/300 exposure, and began the investigation of the immediate post-destruction history of the complex revealed in the 1975 exposure. In 1981 the probe was extended four metres to the north in the Area 400 excavations, which picked up more of the administrative complex discovered in 1975-77. The removal of baulks between Areas 100 and 400 occurred in 1982, confirming the identical phasing within the two Areas, and providing additional information on the destruction contexts of the cuneiform tablets. In 1986 a major twelve metre by ten southern extension to the Trench, designated Area 500, investigated the very latest history of the administrative complex revealed in 1975-82, and brought the Trench II south baulk to within two metres of the Trench I Area 200 north baulk.

All strata exposed date exclusively to the second half of the Second Millenium, with little material likely to be earlier than the Fourteenth Century B.C. The major architectural exposure consists of a series of small square rooms, located within a larger administrative complex, placed, it seems, on the far eastern edge of the tell. It is from the debris of what is taken to be the destruction of this complex that the small collection of cuneiform tablets were recovered in 1975. Most structural remains above this administrative complex were removed by Pézard, in his Tranche B exposure. A few scanty remains may still be detected at the western edge of the Trench II exposure, but even they are much cut about by Pézard's somewhat haphazard trenching, and by a series of large, perhaps Roman period, pits.

The Trench II material has not been fully integrated with the Bronze Age Type Series taken from Trenches I and III. Its importance lies in the fairly extensive recovery of ceramic and non-ceramic data which sets the chronology of Trench II on a very firm footing. This information can, in turn, be related through ceramic and

27 For the location of Trench II, see Fig. 2; for the relationship with Pézard's excavations, see Fig. 3; for a composite plan of excavations, see Fig.13, below.

28 See detail in Room 2, on Fig. 13, below.

29 Further work in the short 1990 season began the exposure of two apparently unrelated, but very well constructed LBII buildings. It seems likely that they are part of the Phase B administrative complex exposed in the Area 100-400 excavations during seasons 1977-82.

30 Millard (1979-80), pp. 201-205.
architectural analysis to the main Trench I sequence. It is doubly useful in this, as the Trench II material relates mostly to the less extensively sampled upper levels of the Trench I sequence, Phases A-C. Over ninety per cent of the Ceramic Types isolated in Trench I Phases A-C are duplicated in greater frequencies within the Trench II sequence. There seems little reason to doubt the equivalence of the Trench II Phase A-E and the Trench I Phase A-C material.

Trench II: Stratigraphic Sequence

There are at least four main architectural phases exposed in the Trench II sequence. All fall within the Late Bronze Age II period, dating to Fourteenth and Thirteenth Centuries B.C. Mycenaean, Cypriot and Egyptian imports are scattered throughout the sequence, and these are supplemented by the cuneiform tablets mentioned above.

Phase A

Architecture:
500 Wall 1, 500 Wall 2 (Pézard M28);
Levels:
500.1-8; 501.1-24; 502.1-3; 503.1-18

The majority of the Phase A material had been removed in Pézard's Tranche B excavations, and where the walls still stood trenching was evident down one or more sides of the walls, making it virtually impossible to relate the many vestigial surfaces to the walls. Nonetheless, enough could be shown to feel comfortable in relating some of the strata to the walls.

Area 500 Wall 1 continues a long series of rebuilds along the same alignment

31 The imports consist of six pieces of Mycenaean IIIA2/IIIB1 ware body sherds; five Cypriot LCIIA/B sherds; one piece of Egyptian Dynasty Eighteen Blue Painted ware, along with the two readable cuneiform tablet fragments that date from some time shortly after the end of the third quarter of the Fourteenth Century B.C.. According to R.S. Merrillees, the Cypriot material is to be dated within a late Fourteenth/early Thirteenth Century B.C. horizon. V. Hankey identified the Mycenaean material as consistent with a late Fourteenth or early Thirteenth Century B.C. date.

32 For all Trench II phases excavated between 1975-86, see composite plan, Fig. 13, below.
(ie. Area 200 Wall 1a and 1b). It is a massive North-South outer circuit wall, running along the eastern margins of the tell, containing the late Thirteenth Century successor to the Fourteenth Century administrative complex. The wall is between 1 and 1.5 metres thick, with very large fieldstone foundations and a superstructure of red and brown mudbricks, preserved to a height of 1.5 metres in places. Area 500 Wall 2 lies some two metres to the west, and runs East-West. It is some 80 cms thick. It is carefully built, of medium and small fieldstone foundations, capped with a red mudbrick superstructure. Within the body of the wall, and within the fill of the various resurfacings of the 'Street' several body sherds of Mycenaean IIIB ceramic were recovered.

Phase B

Architecture:
201 Wall 1; 300 Wall 2; 300 Wall 3;
Levels:
200.1-24; 201.19-20, 201.25-28; 202.1-2b; 300.1-20

Phase B architecture is confined to the western-most reaches of the Trench II exposure, where Pézard's Tranche B investigations did not penetrate to the extent they did further to the east.

The three wall stubs isolated are all part of a single structure, with walls 201 Wall 1 and 300 Wall 2 running parallel to each other East-West and 300 Wall 3 bonded into 300 Wall 2, and running North-South towards 201 Wall 1. All walls are trench built on small fieldstone foundations, with brown and yellow mudbrick superstructures. They vary between 40 and 65 centimetres in width, and are rarely preserved to any great height.

From later occupation debris within the structure comes a sherd of Mycenaean IIIB ceramic.

Phase C

Architecture:
Wall 1a, Wall 3-4, Wall 50; 203 Wall 5-6;
Levels:
102.2-5; 200.25-31, 200.50-52; 201.21-24; 201.29-37; 202.2; 203.2; 400.1-7, 400.17-19; 400.42-43;
Phase C architecture, although badly cut about by Pezard's investigations and extensive Roman period pitting, is fairly clearly a reconstruction of the preceding Phase D administrative complex along virtually identical lines. Most walls are sited on top or slightly to the west of their predecessors. Where it is possible to determine it seems that the layout of the Phase D construction was retained in the Phase C rebuild.

Walls are laid on small and medium fieldstone foundations, capped with a brown and yellow mudbrick superstructure. Walls are substantial, and tend to be between sixty and eighty centimetres in width. In places they are preserved to a height of 1-1.2 metres.

Phase D

Architecture:
Wall 1b, Walls 5-9; Wall 400.12, Wall 400.44, Wall 400.59, Wall 400.65.
Levels:
102.8-11; 203.3; 400.8-16, 400.20-31, 400.44-65.

Phase D architecture is the earliest yet uncovered in Trench II. It consists of parts of at least five small square rooms, which together form a considerable portion of a larger administrative complex, sited on the north-eastern slopes of the tell. The large Wall 1b serves as the outer enclosure wall of this complex.

All walls are carefully constructed of neatly formed red, yellow and brown mudbricks on small and medium fieldstone foundations. Floors are of thick white plaster over a neatly laid mudbrick foundation. Walls are substantial, and vary between sixty and eighty-five centimetres in width. They are commonly preserved to a height of 1-1.5 metres.

This Phase D administrative complex seems to have had its major period of occupation in the Fourteenth Century B.C. The relatively plentiful foreign ceramics, including Mycenaean IIIA2 and IIIB1, early White Slip II and Base Ring II, and Eighteenth Dynasty Egyptian Blue Painted fragments all support such a dating, as do the fragmentary tablets found in debris layers within the destruction horizon, above the main occupation contexts. The apparent destruction of the complex should be dated to some time after ca.1320 B.C., on the tablet evidence. It was rapidly rebuilt on much the same lines in the succeeding Phase C construction.

Trench II: Summary of Stratigraphy

The four phases (A-D) outlined above, are all attributable to the second half of the Late Bronze Age. The relatively plentiful foreign imported pottery and the fragmentary tablets allow a relatively close dating these four phases.

Phase D contains Cypriot White Slip II pottery that is well paralleled at Tell el Amarna in Egypt. Equally, the combination of Mycenaean IIIA2 and IIIB1, and the presence of Eighteenth Dynasty Egyptian Blue Painted ceramics all point to an Amarna period date for the level. The fragmentary cuneiform tablets, found in the destruction debris of the complex, can be attributed to some time shortly after 1320 B.C., suggesting the Phase D material is best placed in the third quarter of the Fourteenth Century B.C.

Phase C is closely associated with the preceding Phase D material, both in architectural form and in the imported pottery corpus. Both Mycenaean IIIA2 and IIIB material is found with early White Slip II. This phase is probably best placed in the last quarter of the Fourteenth Century B.C.

The rather scanty Phase B remains, and the even more problematic Phase A remains both contain Mycenaean IIIB material, and are best placed in the Thirteenth Century B.C. Exactly when they cease to be occupied is obscure, but it is worth pointing out that there is no evidence for a terminal Bronze Age destruction.34

Although the Trench II type series is not fully incorporated within the centralised Trench I and Trench III Bronze Age Type Series,35 numerous individual comparisons have been made and these allow some useful cross referencing.

It seems best to associate the upper four phases of the Trench I sequence with the four phases of Trench II. This reinforces the mooted Fourteenth Century date for the Trench I Phase C-D material, and the Thirteenth Century date for the Phase A-B corpus.

Equally, it would seem likely that the disturbances which brought the Trench I Phase C occupation to a close are linked with the destruction of the Phase D administrative complex in Trench II. Both should be dated within the last quarter of the Fourteenth Century B.C.. There is nothing specific to the destruction to allow one to associate it with Tutankhamon's shadowy campaign, perhaps led by Horemheb, which culminated in a 'burning of Qadesh', or to the assault on Qadesh

34 Parr (1983), p.107, for similar observations on the occupational history of the large LBII administrative complex in Trench III.
35 The integration is now underway, but is of little relevance to this thesis, except to delimit the Fourteenth Century and later material, and so remove it from the primarily MB/LB focus of concern.
during the early years of Seti I, the especially close parallels between the Cypriot and Mycenaean ceramics from Tell Nebi Mend and Tell el-Amarna, and the close association between Hope's Malkata Palace Blue Painted material and the sherd from TNM Trench II, might be seen to favour the former campaign, particularly as Hittite sources specifically refer to at least some associated destructive activity, which would seem to be reflected in the extensive destruction debris associated with the administrative complex.

Trench III: Introduction

Trench III is a slightly irregular rectangular exposure, some twenty metres by twenty-five metres, situated on the northwestern slopes of the main mound. This exposure was intended as the major stratigraphic check on the Trench I and Trench II excavations, to allow some estimation of the extent of intrasite variability on the mound. The strata exposed date almost exclusively to the Second Millennium, and are, therefore, well suited to the original purpose. However, occupation is most intensive in the terminal Late Bronze Age, and the extensive deposits attributable to the massive structure known as the "Courtyard/ Fortress", being of Thirteenth century date, are peripheral to our chosen MB/LB focus of investigations.

Trench III: Stratigraphic Sequence

The earliest sequence in this exposure includes at least one Middle Bronze Age (Phase E) and four Late Bronze Age (Phases A-D) architectural phases. There are eleven subdivisions in all, each representing partial rebuildings or relaid floor

36 The late date suggested by Millard (1979-80) for the TNM tablets would seem to have ruled out the possibility of Hittite agency, although Bryce (1989), would lower the dates of Suppiluliumas to the very end of the third quarter of the Fourteenth Century, rekindling the possibility. Taken by itself, the Trench II imported ceramic assemblage would appear to be more at home in the Amarna Age than the early Nineteenth Dynasty. For the Eighteenth Dynasty date for the Trench II Egyptian Blue Painted ceramic, see Hope (1989), pp. 3-46.

37 For the location of Trench III, see Fig. 2, below.

surfaces within given architectural phases 39.

There are three main areas relevant to a focus on early deposits. They are Areas 205, 206 and 210.

Area 205 deposits are of particular importance in determining the sequence of occupation in Trench III, as they provide a complete section through the Middle and Late Bronze Age strata investigated, as well as providing a section through what may turn out to be a Middle Bronze Age glacis or cut, preserved in the Area 205 sounding to a height of some twenty metres 40.

Area 205 has been excavated over six digging seasons, with the 1979 and 1981 seasons penetrating the LB levels, and 1982 the MB levels. A deep probe through the "glacis" during the 1984 and 1986 seasons reached the base of the mound, and provided a complete profile of the MB earthwork. Investigations in 1988 concentrated on the very confused basal levels of the cut, where Third Millenium deposits, probably disturbed, have been reached 41.

Area 210 was excavated over the 1982 field season. Material from this sounding is crucial to any MB/LB investigation as it covers the two architectural phases immediately following the terminal Middle Bronze age occupation. The later deposits in this Area are anchored by Cypriot LBII imports. Together they "sandwich" the LBI period and allow for a clear delineation of its typological nature 42.

Area 206 has been excavated over three digging seasons, with 1979 and 1981 concentrating on the substantial LB II deposits associated with the "Courtyard-Fortress", and the 1982 season exploring the important early LB strata.

The earliest deposits in Area 206 are all that are considered here, as they duplicate most of the Area 205 sequence, and all of the Area 210 sequence 43. As

39 For Trench III investigations, see Fig. 14, for a composite plan of earliest phases; Fig. 15 for sections through the Area 206 and 210 loci illustrating these phases, and Fig. 16, for the Area 205 North Section, illustrating the Deep Probe through the Cut or "Glacis".

40 See Fig. 16, below.

41 The short 1990 season investigated these basal layers further, and confirmed the Third Millenium date of at least some of the pits/cuts that penetrate the crumbly bedrock material. Further investigations began the exploration of what may yet prove to be an outer fortification wall.

42 See Fig. 14 for a plan of Area 210 excavations; Fig. 15 for two sections through the material.

43 For this portion of the Area 206 excavations, see Fig. 14 for a composite plan, and Fig.15, for the two relevant sections.
with the Area 210 sequence, the Area 206 sequence is particularly valuable as the uppermost strata considered here can be anchored chronologically by the presence of Cypriot imports, allowing ease of comparison and the reasonably clear delineation of the LBI period.

When taken together, these three sequences suggest that the Trench III deposits under consideration here are to be dated from some time in the Middle Bronze Age through until some time within the second half of the Late Bronze Age, within the Fourteenth Century B.C.

Phase A

Architecture:
Walls M, N, V; AA and AB.
Levels:

The phase A material can be subdivided into four distinct building phases:
A(i) sees the construction of Walls AA and BB, and good floor 206.87. This phase is sealed by debris layer 206.83.
A(ii) sees the construction of walls M and N, with basal floor 206.82. 206.86 is occupation/debris on this floor.
A(iii) sees the addition of second phase floors 206.70/71 and 206.85 and occupation/debris on floor 206.84.
A(iv) sees the construction of third phase floors 206.37-39 and 206.44 on makeup/debris levels 206.68 and 206.81.
Level 206.44 contains two pieces of Cypriot WS II "Framed Lozenge" Style milkbowls, reliably dated to the Fourteenth Century at such places as Tell el Amarna.44

Phase B

Architecture:
Walls B, R/O/S; Hearth 206.73.
Levels:
206.73-74, 206.100-101; 205.16-19; 210.2-3.

Phase B sees the construction of Walls B and R/O/S, which are cut into by

the succeeding Phase A walls M and N. Floors associated with this phase are 206.74, 206.101 and 210.2, and hearth 206.73, which is let into floor 206.74. All walls and floors are laid on construction layers 210.3/205.16.

Phase C

Architecture:
Walls P,Q and U; Blocked Doorway 205.15
Levels:
206.69, 206.75-76, 206.97; 205.8-15, 205.20; 210.1-2, 210.4-5.

Phase C can be divided into three subphases.
Phase C(i) witnesses the construction of Walls P and Q, with the re-use of the Phase D constructed Wall U. With these are good floors 206.76, 205.9 and 210.5, on makeup level 205.20. Occupation/debris on these floors is 206.75/206.97, 205.8 and 210.1/210.4.
Phase C(ii) sees the blocking of the doorway in Wall P, as 205.15. Associated with this is thin surface 205.10.
Phase C(iii) sees the destruction of this architecture with debris layers 206.69 and 205.11 sealing the complex.
Two small pieces from Cypriot Base Ring II jugs taken from floor deposit 210.4 would suggest a Fourteenth Century B.C. date for this Phase 45.

Phase D

Architecture:
Walls K, U, W, X, Y, Z; Bench 205.31; Hearth 206.97;
Levels:
205.1, 205.3-12, 205.22-24, 205.28, 205.31; 206.90-99; 210.6-9, 210.11-12;

Phase D(i) sees the construction of Walls K, U, W, X-Z and Bench 205.31, against the inside (North Face) of Wall U. Walls are constructed on a thick intentional fill layer 205.1/205.24/205.28 and 210.11.

With these are thick white plastered floors 206.99, 205.12 and 210.12, on makeup layer 205.23. A series of postholes 206.92-206.94 and 206.96 are cut into floor 206.99. They surround hearth 206.97, and are likely to be evidence for a windbreak around this installation. Occupational debris on the floors is 205.4,

45 Åström (1972 b), Fig. 53:1-4.
Phase D(ii) is the terminal Phase D occupation, and sees the phase sealed by debris/collapse layers 206.91/206.95 and 210.6/210.8.

Phase E

Architecture:
Glacis/Embankment/Cut 205.38.

Levels:
205.26, 205.29-30, 205.33, 205.35-90; 210.9-10.

Phase E sees the construction/excavation of the large earthen embankment that runs along the western edge of the site. The width of the embankment has not been determined as yet, but the height of the glacis face from the bottom of the shallow ditch at the base of the embankment seems likely to be over 35 metres. The ditch was only reached at the very end of the 1988 season, and further clearance is needed to assay a complete description of the basal deposits. Other than the very large embankment, levels 205.38-90, only the thick burnt destruction layer of ash and broken brickwork 205.26, 205.29-30, 205.33 and 210.9-10 can be differentiated. This destruction layer seals the Phase E glacis material.

Trench III: Summary of Stratigraphy

Of the five phases delineated above, Phase E seems wholly of the Middle Bronze Age. Phases A-D are all of the Late Bronze Age, with Phase A-C deposits anchored in the Fourteenth Century for the most part, if the presence of Cypriot imports constitute a reliable guide. Preliminary analysis of the ceramic corpus suggests that Phase D is best placed in the Late Bronze Age I period, the late Sixteenth through to the Fifteenth Century B.C..

Tell Nebi Mend: Summary of MB/LB Stratigraphy

All three trenches contain material of Second Millenium date. The Trench I sequence promises to be the most extensive, with early Second Millenium deposits stratified below the fortress/city wall complex. Phases G-H are likely to span the second half of the Middle Bronze Age, with the succeeding Phases A-F attributable to the Fourteenth Century. During the short 1990 season, the earliest surfaces associated with the earthen embankment were clarified, and late EB pit material revealed below these surfaces.
the Late Bronze Age.

Trench II material is confined to the second half of the Late Bronze Age, with the four phases A-D securely dated to this period by a relative wealth of foreign imported material.

Trench III contains a fairly continuous sequence, starting with late Middle Bronze Age Phase E, and continuing on throughout the first two thirds of the Late Bronze Age in Phases A-D.

Correlation of the individual phases between trenches is greatly facilitated by the Trench I and III sequences being integrated into a single Bronze Age Type Series. Although the Trench II material is not completely so integrated at present, a plethora of individual parallels supports the attributions presented below in the succeeding chapter. All attributions to the Fourteenth Century and later are generally supplemented by the presence of imported Cypriot, Mycenaean and Egyptian materials.

It seems best to see the Trench I Phase H material as the earliest deposit under study, datable somewhere within the late Eighteenth and the Seventeenth Centuries B.C. It is very likely that Trench I Phase G is closely related to Trench III Phase E, and that both be placed towards the end of the Middle Bronze Age, within the Seventeenth and early Sixteenth centuries B.C. It is probable that the destruction at the end of Trench III, Phase E and the abandonment of the Trench I Phase G fortifications are related.

Trench I Phases F-E and Trench III Phase D are datable within the Late Bronze Age I period, or the Sixteenth and Fifteenth centuries B.C.

Phases D-C of Trench I, Phases D-C of Trench II, and Phases C-A of Trench III should all be placed within the Late Bronze Age IIA period, or Fourteenth Century B.C. It is possible that the recession in settlement apparent after Trench I Phase C, Trench II Phase C and Trench III Phase A is due to a related phenomenon, which may be connected with a 'burning of Qadesh', noted by the Hittites, and perhaps to be associated with the hitherto shadowy military campaign, dating to the reign of Tutankhamon, although perhaps led by Horemheb as general in command 47.

The latest phases B-A of Trench I and the two uppermost phases B-A from Trench II should be dated within the Thirteenth Century B.C., as is the Courtyard/Temple Complex from Trench III.

47 See Giles (forthcoming), for the evidence on Tutankhamon's campaign to Syria. I thank Dr. Giles for permission to mention this observation ahead of the forthcoming publication of his The Amarna Age: A Restudy. For background to this campaign, see Mumane (1985), pp. 192-194. For the role of Horemheb, see Redford (1973), pp. 38-49.
Tell Nebi Mend: Stratigraphic Conclusions

In seeking to examine northern Levantine MB/LB ceramic typology and comparative stratigraphy, and the problems associated with the so-called "MB/LB Gap Hypothesis" through an analysis of the Tell Nebi Mend material, investigations should be concentrated on those stratigraphic phases immediately before and after the apparent late Middle Bronze Age destruction/abandonment of the site.48

As Trench I Phases H and G and Trench III Phase E are the latest Middle Bronze Age strata presently detected on site, and Trench I Phases E-F and Trench III Phases C-D are those strata immediately following the destruction/abandonment of the Middle Bronze Age settlement, they are the phases most central to such a concern. The architectural status, circumstances of destruction, and ceramic corpora from these levels will be central to all succeeding discussion of this issue. It is to the description and analysis of this and related material that we now turn.

48 When considering the ceramic sequence, the question arises as to what size of excavated unit is required before one can feel confident in the reliability of the sample provided. Whilst "reliable" is always going to be a relative concept, the Sarepta excavations, for which see Anderson (1988) and Ibrahim (1988), would suggest that a ten metre square excavated through all strata under examination does provide a reliable "ceramic signal", as the two trenches II.X and II.Y, each of roughly ten metres in extent, generated an equivalent ceramic signal. Whilst this goes against the opinions of Franken (1969) and Lapp (1970), their objections to such a statement were based on largely theoretical considerations, whereas the Sarepta data would seem to provide practical support for such a statement. The University of Sydney excavations at Pella in Jordan have experimented with various sampling strategies, to examine this question, among others. In general, whilst there is a small increment in data reliability with the addition of a second ten metre square, this is not statistically significant. There is no perceivable benefit with the addition of a third ten metre square. The TNM phase samples are larger than a ten metre square, with the exception of Phases A, B and H, which fall slightly (phase H), and considerably (Phases A & B) below this marker. Until the Trench II material, from an area of over twenty metres square in extent, is fully integrated with that from Trenches I & III, statements on Phase A & B material should be viewed with caution.
CHAPTER 3

THE CERAMIC TYPE SERIES

Historical and Theoretical Background.

Ceramics have been used as the primary means of dating archaeological assemblages for more than a century. Flinders Petrie pioneered the use of ceramic analysis when seeking reliable contexts for his Tell el Hesi assemblages. Although Petrie's system depended on the presence of plentiful Egyptian material to provide convenient benchmarks throughout the sequence, his attention to the detailed typological analysis of local ceramics allowed a system to be erected which could be expanded beyond strictly Egyptian horizons.

This analysis took the form of constructing a corpus of complete vessel types. The corpus was to be infinitely expandable, with the ultimate purpose of including a comprehensive description of all vessel forms excavated from all sites in Palestine. With its emphasis on the differentiation of whole forms, the corpus was increasingly defined in terms of differences in vessel proportions, and the position of decoration and handles. Whilst confined to the analysis of whole vessels from tombs, the corpus was a useful tool. However, as the majority of tell material was fragmentary, the use of Petrie and Duncan's whole vessel typology was strictly limited.

Albright's work at Tell Beit Mirsim represents the first comprehensive analysis of Second Millennium material based on stratified tell accumulations. His relative chronology was aided by the presence of a series of apparently well-dated destruction horizons, providing the benchmarks necessary to bind the system together. Although his system relied on the extraction of material from discrete, historically pegged horizons, his interest in sherd material expanded the focus of typological analysis from its virtually exclusive whole-vessel orientation to one including sherd material. Whilst Albright's work represents a major turning point in typological analysis, major American work at Megiddo and Beth Shan, and British work at Lachish and Jericho still relied primarily on whole-vessel typologies to differentiate assemblages.

1 See Drower (1985) for an evaluation of Petrie's typological methods, and their impact.

2 Much of the ceramic typology referred to in Petrie's 'Egypt over the Border' excavations at Gerar, Beth Pelet and Gaza, consisted of references to pre-established types, as codified in the corpus. Only new types and unusual pieces were felt worthy of publication. See Price-Williams (1977) on the problems this has generated for later researchers.

3 For an evaluation of Albright's achievement, see Wright (1970) and Dever (1985).
Only with the post-war excavations at Jericho and Shechem were "sherd-based" systems finally to come into prominence. The quantity of material recovered allowed analysis to move from the level of the particular to that of the general and from the qualitative to the quantitative.

This change of orientation began to bear fruit with the quantitative analysis embodied in the "working up" of the Shechem MB material, with theses by Dever (MBIIA), Cole (MBIIB) and Seger (MBIIC) cementing the gains implicit in the improved field technique at that site. The importance of all three theses lies in their exclusive concern with tell-derived, sherd-based materials.

Kenyon's work at Jericho was left incomplete when she died. Preliminary work makes it clear that she was well aware of the importance of tell-derived sequences, and the need to integrate any tomb-derived sequences with those extracted from the tell. Preliminary equations were attempted, although not fully integrated. Analysis is only just beginning, with recent studies by Ward and Chapman showing promise of similar gains through the use of statistical methods of data exploration.

The northern Levantine sequences have been less fortunate in their analysts. Few Second Millennium typologies of any elaboration have been extracted, and those that have been produced are overwhelmingly based on whole-vessel analysis. Among the most prominent and influential are those derived from Hama, Atchana, and Ras Shamra. Whilst all three sites have produced long Second Millennium sequences, there has been little interest in developing tell-derived, sherd-based typologies.

The Atchana material has been illustrated in a most schematic form, and is limited almost exclusively to whole vessel forms. The Hama sequence has not been studied in any depth, and illustrated material is presented in such a way as to make typological distinctions difficult in the extreme. Whilst a

4 See Dever (1962), Cole (1965) and now Cole (1984), and Seger (1965) for the primary publication of the Shechem material.

5 The vast majority of Kenyon's analytical work on the Jericho Bronze Age assemblages was based on tomb-derived whole-vessel typologies, "unkeyed" into the tell strata from which they derive. Whilst Kenyon was beginning the integration of the two [tomb/tell] series before her untimely death, it is apparent from the notes published in Kenyon & Holland (1982) that only a relatively small percentage of the tomb derived typology could be integrated with that derived from the tell, as the nature of the two systems - the one based primarily on rim profile and the other on shape proportion - militated against close comparison.

7 Woolley (1955) admits as much himself. Recent work by Williams & Hassert (1978), Gates (1981) and (1987), and McClellan (1989) have only tended to emphasize the difficulty in seeking high resolution solutions through low quality data.
comprehensive Second Millenium sequence exists at Ras Shamra, and copious material has been illustrated, much of this comes from tombs, and very little accompanying stratigraphic information has been made available. 9 Without the stratigraphic data, the illustrative material is of little use.

Only the most recent treatments show any interest in quantitative analysis. American work at Sarepta and el-Qitar10, and Lebanese-French work at Tell Ghassil 11 have produced useful quantitative analyses of tell-derived sequences. All three sites demonstrate the importance of quantifying occurrences of any given type, as the range and flori of many well-known types has been found to be rather more elastic than previously assumed.

Anderson's work at Sarepta illustrates this point most effectively. His many observations on the importance of providing 'total ceramic contexts' 12 for each type, and his many graphic demonstrations of the longevity of types and their changing patterns of incidence demonstrates once and for all that it is no longer sufficient to record a series of particularist occurrences, and derive chronological data by the presence/absence of supposedly diagnostic types. The presence of given types are not in themselves diagnostic. The relative incidence of types may well be.

It is important to note that both aspects of typology have important roles in analysis. It is equally important to define types closely and recognisably, as it is to provide them with a "total ceramic context". Whilst the "Type Sherd" is important for initial recognition of the presence of the type, each individual occurrence is of equal importance in the determination of the chronological range, and associative context. It is an unavoidable commonplace of tell-derived typologies that residual material obfuscates assemblage make-up. However, without the consideration of each type occurrence on its merits, one cannot make objective chronological determinations. Attempting to delimit periods of incidence artificially results in "truism typology", whereby types are deemed "intrusive or residual" because they do not duplicate previously excavated sequences. For example, many forms of so-called late Early Bronze Age ceramic are still being

8 See Ingolt (1940) and Fugmann (1958) for the data. The Hama H/G ceramics have never been adequately published. Again, as with Atchana, the desire for high quality data can never be met, a point Thuesen (1988) underlines when commenting on the Hama J-M material.

9 See Courtois & Courtois (1978) for the typology. For stratigraphic problems see North (1973) and Courtois (1974). Very recent statements by Mallet (1990) on the MB/LB sequence at Ras Shamra provide some stratigraphic control for the material offered, but there is little of it, and all offered are whole vessels.

10 For Sarepta, see Anderson (1988); for el-Qitar, see Culican & McClellan (1984), McClellan (1985) and McClellan (1986).

consistently recorded as out of context in early Middle Bronze Age levels at such recently excavated sites as Tell Mastuma, Ansari, Qarqar, based ultimately on the authority of the relatively poorly controlled excavations at Hama. In each case, it seems clear that the ceramics in question are found mostly in late EB deposits, but that they do have a short early MB continuance.

It cannot be emphasised too strongly that each newly excavated typology must be drawn up with reference to internal criteria only, in the first instance, and only after the intra-site variation has been determined and allowed for and an internally consistent relative chronology erected should any attempt at comparative typological analysis with other sequences be attempted. Too often "known typologies", derived from older excavations employing methods of extraction now widely acknowledged as inappropriate, are allowed to pre-determine what is a "correct" or "incorrect" typological position, in what should be "clean-slate" typologies, derived from modern, tightly excavated sequences. It is widely acknowledged that excavation techniques have undergone a revolution since the advent of the Wheeler-Kenyon or Baulk-Debris method. It is time that the processing of archaeological material took advantage of the qualitative and quantitative revolutions in field extraction techniques.

Coarseware Typologies and the Type Fossil Concept

Before embarking on the description of the local coarseware typology from TNM it is worth highlighting the main differences and perceived benefits of such a coarseware typology in comparison with what we may well describe as "type-fossil" led typologies. Simply put, typologies of the latter form give inordinate weight to very small quantities of readily recognisable imported ceramics or inscribed materials, and use the presence of these materials to order and date stratigraphy. There are two major assumptions behind such typologies. The first suggests that such rare imports as Bichrome WMW and Red Lustrous WMW appear more or less simultaneously and concurrently throughout any given region. Secondly, it is assumed that the lifetime of such fabrics is relatively short, and therefore of greater utility in the dating of assemblages and strata than the more generalised coarse wares. Both assumptions are questionable.

The relative sequencing of Cypriot pottery is based on very flimsy evidence on the island, with few local sequences of any length, and those excavated not always welcomed, because they seem not to agree with the tomb/type-led chronology. Few studies advance far before appealing to mainland sequences for justification. Whilst this would seem unavoidable when seeking absolute dates, it is most unsettling when the mainland sequences are asked to decide between local relative chronologies.14

14 See, with respect to the MC sequences, Johnson (1982) for the use of foreign contexts in the determination of Cypriot relative chronology. Barlow (1985) attempts to
The Egyptian material has traditionally been anchored on historical/inscriptional bases, although interest in depositional sequences is growing. However, to be successful, such local sequences must begin in isolation from all inscriptional/historical information, and this does not seem to be the case in either of the two most recently invoked works, those of Austrian excavations at Tell ed Daba and the EES excavations at Kom Rabia, Memphis.

Bietak's work at Dab'a is likely to be central to any understanding of Lower Egyptian culture-history in the first half of the Second Millennium. Whilst his juglet sequences are most laudable, they cannot be given absolute dates with any confidence, as the Daba sequence does not contain sufficiently robust internal evidence. Bietak admits to much early Dynasty 12 to 13 inscribed material in what he claims to be later deposits, so the inscribed material cannot be used in isolation to form a chronology. Appeals to Dashur for chronological pegs are based on Arnold's as yet unpublished dates for the Valley Temple occupation. Equally, Bietak's recent statements on the relative dating of the stratigraphy, where each level is allocated a nominal thirty year period, and all inscriptional material which seems to run contrary to this dating is deemed residual, does not engender confidence.

Bourriau's work with the EES Memphis project gives more promise of the required relative sequencing, although dating of ceramic assemblages, barring any explanation of the typological methodology, still seems to be anchored ultimately on tomb groups containing inscriptional material. It is difficult to understand how one can determine Second Intermediate Period and Early New Kingdom deposits in any other way, given the dearth of reliable stratigraphy elsewhere. Bourriau's appeal to scarab evidence suggests little advance on Tufnell's painstaking but overwhelmingly tomb-based analyses. Until an independent depositional redefine MC sequences stratigraphically, using the Cornell excavations at Alambra, but note Merrilles's (1985) seeming inability to accept the more generalist stratigraphic conclusions over the type-fossil fine-ware typological divisions of Åström (1957) and (1972b &c).

See Bietak (1979) and (1984) for the chronology of the site. For his most recent statement, mentioning the division of strata into arbitrary 30-year periods, see Bietak (1989) and (1991). For criticism of his work, see Dever (1985), and most recently, Dever (1990) and (1991).

For Bourriau's statements on chronology so far, see Bourriau (1989) and (1990). Bourriau is most cautious about the use to which the Kom Rabia material can be put, but her 1989 paper has been seized upon by 'High-Daters' such as Manning (1989) and (1990), as further supporting the High Chronology. Without corroborating stratigraphic and typological evidence, cross-correlated with comparable, closely stratified tell sequences, such as those from Dab'a, for which see Bietak (1989) and (1991), and Mashkuta, for which see Redmont (1988) and Holladay (1991), there is no satisfactory way of demonstrating the bona fides of the SIP context for the LMIB fragment from Kom
sequencing has been erected, the Egyptological data are of limited use.

Such ceramics as Bichrome Ware appear to be useful "type fossils" on Epstein's analysis, but the threadbare logic of her construct was exposed by Bimson, and reinforced in exchanges between Gates and Helck at the recent Gothenburg Conference. Although less prominent in northern arguments, one might say the same thing of Oren's detailed, but ultimately Egyptologically tomb-based analysis of Black Lustrous Wheelmade ware.

Equally, Furumark's well-known chronology of Mycenaean material derived both its relative and absolute sequencing from Middle Eastern material. Although French's important studies of the British Mycenae material, and Mountjoy's of the Knossos collections, give the promise of great improvement in the utility of the Mycenaean material, it is seldom seen in Middle Eastern deposits before the LBIIA period, and rarely even then at sites any distance from the coastal littoral. So its use in unravelling the mysteries of inland sequences will remain strictly limited, at the very best.

All the ceramics and other materials discussed above have been put forward as reliable indicators of relative chronology. Several key points militate against their use. With the possible exception of Mycenaean material, they lack sufficient depositional contexts in their areas of origin. They are generally very rare in Middle Eastern tell deposits, never bulking more than half of one percent in any given tell assemblage where one can refer to quantitative data. This makes it doubtful that sufficient bulk of material will be present to establish reliable comparative sequencing with homeland (i.e., Aegean, Cypriot and Egypt) deposits. This is vital, as one must guard against the possibility of the imports being found out of context, as residual material. This is the major problem with the use of scarce imports to determine chronology. If any occurrence is rare at the very best, the ability to detect intentional (heirloom) and unintentional (taphonomic) displacement of such material to a later time must be suspect. Given that many such displacements are known to have occurred, any system used must have a

Rabia. At the present stage of research, it cannot be used as aid and comfort to the High-Daters. For further remarks, see Eriksson (forthcoming). I must thank Ms. Eriksson, who is to publish the Cypriot pottery from Kom Rabia, for discussing this point with me at length.

18 Oren (1969) for the diagnostic uses of BLWMW, and Oren (1973), for the use of local coarseware amphorae in the same manner. Note that all of Oren's work is tomb based.

19 Furumark (1941a &b) for the genesis, and French (1964), (1965), (1967a &b) and (1969a &b) for Mycenae, and Mountjoy (1986) for the largely Knossian, stratigraphic contexts.
reasonable chance of detecting such displacements. The current use of rarely occurring fine and imported wares in presence/absence mode does not.

Coarseware typologies rely on interpreting the mass of recurring data, redundant information in statistical terms, to establish norms, and to enable aberrations to be detected. It is only through the use of quantitative data that such aberrations, displacements or residual material can be detected. The resultant statistically robust coarseware assemblages allow for the erection of a reliable relative chronology, into which the fine and imported wares are to be integrated.

The Tell Nebi Mend Type Series: Methods and Aims

The Tell Nebi Mend typology has been developed in line with the principles outlined above. Several key features are:

1. In the first instance, the typology has been developed without reference to other sequences.
2. Several sequences from the one site have been compared to determine the level of intra-site variation, and appropriate revision of the apparent range and incidence of given types noted.
3. Comparative typological analysis has only proceeded after an internal master relative sequence has been developed, and the comparative analysis has not been allowed to influence relative chronological conclusions within the TNM context.
4. Comprehensive parallels have been sought for each individual type, rather than for the more general "type-classes", in an effort to determine more fully, the range and floruit of each class.
5. Where appropriate, those sites in closest geographical proximity to TNM have been concentrated on, so that the potential problems surrounding ceramic regionalism are minimised.
6. Although older sequences are recognised to have serious deficiencies in extraction technique and data presentation, they have been used in conjunction with more recently excavated sequences, so that re-interpretation of the older, unavoidably influential, sequences will prove possible.

Tell Nebi Mend Type Series: Introduction

The ceramic corpora from Trenches I and III have been combined in a single centralised type series. This is designed to aid in the comparison of the architectural phasing isolated in each trench, but primarily to affirm the ceramic sequences from each area through multiple cross-referencing. It is vital that the sequence be shown to be reliable at Tell Nebi Mend, and that intra-site variation be assessed before investigation can move on to a consideration of the more contentious inter-site comparative corpora.
Material from the Trench I exposure constitutes between eighty and eighty-five percent of the total Bronze Age Type Series by number, and approximately ninety percent by type. There are over three hundred and eighty registered types, and some 34,712 registered sherds from the Trench I sequence.

Only a small, but well-stratified, sample of the Trench III material has been considered in this analysis. The aim here is to assess the degree of intra-site variability, and to reinforce the stratigraphic placement of ceramic types isolated in the Trench I study. As this investigation is primarily aimed at assessing change in ceramic assemblage through time, no purpose would be served by presenting the complete Trench III sequence in this analysis. This latter presentation must await the final publication of the Trench III material, after excavation has ceased.

Nonetheless, the Trench III sample is not inconsiderable, bulking between fifteen and twenty percent of the total series by number and some ten percent by type. There are some thirty registered types and one hundred and seventy firm associations with types isolated in the Trench I sequence. There are over seven hundred registered sherds from Trench III. These are sufficient to enable the deposits from Trenches I and III to be reliably associated, and for the tentative relative chronology derived from the Trench I material to be affirmed in all its major essentials.

Separate analyses will seek to consider ware types and decorative regime, and changes in the mix of these various characteristics through time. Initial chronological attribution is restricted to the relative sequence, as outlined above in the preceding chapter. A full discussion and consideration of the coarseware parallels will be found below, in the succeeding chapter.

Parallels are offered primarily to isolate the appropriate assemblages for detailed comparative analysis. A broad range of parallels are considered, so as to associate well-known but stratigraphically controversial material (i.e. Hama and Atchana) with recently excavated, relatively well stratified corpora (i.e. Tell Ghassil, Kamid el Loz). Whilst geographical range is considerable, a fairly even spread allows one to consider relative strengths of association between sites, and change in these through time. In this way we begin the definition of culture provinces, and charting boundary alterations through time.

The series is organised primarily by form, moving from open shapes to closed, as is the typological convention. Only cooking pots are defined by ware, again according to convention. If these last were defined by form they would be considered as separate classes of storage jars. It should be emphasized from the outset that nomenclature is merely for convenience in referencing, and no pre-judgement of function is meant to be implied in any of the labels offered below.

21 For which, see Amiran (1969).
Shape Typology

COOKING POTS

Type A(i): Simple Upright Rounded Rim (Fig. 17:1-4)

CN 116#: I 111.2/10
PHASE G-D
Moderately levigated clay with many small and medium quartz, chert, lime and some orangey grog grits. Fired dark greyish brick red throughout. Browny self slip ext.

PARALLELS:

CN 117#: I 111.2/8
PHASE G-F
Moderately levigated clay with many small and some medium quartz and chert, some micaceous, and a few black sand, lime and red stone grits. Fired dark brownish brick red throughout. Self slipped in dark brown ext/int.

PARALLELS:
Tell Ghassil, Phase XI, Doumet (1986), Pl. 9: 2.

CN 151#: I 151.31/2
PHASE G-D
Fairly finely levigated clay with many small and medium dark grey stone and a few grey chert and red grog grits. Fired dark browny brick red throughout. Self slipped ext/int.

PARALLELS:

CN 37#: I 510.7/1

22 'CN #' indicates Type Sherd Catalogue Number. Numbers are consecutive, allocated as catalogued, and integrate material from all three Bronze Age Trenches. The numbers 'I, II or III', indicate the Trench number from which the Type Sherd comes. "Coarseware" refers to all ceramics present on the site, rather than attempting to define "fine","coarse", "import" and "local". The term is used without prejudice to the relative "fineness", or the type or degree of decoration present in any given sherd. '111. 2' is the locus/level or deposit number from which the Type Sherd is derived, and the '/10' indicates that it is the tenth sherd so catalogued from that deposit. 'Phase G-D' indicates the range of the type as a whole, within the Trench sequence from which it comes.
PHASE G-D
Moderately to fairly finely levigated clay with many small and medium black stone and grey chert grits. Fired dark chocolate brown to black at core and brick red at surfaces. Dark chocolate brown self slip ext./int.

PARALLELS:

Type A(ii): Simple Upright Square Rim (Fig.17:5)

CN 115#: I 602.6/3
PHASE G
Coarsely levigated clay with many small and medium chert, some lime, and a few quartz grits. Fired dark brown throughout. Self slipped (?) ext/int.

PARALLELS:

Type A(iii): Simple Upright Swollen Rounded Rim (Fig.18:1-2)

CN 112#: I 410.12/9
PHASE G
Moderately to fairly finely levigated clay with many small to medium dark grey chert, some lime and a few black stone grits. Fired dark brick red throughout. Brown slip ext/int.

CN 114#: I 140.7/10
PHASE G
Moderately levigated clay with many small and some medium dark grey chert, some black and red stone, and a few lime grits. Fired dark brownish brick red throughout. Dark brown self slip ext/int. Vertical slash incision around lug exterior ext.

Type A(iv): Simple Upright Outflaring Pinched Rim (Fig.18:3-4)

CN 113#: I 112.5/5
PHASE G
Moderate to finely levigated clay with many small and some medium chert, lime, quartz and sand (?) grits. Fired dark browny brick
red throughout. Self slipped ext, rim int. Wet Smoothed.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 44:15; Hama Phase J1, Fugmann (1958), Fig.103, 3F 456; Kamid el Loz, Phase 10, Marfoe (1979), p.52 T.92b.

CN 118#: 1510.17/6

PHASE G-F

Coarsely to moderately levigated clay with many small and medium chert, quartz and lime grits. Fired dark browny brick red throughout. Self slipped ext, rim int. Wet Smoothed ext. only.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 44:16; Hama J2, Fugmann (1958), Fig. 98, 3A 795; Kamid el Loz, Phase 2, Marfoe (1979), p. 53, T. 33; Kamid el Loz, Phase 7, Marfoe (1979), p.52, T.92a; Hazor, Phase III, Yadin et.al. (1958), Pl. CXXXIX:5.

Type B(i): Upright Outturned Rounded Rim (Fig.18:5 & Fig.19:1-2)

CN 173#: 1230.5/29

PHASE F

Moderately levigated clay with many small and medium quartz and grey chert, some black stone, and a few lime and red stone grits. Fired dark reddish brown throughout. Self slipped ext/int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 23:20; Kamid el Loz, Phase 13/17, Marfoe (1979), p.27, T310: Jericho, Phase H X-XIII, Kenyon & Holland (1982), Fig 148:18; Jericho, Phase XII, Kenyon & Holland (1982), Fig. 149:2.

CN 111#: 1700.0/5

PHASE G-F

Fairly finely levigated clay with many small quartz, chert and black stone, and a few lime grits. Fired dark brown throughout. Self slipped, fired black ext.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 44:9; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 56:4; Kamid el Loz, Phase 15, Marfoe (1979), p.26, T.170; Tell Arqa, Phase 11', Thalmann (1978), Fig. 48:1; Jericho,
Phase XI, Kenyon & Holland (1982), Fig. 150:4; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLIX:26; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXV:2.

CN 296#: 1 200.67/2

PHASE C
Fairly finely levigated clay with many small and medium lime and quartz, and a few grey chert and reddish grog grits. Fired dark grey to black at core and dark brownish red at surfaces. Self slipped, fired brown exterior.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 56:15; Shechem Phase XVIII, Cole (1984), Pl. 25:j; Jericho, Phase IX, Kenyon & Holland (1982), Fig. 149:9; Hazor, Phase XVII, Yadin et.al. (1961), Pl. CCLXXXVI:11.

Type B(ii): Upright Swollen Outflaring Rounded Rim (Fig. 19:3-7)

CN 248#: I 170.4/5

PHASE G
Fairly to quite finely levigated clay with many small and medium lime and chert, some yellow to orangey grog, and a few black stone grits. Fired brownish dark charcoal grey throughout. Brownish buff slip exterior/interior.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 44:10/11; Tell Arqa, Phase 11, Thalmann (1978), Fig. 48:2; Jericho, Phase XI, Kenyon & Holland (1982), Fig. 150:1; Hazor, Phase XVII, Yadin et.al. (1961), Pl. CCXCVI:5.

CN 198#: I 230.1/50

PHASE G
Fairly finely levigated clay with many small and some medium chert, some red stone, and a few black stone and quartz grits. Fired dark reddish brown throughout. Self slipped exterior/interior.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl. 24:7; Tell Ghassil, Phase VIII, Doumet Pl. 56:11; Hama G, Fugmann (1958), Fig. 143, O 489; Hazor, Phase III, Yadin et.al. (1958), Pl. CXXXIX:8; Jericho, Phase XI, Kenyon
Moderately to fairly finely levigated clay with many small and medium chert and quartz, and a few lime and sand grits. Fired dark brown at core, and browny brick red at surfaces. Self slipped in dark brown ext/int.

PARALLELS:
- Tell Ghassil, Phase IX, Doumet (1986), Pl. 44:26
- Kamid el Loz, Phase 13/14, Marfoe (1979), p.54, T.57
- Busra, Phase 15, Seeden (1986), p.75, Pl. 21:266
- Hazor, Phase IV, Yadin et.al. (1958), Pl. CXVI:11
- Pl. CXXXVIII:6
- Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLIX:28
- Hazor, Phase III, Yadin et.al. (1958), Pl. CXXXIX:12
- Hazor, Phase III, Yadin et.al. (1961), Pl. CCXCII:9
- Hama H1, Fugmann (1958), Fig. 139, 5A 85
- Jericho, Tomb J12, Kenyon & Holland (1982), Fig. 151:27

Moderately levigated clay with many small and medium grey chert, some orangey red grog and a few lime grits. Fired dark greyish brown at core and dark orangey brown at surfaces. Self slipped ext/int.

PARALLELS:
- Jericho, Phase H XII-XIII, Kenyon & Holland (1982), Fig. 151:29

Fairly finely levigated clay with many small and medium dark grey chert grits. Fired dark greyish brown at core and dark reddish brown at surfaces. Self slipped (?). Wet smoothed ext. (with cloth?).

PARALLELS:
- Hama H2, Fugmann (1958), Fig. 124, O 785
- Hazor, Phase III, Yadin et.al. (1958), Pl. CXXXIX:9

Type B(iii): Upright Offset Rounded Rim (Fig. 20:1-2)
PHASE D-C

Moderately to fairly finely levigated clay with many small and medium dark grey chert, some quartz, and a few yellowish stone and orangey grog grits. Fired dark grey to black at core, and reddish brown at surfaces. Self slipped ext/int.

PARALLELS:

CN 338#: I 200.34/3

PHASE C

Fairly finely levigated clay with many small and medium quartz, some yellowish and red stone grits. Fired dark browny grey throughout. Self slipped ext/int.

PARALLELS:

Kamid el Loz, Phase 10, Marfoe (1979), p.25, CT70; Hazor, Phase I, Yadin et.al. (1958), Pl. CXLV:1; Byblos, RT.3, Tufnell (1969), Fig. 7:58; Jericho, Phase H XIII, Kenyon & Holland (1982), Fig. 150:16.

Type C(i): Simple Upright Outflaring Square Rim (Fig. 20:3-6)

CN 403#: I 250.3/1

PHASE G

Fairly finely levigated clay with many small and medium lime, some orangey grog, and a few dark grey stone grits. Fired dark ashy grey throughout. Thick orangey reddish brown slip ext/int.

PARALLELS:

Tell Arqa, Phase 11, Thalmann (1978), Fig. 48:2; Jericho, Phase XIII, Kenyon & Holland (1982), Fig. 151:23; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXV:3.

CN 108#: I 602.4/17

PHASE G-F

Fairly finely levigated clay with many small and a few medium quartz and sand, and a few lime and red stone grits. Fired dark reddish brown throughout.

PARALLELS:

Tell Ghassil, Phase IX, Doumet (1986), Pl. 42:18; Hama H5, Fugmann (1958), Fig. 117, 2B 433; Hazor, Phase XVII, Yadin et.al. (1961), Pl. CXXVII:16; Hazor Phase IV, Yadin et.al. (1958), Pl. CXVI:11; Jericho, Phase H
XII-XIII, Kenyon & Holland (1982), Fig. 151:24.

CN 197#: 230.1/49
PHASE E-D
Fairly finely levigated clay with many small and medium quartz, some reddish brown grog, and a few lime grits. Fired dark brown throughout. Thick red brown self slip ext/int.
PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 44:24; Hazor, Phase IV, Yadin et.al. (1958), Pl. CXXXVIII:5.

CN 96#: I 110.1/9
PHASE D-C
Moderately to fairly finely levigated clay with many small and some medium to large lime, some red stone, and a few black and chert grits. Fired pale orangey brown at core, and pale brownish buff at surfaces. Self slipped ext./int.

Type C(ii): Simple Upright Outturned Square Rim (Fig. 20:7-10)

CN 172#: I 230.5/28
PHASE G-D
Fairly finely levigated clay with many small and medium dark grey chert, some black and red stone, and a few micaceous grits. Fired dark reddish brown throughout. Self slipped ext./int.
PARALLELS: Tell Ghassil, Phase VIII, Doumet (1986), Pl. 56:12.

CN 101#: I 400.1/12
PHASE G-C
Moderately to fairly finely levigated clay with many lime and quartz, some grey chert and a few black stone grits. Fired dark browny grey throughout. Slipped in dark brown ext./int.
PARALLELS: Hazor, Phase IV, Yadin et.al. (1958), Pl. CXVI:12; Hazor, Phase III, Yadin et.al.
(1961), Pl. CCXCVI:11; Sarepta, Phase K,

CN 156#: I 230.6/1-2
PHASE G-B
Fairly finely levigated clay with many small quartz, some large lime and chert, and a few black stone grits. Fired dark char grey at core, and dark greyish brown at surfaces. Dark brown self slip ext/int.

PARALLELS:
Hama G, Fugmann (1958), Fig. 143, O 489; Hazor, Phase IV, Yadin et al. (1958), Pl. CXVI:12.

CN 142#: I 151.33/2
PHASE G-F
Moderately to fairly finely levigated clay with many small and medium grey chert, some small black stone, and a few red grog and lime grits. Fired light grey at core and pale browny buff at surfaces.
Self slipped ext./int.

PARALLELS:

Type C(iii): Upright Outturned Pinched Square Rim (Fig. 21:1-3)

CN 110#: I 601.1/4
PHASE G
Coarsely to moderately levigated clay with many small and some medium to large grey chert and red stone, some black stone, and a few lime grits. Fired dark grey at core and dark greyish brown at surfaces.
Self slipped (?)..

CN 144#: I 151.33/5
PHASE G
Fairly finely levigated clay with many small lime, some small and medium chert, and a few black stone and red grog grits.
Fired dark grey throughout. Thick orangey brown slip ext./int.

PARALLELS:
Tell Ghassil, Phase IX; Doumet (1986), Pl. 44:25; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 56:13; Kamid el Loz, Phase 14, Marfoe (1979), p. 25, CT.45; Hazor, Phase III, Yadin et al. (1958), Pl. CXXXVIII:9;
Hazor, Phase III, Yadin et al. (1958), Pl. CXXXV:14; Hazor, Phase I, Yadin et al. (1958), Pl. CXLV:2; Sarepta, Phase K, Anderson (1988), Pl. 22:3; Jericho, Phase H XIII, Kenyon & Holland (1982), Fig. 150:15.

Type D: Outturned Swollen Bifurcated Rounded Rim (Fig. 21:4-7)

CN 387#: III 206.95/3

PHASE G-F

Fairly finely levigated clay with many small and medium grey chert and lime, some orangey stone and a few brown stone grits. Fired greyish chocolate brown at core and brick red at surfaces. Traces of self slip ext/int.

PARALLELS:

Tell Ghassil, Phase IX, Doumet (1986), Pl. 44:27; Hama H2, Fugmann (1958), Fig. 124, R877; Hazor, Phase III, Yadin et al. (1958), Pl. CXXXIX:11; Hazor, Phase XV, Yadin et al. (1961), Pl. CLVII:32; Tell Arqa, Phase 12B, Thalmann (1978), Fig. 49:2; Sarepta, Phase H, Anderson (1988), Pl. 25:20; Jericho, Phase H XIII, Kenyon & Holland (1982), Fig. 150:18; Jericho, Phase H XII-XIII, Kenyon & Holland (1982), Fig. 148.17.

CN 255#: I 200.87/1

PHASE F-E

Fairly finely levigated clay with many small and some medium quartz, some chert, and a few orangey grog grits. Fired dark brown grey throughout. Self slipped ext/int.

PARALLELS:

Tell Ghassil, Phase VIII, Doumet (1986),
Fairly finely levigated clay with many small and medium quartz, some chert and a few small black stone, yellowish stone and lime grits. Fired dark reddish brown throughout. Self slipped ext/int.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 56:12; Hama H5, Fugmann (1958), Fig. 109, 3C 551; Hama H2, Fugmann (1958), Fig. 124, R 877.

Type E(i): Upright Outturned Triangular Rim (Fig. 22:1-7)

CN 135#: I 151.36/1

PHASE G
Fairly finely levigated clay with many small and some medium grey chert, some red stone, and a few black stone and lime grits. Fired dark browny red throughout. Self slipped ext/int.

PARALLELS:
Tell Arqa, Phase 11, Thalmann (1978), 61

CN 104#: I 151.35/6

PHASE G-F
Moderately to fairly finely levigated clay with many small and some medium to large quartz, some chert, and a few red and black stone grits. Fired dark reddish brown throughout. Dark brown self slip ext/int.

PARALLELS:
Tell Arqa, Phase 11, Thalmann (1978),
Fig. 48:3; Hazor, Phase V, Yadin et.al. (1958), Pl. CXVI:5; Hazor, Phase III, Yadin et.al. (1958), Pl. CXXXVIII:12, CXXXIX:19.

CN 357#: 1201.17/1
PHASE F
Moderately to fairly finely levigated clay with many small and medium grey chert, some reddish grog, and a few orangey stone grits. Fired dark reddish brown throughout. Slipped in dark chocolate brown ext./int.
PARALLELS: Kamid el Loz, Phase 18/19, Marfoe (1979), p.25, T.303; Hazor, Phase I, Yadin et.al. (1958), Pl. CXLV:5; Hazor, Phase II, Yadin et.al. (1958), Pl. CXXVII:4; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXXXIX:9, Pl. CCLXV:10.

CN 295#: 1200.67/1
PHASE C
Moderately to fairly finely levigated clay with many small and some medium dark grey stone, some chert, and a few lime grits. Fired dark grey to black throughout. Slipped in dark reddish brown ext/int.

CN 184#: 1200.67/41
PHASE C
Fairly finely levigated clay with many small and medium lime and chert, some small black stone and a few orangey grog grits. Fired char grey at core and orangey brown at surfaces. Self slipped ext./int.
PARALLELS: Tell Ghassil, Phase VII, Doumet (1986), Pl. 68:17; Kamid el Loz, Phase 25, Marfoe (1979), p.25, T190b; Jericho, Phase XIII, Kenyon & Holland (1982), Fig.150:22.

CN 275#: 1200.62-3/1
PHASE C-B
Fairly finely levigated clay with many small grey stone, some yellowish stone, orangey grog and a few small lime grits. Fired dark grey to black at core and reddish brown at surfaces. Self slipped
ext/int. Wet smoothed with rag(?).

PARALLELS:
Tell Ghassil, Phase VII, Doumet (1986), Pl. 68:17; Hazor, Phase I, Yadin et al. (1958), Pl. CXXVII:4; Tell Arqa, Phase 11', Thalmann (1978), Fig. 48:3.

CN 293#: I 200.50/3

PHASE A
Fairly finely levigated clay with many small and medium black stone, some grey chert, and a few lime and orangey grog grits. Fired dark reddish brown throughout. Self slipped ext./int.

PARALLELS:

Type E(ii):Upright Outturned Square Triangular Rim (Fig. 22:8-9)

CN 106#: I 510.9/2

PHASE G
Coarse to moderately levigated clay with many small lime, chert and black stone, and a few red stone grits. Fired dark grey throughout. Slipped in orangey dark brown ext./int. Slip friable. Wide shallow concave incised groove horizontally around body below rim.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 56:9; Hazor, Phase III, Yadin et al. (1958), Pl. CXXXIX:14; Jericho, Phase XI-XII, Kenyon & Holland (1982), Fig. 150:14.

CN 105#: I 200.67/6

PHASE E-C
Moderately levigated clay with many quartz some chert and a few red and black stone grits. Fired dark greyish brown throughout. Self slipped in dark reddish brown ext/int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 44:27; Tell Arqa, Phase 11, Thalmann (1978), Fig. 49:1; Busra, Phase 18, Seeden (1986), Pl. 16:125; Hazor, Phase V, Yadin et al. (1958), Pl. CXVI:7; Hazor, Phase III, Yadin et al. (1958), Pl. CXXXIX:13; Jericho, Phase H XIII, Kenyon & Holland (1982), Fig. 150:21.
Type E(iii): Upright Thickened Triangular Rim (Fig. 23:1-3)

CN 174#: I 230.4/1
PHASE G Fairly finely levigated clay with many small and medium grey chert, some pale yellow stone and reddish grog, and a few small black sand (?) and grey stone grits. Fired dark reddish brown throughout. Dark brown self slip ext./int.

CN 183#: I 230.1/3
PHASE G-C Moderately to fairly finely levigated clay with many small and medium grey chert, some small black stone, and a few red stone and lime grits. Fired char grey at core, and greyish dark brown at surfaces. Self (?) slipped, fired orangey buff ext. and greyish brown int.

CN 414#: I 201.8/3
PHASE C Fairly finely levigated clay with many small and medium grey chert, some black stone and white lime, and a few red stone grits. Fired brick red throughout. Self slipped ext and rim int.

PARALLELS: Kamid el Loz, Phase 25 [?], Marfoe (1979), p.25, T.276; el-Qitar, LBII Phase, McClellan (1985), Fig. 6:9; Jericho, Phase T.1 XLV, Kenyon & Holland (1982), Fig. 215:4.

Type F: Simple Upright Folded Collared Rim (Fig. 23:4-6)

CN 399#: III 205.35/2
PHASE A Moderately to fairly finely levigated clay with many small and medium dark grey chert, some orangey grog and a few lime grits. Fired orangey brick red throughout. Self slipped ext. only.

PARALLELS: Tell Ghassil, Phase VI, Doumet (1986), Pl. 78:9; Kamid el Loz, Phase 25/26, Marfoe (1979), p.25, T.268; Jericho, Phase H XIII,
Kenyon & Holland (1982), Fig. 151:30.

CN 102#: I 150.1/6

PHASE A

Moderately to fairly finely levigated clay with many small and a few medium black stone, quartz and grey chert, and a few red stone grits. Fired dark greyish brown throughout. Thick reddish brown slip ext./int.

PARALLELS:

Kamid el Loz, Phase 25/26 [?], Marfoe (1979), p.25, T.276; el-Qitar, LBII Phase, McClellan (1985), Fig. 6:9.

CN 103#: I 400.2-3/3

PHASE A

Moderately levigated clay with many small and medium quartz, grey chert and black stone, some lime, and a few red stone grits. Fired dark grey throughout. Reddish brown slip ext./int.

PARALLELS:

el-Qitar, LBII Phase, McClellan (1985), Fig. 6:10.

STORAGE BOWLS

Type A(i): Simple Rounded Rim (Fig. 24:1)

CN 318#: I 202.4/1

PHASE D

Fairly finely levigated clay with many small black stone, some lime and yellowish stone, and a few medium red stone grits. Fired reddish dark brown throughout. Self slipped ext./int. Chaff tempered.

PARALLELS:

Type A(ii): Outflaring Rounded Rim (Fig. 24:2)

CN 78#: I 410.4/8

PHASE G

Fairly to quite finely levigated clay with many small and some medium lime and a few black stone grits. Fired brick red throughout. Self slipped ext./int. Wet smoothed.

PARALLELS:

Tell Ghassil, Phase XI, Doumet (1986), Pl.
Type A(iii): Simple Upright Rounded Rim (Fig. 24:3-4)

CN 119#: I 700.0/6
PHASE G Moderately levigated clay with many small and some medium dark grey chert, some quartz, red and black stone, and a few lime grits. Fired dark brown at core and reddish brown at surfaces. Self slipped in dark brown ext./int. Two wide shallow incised grooves horizontally around body ext.

CN 120#: I 112.4/11-12
PHASE G Moderately levigated clay with many small and medium grey chert, some orangey stone, and a few small black stone, lime and micaceous grits. Fired brownish brick red throughout. Self slipped ext./int. Straw tempered.

Type A(iv): Upright Swollen Rounded Rim (Fig. 24:5-6)

CN 22#: I 110.2/17
PHASE G Fairly finely levigated clay with many small and medium lime, some chert and a few black stone and red stone grits. Fired pale greyish buff at core and brownish buff at surfaces. Self slipped in pinkish orangey buff ext./int. Band of 'Slash Decoration' horizontally around mid body ext.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pls. 29:2, 32:6; Hazor, Phase III, Yadin et.al.
CN 109#: I 110.1/22

PHASE G

Moderately levigated clay with many small and medium quartz and a few chert grits. Fired dark grey at core and reddish brown at surfaces. Self slipped (?) in dark brown ext/int.

PARALLELS:

Type A(v): Upright Outturned Pinch Rounded Rim (Fig. 25:1-3)

CN 93#: I 510.17/3

PHASE G

Moderately to fairly finely levigated clay with many small and some medium lime and orangey grog, some chert and a few black stone grits. Fired pale brownish buff throughout. Self slipped in pale greyish brown ext/int.

PARALLELS:

Tell Ghassil, Phase IX, Doumet (1986), Pl. 32:1; Hama H1, Fugmann (1958), Fig. 124, 2C 900.

CN 257#: I 200.86/1

PHASE E

Fairly finely levigated clay with many small and some medium dark brown stone, some yellowish stone and chert, and a few orangey grog and lime grits. Fired pale browny buff throughout. Slipped in off white to pale buff ext./int. Wide shallow concave groove incised horizontally around rim/body join ext.

PARALLELS:

Tell Ghassil, Phase XI, Doumet (1986), Pl. 9:11; Hazor, Phase XVII, Yadin et.al. (1961), Pl. CCXXXV:15; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLX:17.

CN 310#: I 200.67/44

PHASE C

Fairly finely levigated clay with many small and medium dark reddish grey stone, some chert, and a few lime and quartz grits. Fired light grey at core and pinkish
pale browny buff at surfaces. Thick dark red slip ext. Burnished on wheel ext.

Type B: Simple Upright Pinched Square Rim (Fig. 25:4-5)

CN 122#: I 602.4/31
PHASE G Moderately to fairly finely levigated clay with many small and a few medium grey chert, and a few small lime, micaceous, black and red stone grits. Fired dark browny brick red throughout. Self slipped in dark brown ext./int.

CN 121#: I 602.4/40
PHASE G Moderately levigated clay with many small and some medium dark grey chert, some black, red and grey stone and micaceous, and a few lime grits. Fired dark reddish brown throughout. Self slipped in dark brown ext./int.

PARALLELS: Tell Ghassil, Phase VIII, Doumet (1986), Pl. 48:7; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLXXXVII:1; Jericho, Phase XIII, Kenyon & Holland (1982), Fig. 112:16.

Type C: Upright Rilled Rolled Rounded Rim (Fig. 25:6)

CN 49#: I 110.1/2
PHASE G Fairly to quite finely levigated clay with many small and some medium to large lime grits. Fired dark grey at core and browny grey at surfaces. Thick orangey brown slip ext./int. Four deep wide grooves incised horizontally around leading/upper rim ext.

PARALLELS: Busra, Phase 14, Seeden (1986), Pl. 21:258.
Type D: Upright Pinch Rounded Folded Rim (Fig. 25:7)

CN 137#: 1 151.35/2
PHASE G-C
Moderately levigated clay with very many small and medium quartz, some chert, and a few orangey stone grits. Fired light greyish brown at core and orangey brown at surfaces. Self slipped in dark reddish brown ext./int.

PARALLELS:

TRAYS

Type A: Simple Upright Rounded Rim (Fig. 26:1-2)

CN 242#: 1 171.3/1
PHASE G
Fairly finely levigated clay with many small and medium dark grey stone, some chert, and a few black stone and red stone grits. Fired reddish brown throughout. Self slipped ext./int.

PARALLELS:
Hazor, Phase XVI, Yadin et.al. (1961), Pl. CCXXXIX:25; Hazor, Phase IV, Yadin et.al. (1960), Pl. CX:24.

CN 353#: 1 200.27/1
PHASE C
Moderately levigated clay with many small and medium lime, some grey chert, and a few light brown grog (?) grits. Fired chocolate brown throughout. Self slipped ext./int.

OPEN BOWLS

Type A(i): Projective Rounded Triangular Rim (Fig. 27:1-7)

CN 85#: 1 410.4/10
PHASE G
Fairly finely levigated clay with many small and some medium lime, some black stone and a few red grog and chert grits. Fired dark brick red throughout. Thick
orangey brown slip ext./int. Two wide shallow grooves incised around leading edge of rim ext.

PARALLELS: Hazor, Phase XVII, Yadin et. al. (1961), Pl. CCXLVI:2.

CN 87#: I 501.1/1

PHASE G

Fairly to quite finely levigated clay with many small and medium lime and black stone, some chert, and a few red grog grits. Fired dark grey at core and orangey brown at surfaces. Self slipped ext./int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 13:16; Hazor, Phase III, Yadin et. al. (1961), Pl. CCLXII:23; Hama H1, Fugmann (1958), Fig. 127, 2C 942; Shechem XVIIIs, Cole (1984), Pl. 3:g; Sarepta, Phase K, Anderson (1988), Pl. 21.9; Ebla, "Tomb of the Lord of the Goats", Matthiae (1979), p.169, no.1; Jericho, Phase XII-XIII, Kenyon & Holland (1982), Fig.104:12; Atchana IV, Woolley (1955), Pl. CX:14b.

CN 159#: I 230.5/2

PHASE G-F

Fairly finely levigated clay with many small and medium chert, some black stone, and a few red grog, lime and micaceous grits. Fired dark grey at core, and orangey brown at surfaces. Thin browny buff slip ext/int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 13:20; Kamid el Loz, Phase 17-18, Marfoe (1979), p.8, CT.60; Hama G, Fugmann (1958), Fig. 161, 5B 272.

CN 157#: I 230.6/3

PHASE G-F

Fairly finely levigated clay with many small and a few medium dark grey stone, and a few quartz grits. Fired light greenish grey throughout. Self slipped in pale greenish buff ext/int.

PARALLELS: Hama H1, Fugmann (1958), Fig. 127, 2C 942 Hama G, Fugmann (1958), Fig. 143, N 999; Tell Mastuma, Phase II, Egami (1983), p.80, Fig. 4:7; Ebla, Phase IIIA, Matthiae (1982), Fig. 24:7; Ebla, "Tomb of the Lord of
the Goats", Matthiae (1979), p.169, no.4;
Hazor, Phase XVI, Yadin et.al. (1961),
Pl.CXXXIX:24; Kamid el Loz, Phase 17-18,
Marfoe (1979), p.9, CT.60.

CN 416#: I 250.3/1
PHASE G
Fairly finely levigated clay with many
small and a few medium dark grey stone,
some small lime and a few quartz grits.
Fired "oatmeal" fawn brown throughout.
Pale greenish-buff self-slip ext./int.
PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl.
29:3; Ebla IIB, Matthiae (1982), Fig. 25:15;
Tell Arqa, Phase 13, Thalmann (1979),
Fig. 4 [BL].

CN 88#: I 510.17/44
PHASE G-F
Fairly finely levigated clay with many
small and some medium lime, some
black stone, and a few quartz grits. Fired
dark grey at core and orangey buff at
surfaces. Fine thin orangey brown slip
ext/int.
PARALLELS:
Hama H3, Fugmann (1958), Fig. 120, 2C 931;
Kamid el Loz, Phase 19-25, Marfoe (1979),
p.9, CT.54; Hama G, Fugmann (1958),
Fig. 161, 5B 272.

CN 89#: I 150.1/10
PHASE G
Fairly finely levigated clay with many
small and some medium lime, some black
stone and red grog, and a few chert grits.
Fired dark grey at core and orangey brown
at surfaces. Self slipped ext./int.
PARALLELS:
Jericho, Phase XII, Kenyon & Holland (1982),
Fig.104:8.

Type A(ii): Upright Projective Pinch Rounded Rim (Fig. 27:8)

CN 294#: I 200.50/4
PHASE A
Fairly finely levigated clay with many
small and medium dark grey stone, some
chert, and a few red stone grits. Fired
greyish fawn brown throughout. Slipped in
pale greenish buff ext./int.
Type A(iii): Projective Swollen Rounded Rim
(Fig. 27:9-10 & Fig. 28:1-4)

CN 254#: I 200.92/2
PHASE F-E

Fairly finely levigated clay with many small and medium lime, some chert, and a few small black stone grits. Fired light orangey brown throughout. Self slipped ext/int.

PARALLELS:
Ebla, Phase IIIB, Matthiae (1982), Fig. 25:16.

CN 168#: I 230.5/24
PHASE F-D

Quite finely levigated clay with many small and some medium chert, some orangey grog and a few black stone and lime grits. Fired medium char grey at core and dark greyish brown at surfaces. Self slipped in dark orangey brown ext/int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 28:8; Kamid el Loz, Phase 18-20, Marfoe (1979), p.2, T.184; Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXL:11;

CN 247#: I 201.9/14
PHASE F-D

Fairly to quite finely levigated clay with many small and some medium chert, some yellowish stone, and a few black stone grits. Fired light char grey at core, and light greyish brown at surfaces. Self slipped in orangey brown ext/int.

PARALLELS:
Hazor, Phase XV, Yadin et.al. (1961), Pl. CLVII:18; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXI:17, CCLXII:9; Kamid el Loz, Phase 10, Marfoe (1979), p.3, T.102; el Qitar, 'LB 1' Phase, McClellan (1985),
Fig. 5:13.

CN 161#: I 230.5/4

PHASE F-C

Fairly finely levigated clay with many small black sand, some small quartz, and a few chert grits. Fired a "biscuity" pale greenish buff throughout. Self slipped ext/int.

PARALLELS:

Hama H2, Fugmann (1958), Fig. 124, 2C 926; Kamid el Loz, Phase 18-20, Marfoe (1979), p.3, T.179; Busra, Phase 26, Seeden (1986), Pl.13:56; Busra, Phase 15, Seeden (1986), Pl. 24:332; el Qitar, 'LB 1' Phase, McClellan (1985), Fig. 5:10.

CN 346#: I 200.24/1

PHASE C

Fairly finely levigated clay with many small and medium quartz, some grey chert and a few micaceous grits. Fired pale browny buff throughout. Self slipped in orangey brown ext./int.

PARALLELS:

Tell Ghassil, Phase VI, Doumet (1986), Pl. 71:5.

CN 276#: I 200.62-63/2

PHASE C-B

Fairly finely levigated clay with many small and medium dark grey to brown stone, chert, some yellowish stone, and a few quartz grits. Fired pale tan brown throughout. Self slipped in pale tan brown ext./int.

PARALLELS:

Type A(iv): Projective Pinched Swollen Rounded Rim
(Fig. 28:5-6)

CN 380#: III 210.5/1

PHASE F

Moderately to fairly finely levigated clay with many small black sand, lime and quartz, some chert, and a few brown stone grits. Fired greyish fawn brown at core and
dark fawn brown at surfaces. Self slipped ext./int. Ware of sandy consistency.

PARALLELS: Kamid el Loz, Phase 20, Marfoe (1979), p.7, T.247; Hama H3, Fugmann (1958), Fig. 120, 2D 446; Hazor, Phase III, Yadin et.al. (1961), Pl. CCXCII:1; Shechem XVIIIs, Cole (1984), Pl.1.j.

CN 383#: El 210.1/1

PHASE E Moderately to fairly finely levigated clay with many small and medium lime, some chert and a few brown stone grits. Fired fawn brown at core and orangey brown at surfaces. Self slipped ext./int. Thick band of dark red painted decoration on leading/upper edge of rim and down body int.

PARALLELS: Sarepta, Phase J, Anderson (1988), Pl. 23:33; Sarepta, Phase H, Anderson (1988), Pl. 25:19; Hama H2, Fugmann (1958), Fig. 124, 2C 928; Hama G, Fugmann (1958), Fig. 143, N 989.

Type A(v): Simple Upright Triangular Rim
(Fig. 28:7-10 & Fig. 29:1-3)

CN 234#: I 201.9/12

PHASE G-D Fairly finely levigated clay with many small and medium chert, some red grog, and a few quartz and black sand grits. Fired dark tan brown throughout. Self slipped in orangey tan brown ext/int. Horizontal wheel burnishing on rim, and vertical stroke burnishing below rim.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 14:5; Hazor, Phase III, Yadin et.al. (1961), Pl. CCXLIII:5; Busra, Phase 26, Seeden (1986), Pl. 13:49; Hama H4, Fugmann (1958), Fig. 117, 2D 401.

CN 81#: I 510.12/13

PHASE G-C Moderately to fairly finely levigated clay with many small and some medium to large black stone, lime and chert grits. Fired dark grey at core and brownish buff at surfaces.
Thick orangey brown slip ext./int.

PARALLELS:
Byblos, Royal Tombs, Tufnell (1969), Fig. 3:26; Kamid el Loz, Phase 6-7, Marfoe (1979), p.3, T.102; Kamid el Loz, Phase 18-20, Marfoe (1979), p.3, T.179; Ebla IIIb, Matthiae (1982), Fig. 25:3; Busra, Phase 28, Seeden (1986), PI. 11:10; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLIX:5; Hazor, Phase III, Yadin et.al. (1961), Pl.CCLXI:5; Hazor, Phase XV, Yadin et.al. (1961), Pl. CXCIX:10.

CN 349#: I 200.21/3
PHASE G-B
Fairly finely levigated clay with many small and some medium yellowish grog, some dark brown to grey stone, and a few orangey grog grits. Fired ash grey at core and reddish tan brown at surfaces. Self slipped ext./int.

PARALLELS:

CN 177#: I 230.3/2
PHASE F-C
Fairly finely levigated clay with many small and some medium lime, some chert and red stone, and a few small black stone grits. Fired a medium greyish brown throughout. Self slipped in orangey brown ext/int.

PARALLELS:

CN 253#: I 200.92/1
PHASE F-C
Quite finely levigated clay with many small and a few medium quartz, some
small black stone, and a few chert grits. Fired dark charcoal grey throughout. Dark brown slip, fired reddish brown ext., orangey brown int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 13:13; Tell Ghassil, Phase IX, Doumet (1986), Pl. 29:1; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLIX:3; Hazor, Phase XV, Yadin et.al. (1961), Pl. CXCI:10; Hama H, Fugmann (1958), Fig. 132, 5A 371; Hama G, Fugmann (1958), Fig. 153, 5A 512; Ugarit, 'MB/LB' Phase, Courtois & Courtois (1978), p.205, Fig.3:1; el Qitar, 'LB 1' Phase, McClellan (1985), Fig. 5:14; Shechem XX, Cole (1984), Pl. 2a; Jericho, Phase IX-XIII, Kenyon & Holland (1982), Fig.104:2.

CN 391#: III 206.90/2

PHASE D-C Moderately to fairly finely levigated clay with many small and medium light grey chert, some red and yellow stone, and a few micaceous grits. Fired tan brown throughout. Thick pale browny buff self slip ext./int. Thick band of dark red paint over leading/upper edge of rim, and down over body int.

CN 351#: I 200.20/2

PHASE B Fairly finely levigated clay with many small and some medium grey stone, some lime and red grog, and a few dark brown stone grits. Fired dark fawn brown at core and dark orangey brown at surfaces. Mottled browny buff self slip ext./int.

Type A(vi): Rilled Rounded Triangular Rim (Fig. 29:4)

CN 389#: III 206.91/1

PHASE E-D Fairly finely levigated clay with many small and some medium lime, some chert and a few orangey grog grits. Fired browny grey throughout. Self slipped ext./int. Three sharp incised lines around leading edge of rim.

PARALLELS: Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXL:14; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXXXVIII:14; Sarepta, Phase H, Anderson (1988), Pl. 25:13; Tell Arqa, Phase 12A/B, Thalmann (1978), Fig. 50:11.

Type B(i): Swollen Inverted Triangular Rim (Fig. 29:5-6)

CN 203#: I 230.1/56

PHASE G-F Fairly to quite finely levigated clay with many small black stone, some lime and a few red stone grits. Fired pale browny buff at core, and orangey buff at surfaces. Self slipped ext/int.

PARALLELS: Tell Ghassil, Phase VIII, Doumet (1986), Pl. 47:10; Hama H4, Fugmann (1958), Fig. 117, 2D 401; Hama H, Fugmann (1958), Fig. 139, 5B 851; Ebla, Phase IIIB, Matthiae (1982), Fig. 25:1; Ugarit, 'LB' Phase, Courtois & Courtois (1978), p.263, Fig. 22:6; el Qitar, 'MB/LB' Phase, McClellan (1986), Fig. 7:2.

CN 86#: I 510.15/3

PHASE G-F Fairly finely levigated clay with many small and medium lime and black stone, some chert and a few red stone grits. Fired pale browny buff throughout. Self slipped ext./int.

PARALLELS: Tell Ghassil, Phase XI, Doumet (1986), Pl. 1:6; Hama H4, Fugmann (1958), Fig. 117, 3A 857; Hama H1, Fugmann (1958), Fig. 127, 2D 113; Ebla IIIB, Matthiae (1982), Fig. 25:1;
Byblos, Royal Tombs, Tufnell (1969), Fig. 3:25; Oumm el Marra, 'LB I Phase', Tefnin (1983), Fig. 4:3; Atchana VI-III, Woolley (1955), Pl. CIX:6a.

Type B(ii): Upright Inverted Pinched Triangular Rim (Fig. 29:7)

CN 90#: I 200.111/12

PHASE F-D

Fairly finely levigated clay with many small and medium lime, some chert and red stone, and a few black sand (?) grits. Fired pale browny buff throughout. Thick orangey brown slip ext/int.

PARALLELS:

Tell Ghassil, Phase IX, Doumet (1986), Pl. 28:12; Hama H4, Fugmann (1958), Fig. 117, 3B 565; Busra, Phase 26, Seeden (1986), Pl. 13:49; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLXXXVI:2.

Type B(iii): Upright Rilled Triangular Rim (Fig. 29:8)

CN 196#: I 230.1/48

PHASE G-F

Quite finely levigated clay with many small and some medium lime, some reddish grog and a few yellowish stone and chert grits. Fired dark char grey throughout. Thick orangey brown slip ext./int. Two wide shallow grooves around leading edge of rim.

PARALLELS:

Jericho, Phase IX-XII, Kenyon & Holland (1982), Fig. 104:11; Busra, Phase 14, Seeden (1986), Pl. 21:254.

Type B(iv): Upright Squashed Rounded Triangular Rim (Fig. 29:9)

CN 359#: I 201.9/2

PHASE D

Moderately to fairly finely levigated clay with many small white shell (?), some chert and a few yellowish grog and black stone grits. Fired tan brown throughout. Self slipped in pale browny buff ext./int.

PARALLELS:

Type C: Inverted Rounded Rim (Fig. 29:10-11 & Fig. 30:1-2)
CN 328#: I 201.23/1
PHASE F
Fairly finely levigated clay with many small black sand and grey chert, some lime, and a few red stone grits. Fired orangey tan brown throughout. Self slipped ext./int. Wheel burnished ext. only.

PARALLELS:
Kamid el Loz, Phase 17, Marfoe (1979), p.6, T.174; Shechem XIX-XVIIIs, Cole (1984), Pl. 3.d.

CN 341#: I 200.30/1
PHASE F-C
Fairly finely levigated clay with many very small black stone and red grog and a few lime grits. Fired greyish fawn brown at core and pale orangey tan at surfaces. Self slipped ext/int.

PARALLELS:
Hama H1, Fugmann (1958), Fig. 127, 4C 306 Busra, Phase 17, Seeden (1986), Pl.19:196; Kamid el Loz, Phase 17-18, Marfoe (1979), p.6, CT.66; Shechem XX-XVIIIs, Cole (1984), Pl. 3.f, 4.i; Jericho, Phase XII, Kenyon & Holland (1982), Fig.103:15; Ebla IIIB, Matthiae (1982), Fig. 25:3.

CN 309#: I 200.67/42
PHASE F-B
Fairly finely levigated clay with many small and some medium black stone, some lime and a few chert grits. Fired greyish fawn brown throughout. Slipped in light char grey ext/int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 28:1; Hama H1, Fugmann (1958), Fig.127, 2C 908; Ebla, Phase IIIB, Matthiae (1982), Fig. 25:5; Ugarit, 'MB/LB' Phase, Courtois & Courtois (1978), p.205, Fig. 3:3; Kamid el Loz, Phase 10, Marfoe (1979), p.5, CT. 33; Busra, Phase 17, Seeden (1986), Pl. 19:197; Tell Homs, 'E.I.' Phase, Moussli (1984), Pl.1:6; el Qitar, 'LB 1' Phase, McClellan (1985), Fig. 5.1-2; Shechem XX-XVIIIs, Cole (1984), Pl. 4.c; Oumm el Marra, 'LB I Phase', Tefnin (1983), Fig. 4:1; Jericho, Phase XI, Kenyon & Holland
PHASE D

Fairly to quite finely levigated clay with many small and some medium black stone, lime, some small chert and a few yellowish stone grits. There are traces of a dark grey core, otherwise fired reddish dark tan brown throughout. Self slipped in tan brown ext/int.

PARALLELS:
Tell Arqa, Phase 12, Thalmann (1978), Fig. 49:12; Oumm el Marra, 'LB 1' Phase, Tefnin (1983), p. 151, Fig. 4:1; Ugarit, 'MB/LB Phase', Courtois & Courtois (1978), p.205, Fig. 3:7; Kamid el Loz, Phase 8-10, Marfoe (1979), p.4, T.118; Kamid el Loz, Phase 15-16, Marfoe (1979), p.9, T.280; Sarepta, Phase H, Anderson (1988), Pl. 25:17; Busra, Phase 15, Seeden (1986), Pl. 24:336; Busra, Phase 16, Seeden (1986), Pl. 17:146; el Qitar, 'LB 1' Phase, McClellan (1985), Fig. 5:4; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXXXVIII:10, Shechem XVIIIs, Cole (1984), Pl. 3:h; Atchana VIII-IV, Woolley (1955), Pl. CIX:3a.

Type D: Upright Inverted Square Rim (Fig. 30:3)

PHASE D-C

Fairly finely levigated clay with many small and medium chert, some lime, and a few red grog grits. Fired dark purply grey throughout. Thick reddish brown slip ext/int. Wheel burnished ext. and rim int.

PARALLELS:
Hama H4, Fugmann (1958), Fig. 117, 3A 857; el Qitar, 'MB/LB' Phase, McClellan (1986), Fig. 7:18; Kamid el Loz, Phase 26, Marfoe (1979), p.2, T.277; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLIX:4.

Type E(i): Simple Outflaring Pinched Rounded Rim (Fig. 30:4)

PHASE G

Quite finely levigated clay with many small
black stone, some chert, and a few red stone and lime grits. Fired browny buff throughout. Thick orangey brown slip ext./int. Wet smoothed ext. only.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 28:6; Hazor, Phase XVI, Yadin et.al. (1961), Pl. CCXXXIX:26; Jericho, Phase IX, Kenyon & Holland (1982), Fig. 11:28; Jericho, Phase XI-XII, Kenyon & Holland (1982), Fig.118:23.

Type E(ii): Simple Outflaring Rounded Rim (Fig. 30:5-7)

CN 80#: 1 200.67/34
PHASE D-C Moderately levigated clay with many small and quite a few medium lime, some chert and black stone, and a few red grog grits. Fired pale browny buff at core, and browny buff at surfaces. Thick self slip ext/int.

CN 343#: 1 200.30/5
PHASE C Fairly to quite finely levigated clay with many small and medium chert, some orangey grog and a few lime grits. Fired dark reddish tan brown throughout. Self slipped ext./int. Chaff tempered.

CN 344#: 1 200.29/1
PHASE C Fairly finely levigated clay with many small dark brown to grey stone, some orangey grog and a few lime grits. Fired dark greyish chocolate brown at core and dark chocolate brown at surfaces. Thick orangey brown slip ext./int.

PARALLELS: Kamid el Loz, Phase 20, Marfoe (1979), p.9,
DEEP BOWLS

Type A(i): Simple Upright Rounded Rim (Fig. 30:8-10)

CN 181#: I 230.1/1
PHASE G-B Fairly finely levigated clay with many small and some medium chert and black stone, some yellowish stone, and a few small lime and orangey grog grits. Fired medium charcoal grey throughout. Thin self slip ext./int.

CN 388#: III 206.92/1
PHASE F-E Moderately to fairly finely levigated clay with many small and medium chert, some medium to large lime, and a few brownish stone grits. Fired pale tan brown throughout. Slipped in thick orangey tan brown ext./int. Chaff tempered.

CN 390#: III 206.90/1
PHASE E-C Moderately to fairly finely levigated clay with many small and medium lime, some chert and a few orangey grog grits. Fired brownish dark ashy grey throughout. Thick orangey tan slip ext./int.
Type A(ii): Simple Upright Pinch Rounded Rim (Fig. 31:1-2)

CN 385#: II 206.95/1

PHASE G-E Moderately to fairly finely levigated clay with many small and medium lime and chert and a few black stone grits. Fired dark brown to black at core and reddish chocolate brown at surfaces. Self slipped ext./int.

CN 204#: I 230.1/57

PHASE G-B Fairly finely levigated clay with many small and some medium black, some chert and orangey grog, and a few lime grits. Fired light brown at core and orangey buff at surfaces. Thick reddish brown slip ext/int. Wheel burnished ext/int.

Type A(iii): Upright Outturned Rounded Rim (Fig. 31:3-4)

CN 98#: I 110.3/1,19

PHASE G Moderately to fairly finely levigated clay with many small and a few medium lime, some black stone and red stone, and a few grey chert grits. Fired pale brown throughout. Thick chalky buff self slip ext./int. Chaff tempered.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 29:3; Sarepta, Phase G2, Anderson (1988), Pl. 26:7, 26:19; Atchana V, Woolley (1955), Pl. CIX:9c; Hama H5, Fugmann (1958), Fig. 109, 3B 721.
CN 154#: I 230.7/2
PHASE G-F Quite finely levigated clay with many small and a few medium black stone, some red grog and lime, and a few chert grits. Fired pale browny buff throughout. Self slipped ext./int.
PARALLELS: Tell Ghassil, Phase XI, Doumet (1986), Pl. 9:8; Ebla IIIA, Matthiae (1982), Fig. 24:10; Shechem XIXs, Cole (1984), Pl. 8.e; Hazor, Phase XVII, Yadin et.al. (1961), Pl. CCLXXXVI:11; Kamid el Loz, Phase 17-18, Marfoe (1979), p.51, T.306.

Type A(iv): Outturned Projective Rounded Rim (Fig. 31:5)

CN 99#: I 510.14/3
PHASE G-F Fairly finely levigated clay with many small black stone, some lime and a few chert grits. Fired pale browny buff throughout. Pale greenish slip ext./int. Three strokes of Black paint on upper rim edge, much eroded.
PARALLELS: Shechem XVIII-XVIIIIs, Cole (1984), Pl. 8.d.

Type A(v): Upright Outturned Pinch Rounded Rim
(Fig. 31:6-8 & Fig. 32:1-5)

CN 202#: I 230.1/54
PHASE G Fairly to quite finely levigated clay with many small and some medium lime, some orangey grog, and a few small black stone grits. Fired dark grey throughout. Self slipped ext./int. One band of orangey paint along upper rim, much eroded. Three wide shallow grooves incised horizontally around mid body. Three thin sharp grooves around upper rim.
PARALLELS: Jericho, Phase XII, Kenyon & Holland (1982), Fig.109:22; Sarepta, Phase J/H, Anderson (1988), Pl. 24:16.
NB: Sherds from I 171.11/1-2 and I 171.3/1-4 join with this vessel.
CN 190#: I 230.1/39
PHASE G

Quite finely levigated clay with many small and some medium lime, some orangey grog, and a few small black stone grits. Fired dark browny grey throughout. Thin slip, fired browny buff ext. and orangey brown int, much eroded.

CN 376#: I 250.1/9

PHASE G

Fairly to quite finely levigated clay with many small and medium lime, some orangey grog, and a few chert grits. Fired dark grey at core, brick red at surfaces. Reddish brown self slip ext/int. Large shallow groove on upper rim.

PARALLELS:
Tell Ghassil, Phase XI, Doumet (1986), Pl.1:4; Hama H4, Fugmann (1958), Fig 117, 3B 131.

CN 327#: I 201.24/1

PHASE F

Fairly to quite finely levigated clay with many small lime, some black sand (?), and a few orangey grog and yellowish stone grits. Fired dark brown at core and dark char grey at surfaces. Slipped in thick reddish tan brown ext. and dark brown int. Two wide deep grooves around upper rim.

PARALLELS:
Hama G, Fugmann (1958), Fig. 143, O 109, O 487; Atchana IV-II, Woolley (1955), Pl. CX:21b.

CN 396#: III 205.24/1

PHASE F-E

Fairly finely levigated clay with many small yellowish grog and dark grey stone and some orangey grog grits. Fired dark grey throughout. Slipped in tan brown ext./int.

PARALLELS:
Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLIX:19; Hama H, Fugmann (1958), Fig.139, 4B 925.

CN 160#: I 230.5/3

PHASE F-E

Fairly finely levigated clay with many very small black sand (?), some medium chert, and a few yellowish stone grits. Fired a "biscuity" greenish grey throughout. Self slipped in greenish grey ext/int.

85
PARALLELS: Hama HI, Fugmann (1958), Fig 127, 2D 213; Oumm el Marra, 'LB I' Phase, Tefnin (1983), Fig. 4:7; Atchana V, Woolley (1955), Pl. CIX:9b; Sarepta, Phase G2, Anderson (1988), Pl. 26:10.

CN 260#: I 200.83/3
PHASE E-C Fairly finely levigated clay with many small and some medium lime and yellowish grog, some small brown stone, and a few chert grits. Fired pale tan brown throughout. Slipped in pale buff to off white ext./int.
PARALLELS: Hama HI, Fugmann (1958), Fig.127, O 41; Hama G, Fugmann (1958), Fig. 143, O 489; Sarepta, Phase G1, Anderson (1988), Pl. 28:1.

CN 284#: I 200.59/3
PHASE C-B Fairly finely levigated clay with many small and medium lime, some dark grey stone, and a few orangey grog grits. Fired char grey at core and orangey brown at surfaces. Slipped in dark brown ext./int.
Chaff tempered.
PARALLELS: Kamid el Loz, Phase 19-20, Marfoe (1979), p.6, T.239; Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXL:16; Hama G, Fugmann (1958), Fig. 143, R9.

Type A(vi): Upright Rolled Rounded Rim (Fig. 32:6-7)

CN 405#: I 250.1/2
PHASE G Fairly to quite finely levigated clay with many small black stone and lime, some chert and a few reddish stone grits. Fired reddish fawn brown throughout. Self slipped in dark reddish brown ext./int. Thin off white wash on lower body ext.
PARALLELS: Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXIV:13; Jericho, Phase XI, Kenyon & Holland (1982), Fig.112:19; Hama H1, Fugmann (1958), Fig. 127, O 14; Hama G, Fugmann (1958), Fig. 143, R9.

CN 401#: III 205.33/1
PHASE G Fairly finely levigated clay with many small and medium chert, some lime and a few black stone grits. Fired reddish brown throughout. Self slipped, fired reddish brown ext. and orangey reddish brown int. Seven (+) bands of off white painted bands horizontally around body ext. below rim.

Type A(vii): Outturned Projective Rounded Rim (Fig. 33:1-3)

CN 179#: I 230.2/1
PHASE F Fairly finely levigated clay with many small and a few medium black, some chert and yellow stone, and a few quartz and lime grits. Fired pale browny buff throughout. Pale self slip ext./int.

CN 91#: I 200.111/2
PHASE F-E Fairly finely levigated clay with many small and some medium lime, some chert and a few red and black stone grits. Fired pale greenish buff throughout. Self slipped in greenish buff ext/int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 29:3; Hama H, Fugmann (1958), Fig 139, 5B 317; Hama G, Fugmann (1958), Fig. 143, O 106.

CN 303#: I 200.67/22
PHASE C Quite finely levigated clay with many small lime, some yellowish stone, and a few chert and orangey grog grits. Fired brick red throughout. Thick dark grey slip ext./int.

PARALLELS: Hama H4, Fugmann (1958), Fig. 117, 2C 925; Kamid el Loz, Phase 17-20, Marfoe (1979), p.7, T.289.

Type B: Upright Projective Square Rim (Fig. 33:4-9)
CN 95#: I 602.1/2
PHASE G Fairly to quite finely levigated clay with many small and some medium lime, some red stone and a few chert, black stone and quartz grits. Fired grey throughout. Slipped in orangey brown ext./int. Wet smoothed.
PARALLELS: Shechem XIXs-XVIIIs, Cole (1984), Pl. 3.e; Jericho, Phase IX-XI, Kenyon & Holland (1982), Fig.113:1.

CN 195#: I 230.1/47
PHASE G-F Fairly finely levigated clay with many small black stone, some chert, and a few micaceous grits. Fired a soft greyish green throughout. Thin pale brown slip ext/int.
PARALLELS: Hama G, Fugmann (1958), Fig.143, O 55; Tell Ghassil, Phase X, Doumet (1986), Pl. 14:3; Jericho, Phase XII-XIII, Kenyon & Holland (1982), Fig. 122:4.

CN 97#: I 111.2/9
PHASE G-C Fairly to quite finely levigated clay with many small and some medium lime, some black stone, and a few red stone and chert grits. Fired dark grey at core and brownish dark grey at surfaces. Pale brown self slip ext./int.
PARALLELS: Hazor, Phase IV, Yadin et.al. (1961), Pl. CCXCVI:5; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXIV:9; Hama G, Fugmann (1958), Fig. 161, 5A 921.

CN 365#: I 201.7/2
PHASE E-D Fairly to quite finely levigated clay with many small white shell (?), some chert, and a few brown stone grits. Fired dark browny char grey throughout. Thick orangey brown slip ext/int.
PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 13:10; Kamid el Loz, Phase 17, Marfoe (1979), p.6, T.174; Hama H3, Fugmann (1958), Fig.120, 2D 391.

CN 321#: I 202.2/3
PHASE D Fairly to quite finely levigated clay with
many small white shell (?), some yellowish stone and a few chert grits. Fired brick red throughout. Buff self slip, fired orangey buff ext. and yellowish buff int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl.14:3; Hama G, Fugmann (1958), Fig.143, O 487; el Qitar, 'LB I' Phase, McClellan (1985), Fig. 6:1.

CN 323#: I 202.2/19

PHASE D-B Fairly to quite finely levigated clay with many small and medium yellowish and grey stone, some lime, and a few chert and orangey grog grits. Fired dark browny grey throughout. Self slipped in thick orangey tan ext/int.

PARALLELS: Kamid el Loz, Phase 8-9, Marfoe (1979), p.4, T.116; Busra, Phase 26, Seeden (1986), Pl. 13:58; Busra, Phase 17, Seeden (1986), Pl. 22:281; Tell Ghassil, Phase IX, Doumet (1958), Pl. 28:11; Jericho, Phase XI, Kenyon & Holland (1982), Fig.105:2; Hama H4, Fugmann (1958), Fig. 117, 3B 320; Tell Arqa, Phase 12A/B, Thalmann (1978), Fig. 50:12.

Type C: Upright Rilled Triangular Rim (Fig. 34:1-2)

CN 56#: I 700.0/1,3

PHASE G Fairly to quite finely levigated clay with many small and some medium lime, some orangey grog, chert and a few black stone grits. Fired dark grey at core and orangey reddish brown at surfaces. Slipped in dark grey ext/int. Three sharp shallow grooves around leading/upper edge of rim. Wide shallow groove horizontally around body below rim int.

PARALLELS: Hama H1, Fugmann (1958), Fig. 127, 2D 213.

CN 191#: I 230.1/40

PHASE G Fairly to quite finely levigated clay with many small and some medium lime, some orangey grog, and a few dark grey stone
grits. Fired dark browny grey throughout.
Slipped in orangey brown ext./int. Two wide shallow grooves around upper edge of rim.

FINE BOWLS

Type A(i): Simple Rounded Rim (Fig. 34:3-5)

CN 74#: I 510.12/2
PHASE G Fairly finely levigated clay with many small and some medium lime, some chert and black stone, and a few red grog grits. Fired dark grey at core and brown at surfaces. Orangey brown self slip ext./int.

CN 363#: I 201.8/2
PHASE G-B Fairly finely levigated clay with many small and medium lime, some chert, and a few black stone and orangey grog grits. Fired light tan brown throughout. Thick browny red slip ext/int. Patches of dark brown to black Painted decoration about rim ext/int. Wheel burnished ext/int.

CN 75#: I 200.67/64
PHASE C Quite finely levigated clay with many small black stone, some chert, and a few
red grog and lime grits. Fired pale browny buff throughout. Self slipped in pale reddish brown ext/int. Wheel burnished on exterior of rim.

PARALLELS:
Kamid el Loz, Phase 10, Marfoe (1979), p.1, T.133; Kamid el Loz, Phase 21, Marfoe (1979), p.9, T.273; Tell Ghassil, Phase VI, Doumet (1986), Pl. 71:7, 71:10; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXII:18; Atchana IV, Woolley (1955), Pl. CIX:3b; Jericho, Phase XIII, Kenyon & Holland (1982), Fig.107:1; Hama G, Fugmann (1958), Fig.143, O 495.

Type A(ii): Simple Upright Rounded Rim (Fig. 34:6-9)

CN 145#: I 151.33/6
PHASE G-C Fairly finely levigated clay with many small chert and lime, some black stone and red grog and a few micaceous grits. Fired greyish buff at core and pale brick red at surfaces. Slipped in tan brown ext/int.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 47:8; Tell Ghassil, Phase VI, Doumet (1986), Pl. 72:4; Kamid el Loz, Phase 16-17, Marfoe (1979), p.13, CT.34; Hazor, Phase III, Yadin et.al. (1961), Pl. CCXLIII:8; Shechem XVIIIs, Cole (1984), Pl. 17.e; Jericho Phase IX-XI, Kenyon & Holland (1982), Fig.118:3.

CN 73#: I 400.1/11
PHASE G-C Moderately to fairly finely levigated clay with many small and some medium black stone, some lime and chert, and a few red grog grits. Fired pale greyish green throughout. Self slipped (?) ext/int.

PARALLELS:
Phase IX-XII, Kenyon & Holland (1982), Fig.110:7.

CN 79#: I 200.67/45

PHASE D-B
Moderately to fairly finely levigated clay with many small and some medium lime, some chert and reddish grog, and a few black stone grits. Fired dark reddish brown throughout. Thin, friable self slip ext/int.

PARALLELS:

CN 286#: I 200.58/1

PHASE C-B
Fairly to quite finely levigated clay with many small and some medium grey stone, some reddish stone, and a few yellowish grog and quartz grits. Fired fawn brown throughout. Slipped in orangey brown ext./int.

PARALLELS:

Type A(iii): Outturned Rounded Rim (Fig. 34:10)

CN 76#: I 200.79/2

PHASE F-B
Quite finely levigated clay with many small and medium black stone, some chert and a very few lime grits. Fired reddish brown throughout. Self slipped ext/int.

PARALLELS:
Hama H2, Fugmann (1958), Fig. 124, 2C 927; Ebla, Phase IIIA, Matthiae (1982), Fig. 24:3; Kamid el Loz, Phase 17-18, Marfoe (1979), p.7, CT.63; Shechem XVIII, Cole (1984), Pl.15.f.

Type A(iv): Upright Rounded Interior Ledge Rim (Fig. 34:11)

CN 361#: I 201.9/4
PHASE D Quite finely levigated clay with many small and medium chert, some yellowish grog and a few red stone grits. Fired dark browny grey throughout. Slipped in orangey brown ext/int.

PARALLELS: Hazor, Phase IV, Yadin et.al. (1958), Pl. CIV:12; Jericho, Phase XI-XII, Kenyon & Holland (1982), Fig.103:5; Busra, Phase 15, Seeden (1986), Pl.19:213.

Type A(v): Upright Grooved Rounded Rim (Fig. 35:1)

CN 360#: I 201.9/3
PHASE D-C Fairly to quite finely levigated clay with many small white shell (?), some dark brown grog and a few grey chert grits. Fired dark orangey chocolate brown throughout. Dark char grey slip ext./int.

PARALLELS: Hama G, Fugmann (1958), Fig. 161, 5B 41.

Type B: Upright Inverted Swollen Rounded Rim (Fig. 35:2-3)

CN 378#: III 205.30/28
PHASE G Fairly finely levigated clay with many small black and lime, some chert, and a few red stone grits. Fired reddish brown at core and brownish dark grey at surfaces. Orangey brown slip ext./int.

PARALLELS: Shechem XVIIIIs, Cole (1984), Pl. 6.a.
CN 320#: I 202.2/2
PHASE D Quite finely levigated clay with many small and medium black stone, some lime and a few yellowish stone grits. Fired dark browny grey throughout. Self slipped ext/int.

PARALLELS: Tell Ghassil, Phase VII, Doumet (1986), Pl. 60:2; Tell Arqa, Phase 15, Thalmann (1979), Fig.1 [BR]; Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXXXVI:15.

Type C: Simple Upright Outflaring Rounded Rim (Fig. 35:4-6)
CN 92#: I 500.9/5
PHASE G
Moderately to fairly finely levigated clay with many small and some medium to large lime, some small chert, and a few black stone and red grog grits. Fired brownish buff throughout. Self slipped (?) ext./int.
PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 48:9; Kamid el Loz, Phase 15, Marfoe (1979), p.12, T.110; Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXL:1; Atchana IV, Woolley (1955), Pl. CXI:30; Jericho, Phase XII-XIII, Kenyon & Holland (1982), Fig.109:29.

CN 289#: I 200.51/2
PHASE B-A
Fairly finely levigated clay with many small and medium dark grey stone, chert, some shell (?) and a few yellowish stone grits. Fired pale browny buff throughout. A few traces of a very thin, fugitive off white slip ext/int.
PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 30:9; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 48:10; Kamid el Loz, Phase 15-17, Marfoe (1979), p.12, T.203; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXI:35; Hama H, Fugmann (1958), Fig. 110, 3B 957; Jericho, Phase XII, Kenyon & Holland (1982), Fig.112:20.

CN 290#: I 200.51/3
PHASE B-A
Fairly finely levigated clay with many small and some medium chert, some yellowish stone and a few orangey grog grits. Fired dark browny grey throughout. Self slipped, fired dark grey ext., and dark browny grey int.
PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 48:9; Ebla, Phase IIIB, Matthiae (1982), Fig. 25:15; Kamid el Loz, Phase 15, Marfoe (1979), p.12, T.110; Hama H5, Fugmann (1958), Fig. 109, 3C 75.

Type D: Simple Upright Square Rim (Fig. 35:7-9)
CN 386#: III 206.95/2
PHASE F-E
Quite finely levigated clay with many small lime and some orangey grog grits. Fired dark brownish grey throughout. Slipped in dark brown ext. and brownish orange int. Wheel burnished ext. only.
PARALLELS: Tell Ghassil, Phase VI, Doumet (1986), Pl. 72:5.

CN 369#: I 201.2/2
PHASE D
Fairly finely levigated clay with many small lime, black and grey stone, some chert and red stone, and a few orangey grog grits. Fired dark fawn brown throughout. Self slipped in orangey brown ext/int. Wheel burnished ext/int.
PARALLELS: Tell Ghassil, Phase VIII, Doumet (1986), Pl. 48:8; Tell Ghassil, Phase VII, Doumet (1986), Pl. 60:1; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXI:36.

CN 370#: I 201.2/3
PHASE D
Quite finely levigated clay with many small shell (?), some black sand, and a few red stone and chert grits. Fired dark char grey throughout. Thick reddish orangey brown slip ext/int. Wheel burnishing above carination ext/int., and vertical stroke burnishing below carination ext/int.
PARALLELS: Tell Ghassil, Phase VIII, Doumet (1986), Pl. 48:11-12; Hama H2, Fugmann (1958), Fig.124, 2C 965; Atchana, Phase VI-IV, Woolley (1955), Pl. CIX:8.

Type E: Upright Exterior Ledge Rim (Fig. 35:10-11)

CN 355#: I 201.20/27
PHASE F
Quite finely levigated clay with many small and a few medium lime, some orangey grog and a few chert grits. Fired dark browny grey throughout. Self slipped ext/int., fired dark grey ext., and greyish tan int.
PARALLELS: Hama H1, Fugmann (1958), Fig. 127, 4C 313; Hazor, Phase III, Yadin et.al. (1958), Pl. CXIII:13; Hazor, Phase I, Yadin et.al. (1960), Pl. CXLI:20.

CN 372#: I 201.2/27

PHASE D
Fairly finely levigated clay with many small brown and grey stone, some white shell (?) and chert, and a few orangey grog grits. Fired pale browny buff throughout. Thick pale greenish buff slip ext/int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 13:6; Hazor, Phase IE, Yadin et.al. (1961), Pl. CCLXXXVIII: 14; Hama H, Fugmann (1958), Fig. 110, 3K 155.

TALL NARROW NECKED JARS

Type A(i): Outturned Bifurcated Swollen Square Rim
(Fig. 36:1-3)

CN 229#: I 171.6/1

PHASE G
Fairly finely levigated clay with many small and some medium black stone, some grey chert, and a few lime and red stone grits. Fired pale browny buff throughout. Slipped in pale greenish off white ext/int. Wide shallow groove around the leading edge of the rim.

PARALLELS: Busra, Phase 17, Seeden (1986), Pl.18:186; Kamid el Loz, Phase 7, Marfoe (1979), p.47, T.101; Hama H, Fugmann (1958), Fig.110, 3D 577; Jericho, Phase H V, Kenyon & Holland (1982), Fig.136:24.

CN 36#: I 400.1/8

PHASE G-F
Fairly finely levigated clay with many small and some medium chert, lime and black stone grits. Fired pinkish browny buff throughout. Self slipped ext/int.

PARALLELS: Hama H, Fugmann (1958), Fig. 110, 3C 655; Busra, Phase 14, Seeden (1986), Pl. 21:255; Ansari, 'MB 1' Phase, Suleiman (1983), Pl. III:15; Tell Ghassil, Phase XI, Doumet (1986), Pl. 20:31.
CN 34#: I 603.3/1
PHASE G Fairly to quite finely levigated clay with many small and medium lime, some black stone, and a few red grog grits. Fired brown at core and reddish brown at surfaces. Yellowish buff slip ext./int.
PARALLELS: Busra, Phase 20, Seeden (1986), Pl. 15:109; Ebla, "Tomb of the Princess", Matthiae (1979), p.157, no.6; Hama H5, Fugmann (1958), Fig.109, 3C551, Fig. 110, 3A 734.

Type A(ii): Quttumed Bifurcated Square Rim (Fig. 36:4-7)

CN 222#: I 171 Wall 1/5
PHASE G Fairly finely levigated clay with many small and some medium chert, some red grog and a few quartz grits. Fired orangey brown throughout. Self slipped ext/int., fired buff int. and rim ext., and dark brown below rim ext.

CN 235#: I 171.6/7
PHASE G Fairly finely levigated clay with many small and medium chert and brown stone, some lime, and a few red stone grits. Fired pale greenish buff throughout. Wet smoothed ext/int.

CN 211#: I 151.6/3
PHASE G-F Fairly to quite finely levigated clay with many small and medium red grog, some small black sand, and a few chert, lime and micaceous grits. Fired orangey brick red throughout. Slipped in off white to cream ext/int.
PARALLELS: Busra, Phase 20, Seeden (1986), Pl.15:110; Hama H5, Fugmann (1958), Fig.110, 3C 655.

CN 217#: I 172.5/1
PHASE G-F
Moderately to fairly finely levigated clay with many small and some medium chert, some orangey grog, and a few lime and micaceous grits. Fired pale browny buff throughout. Slipped in pale greyish green ext/int.

PARALLELS: Tell Arqa, Phase 14, Thalmann (1979), Fig. 2:2; Hazor, Phase III, Yadin et.al. (1961), Pl. CCXLII:2.

Type A(iii): Upright Outturned Flattened Square Rim (Fig. 36:8)

CN 100#: I 140.7/4

PHASE G-D
Fairly finely levigated clay with many small and some medium to large lime, some red grog and black stone, and a few chert grits. Fired orangey brick red throughout. Slipped in dark brown ext./int. Traces of fugitive white paint on rim and neck int.

PARALLELS: Hazor, Phase II, Yadin et.al. (1960), Pl. CXIX:19.

Type A(iv): Flattened Bifurcated Square Rim (Fig. 36:9)

CN 153#: 230.7/1

PHASE G
Quite finely levigated clay with many small and some medium black stone, some chert and lime, and a few red grits. Fired dark greyish brown at core and greyish brown at surfaces. Self slipped, firing buff ext/int.

PARALLELS: Busra, Phase 26, Seeden (1986), Pl.12:35.

Type A(v): Upright Pinched Flattened Square Rim (Fig. 36:10-11)

CN 230#: I 171.6/2

PHASE G
Fairly finely levigated clay with many small and medium lime, some reddish grog and brown to black stone, and a few grey to black chert grits. Fired orangey brown at core and browny buff at surfaces. Self slipped ext./int.

CN 47#: I 400.2-3/10

PHASE G-F Fairly to quite finely levigated clay with many small and some medium lime, some chert and black stone, and a few quartz grits. Fired dark grey throughout. Thin orangey brown slip ext./int.

Type A(vi): Outturned Thickened Bifurcated Square Rim (Fig. 36:12-13)

CN 182#: I 230.1/2

PHASE G-C Moderately to fairly finely levigated clay with many small and medium grey stone and chert, some shell (?), and a few red grog grits. Fired light browny buff at core, and pinkish brick red at surfaces. Self slipped ext/int.

PARALLELS: Tell Mastuma, Phase II, Egami (1983), p.80, Fig. 4:8.

CN 194#: I 230.1/46

PHASE G-C Moderately levigated clay with many small and some medium black stone and chert, some red grog, and a few yellowish stone grits. fired dark brown at core, and reddish brown at surfaces. Self slipped, firing orangey brown ext., and dark brown int.

PARALLELS: Kamid el Loz, Phase 2, Marfoe (1979), p.47, T.44; Jericho, Phase H X, Kenyon & Holland (1982), Fig.132:15.

Type A(vii): Upright Outturned Projective Pinched Square Rim (Fig. 37:1-2)

CN 375#: III 205.30/22
PHASE G-F Fairly finely levigated clay with some small reddish brown stone and lime, and a few grey chert grits. Fired light fawn brown throughout. Self slipped ext./int.

CN 264#: I 200.80-86/1

PHASE E Fairly to quite finely levigated clay with some dark grey stone, and a few chert, orangey grog and lime grits. Fired brownish charcoal grey at core and dark grey at surfaces. Self slipped ext./int. Line of perpendicular 'Slash' decoration around upper rim.

PARALLELS: Jericho, Phase H XI, Kenyon & Holland (1982), Fig. 131:29.

Type A(viii): Outflaring Bifurcated Square Rim (Fig. 37:3)

CN 139#: I 151.35/4

PHASE H-C Moderately to fairly finely levigated clay with many small and medium lime, some chert and a few red stone grits. Fired dark tan brown throughout. Slipped in pale buff to off white ext/int.

Type A(ix): Upright Outflaring Rilled Square Rim (Fig. 37:4-5)

CN 35#: I 603.3/6

PHASE G Fairly finely levigated clay with many small and some medium black stone, some lime and a few chert grits. Fired pinkish brown at core and pinkish buff at surfaces. Self slipped ext./int.

PARALLELS: Kamid el Loz, Phase 15-16, Marfoe (1979), p.46, T.78; Busra, Phase 19, Seeden (1986),
CN 94#: I 112.4/9
PHASE G
Moderately to fairly finely levigated clay with many small and some medium lime, some chert and red grog, and a few black stone grits. Fired pale reddish brown throughout. Slipped in pale brown to off white ext./int. Two wide shallow grooves incised around leading edge of rim.
PARALLELS: Hazor, Phase XIV, Yadin et.al. (1961), Pl. CC:26.

Type A(x): Outflaring Pinched Square Rim (Fig. 37:6-8)

CN 237#: I 171.6/9
PHASE G
Fairly to quite finely levigated clay with many small and medium black stone, some orangey grog, and a few lime, chert and micaceous grits. Fired pale sandy brown throughout. Self slipped ext/int.
PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 36:27; Hama H, Fugmann (1958), Fig.110, 3C 643; Hazor, Phase IV, Yadin et.al. (1958), Pl. CXLI:8; Busra, Phase 19, Seeden (1986), Pl. 18:173; Jericho, Phase H XI, Kenyon & Holland (1982), Fig. 127:28; Ebla, "Tomb of the Lord of the Goats", Matthiae (1979), p.167, no.11; Ebla, Phase IIIA, Matthiae (1982), Fig. 24:13.

CN 238#: I 171.6/10
PHASE G
Moderately levigated clay with many small and medium lime, some chert and black sand, and a few brown stone grits. Fired greyish dark brown at core and orangey brown at surfaces. Self slipped ext/int. Grain tempered.
PARALLELS: Tell Ghassil, Phase XI, Doumet (1986), Pl. 7:13; Tell Ghassil, Phase X, Doumet
(1986), Pl. 20:33; Busra, Phase 26, Seeden
(1986), Pl.12:30; Ebla, Phase IIIB, Matthiae
(1982), Fig. 25:12.

CN 267#: I 200.73/1
PHASE E-D
Fairly finely levigated clay with many small and some medium to large lime, some chert and a few yellowish grog grits. Fired reddish brown throughout. Slipped in buff to off white ext/int.

PARALLELS:

Type B(i): Upright Swollen Rounded Rim
(Fig. 37:9-11 & Fig. 38:1-2)

CN 138#: I 151.35/3
PHASE H
Fairly finely levigated clay with many small and some medium quartz and micaceous, some chert and a few black and red stone grits. Fired orangey brown at core and tan brown at surfaces. Slipped in pale buff to off white ext/int.

PARALLELS:
Tell Arqa, Phase 12, Thalmann (1978), Fig. 50:1; Tell Homs, 'MB 1' Phase, Moussli (1984), Pl.1:2; Tell Ghassil, Phase XI, Doumet (1986), Pl. 5:4.

CN 189#: I 230.1/30
PHASE G
Quite finely levigated clay with many small and some medium lime, some yellowish stone and chert grits. Fired browny brick red throughout. Thick dark grey slip ext/int.

PARALLELS:

CN 411#: I 200.110/1
PHASE F
Fairly finely levigated clay with many small and medium lime, some chert and black stone grits. Fired pinkish fawn at core, and dark fawn brown at surfaces. Slipped in pale buff ext/int.
PARALLELS: el Qitar, 'LB 1' Phase, McClellan (1985), Fig. 8:3; Tell Ghassil, Phase X, Doumet (1986), Pl. 20:29; Ebla, Phase IIIB, Matthiae (1982), Fig. 25:11; Sarepta, Phase J, Anderson (1988), Pl. 23:1.

CN 259#: I 200.83/2

PHASE E

Fairly finely levigated clay with many small and medium lime, some yellowish grog, and a few black sand(?) grits. Fired pale tan brown throughout. Slipped in pale buff to off white ext/int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 20:23; Tell Ghassil, Phase IX, Doumet (1986), Pl. 36:29; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 51:23; Ebla, Phase IIIB, Matthiae (1982), Fig. 25.9; el Qitar, 'MB/LB' Phase, McClellan (1986), Fig. 8:10; Atchana, Phase IV, Woolley (1955), Pl. CXIII:54b; Hazor, Phase III, Yadin et.al. (1961), Pls. CCXLIV:1, CCLXVI:7; Jericho, Phase H XIII, Kenyon & Holland (1982), Fig.126:16, Fig.139:12; Kamid el Loz, Phase 17, Marfoe (1979), p.17, T.250.

CN 167#: I 230.5/23

PHASE F-C

Fairly finely levigated clay with many small and some medium chert, some lime, and a few red stone and micaceous grits. Fired pale browny buff throughout. Self slipped ext/int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 20:20; Tell Ghassil, Phase IX, Doumet (1986), Pl. 37:37; Ebla, Phase IIIB, Matthiae (1982), Fig. 25:10; Ebla, "Tomb of the Lord of the Goats", Matthiae (1979), p.169, no.3; Kamid el Loz, Phase 10-13, Marfoe (1979), p.43, T.163; el Qitar, 'MB/LB' Phase, McClellan (1986), Fig. 8:12; Jericho, Phase XI-XII, Kenyon & Holland (1982), Fig.136:5; Busra, Phase 15, Seeden (1986), Pl. 20:226; Sarepta, Phase J, Anderson (1988), Pl. 23:1.

Type B(ii): Upright Swollen Pinch Rounded Rim (Fig. 38:3)
CN 366#: I 201.7/3

PHASE D
Fairly finely levigated clay with many small and medium white shell (?), some yellowish stone, and a few chert grits. Fired pale brick red throughout. Thick pale browny buff slip ext./int.

PARALLELS:
Jericho, Phase H XIII, Kenyon & Holland (1982), Fig. 126:19; Jericho, Phase XII-XIII, Kenyon & Holland (1982), Fig. 135:32; Busra, Phase 26, Seeden (1986), Pl. 12:39; Hazor, Phase V, Yadin et.al. (1961), Pl. CCLXXXVI:16.

Type B(iii): Upright Pinch Rounded Rim (Fig. 38:4)

CN 42#: I 510.17/13

PHASE G-B
Fairly finely levigated clay with many small and some medium lime, some black stone and chert, and a few reddish grog grits. Fired brick red throughout. Self slipped ext./int.

PARALLELS:

Type B(iv): Outflaring Pinch Rounded Rim (Fig. 38:5-6)

CN 325#: I 201.27/1

PHASE F-D
Fairly finely levigated clay with many small brown stone, some black sand(?), and a few chert grits. Fired pale browny buff throughout. Slipped in chalky pale buff to off white ext/int.

PARALLELS:
Type B(v): Upright Outtumed Rounded Rim (Fig. 38:7-9)

CN 188#: I 230.1/29
PHASE G

Quite finely levigated clay with many small and some medium lime, and a few chert grits. Fired pale browny buff throughout. Slipped in chalky pale buff ext/int. Four single Incised Horizontal Line decoration around neck below rim.

PARALLELS:

CN 170#: I 230.5/26
PHASE G-D

Moderately to fairly finely levigated clay with many small and some medium black stone, some chert and orangey grog, and a few lime, red stone and quartz grits. Fired pale green throughout. Self slipped ext/int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 37:61; Busra, Phase 13, Seeden (1986), Pl. 21:259; Jericho, Phase H XI-XII, Kenyon & Holland (1982), Fig.136:12.

CN 308#: I 200.67/31
PHASE C

Fairly finely levigated clay with many small and medium lime, some chert, brown and red stone and a few orangey grog, quartz and blue-grey stone grits. Fired pale browny buff throughout. Self slipped ext/int(?).

PARALLELS: Tell Arqa, Phase 12A, Thalmann (1978), Fig. 48:13; Busra, Phase 14, Seeden (1986), Pl. 21:261; Busra, Phase 17, Seeden (1986), Pl.18:185; Kamid el Loz, Phase 18, Marfoe (1979), p.47, T.230; Jericho, Phase XI-XII, Kenyon & Holland (1982), Fig.135:28; Hama H, Fugmann (1958), Fig. 110, 3A 797.

Type C(i): Upright Rounded Triangular Rim (Fig. 38:10)

CN 268#: I 200.73/2

PHASE F-D

Fairly to quite finely levigated clay with many small and medium lime and orangey grog, some brown stone, and a few black stone and micaceous grits. Fired browny charcoal grey throughout. Slipped in pale browny buff ext/int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 20:42; Tell Ghassil, Phase IX, Doumet (1986), Pl. 36:22; Busra, Phase 23, Seeden (1986), Pl.14:72; Busra, Phase 17, Seeden (1986), Pl. 17:134; Oumm el Marra, 'LB 1' Phase, Tefnin (1983), p.151, Fig. 4:11; Jericho, Phase H XI, Kenyon & Holland (1982), Fig.136:17; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLX:16; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXVI:15.

Type C(ii): Upright Outturned Triangular Rim
(Fig. 38:11-12 & Fig. 39:1-3)

CN 187#: I 230.1/28

PHASE G

Quite finely levigated clay with many small and some medium lime, some orangey grog, and a few chert and black stone grits.
Fired dark char grey throughout. Fine orangey brown slip ext/int.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl. 20:42; Tell Ghassil, Phase IX, Doumet (1986), Pl. 37:59; Kamid el Loz, Phase 6-7, Marfoe (1979), p.48, T.86; Busra, Phase 15, Seeden (1986), Pl. 20:236; Busra, Phase 19, Seeden (1986), Pl. 16:117; Hazor, Phase V, Yadin et.al. (1958), Pl. CXIII:1; Hazor, Phase XVI, Yadin et.al. (1961), Pl. CCXXXV:31; Jericho, Phase H XI-XII, Kenyon & Holland (1982), Fig.137:12.

CN 245#: I 170.5/1
PHASE G
Fairly to quite finely levigated clay with many small and medium brown stone and lime, some orangey grog and a few chert grits. Fired pale browny buff throughout. Slipped in pale buff to off white ext/int.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl. 20:38; Tell Ghassil, Phase IX, Doumet (1986), Pl. 37:53; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 51:22; Kamid el Loz, Phase 2, Marfoe (1979), p. 48, T.45; Hazor, Phase IV, Yadin et.al. (1958), Pl. CXLI:2; Hazor, Phase XVI, Yadin et.al. (1961), Pl. CCXXXV:32; Jericho, Phase H XIII, Kenyon & Holland (1982), Fig.136:26; Jericho Phase T.II:XXII-XXIII, Kenyon & Holland (1982), Fig.137:13; Oumm el Marra, 'LB 1' Phase, Tefnin (1983), p.151, Fig. 4:4; Kamid el Loz, Phase 4, Marfoe (1979), p.48, T.61; Busra, Phase 15, Seeden (1986), Pl. 20:227; Busra, Phase 17, Seeden (1986), Pl.17:136; el Qitar, 'MB/LB' Phase, McClellan (1986), Fig. 8:11; Tell Arqa, Phase 12B, Thalmann (1978), Fig. 50:1.

CN 221#: I 171 Wall I/4
PHASE G-F
Fairly finely levigated clay with many small and some medium black stone, some orangey grog, and a few chert, lime and micaceous grits. Fired light char grey at core, and orangey brown at surfaces. Self
slipped in orangey brown ext/int.

PARALLELS: Kamid el Loz, Phase 10, Marfoe (1979), p.49, T.120.

CN 169#: I 230.5/25

PHASE F

Fairly finely levigated clay with many small and some medium lime, some small red stone and chert, and a few micaceous grits. Fired pale brick red throughout. Slipped in orangey brown ext/int.

CN 368#: I 201.2/1

PHASE F-D

Fairly finely levigated clay with many small and some medium shell(?), some black sand and a few red grog grits. Fired fawn brown at core, and tan brown at surfaces. Slipped in pale browny buff ext/int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 42:24; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 51:22; Kamid el Loz, Phase 2, Marfoe (1979), p.48, T.45; Hazor, Phase III, Yadin et.al. (1958), Pl. CXLI: 2; Jericho, Phase H IX, Kenyon & Holland (1982), Fig.135:18.

Type C(iii): Upright Pinched Triangular Rim (Fig. 39:4)

CN 307#: I 200.67/26

PHASE F-C

Fairly finely levigated clay with many small and medium lime, some yellowish stone, and a few black stone grits. Fired browny brick red throughout. Self slipped ext/int.(?)

PARALLELS: Ugarit, 'LB' Phase, Courtois & Courtois (1978), p.255, Fig.19:8; Kamid el Loz, Phase 19, Marfoe (1979), p.47, T. 328; Busra, Phase 19, Seeden (1986), Pl.16:115; Hazor, Phase III, Yadin et.al. (1961),
Pl. CCLXVI:9.

Type C(iv): Upright Pinched Triangular Ledge Rim (Fig. 39:5)

CN 342#: I 200.30/4

PHASE C Fairly finely levigated clay with many small and medium chert, some red grog, and a few lime grits. Fired pale browny buff at core, and orangey brown at surfaces. Self slipped ext/int.

Type D: Simple Upright Swollen Square Rim (Fig. 39:6)

CN 43#: I 161.1/28

PHASE G-C Quite finely levigated clay with many small black sand, some lime, and a few pinkish grog grits. Fired pale brownish buff throughout. Self slipped ext/int.

STORAGE JARS

Type A(i): Ridged Neck With Flattened Upper Rim (Fig. 40:1-4)

CN 150#: I 151.31/1

PHASE H-G Fairly finely levigated clay with many small and medium lime, some chert and a few red grog and black sand grits. Fired pale browny buff at core, and pale pinkish brick red at surfaces. Self slipped in orangey brown ext/int. A single row of "Slash Decoration" incision on a raised plastic band horizontally around mid body.
PARALLELS:

CN 10#: I 151.34/1

PHASE H-G

Fairly finely levigated clay with many small and medium lime and some black stone grits. Fired medium to dark char grey throughout. Self slipped in dark char grey ext/int. A single row of "Slash Decoration" incision on a raised plastic band around mid body.

PARALLELS:

CN 220#: I 171 Wall I/1

PHASE G

Fairly finely levigated clay with many small and medium lime, some red grog, and a few grey chert grits. Fired dark browny grey at core, and reddish brown at surfaces. Self (?) slipped, fired browny grey ext. and reddish brown int.

PARALLELS:

CN 8#: I 163.1/1

PHASE G

Moderate to fairly finely levigated clay with many small and medium lime, some chert and a few quartz grits. Fired light grey at core and pale browny buff at surfaces. Self Slipped ext/int. Incised Cross (X) on flattened upper rim. Two incised shallow grooves around upper rim.

PARALLELS:

Jericho, Phase H X-XII, Kenyon & Holland (1982), Fig. 127:7.

Type A(ii): Short Ridged Neck with Rounded Upper Rim

(Fig. 40:5-9)

CN 9#: I 410.7/5

PHASE G

Moderately levigated clay with very many small and medium lime and chert, some black stone, and a few red stone grits. Fired pale browny buff at core and brown at surfaces. Self slip in pale browny buff to
off white ext./int.

PARALLELS:

CN 219#: I 172.3/2
PHASE G
Moderately levigated clay with many small and some medium to large grey chert, some brown stone, and a few orangey grog and white (shell?) grits. Fired pale browny buff throughout. Thick orangey brown slip ext./int.

PARALLELS:
Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLIX:22.

CN 32#: I 112.5/6
PHASE G-C
Quite finely levigated clay with many small black (sand?), some red stone and grey chert, and a few lime grits. Fired pale pinkish buff throughout. Self slipped ext./int.

PARALLELS:
Jericho, Phase H XII, Kenyon & Holland (1982), Fig. 129:27.

CN 299#: I 200.67/17
PHASE C
Fairly finely levigated clay with many small and medium lime, some chert and yellowish stone, and a few reddish grog grits. Fired dark grey at core, and dark brown at surfaces. Self slipped in dark reddish brown ext/int.

PARALLELS:

CN 300#: I 200.67/19
PHASE C
Fairly to quite finely levigated clay with many small and medium black stone, some grey chert and lime, and a few small orangey grog grits. Fired fine dark ashy char grey throughout. Slipped in orangey brown ext./int.

Type A(iii): Short Ridged Neck With Outflaring Rounded Rim
(Fig. 41:1-8)
CN 18#: I 140.7/12
PHASE G Fairly finely levigated clay with many small lime and black stone, and a few reddish grog grits. Fired pale browny buff throughout. Self slipped ext. and rim int.

CN 25#: I 112.5/15
PHASE G Fairly finely levigated clay with many small and medium lime, and small black sand grits. Fired pale browny buff throughout. Self slipped ext. and rim int.
PARALLELS: Kamid el Loz, Phase 24, Marfoe (1979), p.58, T.192; Busra, surface; Seeden (1986), Pl. 23:301.

CN 231#: I 171.6/3
PHASE G Fairly finely levigated clay with many small and medium lime, some chert and a few brown stone grits. Fired dark tan brown throughout. Self slipped ext/int (?).
PARALLELS: Hama H, Fugmann (1958), Fig. 139, 4C 223; Kamid el Loz, Phase 8-10, Marfoe (1979), p.23, T.146; Shechem, Phase XVIIIs, Cole (1984), Pl. 36.g; Jericho, Phase XIII, Kenyon & Holland (1982), Fig. 130:17.

CN 225#: I 171.9/3
PHASE G Fairly finely levigated clay with many small and some medium lime, some chert and black stone, and a few reddish grog grits. Fired orangey brown throughout. Slipped in thin friable off white ext. and rim int.

CN 232#: I 171.6/4
PHASE G Fairly to quite finely levigated clay with many small and medium grey chert, some
red stone, brown stone and lime, and a few black stone grits. Fired a brownish charcoal grey at core and orangey brown at surfaces. Self slipped in orangey buff ext./int.

PARALLELS: Kamid el Loz, Phase 18, Marfoe (1979), p.60, T.292; Jericho, Phase XII-XIII, Kenyon & Holland (1982), Fig.129:7.

CN 224#: I 171 Wall I/7

PHASE G

Quite finely levigated clay with some small and medium grey chert, lime, brown stone, and a few red grog and micaceous grits. Fired orangey brown throughout. Self slipped ext./int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 20:14

CN 23#: I 110.2/19

PHASE G-F

Moderately to fairly finely levigated clay with many small and medium black and red stone, lime and chert grits. Fired dark grey at core and reddish brown at surfaces. Self slipped, fired reddish brown ext. and grey int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 41:8; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 53:6; Kamid el Loz, Phase 10-12, Marfoe (1979), p.23, T.155; Oumm el Marra, 'LB 1' Phase, Tefnin (1983), p.151, Fig.4:12; Jericho, Phase IX-XII, Kenyon & Holland (1982), Fig.128:17.

CN 412#: I 200.107/1

PHASE F

Fairly finely levigated clay with many small and medium lime, some grey chert, and a few brown grog grits. Fired pale greenish buff throughout. Self slipped in pale green ext./int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 36:23; Busra, Phase 16, Seeden (1986), Pl. 17:142; Shechem, Phase XVIII, Cole (1984), Pl. 35.e; Jericho, Phase X-XII, Kenyon & Holland (1982), Fig. 129:8.

Type A(iv): Elongated Ridge Neck with Outflaring Rounded Rim (Fig. 42:1-9 &
Fig. 43:1-2

CN 11#: I 501.1/3
PHASE G

Fairly finely levigated clay with many small and medium lime and chert, and a few black stone grits. Fired light grey at core and orangey pinkish buff at surfaces. Self (?) slipped, fired yellowish buff ext. and pinkish buff int.

PARALLELS:
Busra, Phase 15, Seeden (1986), Pl.20:238.

CN 12#: I 111.2/41
PHASE G

Fairly finely levigated clay with many small and some medium black stone, some grey chert and a few lime grits. Fired greenish grey throughout. Self slipped ext./int.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl.24:10; Kamid el Loz, Phase 9, Marfoe (1979), p.29, CT.16; Jericho, Phase XI, Kenyon & Holland (1982), Fig. 128:22.

CN 400#: III 205.35/3
PHASE G

Fairly finely levigated clay with many small lime and some red grog grits. Fired pinkish tan brown at core and orangey pink at surfaces. Pale browny buff slip ext./int.

PARALLELS:
Jericho, Phase XIII, Kenyon & Holland (1982), Fig. 136:14.

CN 27#: I 164.2/1
PHASE G

Fairly finely levigated clay with many small and medium black stone, some lime and a few grey chert grits. Fired brick red throughout. Pale yellowish buff slip ext./int.

PARALLELS:
Kamid el Loz, Phase 15-17, Marfoe (1979), p.34, T.279; Jericho, Phase X-XIII, Kenyon & Holland (1982), Fig.128:5.

CN 377#: III 205.30/15
PHASE G

Quite finely levigated clay with many small and medium dark grey stone, some grey chert, and a few white shell (?) grits. Fired dark orangey tan brown throughout. Self slipped in pale orangey brown ext./int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl.114

CN 394#: III 205.26/1

PHASE G Moderately to fairly finely levigated clay with many small and medium grey chert, brown stone and some lime grits. Fired pale greenish buff throughout. Slipped in pale buff to off white ext./int.

PARALLELS:
Busra, Phase 15, Seeden (1986), Pl. 20:236.

CN 21#: I 162.1/1,5

PHASE G Fairly finely levigated clay with many small and medium lime, some black stone, and a few red grog grits. Fired dark grey throughout. Self slipped ext./int.

PARALLELS:
Jericho, Phase XIII, Kenyon & Holland (1982), Fig. 131:12; Tell Ghassil, Phase VII, Doumet (1986), Pl. 65:4.

CN 393#: III 205.28/1

PHASE G Fairly finely levigated clay with many small and medium lime, some grey chert and a few orangey brown stone grits. Fired dark fawn brown throughout. Thick pale greenish off white slip ext./int.

PARALLELS:
Kamid el Loz, Phase 9, Marfoe (1979), p.29, T.123; Jericho, Phase XII-XIII, Kenyon & Holland (1982), Fig. 128:13; Busra, Phase 17, Seeden (1986), Pl. 18:185.

CN 14#: I 510.9/5

PHASE G Moderately levigated clay with many small black sand (?), some chert and a few lime grits. Fired light greyish brown at core and browny buff at surfaces. Self slipped ext. and rim int. Wide shallow incised groove horizontally around rim int.

PARALLELS:
Hazor, Phase V, Yadin et.al. (1961), Pl. CCLXXXVI:11; Shechem XVIIIIs, Cole (1984), Pl. 36.h; Jericho, Phase XIII, Kenyon & Holland (1982), Fig. 131:23.

CN 270#: I 200.71/1
PHASE E-C

Fairly finely levigated clay with many small and medium lime and chert, some yellowish stone, and a few black stone and quartz grits. Fired greyish tan brown at core, and light chocolate brown at surfaces. Self slip in in orangey brown ext/int.

PARALLELS:
Atchana IV, Woolley (1955), Pl.CXIV:62a; Jericho, Phase X, Kenyon & Holland (1982), Fig.128:34.

CN 298#: I 200.67/16

PHASE C

Fairly finely levigated clay with many small and medium lime and chert, some yellowish stone, and a few black stone and quartz grits. Fired greyish tan brown at core, and light chocolate brown at surfaces. Self slip in in orangey brown ext/int.

PARALLELS:
Atchana IV, Woolley (1955), Pl.CXIV:62a; Jericho, Phase X, Kenyon & Holland (1982), Fig.128:34.

Type B(i): Upright Outturned Rounded Rim (Fig. 43:3-5)

CN 4#: I 510.17/2

PHASE G

Moderately to fairly finely levigated clay with many small and medium lime, some chert and black stone, and a few reddish stone grits. Fired dark charcoal grey throughout. Thick orangey brown slip ext/int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 40:14; Jericho, Phase IX, Kenyon & Holland (1982), Fig.127:23.

CN 5#: I 112.2/1

PHASE G

Moderately to fairly finely levigated clay with many small and medium lime, some chert, and a few reddish stone grits. Fired brownish buff throughout. Self slipped, fired pinkish pale greeny buff ext./int.

PARALLELS:
Yadin et.al. (1961), Pl. CCXXXVI:21.

CN 20#: I 112.4/1

PHASE G-F

Fairly finely levigated clay with many small and medium lime, some chert and a few black stone grits. Fired medium grey at core and orangey brown at surfaces. Self slip ext./int. Friable.

PARALLELS:

Type B(ii): Simple Upright Rounded Rim (Fig. 43:6)

CN 329#: I 200.38/1

PHASE D

Fairly finely levigated clay with many small and medium lime, some grey chert, and a few black sand (?), red stone and orangey grog grits. Fired greyish tan brown throughout. Self slipped in pale browny buff ext. and rim int.

PARALLELS:

Type B(iii): Upright Pinched Rounded Rim
(Fig. 43:7-9 & Fig. 44:1-4)

CN 7#: I 410.3/4

PHASE G

Fairly finely levigated clay with many small and some medium black stone and lime, and some grey chert grits. Fired dark grey at core and pinkish browny buff at surfaces. Thick pinkish brown slip ext. and rim int. One band of four comb incised decoration horizontally around shoulder ext.

PARALLELS:
Phase 19, Seeden (1986), Pl. 18:175.

CN 201#: I 230.1/53

PHASE G
Moderately to fairly finely levigated quite 'sandy' clay, with many small and medium lime, some orangey grog, and a few grey chert and black stone grits. Fired pinkish brown at core and greyish browny buff at surfaces. Self slipped, fired yellowish buff ext. and pale brown int. Seven comb incised decoration horizontally around shoulder. Two registers of five comb incised wavy line decoration horizontally around body, separated by a band of five comb incised horizontal line decoration.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 51:13; Hama H, Fugmann (1958), Fig. 110, 3A 797; Kamid el Loz, Phase 4, Marfoe (1979), p.48, T.61.

CN 17#: I 150.1/15

PHASE G
Fairly finely levigated clay with many small and medium black stone, lime and chert, and a few micaceous grits. Fired grey at core and orangey pinkish buff at surfaces. Self slip ext./int.

PARALLELS:

CN 15#: I 510.9/3

PHASE G-F
Moderately levigated clay with many small and medium black stone and lime, and a few chert grits. Fired grey throughout. Thick reddish brown slip ext. and rim int. Chaff tempered.

PARALLELS:

CN 26#: I 161.1/30

PHASE G-F
Fairly finely levigated clay with many small and medium black stone, some lime,
and a few pinkish grog grits. Fired browny grey throughout. Friable self slip ext./int.

CN 30#: I 400.1/16
PHASE G-D Fairly finely levigated clay with many small and medium black stone and grey chert, some lime and red grog grits. Fired a pale browny buff throughout. Self slipped ext./int.

PARALLELS: Hazor, Phase III, Yadin et.al. (1961), Pl.CCXLII:23 [BWMW].

CN 31#: I 110.2/5
PHASE G-B Fairly finely levigated clay with many small black sand (?), lime, chert and micaceous grits. Fired grey to dark grey at core, and brownish grey at surfaces. Thick rust red slip ext./int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 21:11; Hama H, Fugmann (1958), Fig. 139, 5B 82.

Type B(iv): Upright Projective Rounded Rim (Fig. 44:5)

CN 302#: I 200.67/21
PHASE D-C Fairly to quite finely levigated clay with many small and medium lime, some dark grey stone, brown chert and a few yellowish stone grits. Fired dark browny grey throughout. Thin orangey brown slip ext./int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 36:23; Jericho, Phase X, Kenyon & Holland (1982), Fig.125:1; Sarepta, Phase G1, Anderson (1988), Pl.28:1.
Type B(v): Upright Swollen Rounded Rim (Fig. 44:6)

CN 13#: I 510.10/2
PHASE G: Moderately to fairly finely levigated clay with many small and medium black stone, some white lime and chert, and a few micaceous grits. Fired dark greyish brown throughout. Self slipped (?). Chaff tempered.
PARALLELS: Hazor, Phase XV, Yadin et al. (1961), Pl. CC:6; Jericho, Phase IX, Kenyon & Holland (1982), Fig. 116:4.

Type C(i): Upright Projective Square Rim
(Fig. 44:7-11 & Fig. 45:1)

CN 2#: I 151.33/1
PHASE H-G: Fairly finely levigated clay with many small and medium lime, some chert and a few black stone and quartz grits. Fired greyish brown at core, and pinkish browny buff at surfaces. Self slipped ext/int. Single shallow Incised Wavy Line horizontally around neck. Two rows of Incised Oblique Slash Decoration on slightly raised plastic bands horizontally around upper body.

CN 249#: I 170.4/4
PHASE G: Fairly finely levigated clay with many small and medium lime, some grey chert, and a few yellowish grog grits. Fired pale browny buff throughout. Slipped in pale buff to off white ext./int.

CN 210#: I 151.6/2
PHASE G: Moderately to fairly finely levigated clay with many small and some medium grey chert, some black stone, and a few lime and
micaceous grits. Fired a variable char grey to greyish brown throughout. Slipped in orangey brown ext. and rim int.

PARALLELS:
Kamid el Loz, Phase 13, Marfoe (1979), p.23, T.14b, Busra, Phase 26, Seeden (1986), Pl. 12:36; Jericho, Phase IX, Kenyon & Holland (1982), Fig. 117:1; Hama H2, Fugmann (1958), Fig.124, N 47.

CN 143#: I 151.33/4
PHASE G-D
Moderately levigated clay with many small and medium lime, some grey chert and black stone, and a few red grog grits. Fired pale browny buff throughout. Thick pinkish orange slip ext./int.

PARALLELS:

CN 364#: I 201.7/1
PHASE D
Fairly finely levigated clay with many small and medium quartz, some grey stone, and a few brown grog grits. Fired dark brown to black at core and dark reddish brown at surfaces. Self slipped ext./int.

PARALLELS:

CN 292#: I 200.50/1
PHASE C-A
Moderately to fairly finely levigated clay with many small and medium grey chert, some yellowish orange stone and a few red stone grits. Fired fawn brown throughout. Slipped in orangey brown ext./int.

Type C(ii): Simple Upright Square Rim (Fig. 45:2-3)

CN 402#: I 200.115/1
PHASE F
Fairly finely levigated clay with many small and medium lime, some dark grey stone, and a few red stone and grey chert grits. Fired brownish dark grey throughout. Traces of thin friable pale browny buff slip ext./int.

CN 330#: I 200.38/2

PHASE D
Fairly finely levigated clay with many small and medium grey chert, some brown stone, and a few lime and yellowish grog grits. Fired greyish fawn brown throughout. Orangey brown slip ext. and rim int.

Type C(iii): Outturned Bipartite Square Rim
(Fig. 45:4-6 & Fig. 46:1-3)

CN 1#: I 110.4/14

PHASE G
Fairly finely levigated clay with many small and medium lime, chert and black stone grits. Fired pinkish browny buff throughout. Self slipped ext/int. Grain tempered.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 22:15, 23:28; Hama H4, Fugmann (1958), Fig. 117, 3D 583; Hama G, Fugmann (1958), Fig. 143, R4; Busra, Phase 20, Seeden (1986), Pl. 15:109; Busra, Phase 15, Seeden (1986), Pl. 20:241.

CN 404#: I 250.1/1

PHASE G
Fairly finely levigated clay with many small and medium lime and black stone and a few chert and reddish grog grits. Fired pinkish fawn brown throughout. Self slipped in a thin friable pale browny buff ext/int. Two bands of Six Comb Incised Wavy Line Decoration placed one on top of the other horizontally around upper body ext. Three sharply incised lines on upper rim surface.

PARALLELS: Hama H, Fugmann (1958), Fig. 110, 3F 171;

CN 3#: I 510.17/1

PHASE G

Fairly finely levigated clay with many small and medium black stone and lime, some chert and a few red grog grits. Fired pinkish orangey brown at core and pale browny buff at surfaces. Self slipped ext./int. Wet Smoothed. Two bands of five comb incised decoration horizontally around shoulder ext.

PARALLELS:

Tell Ghassil, Phase IX, Doumet (1986), Pl. 43:41; Busra, Phase 28, Seeden (1986), Pl. 11:13; Busra, Phase 18, Seeden (1986), Pl. 16:130; Hama H3, Fugmann (1958), Fig. 120, 2D 884; Hama G, Fugmann (1958), Fig. 143, R4.

CN 176#: I 230.3/1

PHASE G

Fairly finely levigated clay with many small and medium grey chert, black stone and lime and some orangey grog grits. Fired pale browny buff throughout. Self slipped ext./int. Grain tempered.

PARALLELS:

Busra, Phase 20, Seeden (1986), Pl. 15:108.

CN 354#: I 201.20/1

PHASE G-F

Quite finely levigated clay with many small white shell (?), some small black sand and a few chert grits. Fired dark tan brown throughout. Self slipped in pale orangey brown ext/int. Four shallow incised grooves horizontally around upper body ext.

PARALLELS:

CN 256#: I 200.87/2

PHASE E

Fairly finely levigated clay with many small and medium lime and chert, some black and yellow stone, and a few quartz grits. Fired dark browny grey at core, and dark tan brown at surfaces. Self slipped,
fired pale browny buff ext. and orangey brown int.

PARALLELS: Hama H1, Fugmann (1958), Fig. 110, 3A 734; Hama G, Fugmann (1958), Fig. 143, R9; Busra, Phase 20, Seeden (1986), Pl. 15:110; Busra, Phase 15, Seeden (1986), Pl. 23:320; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXVI:16.

Type C(iv): Outturned Square Rim (Fig. 46:4-6)

CN 367#: I 201.7/4
PHASE D Fairly finely levigated clay with many small and medium dark brown ironstone (?) some lime and a few orangey grog grits. Fired pale browny buff throughout. Pale greenish off white slip ext/int.
PARALLELS: Oumm el Marra, 'LB 1' Phase, Tefnin (1983), p.151, Fig. 4:17; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 51:29; Busra, Phase 15, Seeden (1986), Pl. 20:242.

CN 301#: I 200.67/20
PHASE D-C Fairly finely levigated clay with many small and medium dark brown ironstone (?) some chert and a few lime and red stone grits. Fired pale fawn brown throughout. Thick orangey brown slip ext/int. One shallow groove around inner edge of upper rim.
PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 22:16; Hama H5, Fugmann (1958), Fig. 109, 3K 162; Hama H2, Fugmann (1958), Fig. 124, N 47; Busra, Phase 28, Seeden (1986), Pl. 11:11; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLXXXVII:11; Busra, Phase 17, Seeden (1986), Pl.19:191; el Qitar, 'LB 1' Phase, Culican & McClellan (1984), Fig. 7:A.

CN 304#: I 200.67/23
PHASE C Fairly to quite finely levigated clay with many small lime, some grey chert, and a few yellowish grog grits. Fired dark grey at core and browny grey at surfaces. Slipped in dark grey ext./int.
Type C(v): Outflaring Bipartite Square Rim (Fig. 47:1-2)

Type C(v): Outflaring Bipartite Square Rim (Fig. 47:1-2)

CN 265#: I 200.77/1

PHASE E

Fairly finely levigated clay with many small and medium lime and chert, some yellowish stone and a few orangey grog grits. Fired pale browny buff throughout. Self slipped in a very friable light orangey brown ext/int.

PARALLELS:

Type D(i): Upright Projective Flattened Rilled Square Rim

CN 24#: I 111.2/21

PHASE E-C

Fairly finely levigated clay with many small and medium lime, chert and black stone grits. Fired light char grey at core and greyish brown at surfaces. Self slipped in medium char grey ext. and rim int only. Four incised comb lines horizontally around neck below rim int.

PARALLELS:

Tell Arqa, Phase 11, Thalmann (1978), Fig. 48:2; Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXXXVI:20; Busra, Phase 20, Seeden (1986), Pl. 15:109; Busra, Phase 15, Seeden (1986), Pl. 23:320.

Type D(i): Upright Projective Flattened Rilled Square Rim

CN 28#: I 510.15/4

PHASE G

Quite finely levigated clay with a few small black and white grits. Fired medium grey throughout. Self slipped, fired grey ext. and browny grey int. Line of Three Comb Incised decoration...
horizontally around neck. Below which Three Comb Incised Wavy Line decoration horizontally around upper body. Below which, slightly raised band of plastic dec with oblique 'Slash Decoration' horizontally around mid body. Two Comb Incised decoration, scored with oblique 'Slash Decoration', around upper rim.

PARALLELS: Kamid el Loz, Phase 10, Marfoe (1979), p.21, CT.14; Hazor, Phase XVII, Yadin et.al. (1961), Pl. CLVI:23.

CN 16#: I 603.3/2,7

PHASE G

Fairly finely levigated clay with many small and medium lime, chert, black stone, and a few red grog grits. Traces of browny buff core, otherwise fired orangey pink throughout. Self slipped ext/int. A single band of Four Comb Incised Wavy Line Decoration on upper body. Three incised shallow grooves on upper rim surface.

CN 252#: I 170.3/1

PHASE G

Fairly finely levigated clay with many small and medium lime, some chert and a few orangey grog grits. Fired dark grey at core and orangey brown at surfaces. Self slipped ext/int. Incised Decoration employing Framed Wavy Line Motif. Ten Comb Incised Wavy Line Decoration horizontally around mid body. It is framed by a Ten Comb Incised Horizontal Line Decoration above, and an Eight Comb Incised Horizontal Line Decoration below. Three deep wide incised grooves with perpendicular strokes around upper rim surface.

PARALLELS: Hama H3, Fugmann (1958), Fig. 120, 2C 968; Kamid el Loz, Phase 6-7, Marfoe (1979), p.23, T.87; Hazor, Phase XVII, Yadin et.al.
(1961), Pl. CCXXXV:16.

CN 241#: I 171.5/1

PHASE G

Fairly to quite finely levigated clay with many small and some medium lime, some small chert, and a few orangey grog and black sand grits. Fired dark orangey brown throughout. Self (?) slipped in dark brown ext./int. Three deep wide incised grooves around upper rim surface.

PARALLELS:

Busra, Phase 18, Seeden (1986), Pl. 16:129.

CN 209#: I 151.6/1

PHASE G

Fairly to quite finely levigated clay with many small and a few medium lime, some chert, black stone, and brown and red grog grits. Fired greyish brown at core and dark orangey brown at surfaces. Self slipped ext/int. The slip is friable int. Three deep incised grooves with perpendicular strokes around upper rim surface.

PARALLELS:

CN 162#: I 230.5/5

PHASES G-F

Fairly finely levigated clay with many small and medium lime, some chert and red grog, and a few micaceous grits. Traces of buff core, otherwise fired pale brick red throughout. Pale browny buff slip ext/int. Four Comb Incised Wavy Line Decoration horizontally around mid body. Four Comb Horizontal Incised Line Decoration above Wavy Line Decoration. Three deep wide grooves incised on upper rim surface.

PARALLELS:

Hama H2, Fugmann (1958), Fig. 124, O 89.

CN 163#: I 230.5/6

PHASE G-F

Fairly finely levigated clay with many small and some medium lime and yellowish
stone, some grey chert and red grog, and a few micaceous grits. Fired medium brick red throughout. Slipped in pale browny buff ext./int. Three deep wide incised grooves on upper rim.

PARALLELS: Hazor, Phase XVI, Yadin et al. (1961), Pl. CCXXXIX:10; Hama H3, Fugmann (1958), Fig. 120, 2C 968; Hama H2, Fugmann (1958), Fig. 124, O 89.

Type D(ii): Upright Pinched Rilled Square Rim (Fig. 48:1)

CN 33#: I 163.1/5
PHASE G

Quite finely levigated clay with many small black sand (?), some lime and a few chert grits. Fired pale greyish brown throughout. Orangey buff slip ext./int. Multiple Incised Line decoration horizontally around body below rim. Eight Incised lines around rim upper.

PARALLELS:

Type E(i): Outturned Rolled Square Rims (Fig. 48:2-4)

CN 19#: I 111.2/19
PHASE F-D

Fairly finely levigated clay with many small lime, chert and black stone grits. Fired dark char grey throughout. Self slipped in reddish tan brown ext/int.

PARALLELS:
Hama H4, Fugmann (1958), Fig. 117, 3A 858.

CN 272#: I 200.71/3
PHASE E-D

Moderately to fairly finely levigated clay with many small and medium lime stone, chert, and a few yellowish stone grits. Fired pale browny buff throughout. Self slipped in orangey brown ext/int.

PARALLELS:
Hama H1, Fugmann (1958), Fig. 139, 5B 855; Tell Ghassil, Phase IX, Doumet (1986), Pl.
41:10; Kamid el Loz, Phase 2, Marfoe (1979), p.49, T.21.

CN 273#: I 200.70/1

PHASE D Fairly finely levigated clay with many small and medium lime, some chert, and a few yellowish stone grits. Fired a light browny ash grey throughout. Self slipped in orangey brown ext/int.

PARALLELS: Hama G, Fugmann (1958), Fig. 143, R9; Kamid el Loz, Phase 20, Marfoe (1979), p.48, T.251.

Type E(ii): Outturned Rilled Rolled Square Rim (Fig. 48:5-6)

CN 358#: I 201.9/1

PHASE D Moderately to fairly finely levigated clay with many small and medium white stone, some greyish brown chert, and a few yellowish orange grog grits. Fired orangey tan at core and dark fawn brown at surfaces. Self slipped in pale browny buff ext./int. Four wide shallow concave grooves on upper rim.

CN 347#: I 200.21/1

PHASE C-B Fairly finely levigated clay with many small dark greyish brown stone, some white shell (?), and a few grey chert and brown grog grits. Fired fawn brown throughout. Self slipped in pale browny buff ext./int. Three wide concave grooves on upper and inner rims.

PARALLELS: Oumm el Marra, 'LB I' Phase, Tefnin (1983), Fig. 4:18.

Type F: Outflaring Rilled Triangular Rim (Fig. 48:7)

CN 398#: III 205.35/1

PHASE G Fairly finely levigated clay with many small and medium lime, some yellowish grog, and a few grey chert grits. Fired grey
at core and greyish brick red at surfaces. Dark grey self slip ext./int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 23:24; Tell Ghassil, Phase IX, Doumet (1986), Pl. 43:30; Busra, Phase 16, Seeden (1986), Pl. 17:144; Shechem XVIIIIs, Cole (1984), Pl. 33; Hama H2, Fugmann (1958), Fig. 124, 2D 13; Jericho, Phase XIII, Kenyon & Holland (1982), Fig. 131:20; Tell el Far'ah, Phase B, II: Niveau 5, Mallett (1988), Fig. 21:3.

Type G: Holemouth Rounded Rim (Fig. 49:1-4)

CN 6#: I 410.3/3
PHASE G Fairly finely levigated clay with many small black sand, some lime, and a few red grog and micaceous grits. Fired pale yellowish buff throughout. Self slipped in pale buff to off white ext. and rim int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 38:70; Hazor, Phase XVII, Yadin et.al. (1961), Pl. CCXLVI:10; Shechem XIXs, Cole (1984), Pl. 7b.

CN 269#: I 200.72-73/1
PHASE E-D Fairly finely levigated clay with many small and medium dark grey stone, some grey chert, and a few lime and orangey grog grits. Fired dark chocolate brown at core and dark reddish brown at surfaces. Self slipped in dark chocolate brown ext./int.

PARALLELS: Kamid el Loz, Phase 17-18, Marfoe (1979), p.60, T.309; Hama G, Fugmann (1958), Fig. 161, 5B 73.

CN 278#: I 200.62/1
PHASE C-B Fairly finely levigated clay with many small and medium dark grey stone and dark grey chert, some yellowish stone and a few lime grits. Fired greyish tan brown throughout. Slipped in dark reddish brown ext./int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl.

SHORT NECKED JARS

Type A(i): Simple Upright Outflaring Rounded Rim (Fig. 49:5-9)

CN 322#: I 202.2/4
PHASE D-C
Quite finely levigated clay with many small and medium lime, some yellowish stone and chert, and a few black stone and quartz grits. Fired dark reddish tan brown throughout. Self (?) slipped in orangey brown ext./int.

PARALLELS: Tell Ghassil, Phase XI, Doumet (1986), Pl. 8:1; Kamid el Loz, Phase 5-6, Marfoe (1979), p.33, CT.10; Hama H5, Fugmann (1958), Fig. 109, 3C 366; Atchana V, Woolley (1955), Pl. CXVIII:103b.

CN 48#: I 110.2/22
PHASE D-C
Quite finely levigated clay with many small black stone and lime, and a few red grog grits. Fired light grey at core and pale browny buff at surfaces. Self slipped in orangey brown ext./int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 41:2; Hama H5, Fugmann (1958), Fig. 109, 3B 988; Jericho, Phase XI-XII, Kenyon & Holland (1982), Fig.134:39; Atchana IX-V, Woolley (1955), Pl. CXVIII:97b.

CN 348#: I 200.21/2
PHASE D-B
Quite finely levigated clay with many small black stone and lime, some chert and a few yellowish grog grits. Fired pale orangey brown throughout. Self slipped ext./int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 21:4; Hama H, Fugmann (1958), Fig. 139, 5B 82; Hama G, Fugmann (1958), Fig.161, 5A
Fairly finely levigated clay with many small dark grey and brown chert, some small black sand (?) and a few white shell grits. Fired dark fawn brown at core and reddish brown at surfaces. Orangey brown self (?) slip ext./int.

PARALLELS:

Fairly finely levigated clay with many small and some medium black stone and lime, and a few quartz and red grog grits. Fired dark grey at core and reddish brown at surfaces. Pale browny buff slip ext./int. Somewhat friable.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 51:10; Sarepta, Phase G1, Anderson (1988), Pl. 27:9; Busra, Phase 17, Seeden (1986), Pl. 18:185; Hazor, Phase III, Yadin et.al. (1961), Pl. CCXLI:12.

Type A(ii): Swollen Outflaring Rounded Rim (Fig. 50:1-3)

Fairly to quite finely levigated clay with many small black stone, some chocolate brown grog and a few chert grits. Fired light chocolate brown throughout. Self slipped ext./int.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 54:1; Busra, surface, Seeden (1986), Pl. 21:267.

Fairly to quite finely levigated clay with many small and a few medium dark grey and black stone, some lime and chert, and a few yellowish grog grits. Fired pale browny buff
throughout. Thin buff to off white slip ext./int. Two bands of dark reddish brown paint horizontally around neck below rim.

PARALLELS:

CN 288#: I 200.51/1
PHASE B
Fairly to quite finely levigated clay with many small and some medium dark grey and black stone and chert, some lime, and a few red grog grits. Fired orangey tan brown throughout. Self slipped ext./int. Traces of single band of black paint horizontally around upper/inner rim. Very fugitive.

PARALLELS:

Type B: Upright Outturned Projective Rounded Rim (Fig. 50:4-6)

CN 280#: I 200.61/1
PHASE D-B
Fairly finely levigated clay with many small and medium dark grey stone, some chert and a few orangey grog and lime grits. Fired dark greyish black throughout. Self slipped in dark reddish brown ext./int.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 51:19; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXIV:16.

CN 283#: I 200.59/2
PHASE C-B
Fairly finely levigated clay with many small and some medium lime, some dark grey and brown chert, and a few orangey grog grits. Fired dark char grey throughout. Slipped in pale orangey brown ext./int.

CN 287#: I 200.58/6
PHASE B
Fairly finely levigated clay with many small and medium lime, some chert and a few yellowish stone grits. Fired dark
browny grey at core and reddish brown at surfaces. Self slipped ext./int.

Type C(i): Simple Upright Square Rim (Fig. 50:7-8)

CN 218#: I 172.3/1

PHASE G

Moderately levigated clay with many small and medium brown to grey chert and lime, some orange and red grog, and a few black stone and micaceous grits. Fired buff at core and pinkish buff at surfaces. Self slipped in orangey buff ext. and rim int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 43:33; Kamid el Loz, Phase 8, Marfoe (1979), p.50, T.119; Busra, Phase 22, Seeden (1986), Pl. 14:91; Jericho, Phase VIII, Kenyon & Holland (1982), Fig. 117:7.

CN 379#: III 210.7/8

PHASE F

Moderately to fairly finely levigated clay with many small, medium and large chert, some brown stone, and a few lime grits. Fired ash grey at core and orangey brown at surfaces. Thick orangey pinkish brown self slip ext. and rim int. One handle down from rim; rounded section. One line of incision around upper rim.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 32:6; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 54:11; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCLIX:19; Jericho, Phase XI-XII, Kenyon & Holland (1982), Fig.117:15.

Type C(ii): Upright Swollen Square Rim (Fig. 50:9)

CN 333#: I 200.38/8

PHASE D-C

Fairly finely levigated clay with many small and medium lime, some light grey stone, and a few yellowish stone grits. Fired dark fawn brown throughout. Thick
orangey brown slip ext./int.

PARALLELS:

Type C(iii): Upright Pinched Square Rim (Fig. 50:10)

CN 336#: I 200.35/1

PHASE C
Moderately to fairly finely levigated clay with many small and medium lime, some dark brown stone and a few yellowish grog grits. Fired pale browny buff throughout. Slipped in off white to pale buff ext./int.

PARALLELS:

FINE JARS

Type A: Upright Outturned Square Rim (Fig. 51:1)

CN 58#: I 230.1/37

PHASE G-F
Quite finely levigated clay with many small and a few medium lime grits. Fired dark browny grey at core and dark grey at surfaces. Self slipped ext/int.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl. 16:6, 17:6; Kamid el Loz, Phase 18, Marfoe (1979), p.13, CT.19; Hama H3, Fugmann (1958), Fig. 120, M 180.

Type B(i): Simple Upright Rounded Rim (Fig. 51:2-3)

CN 41#: I 161.1/17

PHASE G
Fairly finely levigated clay with many small black stone, some small and medium red grog and chert, and a few quartz grits. Fired pale brownish buff throughout. Self slipped ext./int.

CN 39#: I 100.10/1
PHASE G-F Fairly finely levigated clay with many small and medium black stone, some lime and a few chert grits. Fired dark grey at core and pinkish buff at surfaces. Pinkish brown self slip ext./int.

Type B(ii): Upright Outflaring Rounded Rim (Fig. 51:4-5)

CN 38#: I 163.1/2
PHASE G-F Fairly finely levigated clay with many small and medium black stone and lime and a few chert grits. Fired dark browny buff throughout. Chalky pale brown self slip ext./int.

CN 226#: I 171.9/4
PHASE G-F Fairly finely levigated clay with many small and medium lime, some small chert and a few micaceous grits. Fired orangey brown throughout. Slipped in dark brown ext./int.

Type B(iii): Outflaring Pinch Rounded Rim
(Fig. 51:6-7 & Fig. 52:1-2
CN 140#: I 151.35/7
PHASE H-F

Quite finely levigated clay with many small and some medium lime, some orangey grog, and a few black stone grits. Fired dark greyish brown throughout. Thin friable grey self slip ext/int. Two wide shallow grooves horizontally around mid body.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl.16:3-5; Hama H5, Fugmann (1958), Fig. 109, 3B 995; Kamid el Loz, Phase 10, Marfoe (1979), p.13, T.109; Busra, Phase 15, Seeden (1986), Pl.18:154; Jericho, Phase XII, Kenyon & Holland (1982), Fig.109:15.

CN 64#: I 510.15/2
PHASE G-E

Quite finely levigated clay with many very small lime, some black sand (?) and a few quartz grits. Fired dark greyish brown at core, and reddish brown at surfaces. Friable self slip ext/int.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl. 16:4; Hama H1, Fugmann (1958), Fig.110, 3A 896; Hama G, Fugmann (1958), Fig. 161, 5B 37; Tell Arqa, Phase 12, Thalmann (1978), Fig. 50:8; Kamid el Loz, Phase 10/11, Marfoe (1979), p.15, CT. 30; Busra, Phase 20, Seeden (1986), Pl. 22:268; Hazor, Phase V, Yadin et.al. (1961), Pl. CCXCVI:3; Jericho, Phase XII, Kenyon & Holland (1982), Fig.109:8.

CN 240#: I 171.6/1-2
PHASE G

Fairly to quite finely levigated clay with many small and medium lime, some orangey grog, and a few chert and black sand (?) grits. Fired orangey brown throughout. Self slipped ext. and rim/neck int. Six Comb Incised Horizontal Line decoration below neck. Below this, two bands of Six Comb Incised Ripple

137
PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl.16:4; Tell Ghassil, Phase IX, Doumet (1986), Pl. 33.2-3; Busra, Phase 20, Seeden (1986), Pl.15:96; Ansari, 'MB 1' Phase, Suleiman (1983), Pl. III:3; Sarepta, Phase L, Anderson (1988), Pl. 20:12; Jericho, Phase XI-XII, Kenyon & Holland (1982), Fig.109:22.

CN 223#: I 171 Wall 1/6
PHASE G
Fairly to quite finely levigated clay with many small and some medium lime, some orangey grog and small black sand (?), and a few chert grits. Fired dark char grey throughout. Slipped in orangey brown ext/int. Sharp ridge at neck/body join.

PARALLELS:
Hama H1, Fugmann (1958), Fig.127, 2D 211; Busra, Phase 15, Seeden (1986), Pl.19:199; Shechem, Phase XVIII, Cole (1984), Pl.16h.

Type B(iv): Upright Outflaring Rounded Rim (Fig. 52:3-7)

CN 40#: I 602.3/2
PHASE G
Quite finley levigated clay with many small and medium black stone and lime grits. fired brownish grey at core and dark brown at surfaces. Self slipped ext./int.

PARALLELS:
Tell Ghassil, Phase XI, Doumet (1986), Pl. 3:1, Kamid el Loz, Phase 5-6, Marfoe (1979), p.17, T.81; Hazor, Phase XVII, Yadin et.al. (1961), Pl. CXCVII:11; Shechem, Phase XVII, Cole (1984), Pl. 29d; Busra, Phase 17, Seeden (1986), Pl. 17:132; Jericho, Phase IX, Kenyon & Holland (1982), Fig.124:2.

CN 206#: I 151.7/1
PHASE G-F
Fairly to quite finely levigated clay with many small and some medium lime, some chert and yellowish stone, and a few micaceous grits. Fired orangey brown throughout. Self slipped ext./int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 36:19; Busra, Phase 17, Seeden (1986), Pl.
22:278; Jericho, Phase X, Kenyon & Holland (1982), Fig.124:1.

CN 185#: I 230.1/18
PHASE G-F
Quite finely levigated clay with many small and a few medium yellowish stone, some lime and chert, and a few red grog grits. Fired brownish dark grey throughout. Self slipped ext/int. Two deep wide grooves incised around upper rim.
PARALLELS:

CN 60#: I 111.2/40
PHASE G-D
Quite finely levigated clay with many small and a few medium lime, some black stone and chert, and a few red grog grits. Fired dark brown at core and brick red at surfaces. Thin pale orangey buff slip ext/int.
PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl. 17:10; Busra, Phase 15, Seeden (1986), Pl. 19:201; Atchana, Phase V, Woolley (1955), Pl. CXVIII:104a; Shechem, Phase XIX, Cole (1984), Pl. 29e; Jericho, Phase IX, Kenyon & Holland (1982), Fig.118:12.

CN 61#: I 200.38/4
PHASE G-D
Quite finely levigated clay with many small and a few medium lime, and a few small black sand (?) grits. Fired pale orangey brown at core and pale browny buff at surfaces. Self slipped ext/int.
PARALLELS:
Hama H1, Fugmann (1958), Fig.139, 5B 826; Kamid el Loz, Phase 4, Marfoe (1979), p.15, T.66; Tell Ghassil, Phase IX, Doumet (1986), Pl. 37:62; Hazor, Phase XVI, Yadin et.al. (1961), Pl. CCXXXVI:7.

Type B(v): Upright Outflaring Interior Ledge Rim (Fig. 53:1-4)

CN 66#: I 200.111/18
PHASE H-D
Fairly to quite finely levigated clay with many small and medium lime,
some black stone, and a few orangey
grog grits. Fired dark char grey
throughout. Friable pale browny buff
slip ext/int.

PARALLELS: Hazor, Phase XVII-XVI, Yadin et.al. (1961),
Pl. CCXXXVI:1; Atchana, Phase V, Woolley
(1955), Pl. CXIX:107b; Jericho, Phase X,
Kenyon & Holland (1982), Fig.109:23.

CN 406#: I 250.1/3
PHASE G-F
Quite finely levigated clay with many
small, medium, and a few large
lime, some chert, and a few small
black stone, orangey grog and micaceous
grits. Fired a browny dark grey throughout.
Slipped in reddish orangey brown ext/int.

PARALLELS: Hazor, Phase V, Yadin et.al. (1958),
Pl. CIV:3; Hazor, Phase XVII, Yadin et.al

CN 243#: I 171.1/1
PHASE G-F
Fairly to quite finely levigated clay with
many small lime, some yellowish stone,
and a few quartz grits. Fired dark grey
throughout. Self slipped ext/int. Sharp
ridge at neck/body join.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986),
Pl. 34:2.

CN 158#: I 230.5/1
PHASE F
Quite finely levigated clay with many
small and a few medium lime, some chert
and a few black stone and micaceous grits.
Fired dark greyish brown throughout.
Brown self slip ext/int, fired greyish brown
around upper body and rim, and brown on
mid and lower body. Ten lines of Incised
Horizontal Line decoration below rim. A
small patch of Incised Crosshatched motif
at mid body.

PARALLELS: Hama H, Fugmann (1958), Fig. 110, 3B 926;
Kamid el Loz, Phase 8/9, Marfoe (1979),
p.13, T.109; Jericho, Phase X, Kenyon &
Holland (1982), Fig.109:2; Hazor, Phase
XVII, Yadin et.al (1961), Pl. CLVI:19.
Type B(vi): Upright Outturned Rounded Rim (Fig. 53:5-6)

CN 68#: I 111.2/2-4

PHASE G: Fairly finely levigated clay with many small and some medium lime, some black stone, and a few chert, red grog and micaceous grits. Fired light chocolate brown throughout. Slipped in pale buff to off white ext./int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pls. 36:16, 37:55; Kamid el Loz, Phase 14, Marfoe (1979), p.15, CT. 30; Hazor, Phase XVI, Yadin et.al. (1960), Pl. CX:20; Jericho, Phase H IX, Kenyon & Holland (1982), Fig.124:2

CN 146#: I 151.33/7

PHASE G-C: Fairly finely levigated clay with many small and a few medium black stone, some yellowish stone, and a few red grog and lime grits. Fired pale browny buff throughout. Self slipped ext./int.

PARALLELS:
Kamid el Loz, Phase 10/11, Marfoe (1979), p.15, CT.151; Jericho, Phase XII-XIII, Kenyon & Holland (1982), Fig.109:25.

Type B(vii): Upright Ridge Neck Rounded Rim (Fig. 53:7)

CN 205#: I 151.8/1

PHASE G: Fairly finely levigated clay with many small and some medium lime, some small chert, and a few red grog grits. Fired brick red throughout. Dark brown slip ext./int.

PARALLELS:

Type B(viii): Upright Rilled Rounded Rim (Fig. 53:8)

CN 67#: I 603.3/22

PHASE G: Fairly finely levigated clay with many
small and medium lime, some black stone
and a few red grog grits. Fired pale brown buff throughout. Self slipped ext./int.
Two wide shallow grooves incised around leading edge of rim. Three wide shallow grooves incised horizontally around upper body ext.

PARALLELS: Tell Ghassil, Phase XI, Doumet (1986), Pl. 3:3; Kamid el Loz, Phase 8, Marfoe (1979), p.17, T.97; Ebla, Phase IIIA, Matthiae (1982), Fig.24:2; Ebla, "Tomb of the Lord of the Goats", Matthiae (1979), p.167, no.8; Jericho, Phase VII-XI, Kenyon & Holland (1982), Fig.119:5.

Type C(i): Upright Projective Rounded Triangular Rim (Fig. 54:1)

CN 63#: I 150.3/1,16
PHASE G-F Moderate to fairly finely levigated clay with many small and some medium lime, chert, black and red stone grits. Fired soft greenish grey throughout. Self slipped ext/int (?).

PARALLELS: Hama H, Fugmann (1958), Fig. 110, 3H 982; Hazor, Phase XVII, Yadin et.al. (1961), Pl. CXCIII:8.

Type C(ii): Upright Rounded Triangular Rim (Fig. 54:2-4)

CN 192#: I 230.1/44
PHASE G Quite finely levigated clay with many small black stone, some reddish brown grog, and a few lime, chert and micaceous grits. Fired pale brpwny buff throughout. Very fine self slip ext/int.

PARALLELS: Hama H, Fugmann (1958), Fig. 110, 3H 980; Kamid el Loz, Phase 4, Marfoe (1979), p.15, T.66; Jericho, Phase VIII, Kenyon & Holland (1982), Fig.115:22; Hazor, Phase XVI, Yadin et.al. (1961), Pl. CCLIX:16.

CN 65#: I 410.3/1
PHASE G Moderately to fairly finely levigated clay with many small and some medium
lime, chert, black and red stone grits. Fired brownish buff throughout. Self slipped, firing buff int. and rim ext., and reddish brown below rim ext.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl.17:16; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 49:1; Hama H, Fugmann (1958), Fig.132, 5A 528; Busra, Phase 19, Seeden (1986), Pl.18:170;
Busra, Phase 20, Seeden (1986), Pl. 22:268; el Qitar, 'MB/LB' Phase, McClellan (1986), Fig. 8:6; Hazor, Phase XV, Yadin et.al. (1961), Pl. CXCIX:17; Jericho, Phase T.III: XXI, Kenyon & Holland (1982), Fig.109:24;
Kamid el Loz, Phase 20, Marfoe (1979), p.17, T.257.

CN 57#: I 150.3/2
PHASE G-F
Fairly finely levigated clay with many small and a few medium lime and black stone grits. Fired a pale orangey brown throughout. Self slipped, firing pale browny buff ext. and orangey buff int. Four thin bands of dark brown Painted decoration horizontally around mid body.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl.17:15.

Type C(iii) Upright Triangular Interior Carinated Rim (Fig. 54:5)

CN 62#: I 111.2/13
PHASE G
Fairly finely levigated clay with many small black stone, some lime and chert grits. Fired pale browny buff throughout. Chalky self slip ext/int.

PARALLELS:
Hama H1, Fugmann (1958), Fig. 124, 2C 909;

Type D(i): Simple Upright Incurving Rounded Rim (Fig. 54:6)

CN 72#: I 410.9/14
PHASE H-G
Quite finely levigated clay with many
small and medium lime, some black and red stone grits. Fired pale brick red throughout. Reddish brown slip ext/int. Nine thin bands of White Painted decoration horizontally around mid body.

PARALLELS:
Hama H, Fugmann (1958), Fig.132, 5A 522; Tell Homs, 'EB IV' Phase, Pl.1:1; Ugarit, 'MB 1' Phase, Schaeffer & Chenet (1949), Fig. 101:33; Hazor, Phase XVIII, Yadin et.al. (1961), Pls. CLVI:1, CCXXXV:9.

Type D(ii): Upright Incurving Swollen Rounded Rim (Fig. 54:7)

CN 71#: I 410.4/13
PHASE H-G
Quite finely levigated clay with many small and some medium lime, some black stone and a few chert and red stone grits. Fired dark grey throughout. Self slipped ext/int. Six bands of White Painted decoration horizontally around mid body.

PARALLELS:
Hama J2, Fugmann (1958), Fig. 98, 3G 98; Ansari, 'EB IVB' Phase, Suleiman (1983), Pl. I:10; Aphek, 'MB 1' Phase, Beck (1985), Fig. 4:1-2; Hazor, Phase XVIII, Yadin et.al. (1961), Pl. CCXXXV:10; Shechem, Phase XVIII's, Pl. 6e.

Type D(iii) Outflaring Swollen Rounded Rim (Fig. 54:8-10)

CN 136#: I 151.35/1
PHASE H
Very to quite finely levigated clay with many small and a few medium lime, and a few small black grits. Fired dark reddish brown at core and dark grey at surfaces. Self slipped in dark grey ext/int. Twelve bands of fine Incised Horizontal Line decoration around body below rim.

PARALLELS:
Hama J1, Fugmann (1958), Fig.103, 3B 967; Tell Arqa, Phase 12, Thalmann (1978), Fig.50:9; Tell Arqa, Phase 15, Thalmann, (1979), Fig.1[cu]; Kamid el Loz, Phase10/11, Marfoe (1979), p.15, T.88; Ansari, 'EB IVB' Phase, Suleiman (1983), Pl. I:11; Busra,
Phase 28, Seeden (1986), Pl.11:3; Busra, Phase 26, Seeden (1986), Pl.12:19; Atchana, Phase XII, Woolley (1955), Pl. CX:23b/e2.

CN 246#: I 170.4/1
PHASE G
Fairly to quite finely levigated clay with many small and a few medium lime, some orangey grog and a few micaceous grits. Fired a browny char grey at core, and orangey brown at surfaces. Self slipped ext/int, fired orangey brown int. and rim ext., darker brown below rim ext.

PARALLELS:
Tell Arqa, Phase 12r, Thalmann (1978), Fig. 50:8; Kamid el Loz, Phase 2/3, Marfoe (1979), p.15, T.26; Busra, Phase 26, Seeden (1986), Pl.12:19; Tell Ghassil, Phase XI, Doumet (1986), Pl.3:4.

CN 324#: I 202.1/1
PHASE D
Fairly finely levigated clay with many small dark grey stone, some reddish stone, and a few yellowish lime and chert grits. Fired dark fawn brown throughout. Self slipped in orangey fawn brown ext/int.

PARALLELS:

Type E: Simple Upright Offset Ledge Rim (Fig. 54:11-12)

CN 70#: I 161.1/5
PHASE G
Quite finely levigated clay with many small and some medium lime, some small black stone and red grog grits. Fired dark brownish grey throughout. Slipped in orangey brown ext/int.

PARALLELS:
Tell Ghassil, Phase X, Doumet (1986), Pl.17:9; Hazor, Phase IV, Yadin et.al. (1958), Pl. CIV:11; Hazor, Phase III, Yadin et.al. (1958), Pl. CXIII:14; Hazor, Phase I, Yadin et.al. (1960), Pl. CXXV:8; Tell Arqa, T.8 [Phase 12], Thalmann (1979), Fig. 4[CM].

CN 69#: I 230.3/4
PHASE G-C
Fairly finely levigated clay with many
small and some medium lime, chert, black and red stone grits. Fired a pale greenish buff throughout. Self slipped in greenish off white ext/int.

PARALLELS:
Tell Ghassil, Phase VII, Doumet (1986), Pl. 60:4; Hama H5, Fugmann (1979), Fig.109, 3C 21; Kamid el Loz, Phase 6, Marfoe (1979), p.15, CT.20; Tell Arqa, T.8 [Phase 12], Thalmann (1979), Fig.4[CL].

JUGS

Type A(i): Simple Upright Rounded Rim (Fig. 55:1-2)

CN 251#: I 170.4/6
PHASE G
Fairly finely levigated clay with many small and a few medium lime, some small black stone, and a few small grey chert grits. Fired orangey brown throughout. Slipped in reddish brown ext./int.

PARALLELS:
Jericho, Phase IX, Kenyon & Holland (1982), Fig.126:25; Hama H5, Fugmann (1958), Fig. 109, 3F 368.

CN 266#: I 200.75/1
PHASE E-B
Fairly finely levigated clay with many small and medium pinkish lime and dark brown to grey chert, some orangey grog and a few small micaceous grits. Fired dark tan brown throughout. Self slipped in dark reddish brown ext./int. One handle attached at neck; thickened strap in form.

Type A(ii): Upright Pinch Rounded Rim (Fig. 55:3)

CN 282#: I 200.59/1
PHASE D-B
Fairly to quite finely levigated clay with many small and medium lime, some chert and a few yellowish grog grits. Fired orangey tan brown throughout. Self slipped in dark brown ext./int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pls.
Type A(iii): Upright Outturned Pinch Rounded Rim (Fig. 55:4)

CN 345#: I 200.25/1

PHASE D-C Fairly to quite finely levigated clay with many small dark brown stone, some pale brown grog and a few chert grits. Fired light greyish chocolate brown throughout. Slipped in orangey brown ext./int.

Type A(iv): Upright Outflaring Rounded Rim (Fig. 55:5-6)

CN 381#: III 210.5/3

PHASE E Moderately to fairly finely levigated clay with many small and medium chert and brown stone grits. Fired greyish browny buff at core, and orangey buff at surfaces. Slipped in reddish orangey brown ext./int.

CN 320#: I 202.2/2

PHASE D Quite finely levigated clay with many small and medium black stone, some lime and a few yellowish stone grits. Fired dark browny grey throughout. Self slipped ext/int.

PARALLELS: Hazor, Phase XIV, Yadin et.al. (1961), Pl. CLVIII:19; Kamid el Loz, Phase 9, Marfoe (1979), p.40, CT.17; Busra, Phase 19, Pl. 23:312.
Type A(v): Upright Outflaring Swollen Rounded Rim (Fig. 55:7-9)

CN 263#: I 200.82/1

PHASE E-B
Fairly finely levigated clay with many small and medium lime and yellowish grog, some chert, and a few red stone, quartz and black sand grits. Fired dark tan brown throughout. Slipped in pale browny buff ext./int. Squashed round handle joins flush with upper rim.

PARALLELS:

CN 319#: I 202.2/1

PHASE D
Fairly finely levigated clay with many small and medium grey stone, some chert, and a few reddish stone grits. Fired pale browny buff throughout. Self slipped in orangey brown ext./int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 37:46; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 50:2; Tell Ghassil, Phase VII, Doumet (1986), Pl. 62:2; Sarepta, Phase H, Anderson (1988), Pl. 25:3; Busra, Phase 19, Seeden (1986), Pl. 18:173; Jericho, Phase XI, Kenyon & Holland (1982), Fig.132:9; Kamid el Loz, Phase 19-25, Marfoe (1979), p.43, T.187b; Hazor, Phase III, Yadin et.al. (1961), Pl. CCXCII:12; Hazor, Phase XIV, Yadin et.al. (1961), Pl. CC:4; Hama G, Fugmann (1958), Fig. 143, O 497.

CN 306#: I 200.67/25

PHASE C
Fairly to quite finely levigated clay with many small and medium dark grey to black stone, some brown to grey chert and lime, and a few orangey grog and yellowish
stone grits. Fired orangey brown throughout. Slipped in pale tan brown ext./int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 20:47; Oumm el Marra, 'LB I' Phase, Tefnin (1983), Fig. 4:8; Busra, Phase 20, Seeden (1986), Pl. 15:104.

Type B: Upright Complex Exterior Rim with Interior Carination (Fig. 56:1-2)

CN 409#: I 250.2/1
PHASE G Fairly finely levigated clay with many small lime, some chert and a few orangey grog grits. Fired greenish buff throughout. Self slipped ext./int.

PARALLELS: Hazor, Phase III, Yadin et.al. (1961), Pl.CXCIX:6; Ebla IIIA, Matthiae (1982), Fig. 24:14; Busra, Phase 28, Seeden (1986), Pl.11:5.

CN 410#: I 200.111/1
PHASE F Quite finely levigated clay with many small and medium lime and some dark grey chert grits. Fired brick red throughout. Thick pale browny buff slip ext./int.

PARALLELS: Jericho, Phase IX, Kenyon & Holland (1982), Fig.126:5.

Type C(i): Upright Triangular Rim (Fig. 56:3)

CN 285#: I 200.59/4
PHASE D-B Fairly finely levigated clay with many small and medium lime, some chert, and a few orangey grog grits. Fired pale tan brown throughout. Slipped in pale yellowish buff ext./int. Traces of handle attachment on and slightly above rim.

PARALLELS: Hazor, Phase XVI, Yadin et.al. (1961), Pl. CCXXXV:31; Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXXXVI:23; Jericho, Phase XI-XII, Kenyon & Holland (1982), Fig.137:28; Kamid el Loz, Phase 17-18, Marfoe (1979), p.38, T.169b; Busra, Phase 17, Seeden (1986), Pl. 17:136.
Type C(ii): Upright Offset Rounded Triangular Rim (Fig. 56:4)

CN 123#: I 602.1/14

PHASE G Fairly finely levigated clay with many small and some medium black stone and lime, some chert, and a few red stone grits. Fired dark grey at core and orangey buff at surfaces. Thin red slip ext. and rim/upper neck int.

Type D(i): Upright Rounded Trefoil Rim (Fig. 56:5)

CN 124#: I 162.2/1

PHASE G Fairly to quite finely levigated clay with many small and some medium lime and small black sand (?), some chert and a few red stone grits. Fired pale browny buff throughout. Off white slip ext. and rim/neck int.

PARALLELS: Tell Ghassil, Phase XI, Doumet (1986), Pl. 7:9; Jericho, Phase X, Kenyon & Holland (1982), Fig.126:21; Kamid el Loz, Phase 11-12, Marfoe (1979), p.36, CT.21.

Type D(ii): Upright Outflaring Trefoil Rim (Fig. 56:6)

CN 141#: I 151.35/8

PHASE G-F Quite finely levigated clay with many small and some medium lime, and a few yellowish stone and black stone grits. Fired dark browny brick red throughout. Dark grey slip ext./int.

Type E: Upright Square Rim (Fig. 57:1)
CN 339#: I 200.34/21

PHASE C

Fairly finely levigated clay with many small and medium grey stone, some lime and a few red grog grits. Fired orangey tan brown throughout. Slipped in pale browny buff ext./int. Ovoid handle joins at slightly below rim.

PARALLELS:

Tell Ghassil, Phase XI, Doumet (1986), Pl. 7:4; Tell Ghasil, Phase VIII, Doumet (1986), Pl. 51:11; Tell Arqa, Phase 13, Thalmann (1979), Fig. 4 [R]; Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXLI:20; Kamid el Loz, Phase 4, Marfoe (1979), p.36, CT.8.

JUGLETS

Type A: Upright Rounded Ridged Neck Rim (Fig. 57:2-3)

CN 199#: I 230.1/51

PHASE G

Fairly finely levigated clay with many small and some medium lime, some chert, and a few red grog and micaceous grits. Fired pale browny buff throughout. Thick orangey brown slip ext./int.

PARALLELS:

Tell Ghassil, Phase XI, Doumet (1986), Pl. 8:3; Atchana V, Woolley (1955), Pl. CXX:120; Kamid el Loz, Phase 10, Marfoe (1979), p.44, T.138; Jericho, Phase X-XII, Kenyon & Holland (1982), Fig.132:2.

CN 212#: I 151.6/4

PHASE G

Fairly finely levigated clay with many small and some medium to large lime and browny grey stone, some red grog and a few black stone grits. Fired pale browny buff at core and orangey brick red at surfaces. Self slipped in orangey buff ext./int.

PARALLELS:

Tell Ghassil, Phase XI, Doumet (1986), Pl. 6:2; Atchana IV, Woolley (1955), Pl. CXII:41b.
Type B: Thickened Concave Deep Interior Ledge Rim (Fig. 57:4)

CN 213#: I 151.6/5
PHASE G

Fairly to quite finely levigated clay with many small and some medium black stone and chert, and a few small lime grits. Fired dark charcoal grey throughout. Slipped in orangey brownish buff ext./int. Burnished neck and rim int.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 36:5; Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXLI:13; Kamid el Loz, Phase 10, Marfoe (1979), p.39, CT.36; Sarepta, Phase J/H, Anderson (1988), Pl. 24:5; Tell Arqa, Phase 13, Thalmann (1979), Fig.4 [UL]; Tell Arqa, Phase 12r, Thalmann (1978), Fig. 49:7.

Type C(i): Upright Rounded Rim with Interior Ledge (Fig. 57:5)

CN 51#: I 110.1/2
PHASE D

Very finely levigated clay with many small and a few medium lime, and a few black sand grits. Fired dark brown at core and grey at surfaces. Self slipped ext./int.

PARALLELS:

Type C(ii): Pinch Rounded Rim with Interior Ledge (Fig. 57:6-7)

CN 371#: I 201.2/17
PHASE D

Quite finely levigated clay with some small black and a few grey chert grits. Fired dark reddish brown at core and dark grey at surfaces. Thick orangey brown slip ext./int.

PARALLELS:
Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXVI:9.

CN 335#: I 200.36/1
PHASE C

Fairly to quite finely levigated clay with many small and medium chert, some white
shell (?), and a few dark red stone grits. Fired dark fawn brown throughout. Thick orangey brown slip ext./int. Squashed ovoid handle joins slightly below upper rim.

PARALLELS:

Type D: Simple Upright Rounded Rim (Fig. 57:8)

CN 331#: I 200.38/3

PHASE C
- Quite finely levigated clay with many small and a few medium lime, some orangey grog, and a few small black sand (?) grits. Fired dark browny grey throughout. Self slipped in dark char grey ext./int. Squashed ovoid handle joins at slightly above upper rim.

PARALLELS:

LAMPS

Type A: Simple Upright Rounded Rim with Slightly Pinched Lip

CN 407#: I 250.1/4

PHASE G
- Fairly finely levigated clay with many small lime, some orangey grog, black sand (?), and a few chert grits. Fired pale browny buff throughout. Self slipped ext./int.

BASES

Type A(i): Wide Flat Convex Walled Base (Fig. 58:1-4)

CN 134#: I 151.41/1

PHASE H-C
- Fairly finely levigated clay with many
small and medium orangey red grog, some lime, and a few chert and black stone grits. Fired pale browny buff throughout. Buff slip ext. and pale greenish off white slip int.

CN 175#: I 230.4/2

PHASE G Fairly to quite finely levigated clay with many small and some medium lime, some red grog, and a few yellowish stone and chert grits. Fired dark char grey at core and dark reddish brown at surfaces. Self slipped, fired orangey brown ext. and reddish brown int.

CN 147#: I 151.33/8

PHASE G-D Moderately to fairly finely levigated clay with many small and a few medium black stone, chert, some red grog and micaceous, and a few lime grits. Fired pale pinkish buff at core and pale browny buff at surfaces. Self slipped ext/int.

CN 127#: I 110.3/3
PHASE G-D

Fairly finely levigated clay with many small and medium red stone, some lime and black stone, and a few chert grits. Fired pinkish orangey buff at core, and pale browny buff at surfaces. Traces of self slip ext. Smoothe circular hole (c.20 mm dia.) cut in lower body wall.

PARALLELS: Tell Ghassil, Phase XI, Doumet (1986), Pl. 11:8; Tell Ghassil, Phase X, Doumet (1986), Pl. 26:5; Tell Ghassil, Phase IX, Doumet (1986), Pl. 45:3; Kamid el Loz, Phase 2, Marfoe (1979), p.28, BT.2; Busra, Phase 23, Seeden (1986), Pl.14:84; Hama H, Fugmann (1958), Fig.110, 3C 655.

Type A(ii): Narrow Flat Convex Walled Base (Fig. 58:5)

CN 208#: I 151.7/3

PHASE G

Fairly finely levigated clay with many small and some medium lime, some red grog and a few chert grits. Fired medium char grey throughout. Self slipped, fired dark greyish brown ext./int.

Type A(iii): Wide Flat Concave Walled Base (Fig. 58:6-11)

CN 164#: I 230.5/19

PHASE G

Moderately to fairly finely levigated clay with many small and some medium lime, some chert and red stone, and a few black stone grits. Fired dark orangey brown throughout. Grey slip ext. only.

CN 215#: I 151.6/10

PHASE G

Moderately to fairly finely levigated clay with many small and medium dark grey to brown stone, some red grog, and a few chert
and lime grits. Fired pale green throughout. Self slipped ext/int.

PARALLELS:
Hazor, Phase III, Yadin et al. (1961), Pl. CCLXI:6; Ebla, "Tomb of the Lord of the Goats", Matthiae (1979), p.167, no.2; Hama H, Fugmann (1958), Fig.132, 5A 528.

CN 166#: I 230.5/21
PHASE G-F
Fairly finely levigated clay with many small and medium orangey grog, and a few grey chert grits. Fired pale pinkish buff throughout. Self slipped in pale browny buff ext. only.

PARALLELS:

CN 216#: I 151.6/11
PHASE G-C
Moderately to fairly finely levigated clay with many small and some medium chert, some red grog, and a few brown stone and lime grits. Fired reddish char grey at core, and orangey pinkish buff at surfaces. Self slipped ext. only.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 45:7; Kamid el Loz, Phase 14-15, Marfoe (1979), p.15, CT.30; Kamid el Loz, Phase 17-18, Marfoe (1979), p. 21, CT.53; Busra, Phase 17, Seeden (1986), Pl. 22:280; Hama H5, Fugmann (1958), Fig.109, 3C 505; Hama G, Fugmann (1958), Fig.143, O9.

CN 165#: I 230.5/20
PHASE G-C
Fairly finely levigated clay with many small and a few medium lime, some chert and orangey red grog, and a few black stone and orangey stone grits. Fired medium char grey throughout. Slipped in orangey brown ext. only.

PARALLELS:
Tell Ghassil, Phase IX, Doumet (1986), Pl. 45:8; Busra, Phase 13, Seeden (1986), Pl.18:158.

CN 334#: I 200.38/61
PHASE D-C
Quite finely levigated clay with many small black stone, some lime, and a few
orangey grog grits. Fired dark browny grey throughout. Thick reddish brown slip ext./int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 45:6; Tell Ghassil, Phase VIII, Doumet (1986), Pl. 57:16; Busra, Phase 26, Seeden (1986), Pl. 12:26; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLX1:11; Hama G, Fugmann (1958), Fig. 153, 5A 516.

Type A(iv): Narrow Indented Concave Walled Base (Fig. 58:12)

CN 384#: III 210.1/2
PHASE F
Fairly to quite finely levigated clay with many small lime, some chert, and a few brown stone grits. Fired greyish fawn brown throughout. Self slipped ext. only. Even wide concave groove around base.

PARALLELS: Tell Ghassil, Phase VIII, Doumet (1986), Pl. 57:15; Hama G, Fugmann (1958), Fig. 161, 5B 37.

Type A(v): Wide Flat Straight Sided Base (Fig. 59:1-4)

CN 133#: I 151.46/1
PHASE H
Coarsely levigated clay with many small and medium chert, some large red stone, and a few black stone and lime grits. Fired dark reddish brown throughout. Chaff tempered. Wet Smoothed.

CN 132#: I 151.55/1
PHASE H-C
Moderately to fairly finely levigated clay with many small and some medium to large red stone, black stone, lime and chert grits. Fired pale brownish buff throughout. Self slipped ext./int. Wet Smoothed.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 45:5; Tell Ghassil, Phase VIII, Doumet

CN 228#: I 171.9/8

PHASE G

Moderately levigated clay with many small and medium black stone, some red grog, and a few micaceous grits. Fired dark grey at core and reddish brown at surfaces. Self slipped in reddish brown ext/int.

PARALLELS:

Tell Ghassil, Phase IX, Doumet (1986), Pl. 45:10; Kamid el Loz, Phase 5-10, Marfoe (1979), p.24, CT.16; Busra, Phase 26, Seeden (1986), Pl. 13:61; Busra, Phase 16, Seeden (1986), Pl.17:149; Jericho, Phase XI, Kenyon & Holland (1982), Fig.143:5.

CN 356#: I 201.20/28

PHASE G-F

Quite finely levigated clay with many small lime, some yellowish grog, and a few chert grits. Fired dark chocolate brown at core and orangey brown at surfaces. Self slipped in dark chocolate brown ext/int. Wet smoothed.

PARALLELS:

Type A(vi): Narrow Flat Straight Sided Base (Fig. 59:5-6)

CN 128#: I 400.1/2

PHASE G

Fairly to quite finely levigated clay with many small and some medium black stone, some grey, and a few small red grog and lime grits. Traces of pale brown core, otherwise fired pale greenish grey throughout. Self slipped ext. Wet smoothed.

PARALLELS:

CN 148#: I 151.33/9

PHASE G

Fairly finely levigated clay with many small and a few medium chert, some black stone and red grog, and a few lime grits. Fired medium char grey throughout. Self
slipped in dark char grey ext./int.

Type B(i): Angular Low Ring Base (Fig. 59:7-9)

CN 129#: I 601.1/7

PHASE G

Fairly finely levigated clay with many small and some medium to large lime, some black stone, and a few chert grits. Fired grey at core and orangey brown at surfaces. Self slipped, fired dark brownish grey ext./int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 45:20; Hazor, Phase III, Yadin et.al. (1961), Pl. CCXLI:14; Ebla, "Tomb of the Lord of the Goats", Matthiae (1979), p.171, no.2; Hama H, Fugmann (1958), Fig. 110, 3A 797.

CN 326#: I 201.27/2

PHASE E

Quite finely levigated clay with many small and medium lime, some chert, and a few yellowish stone and black stone grits. Fired dark grey throughout. Slipped in thick orangey brown ext./int.

PARALLELS: Kamid el Loz, Phase 16-18, Marfoe (1979), p.13, CT.34; Busra, Phase 19, Seeden (1986), Pl.18:168; Hama H, Fig.110, 3K 155; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLIX:13.

CN 314#: I 200.67/92

PHASE C

Fairly finely levigated clay with many small and a few medium lime, some chert, and a few yellowish stone and black stone grits. Fired dark char grey at core, and fawn to tan brown at surfaces. Self slipped in orangey tan brown ext./int.

PARALLELS: Tell Ghassil, Phase IX, Doumet (1986), Pl. 45:17; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXXXVIII:12; Hama G, Fugmann (1958), Fig. 161, 5B 41.

Type B(ii): Rounded Low Ring Base (Fig. 59:10-11)

CN 250#: I 170.4/5
PHASE G
Moderately to fairly finely levigated clay with many small and medium chert, some dark grey stone, and a few brown stone grits. Fired dark reddish brown throughout. Self slipped ext./int.

CN 312#: I 200.67/84
PHASE G-C
Fairly finely levigated clay with many small and medium lime and yellowish stone, some reddish grey stone, and a few chert grits. Fired dark char grey at core, and reddish tan brown at surfaces. Self slipped ext./int.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl. 57:21; Kamid el Loz, Phase 14, Marfoe (1979), p.37, T.164, Hazor, Phase III, Yadin et.al. (1961), Pls. CCLXIII:29, CCLXXXVIII:3; Hama H2, Fugmann (1958), Fig.124, 2C 972; Hama G, Fugmann (1958), Fig. 153, 5A 545; Busra, Phase 26, Seeden (1986), Pl. 12:28.

Type C(i): Rounded Ring Base (Fig. 60:1-5)

CN 373#: I 201.2/30
PHASE D
Quite finely levigated clay with many small lime, some brown and grey chert, and a few orangey grog grits. Fired light char grey at core, and reddish brown at surfaces. Pale brown slip ext./int.

CN 374#: I 201.2/31
PHASE D
Fairly to quite finely levigated clay with many small black sand (?), some brown stone and a few orangey grog grits. Fired light grey at core and pale fawn brown at surfaces. Orangey brown slip ext. only. Fine Black wash over slip, very friable. Burnished on wheel, ext. only.

CN 315#: I 200.67/93
PHASE D-C
Fairly to quite finely levigated clay with many small black sand, some chert, and a few red stone and lime grits. Fired pale yellowish green throughout. Self slipped ext. only.

CN 281#: I 200.61/2
PHASE C-B

Fairly finely levigated clay with many small black stone and lime, some chert and red stone, and a few micaceous grits. Fired dark char grey at core and greyish tan brown at surfaces. Thick orangey brown slip ext. only.

PARALLELS:

CN 413#: I 200.50/2

PHASE C-A

Moderately to fairly finely levigated clay with many small and medium chert, some orangey grog and yellowish stone, and a few red stone grits. Fired fawn brown throughout. Self slipped ext./int.

PARALLELS:

Type C(ii): Pinch Rounded Ring Base (Fig. 60:6)

CN 262#: I 200.83/5

PHASE E

Quite finely levigated clay with many small and a few medium dark brown to grey chert, some small dark brown stone, and a few lime and micaceous grits. Fired dark tan to orangey brown throughout. Self slipped ext./int.

PARALLELS:
Kamid el Loz, Phase 23-25, Marfoe (1979), p. 65, BT.15; Hama H1, Fugmann (1958), Fig.127, 2D 211; Hama G, Fugmann (1958), Fig.143, N 998.

Type C(iii): Rounded High Ring Base (Fig. 60:7)

CN 313#: I 200.67/90

PHASE E-C

Fairly finely levigated clay with many small and medium lime, some chert, and a few dark grey stone grits. Fired dark grey throughout. Slipped in orangey brown ext./int.

PARALLELS:
Tell Ghassil, Phase VIII, Doumet (1986), Pl.
57:26; Hazor, Phase XV, Yadin et.al. (1961), Pl. CCXL:2; Hama H3, Fugmann (1958), Fig. 120, 2C 906; Hama G, Fugmann (1958), Fig. 153, 5A 524.

Type D(i): Square Ring Base (Fig. 60:8)

CN 311#: I 200.67/75

PHASE G-B Fairly finely levigated clay with many small and some medium black stone, some chert, and a few lime and red stone grits. Fired browny grey at core and orangey brown at surfaces. Slipped in reddish brown ext. only. Wet smoothed.

PARALLELS: Tell Ghassil, Phase VIII, Doumet (1986), Pl. 57:25; Kamid el Loz, Phase 16-18, Marfoe (1979), p.38, T.59; Hazor, Phase III, Yadin et.al. (1961), Pl. CCLXXXVIII:3; Hama G, Fugmann (1958), Fig. 153, 5A 521.

Type D(ii): Pinched Complex Interior Ring Base (Fig. 60:9-10)

CN 244#: I 171.1/2

PHASE G-C Fairly to quite finely levigated clay with many small and a few medium black stone and lime, and a few small chert grits. Fired pale tan brown throughout. Self slipped ext./int.

CN 279#: I 200.62/2

PHASE B Moderately to fairly finely levigated clay with many small and medium dark grey stone, some chert, and a few orangey grog and quartz grits. Fired pale ashy grey at core and dark ashy grey at surfaces. Self slipped ext. only.

PARALLELS: Tell Ghassil, Phase VII, Doumet (1986), Pl. 69:7.
Type E(i): Wide Disc Base

CN 178#: I 230.3/3
PHASE G Fairly to quite finely levigated clay with many small and medium black stone, some white shell (?), and a few red grog grits. Fired pale greenish buff throughout. Self slip (?) ext. only.

CN 340#: I 200.34/23
PHASE C Fairly to quite finely levigated clay with many small and medium white shell (?), some yellowish grog and a few orangey grog grits. Fired dark browny grey throughout. Self slipped, fired browny grey ext. and pale orangey brown int. Wet Smoothed. Shallow concave groove horizontally around body/base join. Traces of vertical 'Stroke Burnishing' over body ext.

Type E(ii): Wide Flattened Disc Base (Fig. 61:1-2)

CN 200#: I 230.1/52
PHASE G-E Quite to very finely levigated clay with many small black sand (?), some small and medium red grog and lime, and a few micaceous grits. Fired dark grey at core, and browny buff at surfaces. Self slipped ext./int. (?)...

CN 155#: I 230.7/5
PHASE G-D Fairly to quite finely levigated clay with many small and some medium black stone, some chert, grey stone, yellowish grog, and...
a few lime grits. Fired dark char grey throughout. Self slipped ext. only.

PARALLELS: Hazor, Phase III, Yadin et.al. (1961), Pl. CCXLI:19; Busra, Phase 26, Seeden (1986), Pl. 13:60.

Type E(iii): Narrow Flattened Disc Base (Fig. 61:3)

CN 186#: I 230.1/19
PHASE G Quite finely levigated clay with many small and some medium lime, some orangey grog, and a few chert grits. Fired dark grey at core, and browny grey at surfaces. Self slipped, fired dark grey ext. and browny dark grey int. Base displays heat cracks ext./int.

Type F: Flattened Button Base (Fig. 61:4)

CN 316#: I 200.67/96
PHASE C-A Fairly to quite finely levigated clay with many small and medium dark grey stone, some chert and a few lime grits. Fired fawn brown throughout. Slipped in thick orangey brown ext./int.

Type G(i): Flat Carinated Trumpet Base (Fig. 61:5)

CN 152#: I 230.23/1
PHASE G-F Quite finely levigated clay with many small and some medium lime, some black stone and chert, and a few red grog grits. Fired dark char grey throughout. Self slipped ext./int.

PARALLELS: Tell Ghassil, Phase X, Doumet (1986), Pl. 26:10; Tell Ghassil, Phase VIII,
Type G(ii): Flat Solid Carinated Trumpet Base (Fig. 61:6)

CN 408#: I 250.1/5
PHASE G
Quite finely levigated clay with many small and medium lime, some chert and a few orangey grog grits. Fired brownish dark grey throughout. Thick pale orangey buff slip ext.
PARALLELS: Hama H1, Fugmann (9158), Fig.132, 5A 522; Hama G, Fugmann (1958), Fig. 161, 5B 133.

Type H(i): Outflaring Rounded Elevated Ring Base (Fig. 61:7-8)

CN 227#: I 171.9/5
PHASE G
Fairly finely levigated clay with many small and some medium lime, some dark brown to black stone, and a few red stone, chert, and micaceous grits. Fired greyish brown throughout. Self slipped ext./int.

CN 261#: I 200.83/4
PHASE G-B
Fairly finely levigated clay with many small and medium chert, some grey stone and yellowish grog, and a few quartz grits. Fired reddish brown throughout. Self slipped ext./int.
PARALLELS: Kamid el Loz, Phase 12, Marfoe (1979), p.18, CT.39; Hama H5, Fugmann (1958), Fig.109, 3B 546.

Type H(ii): Outtumed Rounded Elevated Ring Base (Fig. 61:9)

CN 236#: I 171.6/8
PHASE G
Fairly to quite finely levigated clay with many small and medium chert, some quartz and black stone, and a few red grog and lime grits. Fired dark browny char grey at core and greyish tan brown at surfaces. Self slipped in pale browny buff ext. and
Type H(iii): Pinch Rounded Elevated Ring Base (Fig. 61:10)

CN 77#: I 600.1/2
PHASE G

Fairly finely levigated clay with many small and some medium black stone, some lime and a few chert grits. Fired greyish brown at core and reddish brown at surfaces. Self slipped in orangey brown ext./int.

Type H(iv): Outturned Rounded Ridged Elevated Base (Fig. 61:11)

CN 45#: I 604.7/1
PHASE G-D

Quite finely levigated clay with many small and some medium black stone, some lime, and a few micaceous grits. Fired pale brick red at core and browny buff at surfaces. Thick self slip ext./int.

Type J(i): Outflaring Square Elevated Ring Base (Fig. 62:1-2)

CN 171#: I 230.5/27
PHASE F

Fairly finely levigated clay with many small and some medium to large lime, some chert, and a few black stone and red grog grits. Fired pale brick red throughout. Self slipped in pinkish browny buff ext./int.

PARALLELS:
Kamid el Loz, Phase 14, Marfoe (1979), p.19, BT.10; Hazor, Phase IV, Yadin et.al. (1961), Pl. CCXCVI:18.

CN 277#: I 200.62-63/3
PHASE C-B

Quite finely levigated clay with many small and some medium grey chert, some lime and red stone, and a few quartz grits. Fired orangey brown throughout. Self slipped ext./int.

PARALLELS:
Kamid el Loz, Phase 14, Marfoe (1979), p.18,
Type J(ii): Outflaring Rilled Elevated Ring Base (Fig. 62:3)

CN 239#: I 171.6/11
PHASE G
Fairly finely levigated clay with many small and medium lime, some orangey grog, and a few chert grits. Fired pale brown throughout. Orangey brown self slip ext./int.
PARALLELS:
Hazor, Phase XVII, Yadin et al. (1961), Pl. CLVI: 28; Ebla, "Tomb of the Lord of the Goats", Matthiae (1979), p.171, no.3;
Hama H1, Fugmann (1958), Fig.127, 4C 434.

IMPORTS

Type A (ii): Mycenaean Stirrup Jar (Fig. 63:4)

CN 291#: I 200.51/4
PHASE B
Very finely levigated clay with many very small black stone and lime grits. Fired tan brown throughout. Slipped in pale yellowish buff ext./int. Three thick bands of dark brown to black paint horizontally around body ext. Paint is burnished on wheel. The piece is a convex shoulder body sherd from a stirrup jar.
PARALLELS:
Mycenaean IIIB1 Stirrup Jar, FS 182/183, Furumark (1941), p.43 & Fig. 12; Kamid el Loz, Phase 19-25, Marfoe (1979), p.62, IT.16.

Type A(ii): Mycenaean or Imitation Mycenaean (Fig. 63:5)

CN 420#: I 201.9/87
PHASE D
Very finely levigated clay with a few small black and micaceous grits. Fired tan brown throughout; Pale buff slip ext. only. Two horizontal bands of red paint around body
ext. Painted bands are wheel burnished. The piece is very small but is possibly an upper body/shoulder piece of a stirrup jar.

Type B(i): Cypriot Base Ring II Jug (Fig. 62:4 & Fig. 63:1-3)

CN 382#: III 210.4/1

PHASE C
Fairly finely levigated clay with many small lime and grey chert, some brown grog and a few yellowish grog grits. Fired medium blue grey throughout. Thick orangey brown to dark chocolate brown slip ext./int. Wet smoothed. Traces of Three (+) Comb off white Painted Decoration horizontally around neck ext.

PARALLELS: Åström (1972a), Fig. LIII:2; Kamid el Loz, Phase 19-25, Marfoe (1979), p.62, IT.12.

CN 421#: III 210.5/17

PHASE C
Quite finely levigated clay with some small black, white and some yellow grits. Fired smokey bluish-grey throughout. Thick mottled orangey-red to grey slip ext./int. Four comb off-white painted criss-cross decoration on body ext. This sherd might belong to the same vessel as CN 382#.

CN 422#: III 210.5/18

PHASE C
Quite finely levigated clay with many small black, brown and yellowish-white grits. Fired bluish-grey throughout. Mottled thick orangey-red to grey slip ext./int. Four comb horizontal and vertical off-white painted decoration on body ext. Sherd is very likely to belong to the same vessel as CN 421#.

CN 423#: III 210.4/3

PHASE C
Quite finely levigated clay with many small and some medium black and white grits. Fired bluey-grey throughout. Thick mottled orangey-brown to dark grey slip ext./int. Painted decoration of five (+) vertical bands down body ext. This sherd is very likely to
belong to the same vessel as CN 382#.

CN 424: III 210.1/19
PHASE C

Quite finely levigated clay with many small black and white grits. Fired bluey-grey throughout. Thick orangey-brown slip ext./int. Four comb vertical band off-white painted decoration ext.

Type B(ii): Cypriot White Slip II Milk bowl (Fig. 62:5)

CN 392#: III 206.44/1
PHASE C

Fairly finely levigated clay with many very small micaceous, some lime, and a few grey chert grits. Fired light grey at core and chocolate brown at surfaces. Thick off white to pale brown slip ext./int. Wet smoothed ext./int. Dark chocolate brown painted 'Framed Lozenge Style' Ladder Band decoration horizontally around body ext. only.

PARALLELS: Åström (1972a) White Slip II "Hooked Chain Style" Fig.LXXXIV:2; Popham apud. Åström (1972a), Fig.54:9; Kamid el Loz, Phase 19-25, Marfoe (1979), p.62, IT.1.

Type C: Chocolate-on-White ware Jug (Fig. 64:1-3)

CN 425#: I 250.2/70
PHASE G

Fairly to quite finely levigated clay with many small and a few medium black stone, white lime and a few orangey grpg grits. Fired tan brown throughout. Pale browny-buff self slip ext./int. Painted decoration in dark bluish-black ext. Five vertical lines above two horizontal lines. Mid-body sherd of a jug/jar.

PARALLELS: Pella, Tomb 62 [Phase VI], RN 72683; Potts in PIJ 2 (in press).

CN 426#: I 250.1/65
PHASE G

Fairly to quite finely levigated clay with many small and a few medium black stone, white lime and yellowish stone grits. Fired
pale orangey buff throughout. Off white to buff slip ext./int. Four horizontal bands of reddish brown paint around body ext. Probably an upper body sherd of a smallish jug.

PARALLELS: Pella, Tomb 62 [Phase VI], RN 72695; Potts in PIJ2 (forthcoming).

CN 427#: I 200.105/4

PHASE F

Fairly to quite finely levigated clay with many small black stone and off-white grits. Fired tan brown throughout. Pale buff to off-white slip ext./int. Three horizontal bands of dark brownish-red paint ext. Probably from a small jar.

PARALLELS: Pella, Tomb 62 [Phase VI], RN 72695, Potts in PIJ2 (forthcoming).

Shape Typology: Summary of Frequencies (Fig. 66:1-4 & Table 1)

Comments on the shape typology are confined to general remarks which seek to establish a tentative relative chronology and floruit for each type described above. The conclusions advanced below must of necessity be regarded as provisional. Whilst a full presentation of the Trenches II & III typology may modify some of the conclusions advanced below, the chronological context of most parallels are reliable and suggest the broad pattern will remain the same.

A. Cooking Pots

Type A; Common H-G, Frequent F, Residual E-D. The earliest form identified is Type A. Although common in the MBIIA period at Hazor, Hama and Kamid el Loz, it is long-lived, and appears throughout the MBIIIB period at Hazor, Gezer and Pella in the south, and Kamid el Loz and Tell Ghassil in the north. It continues in small numbers until the end of the Middle Bronze Age at Tell Ghassil and Kamid el Loz. Rare examples appear to continue on into the earliest phases of the LBI at Kamid el Loz and Hazor, although these may be residual.

Type B; Common G-F, Frequent E-D, Rare C. The Type B Square Rims appear in the second half of the Middle Bronze Age at Hama and Tell Ghassil in the north, and Hazor and Jericho in the south, but have their main period of

23 When discussing frequencies below, "Common" means over 50% of the type examples occur in any given phase; "Frequent" means between 25-50%, "Rare" between 10-25%, and "Residual" less than 10%.
production in the early Late Bronze Age in the northern sites of Kamid el Loz, Tell Arqa, Tell Ghassil, Hama and Busra. They do not appear to continue in southern sites.

Type C(i); Common G, Frequent F-E, Rare D-B. The Type C(i) Upright Outflaring Square Rims occur in the MBIIA/B periods at Hama, Hazor and Jericho, and become frequent in the MBIIC period at these sites and Tell Ghassil. LBI examples are known from Tell Arqa, Tell Ghassil, Hazor and perhaps Jericho. [Types C(ii) & C(iii); Common G, Frequent F, Rare E-B] Types C(ii)-(iii) appear in the MBIIB period at Ebla, are common in the MBIIC period at Jericho, Hazor, Tell Ghassil, Kamid el Loz and Hama, and continue into the LBI period at Sarepta, Tell Arqa, Hazor, Kamid el Loz and Tell Ghassil. Rare LBI examples are known from Hazor.

Type D; Frequent G, Common F-D, Rare C. The Type D Bifurcated Rims appear in the MBIIC period Tell Ghassil, Hama and Tell Arqa, but are most common during the LB I period in these sites and the southern sites of Sarepta, Hazor and Jericho. Rare examples continue into the LB II at Tell Ghassil and Hazor, although these latter may be residual.

Type E; Rare G, Frequent F, Common E-C, Frequent B. The Type E Upright Outturned Triangular Rims appear in the MBIIC period at Hazor and Jericho in the south, and Kamid el Loz in the north, but are much more common in the LB I period at Hazor, Kamid el Loz, Tell Ghassil, Busra, Tell Arqa and el Qitar, and continue into the LB II period at el-Qitar, Tell Ghassil, Kamid el Loz and Hazor.

Type F; Rare C, Frequent B-A. The Type F Thick Collared Rim cooking pot would normally be considered typical of the Early Iron Age. Whilst this is undoubtedly so, at least in the south, the type appears in limited numbers in the LBIIB period at el-Qitar, Tell Ghassil, Kamid el Loz and, most intriguingly, at Bates Island Site, recently "rediscovered" within the harbour of Mersa Matruh, Western Egypt. The type is also well known at Pella in Jordan, in the LBIIB period East Cut Phases I-II 24.

B. Open Bowls

Type A(i); Common G, Frequent F. The Type A(i) Rounded Triangular Rims appear in the MBIIB period at Hama, Hazor, Tell Ghassil and Ebla and are common in the MBIIC at these sites and Tell Arqa, Sarepta and Jericho. Isolated

24 See Hulin (1989), Fig. 8 b for the Bates Island reference and discussion. A recent Masters thesis on the LB/EI Cooking pots at Pella has emphasised this conclusion with respect to the Pella material. For the Pella East Cut phasing, see Hennessy et.alii (1989), pp. 421-425, and Potts in McNicoll et.alii. (in press), pp.136-164. Equally, it is worth noting that this LB/EI type appears in the LBIIB Amuq M material presented in Appendix 2, below.

171
examples continue into the LB period at Kamid el Loz, Hama and perhaps Atchana.

Type A(ii); Residual A (?). Type A(ii) Projective Rounded Rims appear in the late Middle Bronze Age at Jericho and Hama, but appear to be more common in the LBI period, at Kamid el Loz, Hazor and Sarepta. Isolated examples exist in the LBIIA at Kamid el Loz, but are probably residual there as they probably are at TNM.

Type A(iii); Common F-D, Frequent C, Rare B. Type A(iii) Swollen Rounded Rims appear towards the end of the MBIIC period at Ebla, Hama, Kamid el Loz and Busra, are common in the LBI at these sites as well as Tell Ghassil, Hazor, Sarepta and el-Qitar. The type continues to be fairly frequent in the LBII period at Tell Ghassil, Sarepta, Kamid el Loz and Busra.

Type A(iv); Common F-E. Type A(iv) Pinch Swollen Rims appear in the MBIIC period at Hazor, Shechem, and perhaps Hama, are common at Hazor, Sarepta, Kamid el Loz and Hama in the LBI period, and occur with less frequency at Kamid el Loz and Sarepta early into the LBII period.

Type A(v); Common G, Frequent F-E, Rare D-B. Type A(v) Upright Triangular Rims appear in the MBIIB period at Hama, Byblos, Tell Ghassil, Kamid el Loz, Shechem and Jericho, are common in these sites and Ebla, Busra and Hazor in the MBIIC and LBI periods. The type is fairly frequent at Kamid el Loz, Tell Ghassil, Busra and perhaps Atchana in the early LBII.

Type A(vi); Frequent E-D. The Type A(vi) Rilled Triangular Rim appears at Hazor and Tell Arqa in the LBI and continues into the early LBII at Sarepta.

Type B(i); Common G, Frequent F. Type B(i) Inverted Triangular Rims begin in the MBIIB at Hama, Byblos and Tell Ghassil, and are common in el-Qitar, Ebla, Hama and Tell Ghassil in the MBIIC period. They continue fairly frequently into the LBI period at Atchana, Oumm el Marra, Ugarit and Tell Ghassil.

Type B(ii); Rare F, Residual E-D. Type B(ii) Pinched Triangular Rims appear in the MBIIB at Hama and are common in the MBIIC at Tell Ghassil, Busra and Hazor. They do not appear to be well documented in LB contexts, so that all the Tell Nebi Mend LB appearances may be residual.

Type B(iii); Rare G-F. Type B(iii) Rilled Triangular Rims appear in the MBIIC at Jericho, and continue into the LBI at Busra.

Type B(iv); Rare D. Type B(iv) Rounded Triangular Rims are common in the LB I at Atchana and frequent in the LBII at the same site.

Type C; Common F-E, Frequent D-C, Rare B. Type C Inverted Rounded Rims appear in the MBIIC at Atchana, Ebla, Hama, Tell Ghassil, Kamid el Loz, Shechem and Jericho, and are common at Atchana, Oumm el Marra, el-Qitar, Ugarit, Kamid el Loz, Sarepta, Busra and Hazor in the LBI period. The type is fairly frequently found in the LBII at Busra and Sarepta.

Type D; Rare D-C. Type D Inverted Square Rims appear in the MBIIC at Hama and Hazor. Late LB examples are known at Kamid el Loz. However, it is
possible that the Kamid el Loz and TNM examples are residual.

Type E(i); Common G. Type E(i) Outflaring Pinch Rounded Rims appear towards the end of the MBIIIB period at Jericho, and are common there, at Hazor and Tell Ghassil in the MBIIIC period.

Type E(ii); Rare D-C. Type E(ii) Outflaring Rounded Rims appear towards the end of the MBIIIB period at Tell Ghassil and Kamid el Loz, are common in the MBIIIC and the LBI period at Busra, Hazor, Tell Ghassil and Hama. Rare examples may continue into the LBII period at Kamid el Loz, although here and at TNM they may be residual.

C. Fine Bowls

Type A(i); Frequent G, Common F-C, Rare B. Type A(i) Simple Rims appear in the MBIIIC at Shechem and Kamid el Loz, are common in the LB I at Atchana, Hama, Tell Ghassil, Kamid el Loz, Sarepta, Hazor and Jericho, and continue into the LBII at Busra, Kamid el Loz and Tell Ghassil.

Type A(ii); Frequent G, Common F-C, Rare B. Type A(ii) Upright Rounded Rims begin in the MBIIIC at Jericho, Shechem, Kamid el Loz and Tell Ghassil, are common in the LBI at Hazor, Sarepta, Kamid el Loz, Tell Ghassil, Hama and continue into the LBII at Tell Ghassil, Kamid el Loz and Sarepta.

Type A(iii); Rare F-B. Type A(iii) Outtumed Rounded Rims are common in the MBIIIB at Ebla, Hama and Shechem. LB II examples are known from Kamid el Loz. It is possible that here and at TNM the type is residual.

Type A(iv); Rare D. Type A(iv) Interior Ledge Rims are common in the MB IIC period at Jericho and Hazor, and known through rare examples during the LB at Busra. Both here and at TNM the type may be residual.

Type A(v); Rare D-C. Type A(v) Grooved Rims are known in the LB I period at Hama.

Type B; Common G-F, Frequent E-D. Type B Upright Inverted Rims appear in the MBIIIC at Shechem and perhaps Tell Arqa, and are known in the LBA at Hazor and Busra.

Type C; Frequent G-E, Residual D-A. Type C Outflaring Rounded Rims are frequent in the MBIIIC at Jericho, Tell Ghassil, Hama and Ebla and fairly common in the LBI at Hazor, Kamid el Loz, Tell Ghassil, Hama and Atchana. Rare LBII examples at Kamid el Loz and TNM may well be residual.

Type D; Frequent F, Common E-D. Type D Square Rims appear commonly in the LB I at Atchana, Tell Ghassil and Hazor and continue into the LBII at Tell Ghassil.

Type E; Frequent G-F, Rare E-D. Type E Exterior Ledge Rims appear commonly in the MBIIIC/LBI at Hama, Tell Ghassil and Hazor. It is possible that the LBII examples from TNM are residual.
D. Deep Bowls

Type A(i); Common G-F, Frequent E-C, Rare B. Type A(i) Simple Upright Rims appear in the MBIIC at Tell Ghassil, are common in the LB I here and at Atchana, Hama, Kamid el Loz, Hazor and Sarepta. The type continues fairly frequently into the LBII at Hazor, Sarepta, Kamid el Loz, Tell Ghassil, Hama and Atchana.

Type A(ii); Common G-F, Frequent E-C, Rare B. Type A(ii) Pinch Rounded Rims appear towards the end of the MBIIB at Atchana and Kamid el Loz, are common in the MBIIC and LBI at Tell Ghassil, Kamid el Loz and Sarepta. The type continues infrequently into the LBII at Kamid el Loz and Sarepta.

Type A(iii); Rare G-F. Type A(iii) Outtumed Rounded Rims are common in the MBIIB/MBIIC at Ebla, Hama, Tell Ghassil, Hazor and Shechem, and continue into the LBI at Atchana. Late LBII examples at Sarepta are probably residual.

Type A(iv); Rare G-F. Type A(iv) Projective Rounded Rims are known from the MBIIC period at Shechem.

Type A(v); Common G, Frequent F-C, Rare B. Type A(v) Upright Outtumed Pinch Rounded Rims appear in the MBIIB at Hama and Tell Ghassil, are common here and at Jericho, Hazor, Oumm el Marra and Atchana in the MBIIC/LBI periods. Isolated examples continue into the LBII at Sarepta, Kamid el Loz, Hama and Atchana.

Type A(vi); Frequent G. Type A(vi) Rolled Rims are common in the MBIIC at Jericho, Hazor and Hama, and perhaps continues into the LBI at Hama.

Type A(vii); Common F-E, Rare D-C. Type A(vii) Projective Rounded Rims appear commonly in the MBIIC at Hama, Hazor and Tell Ghassil, and continue at Hama and Kamid el Loz into the LBI. Isolated early LBII examples at Kamid el Loz and Sarepta may be residual, as they could be at TNM in Phases D-C.

Type B; Common G-F, Frequent E-C, Rare B. Type B Projective Square Rims appear in the MBIIB at Jericho, Shechem, Kamid el Loz, Tell Ghassil and Hama, are common in the MBIIC/LBI periods here and at Busra, Hazor, Tell Arqa and el-Qitar. Isolated examples continue into the LBII at Busra and Kamid el Loz.

Type C; Frequent G. Type C Rilled Triangular Rims appear in the MBIIC at Hama and continue on into the LBI at Kamid el Loz.

E. Storage Bowls

Type A(i); Rare D. Type A(i) Simple Rims are known from the MBIIC period at Tell Ghassil, and may last as long as the LBII at Atchana, although here, and at TNM the examples may be residual.

Type A(ii); Rare G. Type A(ii) Outflaring Rims are known from the MBIIB period at Tell Ghassil, and may last as long as the LBIIB at Kamid el Loz,
although the latter may be residual.

Type A(iii); Frequent G. Type A(iii) Upright Rounded Rims are known from the MBIIB at Tell Ghassil, are common in the MBIIC at Kamid el Loz, Busra and Jericho, and continue on through the LBI period at Kamid el Loz and Sarepta.

Type A(iv); Frequent G-F. Type A(iv) Swollen Rims are known from the MBIIB/C at Tell Ghassil, and are common during the LBI period at Hazor and Kamid el Loz.

Type A(v); Common G-F, Frequent E-C. Type A(v) Outturned Pinch Rounded Rims are known from the MBIIB/C at Tell Ghassil and Hazor, are common there and at Hama in the MBIIC period, and continue on through the LB I period at Tell Ghassil and Hazor.

Type B; Frequent G. Type B Square Rims are common in the MBIIC period at Tell Ghassil, Hazor and Jericho, and continue into the LBI period at Tell Ghassil and perhaps Jericho.

Type C; Rare G-F. Type C Rilled Rims are known infrequently in LB examples from Busra, although these may be residual.

Type D; Frequent G-F, Rare E-C. Type D Folded Rims are known in the LBI period at Kamid el Loz and Hazor.

F. Trays

Type A; Rare G, Residual F-C. Type A Simple Trays are known in the MBIIC period at Hazor. Late examples at TNM could be residual, although this type is typically underreported at most sites.

G. Tall Narrow Necked Jars

Type A(i); Common G, Frequent F, Rare E. Type A(i) Outturned Bifurcated Swollen Square Rims appear in the MBIIB period at Ansari, Ebla, Hama, Kamid el Loz, Tell Ghassil and Jericho and continue into the MBIIC period at Hama and Busra. Rare LB I examples are known from Busra and perhaps Hama, although they may be residual here, as at TNM after Phase F.

Type A(ii); Common G-F. Type A(ii) Outturned Bifurcated Square Rims appear early in the MBIIB period at Ebla, Busra and Hama and continue less frequently into the MBIIC period at Busra and Tell Arqa. Rare LBI examples are known from Hazor, although these may be residual.

Type A(iii); Rare G-D. Type A(iii) Flattened Square Rims are known from Hazor in the LBIIA period.

Type A(iv); Rare G. Type A(iv) Flattened Bifurcated Square Rims are known from MBIIC Busra.

Type A(v); Frequent G-F. Type A(v) Pinch Flattened Square Rims appear
late in the MBIIB period at Ebla and Tell Ghassil, and continue into the MBIIC/LBI periods at Kamid el Loz and Hazor.

Type A(vi); Frequent G-F, Rare E-C. Type A(vi) Thickened Bifurcated Square Rims appear in the MBIIB period at Kamid el Loz, and are common here and at Tell Mastuma and Jericho in the MBIIC period.

Type A(vii); Frequent G, Rare F-E. Type A(vii) Projective Square Rims are known from Jericho in the MBIIC period.

Type A(viii); Rare H, Common G-E, Frequent D-C. Type A(viii) Outflaring Square Rims appear in the MBIIB period at Ansari, Tell Ghassil and Kamid el Loz, and continue into the MBIIC period at Ebla and Busra. Rare LB I examples are known from Tell Ghassil and Busra.

Type A(ix); Frequent G. Type A(ix) Rilled Square Rims appear in the MBIIC period at Ebla, but predominate in the LBI period at Kamid el Loz, Busra and Hazor. Rare LB II examples continue at Hazor, although these may be residual.

Type A(x); Frequent G-F, Rare E-D. Type A(x) Outflaring Pinched Square Rims appear in the MBIIB period at Ebla and Tell Ghassil, are common in the MBIIC period at Atchana, Ebla, Hama, Tell Ghassil, Busra, Hazor and Jericho and continue into the LBI period at Atchana, Tell Ghassil and Busra.

Type B(i); Rare H, Common G-F, Frequent E-D, Rare C. Type B(i) Upright Swollen Rounded Rims appear in rare examples towards the end of the MBIIB period at Tell Ghassil. They are most common in the MBIIC period at Ebla, el-Qitar, Tell Arqa, Tell Ghassil, Kamid el Loz, Busra and Jericho. The type continues into the LBI period at Atchana, el-Qitar, Tell Ghassil, Kamid el Loz, Busra, Sarepta, Hazor and perhaps Jericho.

Type B(ii); Rare D. Type B(ii) Pinch Rounded Rims appear in the MBIIB at Hazor, and are common in the MBIIC at Busra and Jericho. Rare examples may continue into the LBI period at Jericho. The TNM examples may well be residual.

Type B(iii); Frequent G-F, Rare E-B. Type B(iii) Upright Rounded rims are known from the MBIIB/C period at Tell Ghassil, and continue into the LBI at Hazor.

Type B(iv); Common F-E, Rare D-C. Type B(iv) Outflaring Pinch Rounded Rims appear in the MBIIC period at Tell Ghassil, Sarepta, Hazor, Busra and Jericho, and continue into the LBI period at el-Qitar, Kamid el Loz and Hazor. Rare LBIIA examples occur at Kamid el Loz, although they could be residual here and at TNM.

Type B(v); Common G-F, Frequent E-C. Type B(v) Upright Outtumed Rounded Rims appear in the MBIIB period at Tell Ghassil and Jericho. They continue into the MBIIC period at Hama, Tell Ghassil and Tell Arqa, and fairly frequently on into the LBI period at Atchana, Kamid el Loz, Busra and perhaps Hama. Rare LBIIA examples appear at Kamid el Loz and Busra.

Type C(i); Frequent F-E, Rare D. Type C(i) Triangular Rims appear in the MBIIB/C period at Tell Ghassil, continue there and at Busra, Hazor and Jericho.
throughout the MBIIC period. LBI examples are known from Oumm el Marra, Hazor and Busra.

Type C(ii); Common G-F, Rare E-D. Type C(ii) Outturned Triangular Rims appear in the MBIIB/C period at Tell Ghassil, Kamid el Loz, Hazor and Jericho, and continue throughout the MBIIC period at these sites and el-Qitar, Tell Arqa and Busra. The type is common in the LBI period at Oumm el Marra, Tell Ghassil, Sarepta, Hazor, Busra and perhaps Jericho.

Type C(iii); Frequent F-E, Rare D-C. Type C(iii) Pinched Triangular Rims are common in the LBI period at Ugarit, Kamid el Loz, Busra and Hazor. LBIIA examples are known from Kamid el Loz and Busra.

Type C(iv); Rare C. Type C(iii) Pinched square Rims are known from the MBIIC period at Kamid el Loz and Hazor. The TNM examples are probably residual.

Type D; Rare G, Frequent F-E, Rare D-C. Type D Swollen Square Rims appear in the MBIIC period at Jericho, are common in the LBI period at Tell Ghassil and Busra, and continue into the LBIIA in Kamid el Loz, Sarepta, Hazor and Busra.

H. Short Necked Jars

Type A(i); Frequent D-C, Rare B. Type A(i) Outflaring Rims appear in the MBIIB period at Hama, Tell Ghassil and Kamid el Loz, are common in the MBIIC period here and at Atchana and Jericho, and continue into the LBI period at Atchana, Hama, Tell Ghassil, Kamid el Loz, Hazor and Busra. LBI examples are known from Atchana, Kamid el Loz and Sarepta.

Type A(ii); Frequent D-C, Rare B. Type A(ii) Swollen Outflaring Rims appear in the MBIIB/C period at Tell Ghassil and Kamid el Loz, and continue into the LBI period at Tell Ghassil and Sarepta. LBI examples at TNM could be residual.

Type B; Common D-B. Type B Projective Rounded Rims appear in the LBI period at Tell Ghassil and Hazor, and continue throughout the LBIIB at Tell Ghassil and Kamid el Loz.

[Type C(i); Common G-F] Type C(i) Square Rims appear in the MBIIB/C period at Kamid el Loz and Jericho, and continue throughout the MBIIC period at Tell Ghassil, Hazor, Busra and Jericho. LBI examples are known from Tell Ghassil.

Type C(ii); Rare D-C. Type C(ii) Swollen Square Rims are known in the LBIIA period at Kamid el Loz.

Type C(iii); Rare C. Type C(iii) Pinched square Rims appear in the MBIIB/C period at Atchana, Tell Ghassil, Kamid el Loz and Jericho. LBI-II examples are known from Atchana and Kamid el Loz.
I. Fine Jars

Type A; Common G-F. Type A Outturned Square Rims appear commonly in the MBIIB/C period at Hama and Tell Ghassil. Rare LBI examples are known from Kamid el Loz.

Type B(i); Common G, Rare F. Type B(i) Simple Upright Rounded Rims are common in the MBIIB/C periods at Tell Ghassil and Hazor. The type continues into the LBI period at Atchana and Kamid el Loz.

Type B(ii); Common G, Rare F. Type B(ii) Outflaring Rounded Rims appear commonly in the MBIIB/C period at Tell Ghassil, Hazor and Shechem. The type is known in the LBI period at Kamid el Loz and Busra.

Type B(iii); Common H-G, Frequent F, Rare E. Type B(iii) Outflaring Pinch Rounded Rims appear in the MBIIB period at Shechem, Hazor, Tell Ghassil, Hama and Ansari, and continue into the MBIIC period at Shechem, Jericho, Hazor, Busra, Sarepta, Kamid el Loz, Tell Ghassil, Tell Arqa and Hama. LBI examples are known from Busra, Hama and perhaps Kamid el Loz.

Type B(iv); Common G, Rare F, Residual E-D. Type B(iv) Upright Outflaring Rims appear in the MBIIB period at Tell Ghassil, Kamid el Loz, Hazor, Shechem and Jericho. They continue into the MBIIC period at these sites and Hama. Rare LBI examples are known from Busra and Atchana.

Type B(v); Common H-G, Rare F, Residual E-D. Type B(v) Interior Ledge Rims appear in the MBIIB at Hazor and Kamid el Loz, are common in the MBIIC period at these sites and Hama, Tell Ghassil and Jericho. Rare LBI examples may be known from Atchana, although here and at TNM the LBI examples may well be residual.

Type B(vi); Common G, Frequent F, Rare E-C. Type B(vi) Outtumed Rounded Rims appear in the MBIIC period at Tell Ghassil, Kamid el Loz, Hazor and Jericho. Rare LBI examples are known from Kamid el Loz and perhaps Jericho.

Type B(vii); Frequent G. Type B(vii) Ridged Rounded Rims are common in MBIIC Tell Ghassil and Kamid el Loz. LBI examples are known from Busra.

Type B(viii); Common G. Type B(viii) Rilled Rims appear in the MBIIB period at Ebla, Tell Ghassil and Jericho, and continue into the MBIIC period at Ebla and Kamid el Loz.

Type C(i); Common G, Rare F. Type C(i) Projective Triangular Rims appear in the MBIIB period at Hazor and continue into the MBIIC period at Hama.

Type C(ii); Common G, Rare F. Type C(ii) Upright Triangular Rims appear in the MBIIB/C period at Hama, Tell Ghassil and Jericho, and continue throughout the MBIIC period at these sites and el-Qitar, Kamid el Loz, Hazor, Busra and Jericho. LBI examples are known from Kamid el Loz, Hazor, Busra and perhaps Hama.

Type C(iii); Rare C. Type C(iii) Interior Carinates are known in the MBIIC period at Hama and Atchana.
Type D(i); Rare H-G. Type D(i) Incurving Rounded Rims predominate in the EBIV period in Ugarit, Hama, Qatna and Hazor. They may have an early MB extension at Hama and Shechem. The MBIIC examples at TNM are almost certainly residual in the late MBA, although the almost universal assumption that the type never occurs in good early MBA contexts should be treated with caution.

Type D(ii); Rare H-G. Type D(ii) Swollen Incurving Rounded Rims are common in the EBIV period at Ansari, Hama and Hazor. Early MB examples are reported from Aphek and perhaps Shechem. Again, the TNM examples are probably residual in the MBII period, although the type does have good early MB parallels in southern regions.

Type D(iii); Frequent H, Common G, Rare F-D. Type D(iii) Outflaring Swollen Rounded Rims appear in the EBIV period at Ansari and Hama, and occur infrequently in the MBI period at Atchana, Tell Arqa, and perhaps Tell Ghassil and Kamid el Loz. The type is common in the MBIIB/C period at Tell Arqa, Tell Ghassil, Kamid el Loz and Busra. Rare LBI examples are known from Tell Ghassil, although these, and the later TNM examples may well be residual.

Type E; Common G-F, Rare E-C. Type E Ledge Rims appear in the MBIIB/C period at Hama, Tell Ghassil and Kamid el Loz, and are common throughout the MBIIC period at these sites, Tell Arqa and Hazor. LBI occurrences are frequent at Hazor, and LBII examples known from Hazor and Tell Ghassil, although these latter and the TNM E-C examples may be residual.

I. Storage Jars

Type A(i); Frequent H-G. Type A(i) Ridged Neck Rims appear in the MBIIB at Kamid el Loz and Jericho, and continue throughout the MBIIC period at these sites and Tell Ghassil. Rare LBI examples are known from Hazor.

Type A(ii); Common G-F, Frequent E, Rare D-C. Type A(ii) Short Ridge Neck Rims appear in the MBIIB period at Kamid el Loz, and continue throughout the MBIIC period here and at Hazor and Jericho. LBI examples are known from Tell Ghassil, as are rare LBII occurrences, although the latter, and the TNM Phase D-C material may be residual.

Type A(iii); Common G, Rare F. Type A(iii) Outflaring Ridge Neck Rims appear in the MBIIB period at Jericho, Shechem and Kamid el Loz. They are common in the MBIIC period at Hama, Tell Ghassil, Kamid el Loz and Jericho. LBI examples are known from Hazor, Busra, Kamid el Loz, Tell Ghassil, Oumm el Marra and perhaps Jericho. Rare LBII examples are known from Kamid el Loz, although these may be residual.

Type A(iv); Common G, Frequent F, Rare E-C. Type A(iv) Elongated Ridge Neck Rims appear in the MBIIB at Hazor, Shechem and Jericho, and continued throughout the MBIIC period at these sites and at Tell Ghassil and Kamid el Loz. LBI examples are known at Atchana, Kamid el Loz, Busra and
perhaps Jericho. Rare LBII examples are known from Tell Ghassil, Kamid el Loz and perhaps Busra.

Type B(i); Common G, Frequent F. Type B(i) Outturned Rounded Rims appear in the MBIIIB/C period at Tell Ghassil and Jericho, and continue throughout the period there, and at Kamid el Loz. LBI examples are known from Hazor, Kamid el Loz, Sarepta and Tell Ghassil. Rare LBII examples occur at Tell Ghassil and Kamid el Loz, although these latter may be residual.

Type B(ii); Residual D. Type B(ii) Upright Rounded Rims are known from the MBIIIB period at Tell Ghassil and Kamid el Loz. The TNM Phase D examples are most probably residual.

Type B(iii); Common G, Frequent F, Rare E-B. Type B(iii) Pinch Rounded Rims appear in the MBIIIB period at Ebla, Tell Ghassil, Kamid el Loz, Hazor, Shechem and Jericho. They are common throughout the MBIIIC period at these sites and Busra and Hama. The type continues in the LBI at Hama, Tell Ghassil, Kamid el Loz, Sarepta, Busra and Hazor. Rare LBII examples are known from Kamid el Loz, although these and the TNM Phase D-B examples may be residual.

Type B(iv); Rare D-C. Type B(iv) Projective Rounded Rims are known from the MBIIIB/C period at Tell Ghassil and Jericho. Rare LBII examples at Sarepta, and those from TNM may well be residual.

Type B(v); Frequent G. Type B(v) Swollen Rounded Rims are known from the MBIIIB/C period at Jericho, and the LBI period at Hazor.

Type C(i); Common H-G, Frequent F-E, Rare D-A. Type C(i) Projective Square Rims appear in the MBIIIB/C period at Kamid el Loz and Jericho, and continue throughout the MBIIIC period at Hama, Kamid el Loz and Busra. LBI examples are known from Kamid el Loz and Hazor, and LBII examples from Tell Ghassil and Sarepta.

Type C(ii); Common F-D. Type C(ii) Upright Square Rims appear in the MBIIIB period at Tell Ghassil and Kamid el Loz, and continue throughout the MBIIIC period at these sites and Busra. LBI examples are frequent at Busra and Kamid el Loz.

Type C(iii); Common G, Frequent F-E. Type C(iii) Bipartite Square Rims appear in the MBIIIB period at Hama and Tell Ghassil. The type continues throughout the MBIIIC period at these sites and Busra. LBI examples are known from Hazor, Busra and Hama.

Type C(iv); Frequent D-C. Type C(iv) Outturned Square Rims appear in the MBIIIB period at Hama and Tell Ghassil, and continue on throughout the MBIIIC period at these sites and Busra and Hazor, and on into the LBI period at Oumm el Marra, el-Qitar, Tell Ghassil and Busra.

Type C(v); Frequent G-E, Rare D-C. Type C(v) Outflaring Bipartite Square Rims appear in the MBIIIB period at Tell Ghassil, Kamid el Loz and Hazor, and continue on into the MBIIIC period at these sites and Busra. The type is known in the LBI period at Hazor, Busra and Tell Arqa.
Type D(i); Common G, Rare F. Type D(i) Rilled Square Rims appear in the MBIIB period at Hazor, Kamid el Loz, Tell Ghassil, Hama and Ansari. It continues into the MBIIC period at Hama, Tell Ghassil, Kamid el Loz, Hazor and Busra. Rare LBI examples are known from Busra.

Type D(ii); Rare G. Type D(ii) Pinched Rilled Square Rims appear in the MBIIB period at Kamid el Loz and Jericho, and continue throughout the MBIIC period at Tell Ghassil, Kamid el Loz and Busra. Rare LBI examples are known from Kamid el Loz, although these may be residual.

Type E(i); Rare G-F, Frequent E-D. Type E(i) Rolled Square Rims appear in the MBIIB period at Kamid el Loz and Hama, and continue throughout the MBIIC period at Hama and Tell Ghassil. LBI examples are known from Hama and early LBII examples at Kamid el Loz.

Type E(ii); Frequent D-B. Type E(ii) Rilled Rolled Square Rims appear in the LBI period at Oumm el Marra and continue into the LBII period at Kamid el Loz.

Type F; Frequent G. Type F Rilled Trinangular Rims appear in the MBIIB/C period at Hama, Tell Ghassil, Shechem and Jericho, and continue into the LBI period at Busra and perhaps Jericho.

Type G; Rare G, Frequent F-B. Type G Holemouth Rims appear in the MBIIB period at Kamid el Loz, Hazor and Shechem, and continue on into the MBIIC period at Tell Ghassil. LBI examples are known from Hama and Kamid el Loz, and LBII examples from Tell Ghassil and Sarepta.

K. Jugs

Type A(i); Rare G, Residual F-B. Type A(i) Rounded Rims are known from the MBIIB/C period at Jericho and Hama. The TNM Phase F-B examples are probably residual.

Type A(ii); Frequent D-B. Type A(ii) Pinch Rounded Rims appear in the MBIIC period at Tell Ghassil, Kamid el Loz and Jericho. The type continues into the LBI period at Oumm el Marra and Hazor.

Type A(iii); Frequent D-C. Type A(iii) Outturned Pinch Rounded Rims appear in the MBIIB/C period at Tell Ghassil, and continue throughout the MBIIC period at this site and Hazor. LBI examples are known from Sarepta. It is possible that the Sarepta examples and the TNM Phase D-C material are residual.

Type A(iv); Frequent E-D. Type A(iv) Outflaring Rounded Rims appear in the MBIIC/LBI period at Kamid el Loz, and continue throughout the LBI period here and at Busra. LBII examples are known from Tell Ghassil, Kamid el Loz and Hazor.

Type A(v); Frequent E-C, Rare B. Type A(v) Outflaring Swollen Rounded rims appear in the MBIIC period at Tell Ghassil, Kamid el Loz, Hazor, Busra and Jericho. The type continues throughout the LBI period at Atchana, Oum el Marra,
Hama, Tell Ghassil, Kamid el Loz, Hazor and Busra. LBII examples are known less frequently at Tell Ghassil and Kamid el Loz.

Type B; Common G, Rare F. Type B Complex Internally Carinated Rims are common in the MBIIB/C period at Ebla, Busra and Jericho. LBI examples are known from Hazor.

Type C(i); Frequent D-B. Type C(i) Triangular Rims appear in the MBIIC at Hazor and Jericho, and continue throughout the LBI period at Hazor and Busra. LBII examples are known from Kamid el Loz.

Type C(ii); Frequent G. Type C(ii) Offset Triangular Rims are known from the LBI period at Atchana and Sarepta, and continue into the LBII period at Atchana.

Type D(i); Frequent G. Type D(i) Trefoil Rims are common in the MBIIB/C period at Tell Ghassil and Jericho. LBI examples are known from Kamid el Loz.

Type D(ii); Rare G-F. Type D(ii) Outflaring Trefoil Rims are known from the LBII period at Tell Ghassil, although they may be residual here.

Type E; Rare C. Type E Square Rims appear in the MBIIB period at Tell Ghassil and Kamid el Loz, and continue into the MBIIC period at Tell Arqa. LBI examples are known from Hazor and Tell Ghassil. It is possible that the TNM Phase C examples are residual.

L. Juglets

Type A; Frequent G. Type A Ridged Neck Rims are known from the MBIIC period at Tell Ghassil, Kamid el Loz and Jericho, and less frequently at Atchana in the LBI period.

Type B; Frequent G. Type B Concave Interior Ledge Rims are known from Tell Arqa, Tell Ghassil and Kamid el Loz in the MBIIC period, and at Hazor and Sarepta in the LBI period.

Type C(i); Rare F-D. Type C(i) Rounded Interior Ledge Rims are known from Kamid el Loz in the LBI/LBIIA periods.

Type C(ii); Frequent D-C. Type C(ii) Pinch Rounded Interior Ledge Rims appear in the MBIIC period at Hazor, and continue through the LBI period there and at Kamid el Loz. LBII examples are known from Tell Ghassil.

Type D; Rare C. Type D Upright Rounded rims appear in the MBIIB/C period at Tell Ghassil, and continue throughout the MBIIC period at Tell Ghassil and Hazor. LBI examples are known from Hazor. It is possible that the TNM Phase C examples are residual.

M. Bases

Type A(i); Common H-E, Rare D-B. Type A(i) Wide Flat Convex Walled Bases appear in the MBIIA/IIB period at Tell Ghassil and Kamid el Loz, and
continue on throughout the MBIIB/C periods at these sites and Ebla, Hama and Busra. LBI examples are known from Hama, Tell Ghassil, Kamid el Loz, Hazor and Busra. It is possible that the TNM Phase D-B examples are residual.

Type A(ii); Rare G. Type A(ii) Narrow Flat Convex Walled Bases are known from the MBIIB/C periods at Kamid el Loz and Tell Ghassil. LBI examples are known from Busra.

Type A(iii); Common G, Frequent F, Rare E-C. Type A(iii) Wide Flat Concave Walled Bases appear in the MBIIA/B periods at Hama and Tell Ghassil, are common in the MBIIC period at Ebla, Hama, Tell Ghassil and Busra. LBI examples are known from Hama, Tell Ghassil, Kamid el Loz, Busra and Hazor. Rare LBII examples are known from Kamid el Loz.

Type A(iv); Rare F. Type A(iv) Indented Concave Bases are known from LBI Hama and Tell Ghassil.

Type A(v); Common H-G, Frequent F, Rare E-C. Type A(v) Wide Flat Straight Walled Bases appear in the MBIIA/B period at Tell Ghassil and Kamid el Loz, and commonly throughout the MBIIC period at these sites, Busra and Jericho. LBI examples are known from Hazor, Busra and Kamid el Loz. Rare LBIIA examples are known from Kamid el Loz.

Type A(vi); Frequent G. Type A(vi) Narrow Flat Straight Walled Bases appear in the MBIIB period at Kamid el Loz, and continue into the MBIIC period at Tell Ghassil and Busra.

Type B(i); Frequent G-E, Rare D-C. Type B(i) Low Ring Bases appear in the MBIIB/C period at Ebla and Hama, and continue throughout the MBIIC period at Tell Ghassil and Hama. LBI examples are common at Hazor, Busra, Kamid el Loz and perhaps Hama. Rare LBII examples occur at Kamid el Loz.

Type B(ii); Common G, Frequent F-E, Rare D-C. Type B(ii) Rounded Low Ring Bases appear in the MBIIC period at Busra and Hama, and occur commonly throughout the LBI period at Hazor, Kamid el Loz, Tell Ghassil and Hama.

Type C(i); Common D-C, Frequent B-A. Type C(i) Rounded Ring Bases appear throughout the LBI period at Tell Ghassil, Kamid el Loz, Hazor and Busra. Rare early LBII examples are known from Kamid el Loz.

Type C(ii); Rare E. Type C(ii) Pinch Rounded Ring Bases appear in the MBIIC period at Hama, and continue into the LBI period at that site. LBII examples are known from Kamid el Loz.

Type C(iii); Frequent E, Rare D-C. Type C(iii) High Ring Bases appear in the MBIIB/C period at Hama, and are common in the LBI period at Hazor, Tell Ghassil and Hama.

Type D(i); Frequent G-E, Rare D-B. Type D(i) Square Ring Bases are common in the LBI period at Hazor, Tell Ghassil and Hama. LBII examples are known from Kamid el Loz.

Type D(ii); Rare G-B. Type D(ii) Pinched Square Ring Bases are known
from the LBI period at Busra and the LBII period at Tell Ghassil.

Type E(i); Frequent G-F, Rare E-C. Type E(i) Wide Disk Bases are common in the LBI period at Hazor, Busra and Tell Ghassil.

Type E(ii); Frequent G-F, Rare E-C. Type E(ii) Wide Flattened Disk Bases appear in the MBIIC period at Tell Ghassil and Busra. They are common in the LBI period at Hazor and Kamid el Loz. Rare LBII examples are known from Kamid el Loz.

Type E(iii); Rare G. Type E(iii) Narrow Flattened Disk Bases are known from LBI Kamid el Loz.

Type F; Rare C-A. Type F Flattened Button Bases are known from the LBI period at Busra, and are common in the LBII period at Kamid el Loz.

Type G(i); Frequent G-F. Type G(i) Carinated Trumpet Bases appear in the MBIIC period at Tell Ghassil and continue into the LBI period at that site.

Type G(ii); Rare G. Type G(ii) Solid Trumpet Bases are known from the MBIIC period into the LBI period at Hama.

Type H(i); Rare G, Residual B. Type H(i) Elevated Ring Bases are known from the LBI period at Kamid el Loz. The TNM Phase B example is probably residual.

Type H(ii); Rare G. Type H(ii) Outflaring Elevated Ring Bases appear in the MBIIC period at Busra, and continue into the LBI period at Hazor and Kamid el Loz.

Type J(i); Frequent F-E, Rare D-C. Type J(i) Square Elevated Ring Bases appear in the MBIIC period at Hazor and continue into the LBI period at Kamid el Loz. The TNM Phase D-C examples may well be residual.

Type J(ii); Rare G. Type J(ii) Rilled Square Ring Bases appear in the MBIIB period at Ebla and Hazor, and continue into the MBIIC period at Hama.

N. Imports

Type A; Rare D-A. Type A Mycenaean III Ware is known from the LBII period at Atchana, Hama, Ugarit, Kamid el Loz and Hazor.

Type B; Rare D-A. Type B Cypriot Base Ring and White Slip Wares are known from the LBII period at Atchana, Hama, Ugarit, Kamid el Loz and Hazor.

Type C; Rare G-F. Type C Chocolate on White Ware is known from the MBIIC period at Hazor, Pella and Tell el Ajju and continues into the LBI period at Tell Ghassil, Hazor, Beth Shan, Pella and Tell el Ajju.

Ware Analysis (Fig. 67:1-4)

There are five major wares employed in the Second Millenium sequence under study. They have all been identified at the visual level only, as a full chemical analysis is beyond the scope of this more limited study, which seeks to identify the norms, and changes in these over time. Inevitably, unusual wares,
with relatively sporadic or rare occurrences have been highlighted, and although their status as imports is suspected, the necessary chemical verification has not been carried out at this time.

The five major wares may be characterised in the following way:

(1) **Reddish-Orangey Buff Wares.** This ware is generally well fired. Grey cores are relatively infrequent. Grits are commonly employed in large amounts, with black stone [basalt?], yellowish stone, off-white limestone, grey chert and yellowish to orange grog fillers the most commonly employed. Although the ware is used for almost all classes listed above, it is most common in cooking pots, storage bowls and short necked jars.

Cooking pot wares form a distinct part of this group, characterised by the use of large amounts of crushed grey chert and quartz grits, as well as those specified above. They are generally fired to a dark, often smokey chocolate brown in the early phases H-G, which gives way gradually from Phase F onwards to a much more reddish to brick red fabric. The early dark chocolate brown variety never vanishes completely, although it does become progressively less frequent throughout the later phases.

Reddish-orangey buff wares are found throughout the sequence under study. They are most common in the early phases G-F [43%], still frequent in Phases F-E [28%], and progressively less so in the LBII phases D-C [15%] and B-A [12%].

(2) **Yellowish-Buff Wares.** These wares are generally well fired, dark tan brown to pale browny buff, although a light grey to medium grey core becomes more frequent in the later phases. Grits occur in small to medium quantities, with black stone, white limestone and grey chert the most common fillers.

The ware is used in all major classes present, although is most frequently employed for jars and bowls. The finer varieties of this ware are the most commonly employed for juglets and fine jars. Occasionally cooking pot types are duplicated in this ware.

Yellowish-Buff wares are quite common in the early phases H-G [31%], represent the bulk of occurrences in the early LB phases F-E [45%], and are still quite common in the early LBII phases D-C [29%], and slightly less frequent in the later LBII phases B-A [21%].

(3) **Hard Grey Wares.** These wares are very well fired from a dark gunmetal grey to a lighter ash grey. The ware rarely displays any evidence of a core, and when it does it is often clearly delineated by a very distinct colour change, affecting a banded appearance. Grits are present to a moderate degree, and tend to be limited to black stone, white lime and yellowish stone filler. Occasional orange grog grits are present.

Grey ware is most commonly employed on tall narrow necked jars, jugs and bowls, and a lighter grey, softer variant of the fabric is used occasionally in juglets.
grey ware is fairly common in the late MB phases H-G [9%] and the early LB phases F-E [9%], before becoming increasingly common in the early LBII phases D-C [24%], before receding slightly in the later LBII phases B-A [17%].

(4) Soft Sandy Greenish Buff Wares. These wares are generally well fired, rarely displaying any evidence of a core. When there is a core, it is generally a light ash grey, and not well defined. Grits are fairly abundantly used, and tend to be dominated by the use of red stone, orange grog and white lime filler.

Sandy green ware is employed in tall narrow necked jars, storage jars and to a lesser extent, bowls.

The ware is never common, appearing in the late MB phases H-G [4%], rising slightly in the early LB phases F-E [5%], before increasing markedly in the early LBII phases D-C [10%], before receding in the late LBII phases B-A [3%].

(5) Grey Cored Buff Wares. These wares are a sub-category of the yellowish-buff wares, displaying a consistent dark grey to black core, coupled with tan brown to buff surfaces. Whilst the core is not sharply defined, it is always in evidence as a definite colour change. In early phases grey coring is confined to large storage jars and thick walled bowls. In the later phases grey coring spreads throughout the type series, until it is the ware norm by the LBIIB. Grits are employed in abundance, generally black stone, grey chert and white lime. Occasional buff grog and quartz grits occur.

Grey Cored Buff wares are commonly employed on storage jars and short necked jars. Often cooking pot ware types are duplicated in grey cored wares.

This ware is fairly frequent in the late MB phases H-G [13%], and the early LB phases F-E [13%], becoming more common in the early LBII phases D-C [22%], before rising sharply in the later LBII phases B-A [47%].

Grey Cored Buff ware, as a sub-category of the buff wares, is an indicator of the rising incidence of incomplete oxidisation in the firing process. Whilst this stays more or less constant in the MB/LB period, there is a sharp increase in incomplete oxidisation in the LBIIB period.

Surface Finish and Decoration (Fig. 68:1-4)

Introduction

This section of the analysis seeks to detail the varieties of surface finish and decoration found on the Second Millenium pottery under study, and to quantify changes in the relative frequencies of decorative schema throughout time.

25 Curvers apud. van Loon [ed.] (1988), pp. 401-402, suggests that 'greenish' sherds are the result of overfiring. The relatively soft and crumbly condition of the TNM material suggests that this may be the case with our material as well.

26 Curvers apud. van Loon [ed.] (1988), p. 402, refers to this as a 'sandwich colour effect'.
It is acknowledged that a complete and thoroughgoing analysis of decorative technique would require extensive chemical analysis beyond the scope of this more limited study. Our aims are to discern differences in technique and application at the broader level that may be discerned with the naked eye. The thrust of this enquiry is chronological, with the broad aim of discerning major changes in decorative regime through time.

Much of the decorative categorisation is drawn from the excellent study of the Sarepta ceramics recently published by Anderson, supplemented to a more limited extent by that of the Hammam et-Turkman ceramics published by Curvers and Smit. We follow their general comments on the definition of categories and the nature of analysis, as much to facilitate cross-comparison as for any innate superiority of their methods. It is only through such close comparative exercises that one can hope to define regional characteristics, and variant changes in these through time.

A. Surface Decoration.

In his very thorough and detailed analysis of the Sarepta material, Anderson suggests that the division between slipped and unslipped pottery is rather more obscure than is currently acknowledged, and rightly cautions against the misuse of the apparently specific terms, "self slipped" and "wet smoothed". Although his cautions are noted, analysis of the Tell Nebi Mend material will examine these modes of surface finish. Every single sherd analysed at TNM was fractured and examined with a jeweller's piece, with particular attention being paid to the fabric/slip juncture. Even so, where evidence was equivocal, we have tended to be conservative. This suggests that wet smoothed/self slipped and slipped categories are likely to be slightly underrepresented in the following analysis. Uncertain cases ran at the level of 5-10 % of the total assemblage analysed.

1. Plain surfaces.

Plain surfaces are those defined as not having been burnished, nor covered with a slip or wash, and not scored or decorated in any way. This broad general category accounts for between sixty and seventy percent of the Tell Nebi Mend material. This is a slightly lower percentage than that reported by Anderson, but it takes into account decorative modes that he does not consider as separate categories. The majority of forms that make up this category tend to be large storage jars, deep bowls and kraters, lamps, and most cooking vessels.

27 See Anderson (1988), pp. 41-54 for the construction of the Sarepta Ceramic Type Series. See Curvers and Smit apud. van Loon [ed.] for the Hammam et-Turkman Middle and Late Bronze Age ceramics.
2. Shaving or Dry-Scraping.

Shaving or dry-scraping involves the removal of excess clay from a leather hard vessel. This can be done by hand or when the vessel is being rotated on the wheel. This process is most frequently applied to the lower portions of both hand and wheelmade vessels, particularly bowls, and is generally aimed at trimming excess clay from bases and the lowest quarter of the outer body wall.

3. Wet Smoothing/Self Slipping.

Wet smoothing involves the wiping over of a newly formed vessel with hand or cloth, whilst the vessel is still plastic and workable. Fairly frequently with the TNM series, a clay slurry is applied to cover any minor surface imperfections visible after throwing.

Wet smoothing and self slipping occurs fairly frequently in approximately twenty-five to thirty percent of the TNM series. Whilst it occurs across the whole gamut of shapes detailed above, it is relatively rare in large storage jars, bowls, kraters and lamps. Frequently applied to the exterior surface of the body, and less commonly to the base, it is fairly frequent on the interior rim, and less common on the interior upper body.

4. Slipping

The application of a slip involves the addition of a separate coating of fine clay to the pre-formed vessel. The presence of a slip was detected primarily on grounds of colour and texture. All cases where slipping is attributed were examined at the fracture. Slips occur in between ten and fifteen percent of the TNM series, most frequently occurring in smaller bowl, jug and jar forms, and less commonly in storage vessels and cooking pots.

Slips are found in a variety of colours, generally concentrated in the off white/buff to orangey-red range in non-cooking pot ware vessels, and dark brown to reddish brown in cooking wares.

Several rare slip modes are to be noted. These are a pale yellowish-green slip, found almost exclusively on jugs and bowls, and rarely on storage vessels, and a dark grey slip, found predominantly on storage vessels and jugs. Both of these slip modes are suspected of being indicative of imported vessel forms.

5. Burnishing.

Burnishing involves the application of a cloth, skin, wood or stone tool to the leather hard surface of a plain vessel, or, more commonly, to a wet smoothed/self slipped, slipped, or slipped and painted surface of a vessel before firing. The compression of fine clay particles seeks to create a lustre on the
finished surface. Burnishing can be regular or irregular, by hand or on the wheel, and is commonly a combination of several different techniques, generally dictated by the size and shape of the vessel being treated.

Burnishing is relatively rare in the TNM series, never bulking more than five percent in the total for any given phase, and occurring in slightly more than one percent of vessels overall. It is generally limited to small bowl, jug and juglet forms, and much less commonly found in larger storage vessels.

Two particular modes of burnishing are worthy of note. A distinctive irregular vertical, or criss-cross net burnishing, generally associated with specific ware and bowl forms, and a form of vertical radial and horizontal wheel burnishing associated together in specific ware and bowl forms both seem indicative of imported vessel forms 28.

B. Relief Decoration (Fig. 69:1-4) 29

Individual decorative modes include combing, incising, impressing, raised bands, and combinations of all of the above. In contrast to the observations of Anderson for the Sarepta material, relief decoration is by far the most common mode employed on the Tell Nebi Mend series, consistently outnumbering painted decoration by four to nine times.

1. Combing.

Both flexible and non-flexible combs seem to have been used in the decoration of the TNM material, with single, three and four comb patterns predominating, and seven and nine comb combinations known less commonly. Combincing can be horizontal, or in horizontal running wavy bands. Often, wavy-band decoration is framed by single or multiple horizontal band decoration, generally in a single freize arrangement, although a rare double freize mode is attested to.

Comb incised decoration is found predominantly on large storage vessels, deep storage bowls and kraters. It is quite common in the late MB phases H-G [41%], the early LB phases F-E [40%] and the early LBII phases D-C [43%], before receding in the later LBII phases B-A [12%].

Single band, regularly spaced, relatively deep, broad incised horizontal line decoration is fairly common in the late MB phases H-G [31%], before increasing steadily throughout the early LB phases F-E [44%], into the early LBII phases D-

28 See Thalmann (1978), Fig. 49:12 for examples of the radially burnished bowl forms. They may well be native to the central Syrian coast, but seem likely to be imports at TNM.

29 See Anderson (1988), p. 320, for a definition of the various categories of Relief decoration.
C [54%], before becoming the predominant form of incised decoration in the later LBII phases B-A [88%].

It has been suggested by Pézard and others 30 that the free-form wavy-line combing becomes more angular and geometric in the latter stages of the Second Millennium sequence. Angular combing appears in the late MB phases H-G at 7%, increases to 11% in the early LB phases F-E, becomes more noticeable in the early LBII phases D-C at 20%, before receding in incidence in the later LBII phases B-A at 5%. Both exist side by side throughout the latter half (A-F) of the TNM sequence, but geometric combing is found only rarely in the early phase (G-H) material.

Plastic decoration is achieved by the application of separately made pieces of clay to the body of the vessel. Generally these are applied horizontally around the upper body or shoulder of large storage vessels, sometimes to hide join marks of the separately fashioned pieces of large jars and sometimes purely for decorative effect. Double bands are attested to, and plastic and incised decoration are common occurrences. The wavy line applied plastic decoration attested to at Sarepta has not been found in the TNM series.

This form of decoration is confined to large storage vessels in the TNM series. It is most common in the late MB phases H-G [42%] and early LB phases F-E [37%], before receding in the LBII phases D-C [22%] and B-A [17%].

3. Incised Decoration

Incised decoration consists, for the most part, of horizontal bands of single applications of an oblique "slash" decoration, cut into the smooth surface of a leather hard vessel, or cut into the upper surface of raised bands of applied plastic decoration. Generally this decorative scheme is confined to the upper body and shoulder regions of storage vessels, although it is occasionally attested to on the upper rims of storage jars and cooking trays.

Sometimes, this "slash" decoration is found in alternate rows, achieving a "pseudo-herringbone" effect. This mode is generally confined to raised plastic bands, on storage vessels, although is known on rare cooking pot examples.

Occasionally, a series of pendant "puncture-mark" incisions are found in conjunction with, and generally framed by, horizontal multiple comb incised decoration. It is likely that the puncture marks are made with the same multiple combs employed for the band-incision decoration.

30 See Pézard (1931), pp. 63-65, for the original suggestion, and Culican and McClellan (1984), pp. 51-53, for a short discussion of the proposed later date for the "more precise, geometric" style of incision.
Another form of incised decoration is the impressing, or incising, of rows of dots, either horizontally around shoulders of storage vessels, or vertically in short lines down shoulders of storage jars, bowls, and kraters. These are generally found in conjunction with horizontal combing, and occasionally with multiple-comb wavy line decoration.

Rarely, a neatly incised diagonal cross decoration is cut into the upper rim of storage jars.

Incised decoration is fairly common throughout the sequence, at 29% [H-G], 31% [F-E], 34% [D-C], and 24% [B-A].

C. Painted Decoration (Fig. 70:1-4)

Painted decoration is relatively rare in the TNM series, although it becomes more common in the latter stages of our sequence. Painted decoration bulks between 1 and 1.5 percent of the total series examined to date and never bulks more than 10 to 20 percent of all decorated sherds examined. Painted decoration is quite rare in the late MB phases H-G [4%], and the early LB phases F-E [7%], before receding slightly in the early LBII phases D-C [5%] and rising slightly again in the later LBII phases B-A [9%]. It is consistently overshadowed by incised/impressed decorative modes throughout the sequence.

Paint may be defined as any coloured decoration applied to the surface of a vessel in combinations of horizontal and vertical lines and bands, either singly or in groups, or other motifs. Decoration is generally applied to the wet smoothed/self slipped surface of the vessel. It is sometimes applied over a slip, and is, on occasion, burnished. Rarely, it is applied directly to the plain surface of the vessel.

Paint is most commonly found in bands of horizontal lines enjoying incidences of 74% [H-G], 71% [F-E], 85% [D-C], and 97% [B-A], or in somewhat irregular bands around the rims of vessels. Occasionally, a vertical "dribble-pattern" decorative mode is in evidence. Geometric and figured motifs occur rarely and only in any quantity in the late MB phases H-G [22%] and the early LB phases F-E [28%], before receding in the early LBII phases D-C [13%] and dropping off sharply in the later LB phases B-A [2%]. It is generally confined to small jars and jugs.

Painted decoration is confined, almost exclusively, to bowls, short necked jars, and jugs. Colours employed are red, brown and black, in various combinations of effects, generally related to the thickness of the paint as applied. Red paint is particularly associated with bowls, brown and black with jars and jugs.

A dark chocolate brown to dark red paint on a good quality white slip is found in rare examples in early phases (G-F), whilst an intentional bichrome red and black painted decoration generally applied to a buff surface, in a framed wavy line, net, or tree pattern motif, is found in rare examples confined to the later phases (A-C).
Bowls are decorated with bands of painted decoration around the rim, generally more carefully executed on the exterior and the upper rim, less so on the interior surface of the rim.

Short necked jars are rarely decorated, but when they are, the normal mode is several bands of horizontal painted decoration around the exterior neck and rim of the vessel. Occasionally jugs are decorated with horizontal painted decoration in bands around the upper body of the vessel, or in vertical "tree" decoration on the exterior surface of the handle.

Surface Finish and Decoration: Conclusions

There are several distinctive modes of decoration in the TNM series. By far the most important is the combed decorative schema. It is found from the beginnings of the series until its end, and is the most frequently employed on the TNM series. There is a tendency for incised decoration to become less frequent towards the end of the series, where a small, but significant increase in painted decoration may account for the relative fall off.

It has been suggested that the employment of more "angular" incised motifs increases over time. Impressed and oblique "slash" decoration are found most commonly in the earliest phases (H-G), and find their most convenient parallels with early MBII forms, favouring such a date for the earliest strata.

In the painted decoration, the existence of an early (G-F) painted white slip style, similar to, and found in association with Chocolate on White ware, suggests a MB/LB attribution for these strata.

The presence of a true bichrome on buff scheme, confined to the upper phases (A-C), finds excellent parallels with the southern Levantine Painted Buff fabrics, and reinforces the suggested LBII date for these levels.

It is worth noting the appearance of a series of painted buff bowls, decorated with red bands around the rim and finished with a distinctive wheel shaving of the lower exterior borders, in the uppermost phases (B-A). As most parallels seem to be with Egyptianising LBII forms, it seems likely that these bowls represent evidence for a period of strong Egyptian influence, and argue for a LBIIB or Thirteenth Century date for the Phase B-A material.
Tell Nebi Mend Ceramic Typology: Summary

The renewed excavations at Tell Nebi Mend by the London Institute of Archaeology have recovered a significant quantity of Middle and Late Bronze Age ceramic material.

The ceramic typology assembled from this material allows the definition of relatively secure, chronologically discrete, ceramic assemblages. This begins to answer the pressing need for reliably stratified local typologies from the inland regions of the northern Levant.

Whilst establishing reliably stratified interlocking ceramic sequences is never easy, the inland regions of the northern Levant are a particular problem, as the ceramic culture province to which they belong lies outside the well documented painted pottery traditions of Cilicia, the Syrian coast and Palestine.

In the past, virtually all chronological documentation for the inland region has been, of necessity, derivative from these apparently better established sequences. The only way to break out of this self perpetuating state of affairs is to detail a sufficient number of local inland sequences for a general pattern of affinities to emerge.

It is with this requirement in mind that the TNM sequence has been assembled. The relative and absolute chronological labels are a convenience, and may require modification as research refines knowledge, but the sequence itself will stand as a building block for future analysis.

It is now appropriate to assess the quality of the suggested comparative ceramic contexts, and see how, and with what effect, the Tell Nebi Mend data may be integrated within its regional archaeological context.

Fitzgerald’s Beth Shan VII material, and Pritchard’s Tell es-Saidiyeh cemetery material, in discussions held in Philadelphia, in June 1988. The LB/El Pella material is being prepared for publication by the author as Pella in Jordan 5: LB/El Tombs from Tell Husn. For the Beth Shan IX-VII material, see McGovern [forthcoming]; for the Tell es-Saidiyeh material, see Pritchard (1980), Fig. 6:1-4, Fig. 8:1-5, Fig. 21:1-9.
CHAPTER 4
COMPARATIVE STRATIGRAPHY

Introduction

One of the most controversial aspects of ceramic analysis in general, and that in the Northern Levant in particular, has been the establishment of reliable inter-site comparative analyses. Part of the problem has been due to the nature of the chronological frameworks themselves, and the choice of unnecessarily volatile ceramic arbiters of relative chronology. Another feature has been the relative lack of interest in articulating long stratified ceramic sequences, and even worse, the disinclination to publish adequately those sequences that have been excavated. The dearth of well stratified long sequences in the region suggests that the TNM sequence may well be of service in the re-examination and re-interpretation of some of the more controversial of those few Northern Levantine sequences excavated and published.

The Middle and Late Bronze Age sequence from Tell Nebi Mend has been elaborated in the previous chapter, and ideally, one would seek to carry out detailed statistical comparisons between the TNM material and that from other sites. However, with the possible exception of Doumet's work at Tell Ghassil and Anderson's at Sarepta, there is little comparative material that would allow sufficiently detailed comparison, as the vast majority of the available comparative material was excavated long before the more rigorous extraction and publication regimes now in place existed. Most site reports contain no information on extraction procedures, sampling strategy, and publication priorities, and this effectively rules out "higher order" statistical analytical routines. Consequently, one is forced back on the more generalised practice of "parallel-matching", to erect the relative chronological framework required to achieve a satisfactory local context for the TNM material.

The procedure following will examine the major Levantine sites relevant to Second Millenium sequences, noting the status of the original research, and collating the number and intensity of associations between the TNM material and that from each site in question. Treatment is geographical by region.

Ras Shamra

The long term French excavations at Ras Shamra, ancient Ugarit, under the direction of Claude Schaeffer (1929-77) and since that time under the direction of Marguerite Yon (1978-90), have revolutionised the study of the coastal Northern Levant, particularly with respect to the Late Bronze Age. Several deep probes have been made into the ancient mound, and deposits as early as the PPNB have been explored. A large Second Millenium corpus has been published in two parts. From this one might expect many insights into the

1 I thank Dr. Andy Scott, from the Dept. of Applied Statistics at the University of Reading, for discussing this point with me.
coastal/inland interaction. However, several major problems with the publication hold back useful comparative analysis. As North has pointed out in a most detailed and perceptive account, this corpus is not 'keyed-in' to the tell stratigraphy at all. Indeed, as North points out, Schaeffer's identification and classification of the Middle Bronze Age deposits into the strata Ugarit Moyen I or Ugarit Moyen II seems almost entirely arbitrary, and based more on what was held to exist at other sites, than on what was found at Ras Shamra. For example, Ugarit Moyen III is recorded as a distinct period, and allocated a stratigraphic positioning, even though Schaeffer held that there was no material to be allocated to it. With respect to the Middle Bronze Age deposits, Schaeffer's multiple earthquake hypothesis proposed a long period of desertion at Ras Shamra and most other Levantine and inland Syrian sites, between c.1750 and c.1550 B.C.. It is to this hiatus in occupation that the period Ugarit Moyen III is allocated. Whilst many parallels are made possible through Schaeffer's extensive publications, the failure to provide any objective stratigraphical detail, and the use of tomb material in the vast majority of illustrations renders the corpus virtually useless as a tool for comparative stratigraphy. North's recent analysis and Courtois' reply does nothing to dispel this impression. Indeed, as North notes, Schaeffer promised further elaboration of the Middle Bronze Age stratigraphy in his monumental Comparative Stratigraphy, but up until the present day, no further substantive information has emerged.

Recent French work under Courtois and Mallet (1974-90) has clarified one point, and that is the status of the MB/LB deposits. Implicit in much of Schaeffer's early work was the presence of a substantial Hyksos period occupation of the site. Schaeffer passed over these suggestions in his Comparative

5 For North's commentary on the first part of the corpus presented by Schaeffer and Chenet (1949), see North (1973), p.135. Courtois' (1974), pp. 101-102, adds nothing by way of modification to North's comments. Whilst Courtois and Courtois' (1978) publication of the second part of the corpus adds important clarifications and caveats as to the potential biases of Schaeffer's offering (pp.191-192), they add little to any understanding of the tell-derived corpus, as they supplement the original corpus largely with tomb deposits, albeit more clearly presented than Schaeffer's original offering. This attitude to ceramic typology shows little sign of significant change, if Mallet's recent (1990) publication is a reliable guide.

6 For Courtois' work on the eastern edge of the tell, see Contensen et.alii. (1973), pp. 293-297. For Mallet's work on the MB/LB ceramics, see Mallet (1990), pp. 44-53.
Stratigraphy, and ventured the opinion that there was no occupation on the site during the MBIIC/UMIII period. De Vaux and Fitzgerald both took issue with this point on archaeological grounds, and argued against Schaeffer's very high dating for the end of Ugarit Moyen II 8.

Both North and Courtois support de Vaux's revised dates for the end of the Middle Bronze Age occupation. North points out some of the fairly obvious MBIIC material within the corpus, and Courtois admits the same, if somewhat vaguely, in his reply to North 9. However, Courtois is more forthright on his own excavations at Ras Shamra, where he claims to have found good MB/LB deposits on the eastern edge of the tell, in Trench TET 2 10.

The most recent excavations underline this fact, with Mallet describing a well constructed MBIIC housing complex beneath the centrally placed Late Bronze Age Temple of the Rhytons, excavated by Yon between 1978-1984 11.

Comparisons between the TNM corpus and that from Ugarit are not extensive, as the Ugarit corpus is largely tomb derived, and that which comes from the tell is poorly sourced, if at all.

<table>
<thead>
<tr>
<th>Ugarit Phases</th>
<th>UM2/3</th>
<th>UM3/URI</th>
<th>URI1/2</th>
<th>UR2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase H</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phase G</td>
<td>4</td>
<td>11</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Phase F</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Phases E-C</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Phases B-A</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Comparisons between the TNM and the Ras Shamra corpora support the revisions suggested by North, Courtois and Mallet. In the absence of more detailed stratigraphic information from Ras Shamra, it is not possible to outline a more exact relative chronology. However, the parallels suggest some possible association between the terminal Middle Bronze Age destruction of UMIII date and that of TNM G, and, with much less certainty, the terminal URII destruction with that of TNM C. Further than that one cannot go.

7 For example, see especially Schaeffer (1938), pp. 197-199 and (1939), pp. 24-26.
8 See Schaeffer (1948), p. 21 for the unfolding of the lacuna hypothesis. It was immediately challenged by Fitzgerald (1949), pp. 150-156, and later by de Vaux (1951b), pp. 477-478.
11 Mallet (1990), pp. 46-53.
Recent research and comment have revised Schaeffer's original conclusions to the extent that a long-term desertion of the site during the whole of the MBIIC period is now discounted. Comparisons with the TNM material underline the presence of good MBIIC and LBI deposits at the site, and deny the possibility of any long-term desertion. However, the severity of the terminal Middle Bronze Age destruction, and the possibility of a short desertion thereafter, cannot be so easily discounted.

Tell Arqa

The IFAPO excavations at Tell Arqa, under the direction of Jean-Paul Thalmann, uncovered four major phases of Middle and Late Bronze Age material over the course of the five seasons of excavation, between 1972-79. In the absence of any final report, the phasing details are to be taken from the two main preliminary reports. These suggest the following allocation of phases:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBIIA-B</td>
<td>14</td>
</tr>
<tr>
<td>MBIIC</td>
<td>13</td>
</tr>
<tr>
<td>LBI</td>
<td>12</td>
</tr>
<tr>
<td>LBII</td>
<td>11</td>
</tr>
</tbody>
</table>

Thalmann suggests that the Bronze Age occupational history of Tell Arqa is characterised by a series of apparently discontinuous strata. He relies heavily on the very small quantity of imported material within each assemblage to characterise and date each stratum. He places emphasis on the presence of Tell el Yahudiyeh Ware and Red Lustrous Wheelmade ware in the Level 12 assemblage, and couples this with a specific reference to Tell Arqa in the Karnak conquest lists of Thutmosis III, to suggest a date around the middle of the Fifteenth century B.C. for the destruction of the site. Thalmann sees the few fragments of Cypriot Late White Slip II, coupled with the silence of the Amarna and Ugarit archives concerning the site, as favouring a Ramesside date for the LBII reoccupation. He suggests that the site was unoccupied during the intervening two hundred years.

12 See Thalmann (1978), for 1972-74 campaigns, and Thalmann (1979), for the 1978-79 campaigns. Excavation was discontinued after the 1979 season.
13 Thalmann (1978), p. 95, for Level 11 dates, which are based on the presence of late examples of Cypriot WSII, and p.98, for Level 12 dates, based on the presence of a sherd of Bichrome Ware and one of what may be Tell el Yahudiyeh ware.
14 Thalmann (1979), p. 67, for the presence of RLWMW in Level 12, which Thalmann suggests is the clinching evidence for an LBI date for this level. Idem., for the reference to the campaigns of Thutmosis III as a possible explanation for the destruction of Level 12.
15 Thalmann (1979), pp. 67-68.
The TNM parallels with the site are not extensive, but do suggest some modification of the schema as outlined by Thalmann. The few parallels suggest the following:

<table>
<thead>
<tr>
<th>Tell Arqa Phases</th>
<th>14</th>
<th>13</th>
<th>12C-A</th>
<th>11'-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>F-E</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D-C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>B-A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Whilst the pattern of associations are not extensive enough for the weight of evidence to be overwhelming, there is some suggestion that the Level 12 destruction might be better placed towards the end of the Middle Bronze Age, rather than at the end of the LBIA period. Certainly, the pattern of coarseware parallels quoted by Thalmann are overwhelmingly MBIIIC in character, and those few held to be LBI are tomb derived, and strongly in the MBIIIC tradition in any case. The presence of a single sherd of Tell el Yahudiyyeh Ware might be held to favour the earlier date, although single sherds of this ware should not be given undue weight. Equally, the single sherd of Bichrome Ware does not stand in the way of a late MBIIIC destruction date, as Bichrome Ware is present in the late MBIIIC destruction horizons at Tell el Ajjul Palace I, and Tell ed Dab'a Level D/2.

The presence of Red Lustrous Wheelmade ware might appear to be a more serious objection to a late MBIIC date. Although generally indicative of the LBIB/IIA periods in the southern Levant, it is found in early LBI contexts in the north, and is known from Pella, in a fairly well dated transitional MBIIIC/LBIA context. The clearly attested LCIA2 beginnings of RLWMW in Cyprus would allow for transitional MB/LB occurrences on the mainland. Suggested direct

17 See Potts et.alii. (1985), and Potts in McNicoll et.alii. (in press), for the MB/LB date of T.62 at Pella. For a recent, early LBI occurrence of RLWMW at Ashkelon, see Stager (1991). For a detailed survey of the relative and absolute chronology of RLWMW, see Merrillees (1963), and especially Eriksson (1988), p. 177, fn. 5, and (1989), passim. Ms. Eriksson's Doctoral thesis on RLWMW is soon to be published as a SIMA volume. I must thank Ms. Eriksson for discussing the relative and absolute chronology of RLWMW with me at length, particularly with respect to the ware's relative chronology on Cyprus, and its significance in absolute chronological studies.
parallels between the Cypriot LCIA2 period and Tell Arqa Level 12 are further supported by Levantine coarseware occurrences in Cypriot LCIA2 contexts at Maroni. As it happens, specific parallels between the Maroni Tomb 1 Levantine imports and Tell Arqa Level 12 products reinforce this point.

Equally, the not inconsiderable LBIIA parallels from TNM Levels D-C with the 'Tell Arqa Level 11' (Upper) material, suggest that this post-destruction LBII level may have a longer occupational span than the limited pattern of Cypriot imports, and Egyptian/Ugaritic archival silence, might suggest.

Although the published evidence is not extensive, the pattern of associations between Tell Arqa and TNM does not appear overly strong, perhaps favouring Parr’s suggested coastal/inland assemblage dichotomy during the MB/LB period.

Byblos

Montet’s and Dunand’s excavations at Byblos discovered a wealth of material of the first importance for chronological studies. However, Montet’s hopelessly slapdash excavation technique, and undisciplined publication procedure has robbed the material discovered by him of much utility. Whilst Dunand’s excavation technique was marginally better, and certainly more clearly stated, his poor publishing practice did little to improve matters. Both excavators published important closed deposits, but as neither made any effort to publish a depositional sequence, there is little available to allow one to set up a reliable relative sequencing of the grave and building/temple offering deposits.

From Montet’s excavations, the so-called Royal Tombs I-III purport to contain more or less closed deposits of early MB material, dated by the association of inscribed Egyptian imports to the second half of the Twentieth and the first half of the Nineteenth Century B.C. However, Tufnell, in her valiant attempt to gain some knowledge on the poorly published ceramics, had to admit that the inventory of the material was so imprecise that reliable allocation of types to each individual

18 I thank Dr. Gerald Cadogan for allowing me to examine photographs of the Maroni Tomb 1 material, and to comment on it before its final publication. The presence of Levantine MB/LB Buff Burnished trefoil mouthed jugs in this tomb have particularly close parallels at Tell Arqa Level 12. See Thalmann (1978), Fig. 49:7 and Thalmann (1979), Fig. 4:UL, for examples of this jug type. See Cadogan (1984), for a short mention of the Tomb 1 material.

19 Parr (1968), pp. 35-36, and fn. 108.

tomb proved impossible. Whilst Tufnell suggested this problem might be overcome by treating all three tombs as a single deposit, she notes worrying inconsistencies in the chronological affinities of the material, suggesting a mixture of early MB IIA and MB IIB associations, in storage vessels, some bowl forms and dipper juglet types 21.

Dever’s analysis of early MB IIA deposits in Syria reinforced the surmise that the Royal Tombs might contain material of varying date, and suggested that some types, particularly storage vessels, could well date late in the MB II, perhaps as late as MBIIC 22. Gerstenblith’s extensive comparative analyses on the Byblic material confirms it as being largely MB IIA in date. However, she noted some features that were not typical of her MB IIA phasing, and suggested that the assumption that the material was from closed deposits needed to be re-examined 23.

Given the consistent doubts about the bona fides of the context and stratigraphic homogeneity of the Byblos Royal Tomb assemblage, it is not likely that TNM parallels drawn with this material will be decisive in relative chronological deliberations. Even so, the few parallels that present themselves are not without interest. They are:

<table>
<thead>
<tr>
<th>Byblos Phases</th>
<th>RT 1-3</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TNM Phases</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase H</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Phase G</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Phase F</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The few parallels that do exist tend to associate a small amount of the Tomb I-III material with the TNM Phase H/F material. This supports both Tufnell’s suggestion that the Royal Tomb material contains a relatively wide range of Middle Bronze Age material, and Dever’s surmise that some of the Royal Tomb material is to be dated quite late in the MBII period.

21 Tufnell (1969), pp. 6-10, on the deficiencies in coarseware recording, and the need to treat the coarseware materials as a single group.

22 Dever (1976), p.27, fn. 69, on the MBIIC storage jar types among the Byblos Royal Tomb I-III material.

23 Gerstenblith (1983), pp. 38-42, for the most recent evaluation of the Byblos Royal Tomb material.
Sarepta

The University Museum of the University of Pennsylvania excavations at Sarepta, under the direction of James Pritchard, discovered five major phases of Middle and Late Bronze Age occupation over the four seasons of excavations between 1970-74. 24 The Middle and Late Bronze Age strata from Area II.Y were published in Anderson's Doctoral Dissertation in 1979, and re-issued with minor amendments as the final excavation report on Area II.Y in 1988. Khalifeh's companion volume on the Area II.X excavations, based largely on Anderson's findings, was published at the same time 25. They suggest the following allocation of strata:

<table>
<thead>
<tr>
<th>Sarepta Area</th>
<th>II:Y</th>
<th>II:X</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBIIC</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>LBI</td>
<td>K2-1</td>
<td>I</td>
</tr>
<tr>
<td>LBIIA</td>
<td>J-H</td>
<td>II-III</td>
</tr>
<tr>
<td>LBIIB</td>
<td>G2-1</td>
<td>IV</td>
</tr>
</tbody>
</table>

The patterns of association between the Sarepta and the TNM sequences are not extensive, but are consistent throughout the sequence, and allow for a modest re-examination of what are primarily Anderson's conclusions.

<table>
<thead>
<tr>
<th>Sarepta Strata</th>
<th>L</th>
<th>K</th>
<th>J-H</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>17</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>F-E</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>D-C</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>B-A</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The TNM associations would tend to support Anderson's pattern of attributions, in all their main features. His most tentative judgement, on the MBIIC positioning of the Stratum L material, seems borne out by the TNM

24 For preliminary comments on the first three seasons of excavations, see Pritchard (1975), pp.1-11.
parallels, as does his equally tentative LBI dating for the succeeding Stratum K. Otherwise, there is little to quibble with in Anderson's analysis, in as much as the Sarepta and TNM data would seem to display an approximately equivalent relative sequence.

Ebla

The University of Rome excavations at Tell Mardikh, ancient Ebla, under the direction of Paulo Matthiae, have isolated two main phases of Second Millennium occupation, apparently confined to the Middle Bronze Age, over the course of excavations conducted at the site since 1964.

Matthiae has outlined a detailed relative chronological patterning for the site assemblages in many articles, although the essential detailed stratigraphic information has not yet been published. Matthiae outlines two major Middle Bronze Age strata, IIIA and IIIB, dating to the MBIIA and the MBIIB-C periods respectively, and illustrates two ceramic assemblages which are said to typify these phases, without ever providing closely contextualized groups, other than those derived from the three tombs of the so-called Amorite Royal Cemetery. Matthiae argues for essential continuity throughout the Middle Bronze Age, with periods of extensive and intensive building activity interspersed with less active phases. He dates the final destruction of the site to the end of the MBIIC period, and suggests the campaigns of Hattusas' or, more probably, those of Mursilis I, as the appropriate explanation for the destruction and desertion of the site.

For convenience, see Matthiae (1980a), (1984) and (1987), out of some thirty articles in English, French, German and Italian, for a general summary of the excavations at Ebla. See Matthiae (1979a), (1979b), (1981) and (1989), and Guardia (1988) especially, for the MBIII burials and ceramics.

See Parr (1968), pp. 33-36, on the publication deficiencies in the first two interim reports. Over twenty years later, there is still an absence of detailed stratigraphic information, measured sections and tight depositional history for all of the more important discoveries. Most ceramic data derive from closed tomb groups, with fewer than ten plates of tell-derived pottery having been offered from nearly thirty years of excavation. None of these are to be closely associated with particular structures or periods. Generally, material is presented as from either Phase 'IIIA' or 'IIIB', without further contextual detail. This is just as worrying now, as it was when Parr made his comments, as arguments on the chronological priority of various Mardikh architectural forms, such as massive earthwork fortifications, 'three-entranceway' gates, and the 'longroom' and 'migdol' temple forms, must remain unassessable until the required stratigraphic and ceramic data are made available.

See most recently, Matthiae (1987), p.147; Matthiae (1980a), pp.147-149, for an assessment of the destruction date as being before the MBIIB-C period, as the ceramic repertoire lacks the distinctive ceramic forms of the Palestinian MBIIB-C period, which
Parallels between the TNM and Tell Mardikh assemblages are quite numerous, and consistent enough to prompt a re-evaluation of at least some of Matthiae's conclusions. The associations are:

\[\begin{array}{ccc}
\text{Tell Mardikh Phase} & \text{IIIA} & \text{IIIB} \\
\text{TNM Phase} & & \\
H & 3 & 1 \\
G & 6 & 16 \\
F-E & 1 & 7 \\
D-C & 0 & 1 \\
\end{array}\]

Whilst the parallels are not extensive, largely due to the limited amount of the Tell Mardikh occupational ceramic data published, they are suggestive. The extensive linkages between TNM G and Mardikh IIIB is not surprising, as good MBIIB-C occupation undoubtedly existed at the site. However, the fairly extensive association of TNM F-E and Mardikh IIIB should raise some questions as to the date of the final destruction of the site.

The main ceramic arbiters of the late MBIIC date were the presence of Chocolate on White Ware, or what Matthiae suggests as a probable MBIIB-C predecessor of this fabric, and the absence of Bichrome Wheelmade Ware in the destruction assemblage. Both of these identifications are challengeable. Matthiae's ancestral Chocolate on White fabric, identified with apparently similar products from MBIIC levels at Shechem, could equally date to the LBI period at that site. The absence of Bichrome Ware from the assemblage is not a valid chronological criterion, and does not stand in the way of any suggested down-dating of the destruction of Ebla IIIB.

Matthiae dates to c.1500 B.C. In this assessment, he is followed by Dever (1990), p. 77 and p. 80, fn. 11.

29 See Matthiae (1984), p. 22 and (1989), pp. 307-310, for this CoW variant. The argument that absence of Bichrome Ware coupled with the presence of a small amount of CoW favours a MBIIC date has come under increasing attack since the publication of Bimson's (1981) critique of Bichrome-derived chronologies. This has recently been reinforced by Wood's (1990a) critique of the grounds for dating Canaanite Jericho's destruction to the MBIIC period.

30 Matthiae (1984), p. 22, for the CoW equations. See Kenyon (1973a), for the doubts surrounding the date of the Shechem strata in question. Although Parr (1970), suggests that Kenyon's judgement may be premature, neither Seger (1974), nor Dever (1974), establish an unequivocal MBIIC date for the Shechem assemblages. It is worth noting that Seger (1976), and Dever (1987), both date equivalent assemblages at Gezer to the LBI period.
The pattern of TNM associations, when coupled with interlocking parallels from the relatively securely dated strata at Tell Arqa, Tell Ghassil and Kamid el Loz, all point to some lowering of the date for the destruction of Mardikh IIIB from its MBIIB/C transitional date, c.1650-1600 B.C., to a time towards the end of the MBIIC period certainly, and possibly slightly later, within the LBI.

Hama

The University of Copenhagen excavations at Hama, under the direction of Harald Ingolt, uncovered at least eight phases of Middle and Late Bronze Age material over the course of the seven seasons of excavation between 1932-38. Ingolt's excavations represent the first major contribution to relative chronological study in inland Syria, and were to prove the most influential excavations in this region during the interwar years, and for many years thereafter. The quantity of material and the relatively well stratified sequence extracted allowed Ingolt to erect the first inland relative chronology of any robusticity. Although his chronological summary makes some use of Pézard's work at Tell Nebi Mend, and du Mesnil du Buisson's at Qatna, Khan Sheikhoun and Tell As, it bears more heavily the mark of Albright's work at Tell Beit Mirsim. All major relative and absolute chronological conclusions derive from Albright's synthesis on the southern sequences.

As Ingolt saw local fabrics as comparable only at the most general level, he was forced to rely on the distinctive Egyptian Tell el Yahudiyeh Ware and Cypriot White Slip and Base Ring imports to knit his sequence together with the better known sequences of the south. The major marker ware for early/mid Second Millennium calibrations was Tell el Yahudiyeh ware. Ingolt held that the very small quantity [3 sherds] of this material amongst hundreds of thousands of local coarseware sherds could only mean that Hama was not occupied during the assumed floruit [c.1750-1550 B.C.] of this ware. On the sole authority of the absence of this ware, Ingolt dated the end of Hama H to c.1750 B.C., and posited a desertion over the lifetime of the fabric, dating the beginning of Hama G around c.1500 B.C.

Fugmann published the relevant architecture in 1958. His conclusions flatly contradicted those of Ingolt. He specifically denied that any gap existed on architectural grounds, citing many examples of reused walls and silos from terminal H1 to early G3. His conclusions placed the end of Hama H c.1550 B.C., with Hama G following on without any significant gap. The controversy

31 Ingolt (1940), pp. 49-66.
32 See Matthiae (1980a), pp. 21-31, for a general summary of Interwar excavations. See Ingolt (1940), pp.47-69 for citations dealing with the chronology of Hama H-G.
33 Ingolt (1940), p. 56 and p. 65.
34 Fugmann (1958), especially, pp. 86-116.
surrounding the date for the end of Hama H may be termed the MB/LB Gap Hypothesis, perhaps the single most important relative chronological problem to affect northern levantine calculations. It will be examined in detail below (Chapter 5).

The pattern of associations between Hama and TNM are extensive and relatively strong. Comparison between the two corpora suggest the following:

<table>
<thead>
<tr>
<th>Hama Phases</th>
<th>H5-4</th>
<th>H3-2</th>
<th>H1</th>
<th>G3</th>
<th>G2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase H</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phase G</td>
<td>6</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Phase F</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Phase E</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Although many forms are long-lived types, the basic association of Hama H and TNM H-G is not in doubt. Whilst a fair degree of overlap is to be expected between the essentially unbroken ceramic tradition of Hama H5-H2 and TNM H-G, there is the suggestion that the predominantly LBI TNM Phases F-E, which do evidence limited new features in the TNM ceramic repertoire, find a fair number of parallels with Hama H2 and particularly Hama H1.

It raises anew the issue of the date for the end of Hama H. Rather than suggesting an early [ie. Eighteenth Century] date, the TNM parallels might suggest a considerably later one, perhaps as late as the Late Bronze I period of the Fifteenth Century B.C. There is a considerable body of archaeological and historical evidence in favour of such a revision. Kantor's observations on comparative industrial/artistic forms 36, and Amiran's analysis of the occurrence of Black Impressed Ware at Hama H and Atchana V 37, both agree on the necessity of lowering the date for the end of Hama H considerably 38. If one accepts Astour's suggestion that Hama is Tunip, then considerable textual evidence might be presented in support of such a case 39.

Fugmann reinforces the argument for downdating the end of Hama H through his specific association of the Hama G3 destruction with the Qatna

35 Ibid., pp.108-109 on the re-use of Hama H silos and architecture in Hama G3, and pp.115-116, on the dating of Hama H and G.
36 Kantor (1956), pp.158-159, fn.22.
37 Amiran (1957), pp. 95-97.
38 Ibid., p.96.
destruction horizon, dated to the reign of Suppiluliumas, [c.1350 B.C.] 40, on
albeit shaky grounds originally, although the LHIIIA1/LHIIIA2 material present
in the destruction debris 41, for all Leonard's well taken caveats on the
undoubtedly problematic context 42, does seem to necessitate a date somewhere
within the first half of the Fourteenth Century B.C., according to Warren and
Hankey's most recent review of the evidence 43.

Whether or not one accepts the late date posited for the end of Hama H,
there is little doubt that, based on the reliable associations between the Hama H/G
and the TNM H-F evidence, the Hama H sequence continued throughout the
Seventeenth Century, and most probably on into the Sixteenth century, as
originally suggested by Kantor, Amiran, Fugmann and Parr 44. If one were
interested in pursuing specific circumstantial link-ups, then it might be suggested
that the destruction of Hama H2 be associated with that of TNM G, that of Hama
H1 with TNM E, and that of Hama G3 with that of TNM C, although the
generalised nature of the pattern of associations cannot be used in support of such
fine-tuned linkages. It merely serves to emphasize the fact that the ceramic
associations do not stand in the way of associating the circumstances in this way.
This matter will be pursued further in Chapter 5, below.

Qatna

The French excavations at Tell Mishrife, ancient Qatna, under the direction
of the Comte du Mesnil du Buisson, uncovered at least five phases of Middle and
Late Bronze Age occupation, during the four seasons of excavation between 1924-
29 45. Although the various areas investigated were poorly excavated and even
more poorly published, major occupational horizons can be identified in several of
the locations investigated, although establishing an acceptable internal relative
chronology is well-nigh impossible due to the paucity of published data 46.
However, the following rough identification of ceramic assemblages might be
suggested by the preliminary and final publications.

40 Fugmann (1958), pp. 128-134.
41 du Mesnil de Buisson (1928), pp. 6-24.
44 Parr (1968), p. 35 and especially fn.108, where he demonstrates that Hama H
material can be found sufficient MBIIIB-C parallels at Hazor and Megiddo to reinforce the
preceding essentially theoretical argument for a late Middle Bronze Age date.
45 See du Mesnil du Buisson (1927), (1930) and especially (1935).
46 For an assessment of the Qatna excavations, see Schaeffer (1948), pp. 116-119,
p.149.
Qatna Areas O. Cr. S.7 B. l'Eglise P.de Sud. C. de Loth

EBIV *
MBIIA *
MBIIB *
MBIIC *
LBI *
LBIIA *

This suggested arrangement must remain tentative at best, based as it is on the minimal information published by du Mesnil du Buisson. The TNM patterns of association are not strong, but this may be presumed to reflect more on the limited publication of the material, than any real differences of affinity between the two sites. There is no difficulty in finding parallels for the material that is published, and it is more the ease of demonstrating parallels for those ceramics that are published than for any real weight of evidence that one suggests a close affinity between the sites. The associations are:

<table>
<thead>
<tr>
<th>Qatna Area</th>
<th>O.e Creux</th>
<th>C. de Loth</th>
<th>B. l'Eglise</th>
<th>P. de. Sud</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>F-E</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>D-C</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>B-A</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Little should be made of these results. The pattern of associations with the TNM material broadly confirms du Mesnil du Buisson's initial attributions. There would seem to be little doubt that the Butte de l'Eglise complex, and probably most other areas, contain a fairly full sequence of Middle and Late Bronze Age material. Whether the site is settled in the earliest phases of the MBIIA period is unclear, although tomb material and certain of the l'Eglise ceramics makes it likely. Equally, du Mesnil du Buisson's claim 47 for the site's desertion after the LBIIB destruction is difficult to argue with, although a couple of LBIIB parallels at TNM might suggest the unsurprising possibility that occupation resumed shortly thereafter.

Atchana

Woolley's excavations at Atchana (1937-39, 1946-49) were to prove of vital importance to the study of the relative and absolute chronology of the MB/LB period. Although early MB deposits, generally seen as those of levels XVII-VIII, were only sparingly investigated, the palace-temple complexes of Yarim Lim and Niqmepa (levels VII and IV) and their precious associated historical texts, were immediately recognised as vital for the understanding of the MB/LB transition 48.

Woolley's final publication was flawed in many ways, although not without important and valuable insights. However, the manner in which the ceramic corpus was published, with its conflated types simplified to facilitate publication, meant that little could be drawn from the local coarse wares 49. This was something of a disaster for Second Millennium studies, as, at the time of publication, Woolley's sequence was the only continuous stratified series available for the entire Syrian region 50.

Whilst the illustrations were of variable use, the Table of Occurrences was well in advance of its time, with its recognition of the central importance of documenting the duration of types, rather than their presence or absence in any specific location 51. Woolley's Table might be of greater use if one could trust the reliability of the contextual information on which it was based.

This had been questioned very shortly after publication, in Swift's important Doctoral Dissertation on the Tell al Judaideh material 52, and more

48 See Woolley (1953), and (1955) especially. For the early periods at Atchana, see Williams & Hassert (1978) and McClellan (1989). For Atchana VI-V, see Gates (1981) and (1987).

49 This point is often overlooked. Woolley does not present line drawings per se, rather a summary rendition of 'basic types', requiring the 'arbitrary suppression of minor characteristics of individual vases', Woolley (1955), p. 320. Woolley's reasoning is often based on his perception of the 'historical significance' of variants, which in turn tended to be based on his stratigraphic allocations of the individual vessels in question. Given Williams & Hassert's (1978), pp. 41-42, and McClellan's (1989), p. 21, observations on the apparently arbitrary typology and stratification, such value judgements are likely to be circular and questionable.

50 Schaeffer and Chenet's (1949) publication of the Ugarit material did not claim to present a continuous sequence, and Fugmann's (1958) publication of the Hama material, although useful, is often illustrated with such minute drawings as to minimise, if not rule out, comparative studies.

52 Swift (1958). Although Swift carried out a thoroughgoing re-analysis of the Atchana material, his promised publication of the Judaideh sequence, the central piece of evidence
recently in the studies of Williams and Hassert, and McClellan. All three suggest that the earlier MB deposits, delineated by the levels XVII-VIII, were poorly stratified and problematically recorded, and they place little hope in the reliability of Woolley's Tabulation with respect to these levels 53.

Marie Henriette-Gates has been the main revisionist of Woolley's material from Levels VI-V, and through the chronological nature of her study, not irrelevant to Level VII studies. Synthesising the many revisionist works of the generation after Woolley's publication, Gates, following Albright archaeologically if not chronologically, argued for the placement of Atchana VII in the MBAIB-C period, and Atchana VI and V in the LBI period 54. The vast majority of her argumentation was based on the presence of Cypriot Bichrome Ware in Levels VIA and VB-A, and the apparently irrefutable equation of this ware with the Palestinian LBI period 55. Bimson exposed the faulty logic behind much of this construction, and argued that the equation of Bichrome and LBI was little more than an historical convenience 56. Gates seems not to have changed ground at all in her recent pronouncements, although exchanges in the Goteborg Conference between her and Helck and Hornung revealed how closely her archaeological dating is pegged to a notional Eighteenth Dynasty historical horizon of c.1550 B.C. 57.

Egyptologists, Palestinian and Cypriot archaeologists are by no means happy with these equations. Wood pointed up the Cypriot relative chronological dilemmas consequent on a failure to provide an adequate number of well stratified contexts for Bichrome Ware in the island 58, whilst Stewart and Parr have long cast doubt on the neat equation with Eighteenth Dynasty activities in Palestine, as both suggest the presence of Bichrome ware in the MBAIC Palace I at Tell el-Ajjul 59. Egyptologists no longer accept the relatively high c.1567 B.C. accession date facilitating his recalibration of the Atchana material, never occurred.

53 See Williams & Hassert (1978) and McClellan (1989), for a full evaluation of Woolley's typological method and results.
54 See Gates (1981) especially, and (1987), for a full statement of her views. Whilst she agrees with Albright on relative chronological matters, she disagrees on the absolute chronology, preferring the Middle Chronology over his Low Chronology.
57 See the exchange of views published in the Discussion Section of the Gothenberg Conference papers, for which see Åström [ed.] (1989), pp. 67-73.
58 Wood (1982), pp. 73-74.
59 Stewart (1974), pp. 17-26, based primarily on his unpublished notes which were privately circulated after 1949, Stewart (1974), p.62. His final thoughts on the matter, penned in 1957, Stewart (1974), pp. 62-63, and p.120, fn.1, observed that both Palace I and Palace II had Bichrome Ware, with the former containing a small amount of Bichrome WS I as well. Parr (1970), pp.120-121, observed much the same thing. Both Stewart and
for Ahmose, and suggest that the wars of liberation might well date as late as c.1540-1530 B.C. Together, they add up to a severe weakening of Gates' consensus dating for the levels.

The TNM materials can offer only a most limited review of these problems, as the parallels that are identified have been assembled from Woolley's admittedly stylised illustrations. Parallels drawn must remain somewhat debatable until the Atchana material can be re-illustrated, and the typology re-assembled. As Hennessy, Williams and Hassert, McClellan and Gates have pointed out, this may no longer be possible, and re-excavation may be the only alternative.

\begin{center}
\begin{tabular}{lcccc}
\textbf{Atchana Levels} & XII-VIII & VII & VI-V & IV-I \\
\hline
\textbf{TNM Phases} & & & & \\
Phase H & 4 & 2 & 0 & 0 \\
Phase G & 5 & 17 & 4 & 1 \\
Phases F-E & 0 & 1 & 3 & 0 \\
Phases D-C & 0 & 1 & 2 & 1 \\
Phases B-A & 0 & 0 & 0 & 2 \\
\end{tabular}
\end{center}

Conclusions drawn from these few associations should not be overstated. Nonetheless, the general association of TNM G with Atchana VII seems supportable, as does the sequencing of TNM F-E with Atchana VI-V. To the limited extent that they can be employed, the TNM data would support the equation of Atchana VII with the MBIIC period, and Atchana VI-V with the LBI period. Although Gates would have Atchana VIB as MBIIC as well, based on the absence of Bichrome Ware, such reasoning is unsound, and not to be followed in the absence of positive supporting evidence. However, the equation of Hama H1 with Atchana V, on the basis of similar deposits of Black Impressed Ware in both, may lend some support for the notion, providing Woolley's assertion that Black Impressed Ware is confined to Level V is reliable. The association of the Parr doubted the association of Bichrome Ware with Hurrian infiltration.

For an even-handed review of the trend towards a lowering of the dates for the inception of the New Kingdom, see Kitchen (1987) and Eriksson (forthcoming). Note that similar tendencies are developing in Hittite studies, for which see Bryce (1989), and especially Astour (1989), which are heavily and cogently criticised by Giles (forthcoming).

For a rather harsh evaluation of Gates conclusions, see Muhly (1975), and especially (1985).

For Hennessy's comments, see the Discussion Section of the Gothenberg Conference volume, Åström[ed.] (1989), p. 69.
LBIIA TNM D-C material with Atchana IV-III provides support for those with reservations about the contexts of the Mycenaean III material from Atchana V 64.

Tell al Judaideh

The site was first located by the Oriental Institute's "Mounds in the Plain of Antioch" survey in 1933, and investigated by the Oriental Institute's "Syrian-Hittite Expedition" between 1933 and 1936 65.

Excavation began on the northwest slopes of the thirty metre high, four hectare mound in 1933, and continued over the three field seasons of 1933/34, 1934/35 and 1935/36. Eleven small trenches (TT1 to TT11) were investigated in the northwest slope area during the first two seasons, and a major stratigraphic probe, numbered JK3, 15 by 10 metres in extent, was excavated in the third season. Also during the third season, a long narrow step trench, numbered TT20, some 4 metres wide and ultimately 47 metres long, was cut into the southwest slope of the mound. This was to constitute the second stratigraphic probe into the mound, and was to be the only probe to reveal an entire Second Millennium sequence 66.

Braidwood and Braidwood published the early material (Amuq Phases A-J) from JK3 (Phases 1-28) and TT 20 (Phases X-XV) in 1960, confirming the importance of the Amuq sequence for relative chronological studies 67.

Swift prepared the Middle Bronze through Iron Age sequence (Amuq K-O/Judaidah TT 20 Step IX-I) for publication in his 1958 Ph.D. 68. In this he suggested major revisions to Woolley's absolute chronology at Atchana, and placed the relative and absolute chronology of the Amuq on a firm footing 69. Several major problems remained, not the least being the failure to publish the Second Millennium ceramic material from Tell al Judaideh 70. Given the very real

63 See Woolley (1955), pp. 342-347, on the presence of Black Impressed ware in Atchana V. See Amiran (1957), pp. 95-97, for the equation of Hama H1 and Atchana V, based on the Black Impressed ware.
64 For which, see Crouwell & Morris (1985), p. 86. This problem will be examined in further depth in Chapter 5, below.
65 See Braidwood (1937), pp. 4-6, Swift (1958), pp. 5-6, and Haines (1971), pp.1-2 and Plate 53. For a general overview of the project, see Tadmor (1964).
66 See Haines (1971), Plate 53, for the location of TT20.
67 Braidwood and Braidwood (1960). The publication was not without its methodological critics, for which, see Tadmor (1964), pp. 254-256.
68 Swift (1958).
69 Ibid., pp. 26-56, for the Judaideh sequence, and pp. 56-62 on the modification to Woolley's chronological schema.
70 This was foreshadowed in Braidwood & Braidwood (1960), and mentioned again in
doubts of those who have investigated the possibility of reconstructing the Atehana sequence, the sequence from Judaideh assumes an even greater prominence than it may have seemed to have held at the time of excavation 71.

Through the kindness of the authorities at the Oriental Institute, the TT20 material was made available for study in June of 1988 72. All diagnostic sherds from Phases K-M were examined, and most catalogued and drawn, facilitating accurate comparison of this Second Millennium material with that from Atehana, and through it most other sites in the region for the first time 73. In the first instance, the intention was to compare the Judaideh material with that extracted from TNM. More detailed analyses, particularly with respect to the Atehana sequence will follow.

<table>
<thead>
<tr>
<th>Judaideh Phases</th>
<th>IX/VIII</th>
<th>VIII-VI</th>
<th>VI-V</th>
<th>V-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase H</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phase G</td>
<td>3</td>
<td>17</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Phase F-E</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Phase D-C</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Phase B-A</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The first thing to emerge from the direct comparison of the Judaideh and TNM material is that there is little firm evidence for the apparent gap in occupation at Judaideh, said to cover the MBIIC period, which has been commented upon by Kantor, Swift, and Williams and Hassert 74.

Swift was the first to observe that the parallels of the Judaideh L material Haines (1971), but as yet no final publication has resulted. The publication of this material is currently the responsibility of Dr. Rudolph Dornemann of the Milwaukee Public Museum.

71 For, as Swift (1958), p. 8, makes clear in his introductory statements, he regarded the Atehana sequence as far more extensive and typologically richer than that from Judaideh.
72 I must thank Dr. Thomas McClellan for making the initial arrangements; Mr. Ray Tindall, Assistant Curator of the Oriental Institute Museum, for facilitating access; and Dr. Rudolph Dornemann for granting me permission to study the material.
73 Although Swift carried out an extensive comparative study between the Amuq and Atehana materials, his Doctoral thesis is surprisingly sparsely illustrated. It is not made clear within the thesis, which and how much of the Judaideh material he actually utilised in his comparisons.
74 See Kantor (1956), pp.158-159; Williams & Hassert (1977-78), p. 53, Table 3; Swift (1958), p. 36, for Phase M, and pp. 46-48, for Phase L.
seemed to cluster around the Atehana XII-VIII periods, without anything specific to Atehana VII-VI. Whilst he pointed up the clear continuity of ceramic technique and style between Judaideh L and M, he suggested the Judaideh M shape assemblage contained enough new features to favour some form of discontinuity between L and M. It is important to note that there was never any suggestion of stratigraphic collaboration for this conclusion. Swift offers exactly five shape examples from the Judaideh assemblage for comparison with the type series from Atehana (Swift Table 4). Three of these types have post-Atehana VII occurrences, with one of them stretching as far down as Atehana I. This very thin, and somewhat contradictory, evidence was never strong enough to justify his conclusions. Even so, Gerstenblith accepted Swift's conclusions in total, and followed him in dating the entire K-L sequence to the MBI period.

Williams and Hassert examined the earlier Atehana levels as part of a larger study, and concluded that many of the types attributed to the earlier Atehana levels came from two poorly stratified probes beneath the Level VII Palace and Temple. They demonstrated many internal inconsistencies, and incorrect attributions. Unfortunately, whilst they did locate some of the early Atehana pottery, and demonstrated its stratigraphic bona fides, they did not bother to re-draw it, being content to re-publish Woolley's wholly inadequate file-card illustrations.

Williams and Hassert then re-phased both the Judaideh and the early Atehana material, with respect to the Hama and Ugarit sequences in the first instance, and through them to the standard 'Albrightian' schema for Palestinian typology and relative chronology. They suggest an MBI date for the Judaideh K-L assemblage, and for all Atehana materials before Level X. They favour an MBII date for Atehana EX-VII, but deny the existence of Palestinian MBII material in the Judaideh sequence. Although they did not deal with the Judaideh M material, nor with the Atehana M-II sequence, they suggested that the Hama H and Judaideh L assemblages were essentially parallel, and that the presence of Syro-Cilician ware in the Judaideh L assemblage was significant.

76 Ibid., p. 42.
77 Ibid., p. 43.
78 Idem., Type 23 Bowl sherds, and Cat. No. X-3011 and especially X-2920 all above post-Atehana VII occurrences.
79 Gerstenblith (1983), pp. 47-48. It is of interest to note that Swift accepted the rough equivalence of the Judaideh L and Hama H sequences, but derived his MBIA-B dating of the Judaideh L assemblage on the absence of Syro-Cilician ware, which he dated exclusively to the MBIIA period, even though he acknowledged that strong Syro-Cilician parallels with Cypriote WPV imports at Megiddo should date to the MBIIC period. Merrillees & Tubb (1979), commented further on the apparent associations of WPV-V and Syro-Cilician Painted material. Both Åström (1972c) and Johnson (1982) would date similar WPV-V material to the MBIIB-C period on the mainland.
80 Williams & Hassert (1977-78), pp. 41-48. See Figs.1-3 for the inadequate illustrated material. There seems little point in reproducing these impressionistic sketches when the vessels are available for re-drafting.
that from Atchana VI-V in any detail, concluding remarks accept Swift's LBI
dating of Judaideh M, and apparently a similar dating for the Atchana VI-V
material.

The TNM data provide some excellent parallels with the Tell Judaideh
material, and suggest some revisions to the chronological scheme as outlined
above. Whilst there are no close parallels between the Judaideh Phase K material
and that from TNM, this absence might be held to support the MBI date for
the Judaideh material. Certainly, the TNM evidence is not in conflict with dates
suggested previously. There are many close parallels between the TNM Phase H/G
material and that from Judaideh L, certainly favouring an MBII date for at least the
latest part of this material. As Swift would associate Atchana IX-VIII with the
latter half of Judaideh L, and Williams and Hassert assert that these levels are to be
dated to the MBII period, there is some agreement between previous work and the
present study. However, Williams and Hassert suggest that the Atchana IX-
VIII material is to be positioned early with the MBII period, apparently basing
this on the absence of late MBII forms. It has been suggested above that the
absence of late MBII southern Levantine forms in the northern Levantine
sequences should not automatically be ascribed chronological significance.

Given that the Hama and Atchana sequences, held by all authorities to be
comparable to the Judaideh L material, have demonstrable MBII material within
them, and in the case of the Hama material very late MBII material at that, and
given the pattern of TNM affinities revealed in a consideration of the unpublished
coarseware pottery from Judaideh, the evidence would favour a repositioning of at
least some of the Judaideh L material into the second half of the MBII period. This
accounts for the pattern of affinities more accurately, and is in keeping with
Swift's original observation on the considerable similarity between the Judaideh L

81 Although they suggest a late Middle Bronze Age date for Hama G3, Williams &
Hassert (1977-78), p. 56, fn. 25, apparently overlooking Ingendt's statements on the
presence of Cypriote WS I in Hama H1, and Amiran's work on Black Impressed pottery
at both sites, which led to her equation Atchana VI-V and Hama H1, a conclusion Kantor
concurred with independently.

82 That is, with material used in this study. There are some fairly good links with the
early MB material from the Trench I South [Area 171-174] and North [Area 180-184]
Probes, outlined as TNM Phases J-M, in Chapter 2, above.

83 Swift (1958), p. 47 for the Atchana/Judaideh links, and Williams & Hassert (1977-
78), p. 54, Table 4, for the dating of Atchana IX-VIII to the early MBII.

84 Williams & Hassert (1977-78), pp. 45-48. In defining "Middle MBII" Palestinian
material, they draw their parallels exclusively with Megiddo XI material. Since Gonen's
(1987) re-assessment, at least that material drawn from Area AA should be considered
MBIIC in date. Defining 'Palestinian' through recourse to the most problematic Megiddo
strata is questionable at best.
and M coarseware traditions, if somewhat at variance with his observations on the comparative stratigraphy of the Amuq region.

Tell Hadidi

The Milwaukee Public Museum/ASOR excavations at Tell Hadidi, under the overall direction of Rudolph Domemann, uncovered extensive remains of the Middle and Late Bronze Ages during the course of five seasons of excavation between 1974-78. Whilst Domemann has presented extensive ceramic and other artefactual discussions in numerous articles over the past ten years, the stratigraphic information underpinning all his conclusions has not yet been published. Whilst one does not necessarily doubt Domemann's relative chronological attributions, it is difficult to evaluate his claims without the stratigraphy. Even so, Domemann's allocation of assemblages would seem to be:

Tell Hadidi Periods

- **MBIIA** Area B I, IV, XV
- **MBIB** Area B I, IV, VI, XV
- **MBIIC** Area B I, IV, XV
- **LBIA** Trench H XIII
- **LBIB** Area H I: "Tablet House"
- **LBIIA-B** Leiden University Excavations

The pattern of associations with the TNM assemblage is fairly consistent and relatively strong, and allows for some consideration of the chronological placement of Domemann's assemblages. The associations are:

<table>
<thead>
<tr>
<th>Tell Hadidi Phases</th>
<th>MBIIA</th>
<th>MBIB</th>
<th>MBIIC</th>
<th>LBIA</th>
<th>LBIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>9</td>
<td>11</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>F-E</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>D-C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The overall pattern of associations between Tell Hadidi and TNM seem to reflect the basic chronology outlined by Domemann. However, several points emerge which might suggest a modification of some of his observations.

Domemann allocates much of his assemblage, as published, to the MBIIA and MBIIIB periods, which might seem to suggest that the MBIIIC period was one of relative decline. The pattern of associations reflected by the ceramic assemblages of TNM and sites such as Mumbaqat and el-Qitar and Tell Hadidi, would suggest the re-allocation of much of the MBIIA material into the MBIIIB period, and a fair amount of Domemann's MBIIIB material into the MBIIIC period. This has the effect of "evening out" the density of Middle Bronze Age occupational history at the site. Domemann based the pattern of Tell Hadidi parallels on Atehana, Tell Judaideh, and Hama H, which he would confine to the MBIIA-B periods. As we have shown above and will discuss further below, this position can no longer be maintained. Equally, the suggested re-allocation of much of the apparently MBIIA material at Tell Hadidi to the MBIIIB period, which could easily apply to other sites in the region on the same grounds, calls into question many of the claimed early dates for the earthen rampart fortifications so common in this region.

Domemann has suggested that the early LBI material culture at Tell Hadidi evidences a noticeable re-orientation towards the southern Levantine assemblages typified by sites such as Hazor and Megiddo. Beyond supporting the relative chronology outlined by Domemann, the TNM associations neither confirm nor deny such a contention, although the change to the pattern of affinities does not appear to have been as marked as Domemann would imply, and is likely to be

86 Whilst Domemann (1985), pp. 55-56, states clearly that the late Middle Bronze Age was a period of great prosperity, in his detailed study of the MB sequence at Hadidi, Domemann (1984), he mentions only MBIIA-B material. Whilst he does mention the presence of MBIIIC material at the site, Domemann (1984), p. 66 and Domemann (1985), p.54, he relies heavily on the sequences from Hama, Judaideh and Mardikh to establish the Hadidi relative chronology, Domemann (1984), pp. 65-67, and as these sites are claimed to lack good MBIIIC material, it is not surprising that Domemann limits his discussions to either the MBII period, as in Domemann (1979), or the MBIIA-B period, as in Domemann (1984). His traditional 'Saueran' approach to ceramic typology can be detected in the recent study of the Tell Nimrin material, Domemann (1990).

87 Doubts about these claims were foreshadowed in Parr (1968), pp. 33-36, in his preliminary assessment of the Mardikh claims. Although Gregori (1986), pp. 94-95, takes issue with Parr, she offers no new ceramic data to establish her claims. She appeals to "wider cultural and historical considerations", (p. 94), in suggesting inland Syria as the logical home of the MB embankment/glacis fortifications, due to the inland region's apparently uninterrupted cultural development from Early Bronze predecessors. Neither claim can be substantiated at present, and even if cultural continuity could be demonstrated, it is not clear why this should predispose the inland to an early adoption of massive earthwork fortifications.

88 Domemann (1981a) p. 46.
more a function of the poor definition of Syrian LBI assemblages 89, than to any real change in cultural orientation.

It is of interest to observe that the so-called "Tablet House" assemblage, dated to the mid-Fifteenth century B.C. by Dornemann 90, finds its best, although hardly strong, parallels with the TNM E-D material, which has been dated to a similar horizon on other grounds.

el-Qitar

The University of Melbourne/Oriental Institute of the University of Chicago el-Qitar excavations, under the overall direction of Thomas McClellan, have uncovered two main phases of Middle and Late Bronze Age occupation during five seasons of excavation between 1982-88 91. McClellan has isolated two main MB/LB assemblages, which can be further divided into subphases. The two assemblages are not connected stratigraphically, although McClellan is under no doubts as to the chronological relationship between the two groups 92. What is unclear from his preliminary comments is the degree of discontinuity between the two assemblages. Basing his parallels firmly on those from Tell Hadidi, without ignoring other sites, McClellan would allocate the material in the following way:

<table>
<thead>
<tr>
<th></th>
<th>MBIIB</th>
<th>Group A-D</th>
<th>Area Y</th>
<th>LBI A</th>
<th>Groups 1-2</th>
<th>Building 14</th>
<th>LBB</th>
<th>Groups 3-5</th>
<th>Building 15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group A-D</td>
<td>Area Y</td>
<td></td>
<td>LBI A</td>
<td>Groups 1-2</td>
<td>Building 14</td>
<td>LBB</td>
<td>Groups 3-5</td>
<td>Building 15</td>
</tr>
</tbody>
</table>

Comparison with the TNM assemblages, which do have a secure relative chronology, will allow for some consideration of the degree to which McClellan's two assemblages diverge chronologically. The TNM associations are:

<table>
<thead>
<tr>
<th>el-Qitar Phases</th>
<th>Gps. B-D</th>
<th>Gps. 1-2</th>
<th>Gps. 3-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>14</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>F-E</td>
<td>4</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>D-C</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

89 This definitional problem concerning Syrian LBI assemblages, will be examined further in Chapter 5, below.

91 For which see, Culican & McClellan (1984), McClellan (1983), (1985), (1986a & b), and (1987). Two further seasons of excavation have taken place since 1988, as yet unreported.

92 McClellan (1986a), pp. 94-105.
The pattern of associations between the el-Qitar and the TNM material suggests some modification to McClellan’s scheme, but it is a modification in keeping with a similar modification suggested for the Tell Hadidi assemblages. The pattern of TNM associations strongly favours the re-allocation of el-Qitar Groups B-D material to the MBIIC period. This follows the suggested placement of much of the MBIIB material from Tell Hadidi into the later period as well. McClellan quotes many parallels from sites such as Atchana that favour such a re-allocation 93, and indeed draws many pertinent parallels between the apparently MBIIB Mardikh IIIB and the LBIA Hadidi Area H XIII material 94, which further reinforce the argument for an MBIIC placement. Such an amendment would prompt the re-dating of the main fortifications at both el-Qitar and Tell Hadidi to the MBIIC period, in close agreement with that noted for the Lower City at Tell Mumbaqat 95. Equally, the debris layers observed to be covering part of the wall system might be held to represent a destruction of el-Qitar at some date within the MBIIC period 96, again duplicating a similar circumstance at Tell Mumbaqat.

The suggested dates for the Building 14 [LBIA] and Building 15 [LBIB], both tightly associated with similarly dated assemblages at Tell Hadidi, would seem to be supported by the TNM associations, although these are not extensive.

Carchemish and Til Barsip

The British Museum excavations at Carchemish (1908-1914, 1920), first under the direction of D.G. Hogarth and R. Campbell Thompson (1908-1914) and after the First World War by C. Leonard Woolley (1920), exposed important Third and Second Millenium stratified material in limited soundings on the main tell, as well as impressive Bronze and Iron Age fortifications, and a number of graves dating from the Third through to the First Millenium 97.

The potentially important information on the stratigraphic sequence was almost completely lost in the destruction of field records in the troubles during and immediately following the First World War. Woolley's notes on the MB ("Middle Hittite") and LB ("Late Hittite") pottery are meagre, and make little attempt to do more than highlight some of the more interesting features present in the assemblage. Virtually nothing is drawn, and such descriptions as were furnished from Lawrence's notes are too general to be instructive.

Only the ceramics from the burials associated with the construction of the

93 Ibid., p.100, quoting parallels from Atchana VII-V.
94 Idem.
95 For the Mumbaqat fortifications, and a possible historical context, see Feyter (1989).
97 For the Carchemish excavations, see Woolley (1921), (1952), and Parr (1968), pp. 30-33.
city defences are published in any detail, and this material, containing Late Khabur Ware, evidences no direct parallels with TNM material under study 98.

Whilst we cannot now confirm the fact, the scant descriptions and notes on the Carchemish pottery suggest that it is quite close in form and technique to a small assemblage of MB/LB material recently collected from the eroded margins of the Upper City of Til Barsip 99.

Renewed excavations at Til Barsip were begun by the University of Melbourne in 1988, under the overall direction of Guy Bunnens 100. The three seasons of excavations to date have concentrated on the extensive EB remains of the Upper City, and the Late Roman and Byzantine periods on the Lower City. However, fairly extensive surface collection in and about modern terracing on the Upper City mound has produced a small collection of Middle and Late Bronze age material. Through the kindness of Drs. Guy Bunnens and Greg Wightman, the profile drawings of this material were made available for the present study. Associations between the TNM corpus and this MB/LB material from Til Barsip are:

Til Barsip MB/LB Upper City Phase

TNM Phase

\[
\begin{align*}
G & \quad 9 \\
F-E & \quad 4
\end{align*}
\]

This would tend to support Bunnens suggestion that good MBIIC and LBI deposits exist at the site.

Tell Ghassil

The Joint Lebanese Department of Antiquities/A.U.B. excavations at Tell Ghassil (1956-74), under the direction of Dimitri Baramki, uncovered extensive Second Millenium strata at this Middle Beqa'a Valley site, particularly during the last three seasons of excavations (1972-74) 101. The vast majority of this material

98 Woolley (1934), for the early cemetery material in and about Carchemish; Parr (1968), p. 31, for an assessment of the Amarna period burials.

99 Drawings of this MB material were kindly made available for comparison with the TNM material by Dr. G. J. Wightman. I thank him, and Dr. Guy Bunnens, for permission to comment on the Til Barsip MBA ceramics.

100 See Bunnens (1989), for a description of the first season of the renewed excavations. Two further seasons have since taken place.

101 Baramki published three preliminary reports, Baramki (1961), (1964) and (1966). A fourth report remains unpublished. For later excavations, see Doumet (1986). For Tell
was studied by Claude Doumet in his recent Ph.D. at the Université de Sorbonne I. Further analytical work, barring the study of one particularly interesting MBIIB tomb group from the site, has not yet taken place. Therefore, the vast majority of the stratigraphic and ceramic data utilised below derives from Doumet’s thesis.

Tell Ghassil has eleven major strata articulated to date, with the later six, Strata VI-XI, relevant to our enquiries. Doumet’s study would allocate the strata in the following way:

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI</td>
<td>MBIIA-B</td>
</tr>
<tr>
<td>X</td>
<td>MBIIB-C</td>
</tr>
<tr>
<td>IX</td>
<td>Late MBIIC/LBIA: severe destruction</td>
</tr>
<tr>
<td>VIII</td>
<td>LBIA: severe destruction</td>
</tr>
<tr>
<td>VII</td>
<td>LBIA-B: severe destruction</td>
</tr>
<tr>
<td>VI</td>
<td>LBIIA</td>
</tr>
</tbody>
</table>

Doumet would allocate the three destruction layers to the depredations of the early Eighteenth Dynasty Egyptian pharaohs Ahmose, (for Level IX and VIII), and Amenophis I, (for Level VII). He feels there is very little difference in date between Levels IX and VII, noting that the presence of Chocolate-on-White Ware (Levels IX and VIII) and Cypriot White Slip I ware (VIII), the absence of Bichrome Wheelmade Ware from any of these layers, and the presence of comparable multiple destruction layers at the major Palestinian centre of Shechem, all suggest a very short period of time elapsing between all three levels. In all of his analyses Doumet is at pains to draw parallels between Shechem and Tell Ghassil in archaeological particulars and historical circumstance. Whether this is sustainable will be examined further below.

There are many close parallels between Tell Nebi Mend and Tell Ghassil, as there are between Kamid el Loz and Tell Ghassil. Together they would seem to suggest a significant modification to Doumet’s views.

Ghassil Tomb 1, see Badre (1982).

103 Ibid., pp.171-174, for the pharaonic attributions, and the suggested linked circumstance between Ghassil IX-VII destructions and those of late Middle Bronze Age Shechem.
Tell Ghassil

<table>
<thead>
<tr>
<th>Phase</th>
<th>XI-X</th>
<th>IX</th>
<th>VIII</th>
<th>VII</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase H</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phase G</td>
<td>15</td>
<td>48</td>
<td>36</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>Phase F</td>
<td>0</td>
<td>11</td>
<td>17</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Phase E</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Phase D</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Phase C</td>
<td>0</td>
<td>5</td>
<td>16</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Phase B</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Phase A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

There is little to quibble with in the dating of Level XI, as the pattern of parallels with sites such as Qatna reveal much MBIIA-B material, and some that is generally held to be of EBIV date. It would seem that the Egyptian Middle Kingdom material from the site, recently re-examined by Marfoe, is best associated with this level. The limited TNM parallels are confined to Phase H.

Tell Ghassil Level X has a good deal of diagnostic MBIIB material in the graves from this level, some of which would seem to be quite early, and a limited number of parallels from TNM Phases H-G.

Tell Ghassil Level IX finds extensive parallels in the TNM Phase G corpus. It seems likely that the destruction of Tell Ghassil IX and TNM Phase G are related, although Doumet's suggested agency, the putative campaigning of the Eighteenth Dynasty pharaoh Ahmose, is unattested in the Egyptian records, and must remain questionable. Possible alternative agencies will be discussed further below.

Tell Ghassil Level VIII is firmly associated with TNM Phases F-E, and therefore best associated with the LBI period. Whilst Doumet notes the presence of Cypriot WSI pottery in what are apparently MBIIC levels at Shechem, Wright's detailed observations would seem to cast doubt on this attribution. Gittlen has demonstrated that the majority of Cypriote WS I is found in LBI horizons. Equally, we have spoken of the dangers inherent in dating levels on the absence of

104 Marfoe (1977), pp. 33-34.
105 See Goedicke (1986), for a reassessment of the textual evidence bearing on Ahmose's Asiatic campaigns. There he argues forcefully that Djahy has been misidentified with the Beqa'a, and should be located in southern Palestine.
106 Wright (1967), p.61, states that no WSI material was found in MBA contexts. However, he counsels against using the WS occurrences in any stratigraphic deliberations, Wright (1967), p. 64.
107 Gittlen (1975) and (1977).
Bichrome Wheelmade Ware, and the absence of this ware cannot be allowed to stand in the way of an LBI date for this, or any other level at Tell Ghassil, contra Doumet 108. It seems probable that Level VIII should be redated to the LBI period on the grounds of the many local ceramic parallels with the TNM material.

Doumet would see the Beqa'a Valley as well within the Egyptian orbit as early as the first years of Ahmose. He would associate the destruction of Level VIII with the latter campaigns of Ahmose, on apparent parallels with Shechem. It should be noted that the Egyptian records do not support this assertion, either with respect to Shechem or Tell Ghassil 109.

Tell Ghassil Level VII finds a number of parallels with TNM Phases D-C, and should, accordingly, be down-dated into the LBIIA period. Whilst Doumet would seek to associate the destruction of this level with the very sketchily attested campaigns of Amenophis I 110, it is perhaps better associated with the well documented campaigns of Seti I, who may have been responsible for the destruction of Hazor IB and TNM C as well. Other, Amarna Period, candidates could be suggested as alternatives 111.

Tell Ghassil Level VI is said to be typified by wheelmade local varieties of Cypriote WSII pottery, and local ceramics displaying the ram and sacred tree motif112. Both ceramics, and particularly the latter, are normally characteristic of the LBIIIB period in the southern Levant 113. Although there are a fair number of parallels with TNM Phase C, the majority of parallels seem to lie with TNM Phases B-A, to be dated to the LBIIIB period.

Kamid el Loz/Kumidi

The German Saarbruken University excavations at Kamid el Loz, under the direction of Rolf Hachmann (1963-81), were the single most important excavations for Levantine Second Millennium studies carried out in the Lebanon 114. Before the excavation, there was not a single stratified inland Second

109 See most recently Hoffmeier (1989), (1990) and (1991), Dever (1990), and Weinstein (1991), for a renewal of the controversy over the nature and extent of the Egyptian conquest.
110 For which, see Redford (1979). He does not rule out a possible association with the well attested campaigns of Thutmose I.
111 The most obvious of which would be either of Suppiluliumas, for which see Murnane (1985) and Bryce (1989), or Horemheb, for which see Murnane (1985) and Redford (1973).
113 For the sacred tree and animal motif, and its suggested association with Asherah, see Hestrin (1987) and (1991).
Millennium sequence between Hama and Hazor.

The excavations have four major trenching complexes, those of the North Slope, the Fortifications, the Palace and the Temple areas. Of the four, the North Slope sequence is the most extensive, and it is the phasing developed for this area that will be utilised in all that follows.

Leon Marfoe summarised the Kamid el Loz sequence in his Chicago Doctorate, and expanded his studies with a most detailed stratigraphic summary and a ceramic corpus. Marfoe's work is the primary source of the phasing and ceramic comparisons used below.

Much of Hachmann's research has centred on the historical associations of the site, and its generally accepted equation with the Egyptian provincial capital of Kumidi. Hachmann argues for a very close association of Kumidi's fortunes with that of the Egyptian New Kingdom. Taken together, Marfoe's archaeological concerns and Hachmann's historical considerations allow for the reconstruction of a relatively clear archaeological and historical context for the site.

Marfoe identifies twenty-six phases in the life of the site. Of these, some twenty-four are relevant to Second Millennium studies. They can be grouped into five major phases for convenience. These are:

- Phases 2-5: MB I settlement
- Phases 6-10: Walled MB II township
- Phases 11-13: LBI period 'squatter' occupation
- Phases 14-17: LB IIA renewed prosperity
- Phases 18-25: LBIIB urban decline and abandonment

Marfoe is at pains to emphasise continuity throughout the MBA ending with an abandonment or a destruction, although he makes the point that there is very little evidence for the former. The LBI period is characterised as one of impoverishment, impermanence and cultural dislocation. Renewed prosperity develops with the rebuilding of the township, and the construction of the Palace-Temple Complex in the LB IIA period, although Marfoe emphasises that the

114 For a most recent summary of the aims, methods and significance of the Kamid el Loz project, see Hachmann (1989). For an earlier evaluation, see Marfoe (1978).
117 These phases have, in turn, been re-phased by Echt (1984), p. 60. Marfoe's five main periods of the MB/LB correlate roughly to Echt's 'Bauperioden' in the following way:

<table>
<thead>
<tr>
<th>Bau.</th>
<th>Marfoe Phases</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2-5</td>
<td>MBI</td>
</tr>
<tr>
<td>6-7</td>
<td>6-10</td>
<td>MB II</td>
</tr>
<tr>
<td>5</td>
<td>11-13</td>
<td>LBI</td>
</tr>
<tr>
<td>4b</td>
<td>14-17</td>
<td>LBIIA</td>
</tr>
<tr>
<td>4a</td>
<td>18-25</td>
<td>LBIIB</td>
</tr>
</tbody>
</table>
culture is continuous with its LBI period predecessor. This LBIIA settlement comes to a sudden halt, with evidence of destruction debris apparent across the several areas of excavation. The site is rebuilt in the LBIIB period, with the Palace Complex less prominent and the Temple Area more so. This LBIIB period occupation becomes gradually more reduced and impoverished, until the site is abandoned at the end of the period. Marfoe underlines that the site was not destroyed at the end of the period 118.

The geographical proximity of Kamid el Loz to Tell Nebi Mend would lead one to expect close linkage of the culture throughout the Second Millenium, and this expectation finds considerable support in the pattern of affinities. The parallels in ceramic form and archaeological circumstance are many and close.

<table>
<thead>
<tr>
<th>Kamid Phases</th>
<th>2-5</th>
<th>6-10</th>
<th>11-13</th>
<th>14-17</th>
<th>18-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase H</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phase G</td>
<td>17</td>
<td>58</td>
<td>33</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Phase F</td>
<td>0</td>
<td>15</td>
<td>27</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Phase E</td>
<td>0</td>
<td>8</td>
<td>17</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Phase D</td>
<td>2</td>
<td>7</td>
<td>11</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Phase C</td>
<td>4</td>
<td>12</td>
<td>21</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>Phase B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Phase A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

The pattern of associations seems to bear out Marfoe’s tentative relative chronology for the Kamid el Loz sequence 119. The strength of association between TNM Phase G and Kamid el Loz Phase 6-10 is noteworthy, and indicates close cultural interaction. It is of great interest that Marfoe reports significant decline in the fortunes of Kamid el Loz at the end of the Middle Bronze Age Phases 6-10, and specifically denies any clear evidence of destruction. He emphasises the ephemeral "squatter-like" nature of much of the LBI period occupation at Kamid. Very significantly similar occurrences are evident at Tell Nebi Mend, and strongly favour a linked circumstance in accounting for the terminal MBA desertion/"squatterlike" LBI reoccupation at both sites.

The association of the TNM Phase D-C material with the rich LBIIA Phases 14-17 at Kamid el Loz is also of interest. Whilst Marfoe is not entirely satisfied with the explanation for the demise of Kamid el Loz Phase 17, the destruction of the extra-mural quarter and the postem-gate may been seen as suggestive of military action.

The natural candidate for any such destruction would seem to be Seti I,

119 Ibid., p. 241, Table 14.
although both the military activity within the post-Amarna period, involving either Tutankhamon or Horemheb and Suppiluliumas, or the period of Egyptian reverses immediately after the Battle of Qadesh, might provide suitable alternatives. Whatever the agency, the approximately contemporary destruction of TNM Phase C, attested to both in Trench I and Trench II, may indicate a linked circumstance, and given the inscriptional evidence attesting to Seti's conquest of Qadesh 120, might be seen as supporting the case for a Seti I date and agency for the destruction of Kamid el Loz Phase 17.

The fairly extensive LBIIB period occupation at Kamid el Loz finds relatively few parallels in the TNM corpus. To an extent, this is due to the restricted nature of the TNM Trench I LBIIB material. However, it is likely the reduced frequency of comparisons represents a real diminution in the intensity of interaction between the two sites. There is no obvious explanation for this, although it is worth noting that TNM passes outside the Egyptian orbit permanently in this LBIIB period, whilst Kamid el Loz remains within the Egyptian sphere, at least initially. As both sites declined markedly towards the end of the LBIIB period, the strength of association is likely to have reduced gradually, in keeping with their reduction in circumstances.

Tell es Salihiyeh

The Swedish Academy of Science and Uppsala University excavations at Tell es Salihiyeh in the Damascus Basin, under the overall direction of H.H. van der Östen, uncovered five major phases of Middle and Late Bronze Age occupation during the two seasons of excavation, between 1952-53 121. Van der Östen allocated the strata in the following way:

<table>
<thead>
<tr>
<th>Tell es Salihiyeh Phase</th>
<th>MBIIB</th>
<th>MBIIC-LBIA</th>
<th>LBIB-LBIIA</th>
<th>LBIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>XII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX-VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Van der Östen's tentative attributions, based on the Tell Beit Mirsim, Megiddo, Hama and Atchana parallels, can be re-examined through comparisons with the TNM corpus, and through TNM's network of affinities with the more recently excavated sites in the Beqa'a and the Hawran. The pattern of TNM

120 The archaeological evidence bearing on the post-Amarna/ Seti I date for the Trench II destruction was outlined in Chapter 2, above.
associations are fairly strong, given the limited amount of material published from this most important site. They are:

<table>
<thead>
<tr>
<th>Tell es Salihiyeh</th>
<th>XII</th>
<th>XI</th>
<th>X</th>
<th>IX-VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>11</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>F-E</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>D-C</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

The relative chronology of the site, as outlined by van der Östen, does not require significant modification. Phase XII is predominantly MBIIIB, with a small amount of MBIIA material mixed in, as Gerstenblith recognised. The Phase XI remains find the majority of their parallels with MBIIIC period TNM G, although a fair number of parallels with LBI TNM F-E might suggest a date within the latter period. The presence of Chocolate on White ware in the Salihiyeh XI destruction assemblage might indicate a similar date, and linked circumstances, with that of Kamid el Loz 10 or TNM G.

The LB date of the Level X material is supported by the close association with TNM F-C, although the exact positioning is not clear, as only a limited amount of the Salihiyeh coarsewares have been published. However, the limited associations with LBIIA TNM D-C may suggest a date within the second half of the LBI period. This date is supported by the presence of a piece of Cypriote Transitional White Slip I-II ware. The LBIIB date for the succeeding Phases IX-VIII would seem likely, although the limited association between TNM and Salihiyeh IX-VIII do not allow for more comment than this bare observation, other than to note the apparent weakening of links between TNM and the Damascus Basin in the LBIIB would seem to parallel a similar reduced association between Kamid el Loz and TNM in the same period.

123 There seems little prospect of further research. Kind enquiries made in March 1988 by Prof. Paul Åström of Gothenberg University revealed that much of the sherd material, originally stored at the Uppsala University Museum, was discarded at some time after Prof. van der Östen's death.
124 Described by Popham apud. Åström (1972c), pp. 443-445, and dated by Popham apud. Åström & Åström (1972), p. 704, to the second half of the LBI period, that of Lachish Fosse Temple I and Atchana IV.
Busra

The AUB excavations at Busra, under the overall direction of Helga Seeden, have uncovered four main phases of Middle and Late Bronze Age occupation over the course of the four seasons of excavation between 1980-84. Much work on Second Millennium occupation has concentrated on the so-called North-West Tell area, where some sixteen discrete Bronze Age deposits have been isolated, and grouped into the following four major phases:

- MBIIA Phases 29-26
- MBII-B-C Phases 25-20
- LBI-IIA Phases 19-16
- LBIIB Phases 15-13

Because the early occupational history of the Hawrawi region has been virtually ignored until comparatively recent times, Seeden feels justified in outlining only the most general parallels with other regions in her attempts to give the local coarseware material chronological context. She emphasises the distinctive character of the Hawrawi assemblage as a whole, particularly with respect to manufacturing technique, and underlines the essential continuity in form and technique throughout the sequence as recovered.

In an attempt to provide a more secure relative chronological context, comparison with the TNM material proves instructive, as there is a surprisingly strong pattern of associations, especially during the Middle Bronze Age and the LB I and LB IIA periods. These are:

<table>
<thead>
<tr>
<th>Busra Phases</th>
<th>29-26</th>
<th>25-20</th>
<th>19-16</th>
<th>15-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>21</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>F-E</td>
<td>0</td>
<td>7</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>D-C</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>B-A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

126 Ibid., pp.19-29. I must thank Dr. Seeden for providing me with the opportunity to study the Busra material at Cambridge in March 1987, and for providing me with a complete set of the line drawings of the Busra Bronze Age material, and discussing the Busra affinities with me.
The relative chronology outlined by Seeden is generally supported by the TNM associations. Seeden suggests that the early Phase 29-26 deposits may date to the MBIIA period. Whilst this cannot be ruled out, given her observations on ceramic continuity, it seems more likely that the material, which finds the bulk of its parallels with Hama H5-H1 and Kamid el Loz 6-10, is to be dated to the MBIIIB period.

Seeden suggested that a small amount of Tell el Yahudiye ware found in association with Phase 26 material was out of context in what she took to be early MBIIA contexts, being the result of root action 127. The pattern of TNM and other associations would cast some doubt on this suggestion, as the predominantly MBIIIB parallels for the Phase 26 coarseware material would fit well with the presence of Tell el Yahudiye Ware.

The majority of the 'Large Building Phase' (Phases 25-20) ceramics find strong parallels with TNM G, and to a lesser extent with TNM F-E, favouring a date within the MBIIIC for this phase.

The suggested presence of LBI material in the Phase 19-16 material at Busra, initially hinted at by the presence of Cypriote Base Ring I ware found out of context in 1980 128, is supported by the strong pattern of associations with TNM F-E. Exactly how far into the LBIIA period the Busra material goes cannot be stated with any certainty. All that can be noted is that the Phase 19-16 material finds relatively strong links with the succeeding TNM Phase D-C material as well. If there is a break in the Busra sequence, then the TNM associations might favour its placement slightly earlier at Busra, than the time of TNM Phase C.

What can be stated with some confidence is that the Busra 19-16 material finds its strongest parallels with the earlier Late Bronze Age strata at TNM and other sites in the region. The presence of a small amount of what Seeden calls Tell el-Yahudiye ware in these levels would seem to be residual here, if it is indeed Tell el Yahudiye ware 129. Whilst the photographic documentation makes it difficult to judge with certainty, the four sherds illustrated appear to be Black Lustrous Wheelmade ware, rather than the earlier product. BLWMW is generally regarded as having a narrow, predominantly LBI period of production, which would agree well with the pattern of associations derived from the TNM and other material 130.

When characterising the latest Bronze Age Phase 15-13 material, Seeden draws close parallels with Hazor and Kataret es-Samra material. The pattern of affinities of these two deposits suggest an LBIIIA/B date for the material. Although the links with the LBIIB TNM material are not extensive, they do not rule out an LBIIB date for the Busra Phase 15-13 ceramics. It is of interest to note that again

128 Ibid., p. 24 and Plate 10:7.
130 For the predominantly LBI dating of Black Lustrous, see Oren (1969).
we are forced to observe an apparent reduction in the pattern of associations between TNM and sites to the south during the LBIIB period.

Hazor

The Israeli Hebrew University excavations at Hazor (1954-68), directed by Yigael Yadin, were the most extensive exploration of the northern Galilee/Huleh Basin area ever undertaken, and of vital importance to the relative and absolute chronological studies in this most crucial area of the central Levant. In the absence of any comprehensive publication of Biran's important excavations at Tell Dan, Yadin's work at Hazor provides the only usable linking sequence between the intensively explored southern Levantine region, and the more sparsely investigated north.

Yadin's early publications rapidly identified those levels of importance to Middle and Late Bronze Age studies, which in the Upper City strata consist of Levels XVII through XIII, and in the Lower City Levels V-I. Few of the subsequent communications have changed this picture overmuch, although one particular issue has arisen, and that is the extent to which the site of Hazor was occupied in the MBIIA period. Much controversy centres on the date of the impressive mudbrick and stone fortifications of the upper city, and the huge earthwork fortifications and elaborate gateways of the lower city. As well, there is the connected question of the nature and the date of the stimulus behind the evident major expansion into the lower city, and whether or not this was a relatively sudden occurrence.

131 Four volumes of final reports have been published, for which see Yadin et alii. (1958), (1960), (1961) and (1989). For a general overview, see Yadin (1975). For Yadin's last thoughts on the MB/LB, see Yadin (1972). Excavations resumed at Hazor in 1990, under the direction of A. Ben-Tor, for which see Ben-Tor (1990).

132 Biran has published four articles of note, Biran (1974), (1980), (1984) and (1990), but as yet no final reports. From comments within Biran (1989) and Biran (1990), it seems the MB/LB sequence at Tell Dan closely parallels that at Hazor.

134 On the controversy over the date of the earthwork fortifications, see particularly Yadin (1978) and Kochavi, Beck and Gophna (1979), and bibliography contained therein. Other articles of note are Parr (1968) and Kaplan (1975).

135 Malamat (1984) conveniently groups together all Malamat's articles on the connections between Hazor and Mari. The controversy is set to re-emerge after a decade of consensus, with the publication of Dunayevsky & Kempinski's (1990) note on the Hazor enclosure dates, where Kempinski advocates an MBIIA date for the earthworks, and therefore the foundation of the lower city, in direct contravention of Yadin's many statements, for which see Yadin (1972), pp. 51-56, and Yadin (1978).
Further to the Lower City sequence, there was some movement evident in the date of the Phase IV-II material during the time between the publication of Hazor I and Hazor II 136. This is worth further consideration below because it highlights the methodology employed in Yadin’s chronological attributions.

All three of these issues are still current more than thirty years after the publication of the first Hazor volume, and judging by the nature of the recently published Hazor III-IV text volume, from which we might have expected some further elaboration of Yadin’s various theses, the situation does not look as though it is going to change through the provision of new information.

Yadin suggested Hazor had virtually no important MBIIA occupation, and argued for an MBIIB date for the expansion into the lower city and the erection of the fortifications 137. Equally bound up with this was his suggestion of a sudden change in economic state, which he chose to associate with the development of strong trading links with Mari, attested to independently by much textual evidence, elaborated over a number of studies by Malamat 138.

He modified his position only slightly in latter studies, suggesting that the MBIIA occupation of the Upper City may have been more extensive than first believed, basing his revision on the chance discovery of a large late MBIIA tomb 139. However, he would not be shaken from his suggestion that the earliest occupation of the Lower City dated to the MBIIB period, and that the fortification of both the Upper and Lower City be dated likewise to the MBIIB period 140. His tendency to generalise the Hazor results led him to ascribe all major Palestinian MB fortifications to the MBIIB period, and in so doing, he was forced into often radical re-interpretations of previous excavations 141.

Whilst few of Yadin’s suggested stratigraphic and chronological

137 For which, see Yadin (1972) and Yadin (1978).

138 For which, see conveniently, Malamat (1984).

139 Yadin (1972), pp. 201-207. No detailed study of the tomb material has been forthcoming.

140 Note Yadin’s strong negative comments on Kempinski’s attempted redating of the Hazor Cistern 9024 material into the MBIIA period, Yadin (1978), p. 21, fn. 84. Note Yadin’s justified doubts over Kempinski’s grasp of relative chronology, with respect to the Megiddo strata, Yadin (1978), p.2, fn. 5. In the light of Kempinski’s somewhat idiosyncratic methodology, one must treat his renewed attempt, Dunayevsky & Kempinski (1990), to redate the Hazor earthworks into the MBIIA period, with some suspicion.

141 See, for example, the exchange of views between Yadin and Eitun over the fortifications at Tell Beit Mirsim, Eitun (1972) and Yadin (1973); and that between Yadin and Kochavi over the Aphek strata, Yadin (1978), and Kochavi, Beck and Gophna (1979).
modifications of other excavations have stood up to close scrutiny, he did force his largely Tel Aviv based critics to define what they meant by MBIIA assemblages. In so doing, it became accepted that there was little compelling ceramic evidence on which to decide between a late MBIIA and an early MBIIB date for any of the controversial earthworks. It is now generally accepted that some of the Sharon Plain sites are fortified in MBIIA, but that other sites, including Hazor, were probably first fortified in the early MBIIB period. This consensus of the last decade has not shifted noticeably 142.

Several important points emerged from the very lively debate between Yadin and Kochavi on this issue. The first was the undeniable improvement in excavation technique between Yadin’s early days at Hazor, and Kochavi’s work on the Sharon sites. Ben-Tor admits as much, highlighting the considerable sophistication of the horizontal clearance and the apparent deficiencies in vertical control current during the Hazor excavations 143. This must impact upon any use of the Hazor ceramics in comparative analysis.

Further to this, with respect to the changing dates for some of the Lower City Areas C-E deposits, it is worth noting that Yadin seems to have arrived at dates for much of the ceramic material without detailed reference to its stratigraphic position. An examination of the plates in Hazor I and II show that ceramics were generally published by type and assumed period, rather than stratigraphic context. If one re-assembles material into discrete deposits, it emerges that single closed deposits could contain apparently diagnostic EB, MB and LB material, and yet the deposit itself could be considered stratigraphically sound 144. This problem is worth highlighting, because the Hazor system changes over the life of the publication process, such that by the time Hazor III-IV plates were published, stratigraphically discrete, assemblage-based attributions were the norm 145.

Hazor was excavated during one of the great transitional periods in excavation and ceramic analytical methods. Deposits excavated during early seasons were published according to a corpus-based system of ceramic reckoning, which took little note of stratigraphic context. Those excavated in the latter seasons were published according to an assemblage-based system, which placed

142 For the consensus view, see Gregori (1986), Biran (1990), Ussishkin (1989) and (1990) and more generally, Mazar (1990), pp.180-181.

144 For example, see Yadin et.alii. (1958), Area D, Cistern 9024 Deposit, Pls. CXXVII and CXVI, where the former is dated as a pure LBII stratum (I), and the latter as pure MBIIB (V), even though the deposit number is identical in both cases. The pottery has been sorted typologically and used to construct a ceramic stratum where a depositional stratum does not exist.

greatest weight on stratigraphic context.

The discrepancy between the early and late publication methods should not be crucial if one can re-assemble material into stratigraphic deposits. However, the failure to publish any sections through the excavated strata makes it virtually impossible to re-evaluate the stratigraphic bona fides of deposits not directly associated with architectural units. Equally, Ben-Tor makes it clear that complete assemblage groups are rarely published, this being particularly noticeable with respect to the Late Bronze Age assemblages. The upshot of this is that whilst the Hazor material is useful in providing much comparative distributional data, and some limited stratigraphic control in those deposits excavated towards the end of the project, if claims for the Hazor material depart from norms established from a mosaic of other sites, one should treat any such claims with due caution. This is important when considering Kenyon’s original suggestion that the Hazor LB sequence comes to an end early in the LBIIB period, and not towards the end of the LBA, as suggested by Yadin. Beck and Kochavi have recently supported this contention through the analysis of the Aphik ‘Governors Residence’ ceramics. Both studies draw attention to the absence of specific bowl forms in the Hazor assemblage, when seeking to demonstrate their case. However, it is with specific respect to these LB bowl forms that Ben-Tor admits deficiencies in the original publication. The Hazor sequence should be used with some care when re-interpreting other ceramic sequences, as the finely honed stratigraphic control, and relatively complete publication required, is either absent or inconsistently present.

For all these problems, Hazor is still most important, as it stands in isolation between the well known southern Levantine sequences and the lesser known northern assemblages. Whilst the Hazor coarseware traditions were largely derivative of southern forms, and the strata contained copious amounts of the fine and imported wares so important in southern Levantine chronological deliberations, the large and diverse ceramic sample recovered from the excavations included undoubted northern material, either in the form of imports, or as a genuine, if minor, part of the ceramic tradition at the site. It was the first

148 Beck & Kochavi (1985), p. 38; Bienkowski (1987), p.59, is unclear as to the status and date of Hazor Stratum IA and IB, but would apparently still advocate occupation in the LBIIB period as he appears to discount the importance often attributed to the, albeit obscure, reference to Hazor under the dominion of Seti I.
sequence to give promise of linking the northern and the southern assemblages together, and is still of the first importance in any such attempts.

The Tell Nebi Mend sequence finds many close parallels in the extensive corpus published at Hazor, and through these associations, the TNM material can be integrated with the well known southern forms, largely absent from inland Syria.

<table>
<thead>
<tr>
<th>Hazor Phases</th>
<th>XVII/V</th>
<th>XVII/IV</th>
<th>XV/III</th>
<th>XIV/II</th>
<th>XIII/IA-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase H</td>
<td>12</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phase G</td>
<td>39</td>
<td>21</td>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Phase F</td>
<td>9</td>
<td>12</td>
<td>24</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Phase E</td>
<td>7</td>
<td>12</td>
<td>22</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Phase D</td>
<td>3</td>
<td>4</td>
<td>17</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Phase C</td>
<td>7</td>
<td>9</td>
<td>17</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>Phase B</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Phase A</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

The phase associations between TNM and Hazor conform to the broad, period-based attributions outlined above. There are a few parenthetical notes that may be added. The strong association between TNM phases H-G and the southern Levantine MBIIB-C period seems well illustrated by the many close parallels, and the presence of a fair amount of typical northern material in the Hazor assemblages.

The suggested LBI date of the TNM phases F-E is supported, although some 'slippage' into the early LBIA period may be considered, if the Hazor data are given primacy. However, given Beck's observations on the significance of the Middle Bronze Age component within the Hazor Late Bronze Age coarseware assemblage 151, it might be worth considering the possibility that the LBA Hazor coarseware traditions may be characterised by relative conservatism in southern Levantine terms, resulting in an apparently slight relative chronological

151 Beck & Kochavi (1985), p. 38. However, it is the apparently high incidence of 'MBII' bowl components in the LB assemblage that Beck and Kochavi draw most attention to, and it is with specific reference to the under-representation of LB bowl types in Yadin's Hazor III-IV Plates volume that Ben-Tor warns against. Incidence studies on the differentially published Hazor materials are not appropriate.
misalignment between the northern and southern coarseware assemblages. It is worth noting that Yadin was by no means clear in his definition of LBI coarseware assemblages, and tended to rely on fine and imported wares, not the least Bichrome Ware, in establishing his LBI dates 152.

The LBIIA date for TNM phases D-C seems well borne out in its strong associations with Hazor XIV/XIII and II/IB. As it has been suggested above that TNM D-C came to an end during the campaigns of Seti I, it is of great interest that Yadin favours this pharaoh's campaign's as the agency of the fiery destruction of Hazor IB 153. Whilst the ceramic parallels cannot bear out this point, their circumstantial testimony does reinforce the possibility.

The LBIIB period is not yet well documented in the TNM Trench I sequence, being far better represented in that of Trench II, which is only partially integrated with that of Trenches I and III. However, the evidence available at present does not favour strong links between the LBIIB assemblages at TNM and Hazor, although the date of both does not seem in doubt, if the import distributions are to be trusted. It is possible that the more comprehensive corpus from TNM Trench II may change this view, but at the present, the close association of the TNM and Hazor assemblages in the LBIIA does not seem to continue into the succeeding period. Perhaps this is to be associated with the final removal of the TNM region from Egyptian political and economic dominion at this time. Alternatively, Beck and Kochavi's recent claim for a substantially truncated LBIIB occupation at Hazor would equally account for this reduced strength of association 154.

152 The date of Lower City Stratum 4 was considered LBI in the first report, Yadin et.ali. (1958), p.160, and then changed to MBIIC in the second report, where LBIIA Stratum 3 was redated to the LBI period, Yadin et.ali. (1960), p.165. In his final summary of the material, Yadin (1972), p.30, makes it clear that it is the presence of Bichrome ware in Stratum 2 that dictates his redating of the coarseware dominated Stratum III and IV assemblages into the Middle Bronze Age. However, the pattern of coarseware parallels lends some support to his original attribution of Stratum III to the LBI period. That both Strata III and II could date to the LBI period is not unimpossible, given the very poorly preserved Stratum III assemblages, for which see Yadin et.ali. (1989), p.147, although the LBI attribution of Stratum II would appear to be based more on the Locii 8000 burials under the Area F Double Temple, which Yadin attributed to StratumII, Yadin (1972), pp. 44-45. In the final publication, these graves are attributed to Stratum III, and dated to the LBI period, on the presence of Bichrome Ware, Chocolate on White and Black Burnished juglets, Yadin et.ali. (1989), pp. 156-158. It would seem that the final publication of the Hazor material would place Stratum III in the LBI period, and Stratum II in the LBI/IIA period, for which there is a considerable body of comparative support.

153 However, one should note Bienkowski's (1987), p. 59, caution against an uncritical employment of the Egyptian textual evidence.
The University of Sydney excavations at Pella in Jordan (1978-90), under the overall direction of J. Basil Hennessy, have uncovered ten phases of Middle and Late Bronze Age occupation in the Area III 'East Cut' excavations. Although largely unpublished, the latest statement on phasing in Area III would suggest the following allocations:

<table>
<thead>
<tr>
<th>Pella Area IIIC Phase</th>
<th>MBIIA</th>
<th>MBIIIB</th>
<th>MBIIIC</th>
<th>LBIA</th>
<th>LBIIA</th>
<th>LBIIIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBIIA</td>
<td>X-IX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBIIIB</td>
<td>VIII-VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBIIIC</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBIA</td>
<td>VB-VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBIIA</td>
<td>IV-III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBIIIB</td>
<td>II-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Through the kindness of the Pella Project Director, J. Basil Hennessy, the East Cut type series was made available for comparative study in this work. The most complete series is derived from the East Cut Plot IIIC deposits, which were used exclusively in this analysis. The pattern of TNM and Pella Area IIIC associations suggests the following:

<table>
<thead>
<tr>
<th>Pella Phasing</th>
<th>VIII-VII</th>
<th>VI</th>
<th>VB-A</th>
<th>IV-III</th>
<th>II-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phasing</td>
<td>H-G</td>
<td>7</td>
<td>19</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>F-E</td>
<td>0</td>
<td>11</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>D-C</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>B-A</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

154 For the changing fortunes in this region during the LBIIB period, see Mumane (1985), Bienkowski (1987) and Hachmann (1989). For recent LBIIB ceramic studies, see Beck & Kochavi (1985).
155 For a survey of the first nine seasons, see Hennessy et alii. (1989). For the tenth season, see Edwards et alii. (1990), and the eleventh and twelfth seasons, Walmsley et alii. (forthcoming).
As there has been little discussion of the tell material from Pella in the literature, few controversies have emerged. If there is one problem that has not been resolved, it is the date of the Phase VA-VB Late Bronze Age 'Administrative Building', and its associated decorated ivory boxes and cuneiform tablets. Originally tentatively suggested as a mid-Sixteenth Century structure by Potts, further work at the site, particularly exploration of stratified material below the 'Administrative Building', has led to a growing conviction that this date may be too high. The famous 'Lion Box' and the two cuneiform tablets were found in pits that are probably best associated with the latest floors of this administrative structure, along with alabaster vessels found in loose association. Subsequent seasons of excavation have forced a revision to the dating of the upper floors of the Phase V Administrative Complex, originally thought to be early LBI, they are now placed well within the LB period, perhaps as late as the LBIIA period.

Considering the relatively strong pattern of associations between the TNM material and that from Pella, and taking into account the interlocking pattern of associations between the TNM material and other north/central Levantine sites, which are reinforced by southern Levantine parallels drawn from the better documented sites of Shechem and Jericho, one can document a significant amount of LBI-IIA coarseware parallels for the Phase VB-A material. This leads to the suggestion that some down-dating of the Phase VB-A material may be in order.

Although the MBIIC and LBI periods will always prove difficult to separate at Pella and other sites, as the overriding ceramic tendency is towards continuity over change, the predominance of LBI and LBIIA parallels for the Phase V coarseware material, coupled with the presence of sherds of Chocolate on White ware, Bichrome Wheelmade ware, and Cypriot WS I-II ware, in the assemblage, would suggest that the 'Lion Box', the cuneiform tablets, and much of the occupation associated with the 'Administrative Building' be down-dated to a time range spanning the late LBI period through to the LBIIA period. From Potts analyses, it seems likely that the Lion Box Deposit is to be associated with one of the later phases of an extended multi-period occupation in this Administrative Structure. A Fifteenth Century B.C. date for their deposition would not, therefore, be unreasonable. Indeed, given the complex stratigraphic context of the deposit, and the recent observation that small quantities of Cypriot LBIIA ceramics are

157 For Potts definitive study of the Lion Box ivories, see Potts (1987). Note his reporting of Clamer's suggested LBI/II dating of the alabaster vessels, for which see Potts (1987), p. 65, fn. 60.
158 Potts (1987), p. 57, noted that Cypriot imports are not present before Phase IV.

Whilst this held true for the eastern rooms of the complex excavated in 1984, the western rooms excavated in 1990 produced a small amount of Cypriot WSI-II material, which may indicate a lower, perhaps Late Fifteenth/Early Fourteenth Century B.C., date for the latter phases of the complex. For further comments on this problem, see Walmsley et.alii. (forthcoming).
to be associated with the latest phase of occupation in the western rooms of the Administrative Building, a later date is not unreasonable.

Shechem

The Drew-McCormick/ASOR excavations at Tell Balatah, ancient Shechem (1956-73), under the overall direction of G. Ernest Wright, uncovered twenty-four distinct strata of occupation, spanning the Chalcolithic through to the Late Hellenistic periods. Over the eleven seasons of excavation, ten of the strata isolated (XXII-XII) were attributed to the Middle and Late Bronze Ages \(^{160}\). The latest reworking of the Field correlations would suggest the following allocation:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBIIA</td>
<td>XXII-XX</td>
</tr>
<tr>
<td>MBIIB</td>
<td>XIX-XVII</td>
</tr>
<tr>
<td>MBIIIC</td>
<td>XVI-XV</td>
</tr>
<tr>
<td>LBI</td>
<td>XIV</td>
</tr>
<tr>
<td>LBIIA</td>
<td>XIII</td>
</tr>
<tr>
<td>LBIIIB</td>
<td>XII</td>
</tr>
</tbody>
</table>

There has been little major revision to this picture in the years since excavation ceased, as the final publication of the material has been much delayed. The failure to publish the much needed stratigraphic detail and complete ceramic corpora from this most important site greatly hampers re-assessment of the Shechem excavations, which must limit consideration to the often inadequate preliminary reports \(^{161}\). But this failure has wider ramifications, as much of the

\(^{159}\) The Lion Box pit, IIIC Feature 80, was located on the southern edge of the Phase V excavations, and had its contextual relationship with the surrounding floors destroyed by erosion. The association with a later floor of the Administrative Complex was inferred only, by the presence of similar plaster fragments within the pit-fill to a patch of Phase V plaster flooring. However, as the pit cut through at least four earlier plaster floors, this inference is not without risk. Equally, the coarseware ceramics found within the pit consisted exclusively of non-diagnostic body sherds. The definitive sealing of the pit, by Phase IV fill deposits, is to be dated to the LBIIA period. The pit and ivories cannot be reliably dated any earlier.

\(^{160}\) For a popular overview of the first four seasons work, see Wright (1965). For preliminary reports on each of the eleven seasons of excavations, see Wright (1956) and (1957), Toombs & Wright (1961) and (1963), Bull et.alii. (1965), Bull & Campbell (1968), Campbell et.alii. (1971), Seger (1972) and Dever (1974). For stratigraphic summaries, see especially Toombs (1972), and Toombs (1976). For the only final publication to date, see Cole (1984).

\(^{161}\) This failure to produce final publications has wider ramifications, as most
argument over the phasing of the Gezer excavations, and their relationship to that of Jericho, is intimately connected with the Shechem results.

However, there has been some limited discussion on the date of the various phases of fortification work at the site, and the definitional underpinnings in the ceramic repertoire. The major protagonists in this debate were Kenyon and Seger, although Dever's work at Gezer, and Wood's at Jericho provide important corroborating evidence 162.

Shechem's greatest claim to prominence centres on the discovery of four distinct phases of massive earthwork and stone fortifications, which the excavators have suggested as spanning the relatively short period of the MBIIC, held to be barely a hundred years in total length 163.

In her general review of MBA Palestinian stratigraphy, Kenyon doubted that all four phases of the fortifications were to be placed within the MBIIC period, and proposed that the last of these, particularly in the East Gate region, be redated into the Late Bronze I period 164.

Seger, who processed the MBIIC ceramic remains from the site for his Harvard Doctoral Dissertation, disagreed with this conclusion, and published a detailed critique of Kenyon's suggestion 165. However, whilst he clarified structural and depositional details unclear in Wright's preliminary accounts, the inadequacies of the ceramic underpinning of his allocation were exposed when he admitted that the MBIIC date for the final construction and destruction of the East Gate complex rested on the absence of Bichrome Wheelmade ware in the ceramic

stratigraphic conclusions arrived at during the Shechem project have been carried through to the subsequent Taannach and Gezer projects, directed by products of the Shechem school. Controversies such as that surrounding the date of the Shechem fortifications often arose through inadequate publication of the primary data. Piecemeal publication, such as that by Dever (1974), Seger (1974) and Boraas (1986), does supply much needed data, but often in such a fragmented way that assessment is hampered by this "snapshot" approach. This is particularly so when dealing with ceramic assemblages. The "Pottery Groups" offered in isolation from their stratigraphy in Toombs & Wright (1963), and by Seger (1965b), foster an artificial impression of chronologically discrete assemblages, which often must be amended when long sequences are studied together with their stratigraphic contexts.

162 The Gezer and Jericho material will be treated in detail, below.

163 See Wright (1965) for an outline of this material, and Seger (1975), for a clear exposition of phasing and comparison with the Gezer fortifications. For an assessment of the Shechem fortifications, and a comparison with the Jericho fortifications, see Ussishkin (1989).

165 Seger (1965a), for an analysis of the Shechem MBIIC materials produced during the first four seasons of excavation, and Seger (1974), for a detailed defense of Wright's initial conclusions.
It became clear that the widely held assumption of extensive Egyptian military activity in north-central Palestine at the time of Ahmose was responsible for the extensive fiery destruction of the site, and that the absence of Bichrome ware was held to provide supporting evidence for this conclusion. One can only reiterate observations made earlier with regard to the dating of ceramic typologies. The presence of these relatively rare short-lived fine wares is a great aid to relative chronology, but their absence, affected as it is by a myriad of circumstances, is not a valid criterion for date allocation.

As Seger’s construct of what is held to be an MBIIC assemblage rapidly came to assume the tone of a paradigm in subsequent American work at Ta’annek and Gezer, it is important to examine his conclusions 167, where the still incomplete publication of the Shechem material allows review. To this end, the limited parallels between Shechem and TNM material is instructive.

<table>
<thead>
<tr>
<th>Shechem</th>
<th>XX-XVII</th>
<th>XVI-XV</th>
<th>XIV</th>
<th>XIII</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F-E</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D-C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>B-A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Overmuch should not be made of what is essentially a limited range of overlaps, especially as the Shechem sequence is unevenly published, with the almost inevitable skewing of the evidence that this represents. Nonetheless, there is a enough of an overlap between the apparently MBIIC material from Shechem and the MBIIC and LBI material from TNM to suggest some modification of Seger’s hard-line conclusions.

166 Seger (1974), p. 123 and p. 130, where he observes that the presence of Chocolate on White ware and the absence of Bichrome ware equates to a late MBIIC date, which he placed at ca. 1550 B.C. Similar ceramic assemblages at Gezer, but with jewellery dating to the LBI period, forced Seger to modify this date, lowering it to ca. 1510 B.C.. However, he insisted that the absence of Bichrome ware dictated no later date, for which see Seger (1976).

167 Seger’s work is actually nothing more than a detailed restatement of Albright’s analysis of his Tell Beit Mirsim Stratum D material and that from Tell el Ajjul Palace I and II, in which he notes the central importance of Bichrome Ware for LBI or Egyptian New Kingdom dating, and the presence of CoW or ‘Anatolian Ware’, coupled with the absence of Bichrome ware, for late MBIIC or Hyksos period dates, for which, see Albright (1938a &b).
These conclusions, based as they are on the absence of imports rather than the presence of any particular shapes in the coarseware assemblage, taken together with Seger's own observations of nascent LBI traits in the Shechem XVI-XV assemblage, his willingness to consider the downdating of a similar ceramic assemblage from Gezer into the early Fifteenth Century, Dever's strong support of a mid-Fifteenth Century date for this latter destruction assemblage, and Wood's recent affirmation Bimson's long suggested LBI date for much of the apparently terminal MBIIC material from Jericho, suggests that Kenyon's original doubts about the advisability of compressing all four phases of the fortification effort into the MBIIC may have more force than Seger has suggested. The scant parallels with the TNM material are not decisive in this debate, but are useful corroborating evidence to that provided by the Gezer and Jericho material, which will be discussed further below, and in the following chapter of this work.

Gezer

The ASOR sponsored excavations at Gezer (1964-74), under the overall direction of W. G. Dever, uncovered at least eight phases of Middle and Late Bronze Age occupation over the ten seasons of excavation. The most continuous sequences of MB and LB material were isolated in Field I and VI, which contain good deposits of seven of the eight phases isolated over the entire site. It is on these two Fields of excavation that our attention will focus. The latest reworking of the Gezer phasing published by Seger, suggests the following allocation of strata:

168 For Seger's analysis of the pottery, see Seger (1974), p. 123; For Dever's comments on the North-West Gate area, see Dever (1974), pp. 44-45 and p. 51 fns. 39 and 41, where he notes the LB features and parallels of the North-West Gate assemblage. See Seger (1976) for his treatment of the 'MBIIIC' assemblage associated with the Gezer gold hoard, and Dever's final redating of this 'MBA' destruction to the time of Thutmose III, Dever (1987), p.175. Also note Kempinski's acerbic review of the Gezer dating procedures, Kempinski (1972). For the Shechem and Jericho data, see further below.

169 Five volumes of final publications have appeared, of which four, Gezer I-II, and Gezer IV-V, are relevant to this study. For these, see Dever et.alii. (1970) and (1974), Dever [ed.] (1987) and Seger & Lance [eds.] (1988). Three further seasons of excavations have been carried out by W.G. Dever since 1984, but these are connected with LB/EI strata, and need not concern us further. Dever's (1973b) study of the MBA High Place is of importance, as it states the assumptions and methods employed by the Gezer project as a whole.

170 Seger & Lance [eds.] (1988), p.4, Fig. 2.
Little comment on this sequence is to be observed in the recent literature, except with respect to the vexed question of the date of the terminal MBA destruction of the site. The original site reports on Field I suggested a date towards the middle of the Sixteenth Century B.C., effectively upholding the traditional 'Albrightian' chronology. Since that time both Seger, in a study of a gold hoard found towards the end of the ninth season of excavations, and Dever, in the final publication of the Field VI material, have sought to lower the date for the destruction. Seger would lower it by as little as a single generation, to c.1525 B.C., and Dever, by the more significant margin of three generations, to c.1475 B.C. 171

Both have modified Wright's original position on the grounds of doubts over the ability of the coarseware ceramics to arbitrate between the myriad possibilities. Seger based his conclusions on the Tell el Ajju jewellery studies by Negbi, and her conclusions that the gold hoard found at Gezer typifies the LBIA period 172. Dever felt that the evidence provided by the Egyptian historical sources

171 See the discussion of the various reconstructions and review of Field VI materials by Dever in Dever [ed.] (1987), pp. 33-36. Note his observations on the many LBI features of the Phase 10 material, and the strong indications of stratigraphic continuity between Field VI Phases 10 and 9, which would seem to militate against accepting Seger's late MBA destruction date, with its necessarily concomitant subsequent gap in occupational history during the LBIA. As Dever is well aware, the Field I Cave 10 ceramics contain much that is specific to the LBIA period, not the least a piece of Cypriot Proto-Base Ring ware, which Seger misidentifies as Base Ring II, allowing him to argue for a commencement date for the tomb deposit within the LBIB period, for which see Seger & Lance [eds.] (1988), p. 78 and Pl. 21:6.

172 If Negbi's parallels are accepted as the most relevant to the Gezer hoard, as Seger (1976), p.138, fn.31 makes clear, then the Gezer hoard should be related to Ajju Palace IIIA. Whilst Seger would see its destruction as dating to the end of the LBIA period, this ignores the many indications of an LBI date for the preceding Palace II, not the least the presence of Bichrome ware, which Seger has accepted elsewhere as definitive of the LBI period. Whilst it is possible that both Palaces II and IIIA could date to the LBIA period, this seems an unwarranted compression of the Ajju strata, requiring a similar
could not be ignored, and the apparently clear statement that Thutmosis III took and burnt Gezer was held to provide the likely circumstance for the extensive destruction.

The TNM parallels with the Gezer material are not extensive, but do suggest that the original date for the end of the MBA occupation needs to be re-examined, with some downward modification favoured, with respect to the well published Field VI material, if not that necessarily that from the unconnected fortification soundings in Field's I and IV.

<table>
<thead>
<tr>
<th>Gezer F.VI Phase</th>
<th>XXII-XX</th>
<th>XIX</th>
<th>XVIII</th>
<th>XVI</th>
<th>XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-G</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F-E</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D-C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>B-A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

The relative weakness of the pattern of associations does not allow for any judgement between the alternatives proposed by Seger and Dever. Again, the problem lies with the criteria accepted for dating terminal MBA destructions, and those deemed to be LBI in date.

Seger's traditional dating of the Gezer assemblage hinged on the Shechem-derived typology for the late MBA, and the similar absence of Bichrome Wheelmade ware from both destruction assemblages. The gold hoard, and its apparently well contexted LBI parallels at Tell el Ajjul, forced some modification to this stance, but only marginally, as Seger is clearly unwilling to depart too far from the traditional typology.

Dever has less qualms about reworking ceramic typologies, but his rather cavalier redating of terminal MBA deposits into the mid-Fifteenth Century B.C., in so doing re-writing the definitions of the MB/LB period, without any explanation, cannot stand without further exposition, as Kempinski has remarked upon 173. This will be investigated further in Chapter 5, below.

173 For which, see Kempinski (1972), and most importantly, Kempinski (1983), pp. 222-224, where he makes the apparently reasonable suggestion of defining the change from the MB to the LB by the first appearance of CoW and Bichrome wares, rather than at some undefined stage thereafter. However, this overlooks the problem of dating deposits when neither of these rare fabrics are present.
The seven seasons of BSAJ excavations at Jericho (1952-58), under the direction of Kathleen Kenyon, discovered Middle and Late Bronze Age remains in four of the major areas of excavation. In Trench I, fairly extensive MB IIIB-C deposits, and, after an apparent break, Late Bronze Age IIA material was isolated. In Trenches II and III patchy MB IIIB-C occupation, but no in-situ Late Bronze Age material, was isolated. Only in Area H, the eastern slope area excavations, located adjacent to Garstang’s controversial Middle Building excavations, were significant Middle and Late Bronze Age strata excavated. Kenyon’s attributions, as published by Holland, suggest the following allocations:

Area H Phasing

MB II A	V-VI
MB II B	VII-IX
MB II C	X-XII
LBI	XIII
LBI IA/IB	XIV

Less than a decade has elapsed since the publication of the final Jericho reports, but considerable debate over the attributions of the Area H material has arisen recently, with the publication of Bienkowski’s essentially traditionalist studies on the extent and nature of the occupation of Jericho in the Late Bronze Age, and Wood’s challenging re-evaluation of the MB/LB deposits in Area H, Kenyon’s Phase XII-XIV material, which seeks to redate much of Kenyon’s late Middle Bronze Age material into the early Late Bronze Age.

The argument revolves around the definition of Late Bronze Age coarseware ceramics in the absence of the more commonly studied fine wares. Wood claims to see many good LBI parallels amongst the Phase XII-XIII coarseware material, although Bienkowski would see the absence of Bichrome ware as the decisive element in this debate over attributions. Without

174 Five final volumes have appeared, of which Jericho III-V are relevant to this study. For these see Kenyon (1981), and Kenyon & Holland (1982) and (1983). Of considerable importance is Kenyon’s review of Garstang’s findings, Kenyon (1951), and Bienkowski’s two studies, Bienkowski (1986) and (1989a).

175 For Bienkowski’s analyses, see Bienkowski (1985), (1986) and (1989a). For Wood’s analysis, see Wood (1990a), and Bienkowski’s reply, Bienkowski (1990). For Wood’s final assessment, see Wood (1990b).

reiterating what has been said before, one can only note that Wood doubts the force of Bienkowski's argument ex silencio in the face of apparently uncontested parallels among the coarsewares 178.

The TNM material finds a good number of parallels amongst the extensively published Jericho corpus. Whilst parallels with a distant, northerly site would not normally be expected to be instructive, the bulk of the TNM parallels are extensively cross-referenced with the predominantly Palestinian ceramic assemblage from Hazor, allowing for an adequate definition of MBIIC and LBI material in Palestinian terms. The pattern of associations is as follows:

<table>
<thead>
<tr>
<th>Jericho Area H</th>
<th>V-VI</th>
<th>VII-IX</th>
<th>X-XII</th>
<th>XIII</th>
<th>XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>6</td>
<td>23</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>F-E</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>D-C</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>B-A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The pattern of associations is quite striking and underlines the major point in Wood's analysis, which suggests that there is a significant amount of material in Phases XII and XIII for which LBI parallels can be found. Whilst this need not be quite the same thing as dating the material to the later period, given the overriding continuity in local ceramics and generic culture throughout the MBIIC-LBI period, it is enough to suggest that Bienkowski's hard-line opposition to the possibility of an LBI date for the destruction, or the subsequent wash levels, should be modified 179. Another point, which can be extracted from Chapman's study of the Area H ceramics 180, is the demonstrable increase in new types in the

177 Bienkowski (1990), pp. 45-46.
179 Bienkowski (1990), p. 46, takes Wood to task for confusing Kenyon's "Wash" level, Garstang's "Streak", with the subsequent Middle Building deposits. However, as Wood (1990b), p. 49, notes, the "Streak" deposit both underlies and overlies the Middle Building material, as Kenyon (1951), pp. 120-121, noted in her study of Garstang's excavations.
180 See Chapman apud. Bienkowski (1989a), pp.176-178. Note the jump in new forms between Phases liic and liii. Whilst Bienkowski (1989a), p.175, holds that Chapman's analyses bear out his conclusions of overriding continuity and steady rates of change, Chapman apud. Bienkowski (1989a), p. 178, is well aware that the marked leap in new types after Phase 1, that stay in subsequent circulation, does not fit easily with Bienkowski's destruction/abandonment construct. Indeed taken together, these data would
apparent 'Wash' levels overlying Kenyon's late Middle Bronze Age destruction levels, Garstang's famous "Streak" to which she allocated a separate Phase XIII designation 181. If, as Bienkowski suggests, there was no immediate post-destruction occupation, one would not expect an increase in ceramic variability in the destruction wash levels. It is particularly interesting to note that most of the new types attributed to Kenyon's Phase XIII find good LBI parallels. Kenyon must have noted this, as she phased the wash deposit as 'MB/LB', after a Phase XII destruction which she phased as late MBA 182. Considering the pattern of TM parallels, Kenyon's phasing, Chapman's typological data and Wood's observations together, it would seem likely that some LBI occupation is to be admitted to, and is probably to be located upslope and to the west of Kenyon's Area H and Garstang's Middle Building 183.

The situation at Jericho is closely analogous to that developing at Gezer. If one abandons the traditional dating criteria of the presence or absence of rare fine and imported wares, then the testimony of the local coarseware ceramics does not stand in the way of a revision downwards, perhaps to some time within the Late Bronze I period, in at least some of the deposits hitherto associated with the late MBA destructions in south-central Palestine. The necessary re-adjustment to our picture of the archaeology and history of early post-expulsion Palestine will have widespread ramifications for economic and settlement models, as well as the more traditional concerns for the nature and extent of early Eighteenth Dynasty involvement in the Levant 184. These ramifications will be explored further in

appear to suggest a marked acceleration in ceramic variability in Phase XII, which we may designate as MBIIC, and a further sharp change in Phase XIII, which Wood would claim as LBI in date, not without reason.

181 For Garstang's excavations, see Garstang (1932), (1933), (1934), (1935) and (1936). For a popular account of the excavations, see Garstang & Garstang (1948). For a detailed study of Garstang's tomb and tell material, see Kenyon (1951), and for a review of the tomb material, see Bienkowski (1986). For his correlation of Kenyon's Area H and Garstang's Middle Building work, see Bienkowski (1985).

183 This area of the summit has suffered severely from erosion, as the streak/wash deposit would indicate, but all MB/LB pottery, both in Area H and in Trench I, could be seen to derive from a similar source on the summit of the mound. Although Bienkowski (1986) states that all archaeological evidence is consistent with a gap in occupation after the MBA destruction, Gonen's recent discoveries in the South cemetery at Jericho may seem to contradict this observation, as Bienkowski notes (Bienkowski (1986), p.136.

184 Only one comment would seem appropriate here. Gonen (1984), has made great play on the marked collapse in urbanisation during the LBI period in Palestine. As she considers the LBI period to be defined at those sites containing diagnostic LBI ceramics, by which she means Bichrome ware, it seems likely that the vast majority of LBI
Summary and Conclusions

The detailed documentation of parallels between the various phases of the TNM ceramic assemblage and a selection of neighbouring sites, comprehensive for the northern Levant and less so in the south where parallel-searching concentrated on quality post-war excavations, allows one to "stitch-together" a rather loosely woven relative chronology for the north/central Levantine sequences in general, with some reference to the better documented recently excavated sequences of the south. Whilst this "parallel-matching" is a long way from a comprehensive archaeological history, it provides the backbone on which such a structure may eventually be constructed. The following table sets out the pattern of associations in summary form.

<table>
<thead>
<tr>
<th>MBIIB</th>
<th>MBIIC LBI</th>
<th>LBIIA</th>
<th>LBIIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tell Nebi Mend Tr. I</td>
<td>K-J H--------/G--------/F-E----/-----D-C----/B-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tell Nebi Mend Tr. II</td>
<td>---D--C----/B-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tell Nebi Mend Tr. III</td>
<td>E------/D-C------/B-------A/Crt. Yard. St.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazor Upper City</td>
<td>XVII</td>
<td>XVI</td>
<td>XV</td>
</tr>
<tr>
<td>Hazor Lower City</td>
<td>V</td>
<td>IV</td>
<td>III</td>
</tr>
<tr>
<td>Kamid el Loz Nth.Slpe.</td>
<td>6----------9</td>
<td>10 /----11 /12-14 15-18</td>
<td>19-25</td>
</tr>
<tr>
<td>Tell Ghassil</td>
<td>XI-X</td>
<td>IX-------/ VIII----/ VII</td>
<td>VI</td>
</tr>
<tr>
<td>Hama</td>
<td>H4/3----</td>
<td>H2--/-H1----/---G3/-/---G2-1---F----?</td>
<td></td>
</tr>
<tr>
<td>Ebla</td>
<td>---III-A---------III-B--/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tell Arqa</td>
<td>14-13</td>
<td>12B----/12A----?</td>
<td>11'</td>
</tr>
<tr>
<td>Byblos Royal Tombs</td>
<td>---I-II-?- III-IV-?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarepta Area II.Y</td>
<td>L</td>
<td>K1-K2</td>
<td>J-H</td>
</tr>
<tr>
<td>Atchana</td>
<td>XII-VIII -----VII-----/ VI-V</td>
<td>IV-III</td>
<td>II-1</td>
</tr>
<tr>
<td>Tell Judaideh TT20</td>
<td>L (VIII.3-VI.1-)?</td>
<td>M (VI.2-V.4-)?</td>
<td>(V.5-IV.4-)?</td>
</tr>
<tr>
<td>Ras Shamra</td>
<td>UM 2/3----------/ UR1</td>
<td>UR2----?</td>
<td>UR3</td>
</tr>
<tr>
<td>Tell Hadidi</td>
<td>B I----IV----VI----HXIII--"Tab.Hse"--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

occupation deposits have been ignored because she, and many others, have regarded them as MBA in date. The effect of any such re-allocation is likely to see some reduction in the magnitude of the late MBA Canaanite prosperity, and a consequent adjustment upwards in the settled area and cultural attainments of the LBI period, effectively evening out the graph Gonen provides to illustrate her model of settlement collapse and renewal, for which see Gonen (1984), p. 67. It is likely that no significant collapse took place at all, and if it did not, then the current arguments over the role of the Egyptians in LBA Canaan, whether as economic benefactor or scourge, for which see Knapp (1987), (1989a) and (1989b), Liebowitz (1987) and (1989) and Bienkowski (1989b), may well have to be re-examined yet again.
<table>
<thead>
<tr>
<th>Place</th>
<th>Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>el Qitar</td>
<td></td>
</tr>
<tr>
<td>Busra</td>
<td>26-25 24-20 19-1615</td>
</tr>
<tr>
<td>Tell es Salihiyeh</td>
<td>XII XI IX VIII VII</td>
</tr>
<tr>
<td>Pella Area III</td>
<td>IX-VIII-VII-VI-V-IV-III II-I</td>
</tr>
<tr>
<td>Shechem</td>
<td></td>
</tr>
<tr>
<td>Jericho Area H</td>
<td>VII-IX-X-XII-XIII-XIV-XV</td>
</tr>
<tr>
<td>Gezer</td>
<td>XXI-XX-XIX-XVIII XVII-XVI XV</td>
</tr>
<tr>
<td>Tell Beit Mirsim</td>
<td>E-D-C2-C1</td>
</tr>
<tr>
<td>Tyre</td>
<td>XIX XVIII XVII XVI XV</td>
</tr>
<tr>
<td>Mersin</td>
<td>X IX VIII VII VI</td>
</tr>
<tr>
<td>Tarsus</td>
<td>MBII LBI LBIa-LBIib</td>
</tr>
<tr>
<td>Beycesultan</td>
<td>V-IVc IVb IVa</td>
</tr>
<tr>
<td>Tell Sukas</td>
<td>K J</td>
</tr>
<tr>
<td>Ansari</td>
<td>"MB Seq."</td>
</tr>
<tr>
<td>Oumm el Marra</td>
<td>"MB Seq." "LB I Seq."</td>
</tr>
<tr>
<td>Megiddo</td>
<td>XII-XI X IX VIII VII</td>
</tr>
<tr>
<td>Beth Shan</td>
<td>X "pre-IX" IX-VIII VII—VI</td>
</tr>
</tbody>
</table>

Within this table of associations there are a number of regularities that should be noted. A large number of the sites studied experience between one and two destructions in the MB/LB horizon. The earlier of the two destructions would seem to be more general throughout the region, and the second relatively less common. No obvious regularity indicative of one particular circumstance or series of circumstances has been suggested as having led to these destructions, although one cannot be ruled out.

The ability to unravel the number and sequence of these destructions is hampered by the difficulty in defining the LBI period ceramic assemblage comprehensively. Various aspects, generally the imported components, are well known, but when these components are not present in any given LBI assemblage, the tendency is to date the assemblage to the preceding MBIIC period, when imports do not abound, and to claim a gap in occupation thereafter. The affirmation that many sites were deserted during the LBI period, as a consequence of an MBIIC destruction, is questionable, and the pattern of coarseware parallels outlined above tends to suggest that this import derived destruction/abandonment scenario is increasingly untenable. However, what is not to be doubted is that a large number of sites suffered either partial or complete destruction at some stage during this MB/LB period.

When searching through the historical records of the MB/LB period, a plethora of possible historical culprits emerge. The three empires of the Hittites, Egypt and Mitanni fought over many parts of the Levant during this period, and although their individual and cumulative destructive ability has probably been
significantly overstated, the effect of such concentrated military activity is generally admitted to have been unconducive to continued prosperity. However, the magnitude of the observed destructions prompts one to consider alternatives. Otherwise, one must propose the destruction of a large number of prosperous states at virtually the same time, by agencies that, even at the height of their powers, displayed a well known ineffectiveness in siege warfare. Equally, as recent analyses have highlighted, textual references rarely claim the destruction of cities besieged, but rather their despoilation after surrender. Other potential candidates, including natural phenomena, should and will be explored below in an attempt understand the nature of this widespread MB/LB period phenomenon better.

One crucial component of any attempt to reconstruct the archaeological history of the northern Levant in the MB/LB period must be the successful definition of a local LBI coarseware assemblage. To an extent, the TNM assemblage outlined above (Chapter 3) began that process. The preceding comparative ceramic analysis (Chapter 4) has advanced research, by associating the well defined LBI assemblages in the coastal southern Levant with the poorly defined assemblages of the northern Levant, allowing, albeit tentative, MBIIC and LBI assemblages to be proposed for many of the hitherto enigmatic sequences of the north.

In carrying the analysis further, three tasks remain; the close examination of the LBI assemblages isolated in the comparative analysis just completed, the documentation of the pattern of destruction layers in the northern and southern Levant during the MB/LB period, which this isolation of good LBI assemblages facilitates, and the exploration of the potential causes, man-made and natural, that might best account for the pattern of destructions so delineated. This is the subject of the succeeding Chapter 5, below.

185 On the well known Egyptian deficiencies in siege warfare, see Shea (1979), Redford (1979) and (1982), Goedicke (1986) and Hoffmeier (1989). Weinstein's recent (1991) reiteration of his (1981) conclusions does not significantly advance debate. However, the conquest scenario is still not without its advocates, for which see Weinstein (1981) and (1991), and Dever (1985), (1987) and (1990).

186 For which see Hoffmeier's (1989) careful analysis, and Dever's rather intemperate (1990) reply. Hoffmeier's (1990), second thoughts on Dever's comment, and his (1991) reply to Weinstein's (1990) article, emphasise both the limitations of the surviving textual evidence, as well as its clear equivocation on matters of archaeological moment.

187 As suggested recently by Bartlett (1982), p. 94.
CHAPTER 5

THE DEFINITION OF LBI ASSEMBLAGES AND THE MB/LB GAP HYPOTHESIS

Introduction

Three interrelated problems are of concern in this part of the analysis. The first relates to the definition of LBI assemblages, both in the southern Levant, where definitions were developed, and in the north, where they are seen to have great consequence. The second issue involves the clarification of the number, severity, sequence and consequences of the so-called MB/LB destruction horizons throughout the Levant. The third involves the exploration of the cause or causes, unrelated or interrelated, of these destruction horizons.

The Definition of LBI assemblages in the Southern Levant

1. Megiddo

The site of Megiddo has long been central to any discussion of Late Bronze Age typology and chronology. Whilst important MB/LB material was excavated by the Germans under Schumacher, the American Oriental Institute excavations provided the bulk of material utilised in all subsequent discussion. The American ceramicist Shipton quickly identified Levels X and IX as those crucial to MB/LB analyses, and singled out the distinctive Bichrome Ware pottery as the hallmark of the LBI phase. This observation was taken up and refined by Kenyon in her review of Megiddo stratigraphy. Here she demonstrated that the distinctive Bichrome Ware was to be associated exclusively with Level IX, as all Level X occurrences could be demonstrated to have come from Level IX tombs cut into the earlier level. This analysis was confirmed by

1 For Bronze Age materials from the German excavations, see Schumacher (1908) and more importantly, Watzinger (1929). For that from the American excavations, see Engberg (1938) and Loud (1948). For a consideration of the pottery, see Shipton (1939). Major analyses by Kenyon (1969), Kassis (1973), and Gonen (1987), are central to all considerations. For a good general survey of all excavations at the site, see Davies (1986).

2 Shipton (1939), pp. 7-41.

3 Kenyon (1969), p. 47. The significance of Bichrome ware had been underlined in Albright's review of Petrie's work at Ajjul, for which see Albright (1938b), and Stewart's analyses of the same material, written in 1949, but not published until long after his death, for which see Stewart (1974).
Epstein, in her definitive codification of Bichrome characteristics. Epstein argued that Bichrome ware was a legitimate hallmark of the LBI period, and represented the strongest material expression of Hurrian infiltration into the Levant. Both analyses tended to promote the separation of the Megiddo Level X and IX assemblages, suggesting that the former could be seen as typifying the MBIIC period, and the latter, characterised by Bichrome Ware, typifying the LBI period. Soon thereafter, it became an archaeological commonplace to delineate the LBI period at Megiddo as that sandwiched between two destructions, that at the end of MBIIC Level X, generally associated with the campaigns of Ahmose, and that at the end of Level IX, almost uniformly attributed to the early campaigns of Thutmosis III.

However, ceramic analysis of the Level X and IX assemblages tended to emphasize continuity over radical change, and stratigraphic analysis underlined the continuity from one level to the next, to the extent that serious thought was given to combining the two strata together as one. There was never any suggestion of widespread destructions separating levels X from IX, or IX from VIII.

It can be seen, therefore, that the stratigraphic and ceramic analyses were consistent in suggesting no radical change between Levels X and IX. This salient feature was largely ignored in much of the succeeding discussion.

2. Tell el-Ajjul

Petrie's BSAE excavations at Tell el Ajjul uncovered a sequence of Palace and City occupation horizons that were widely acknowledged as crucial to any understanding of the transition from the Middle into the Late Bronze Age. Petrie's Palace I and City III were identified by Stewart, Epstein and Kenyon as relating to the late Middle Bronze Age. This late MBA horizon was characterised by the first appearance of the Chocolate on White ware, and the beginning of Cypriot imports to the mainland, but was said to contain no Bichrome Ware.

5 Best illustrated with reference to the general works of Albright (1960) and kenyon (1979), although critical analyses such as those of Gates (1981) and (1987), Kempinski (1983), Dornemann (1988), and McClellan (1989) are not above maintaining this dichotomy, even after Shea's (1979) demolition of the basic precepts underlining it.
7 For Petrie's excavations, see Petrie (1931), (1932), (1933) and (1934), and Petrie et.alii. (1952). For any re-assessment, one must see Albright (1938b), Kempinski (1974), Stewart (1974), Merrillees apud. Stewart (1974), Tufnell (1975) and (1984), and Drower (1985).
8 On this late MBA phase, see Albright (1938a &b), Heurtley (1939), Hennessy (1963)
Both City III and Palace I were violently destroyed. Most commentators chose to identify this destruction horizon with the campaigns of Ahmose, and the succeeding Palace II complex with the LBI period. The ceramics from this latter phase were held to contain Chocolate on White ware and Cypriot imports in increased amounts, with the crucial addition of Bichrome Ware. When Kenyon reviewed the LBI stratigraphy of Palestine for the revised edition of the Cambridge Ancient History, she restated Albright's definitions for MBIIC and LBI, thus codifying the paradigm for MB/LB archaeological definition. Late MBIIC period occupation was defined by small amounts of CoW and LCIA1 Cypriot imports, and LBI horizons by CoW and LCIA2/LCIB Cypriot imports, joined for the first time by Bichrome ware.

Whilst reviewing Kenyon's construct, Parr was moved to point out that Petrie's excavation technique was sufficiently imprecise to cast doubt on the stratigraphic purity of the Palace I or any other loci. He further suggested that Palace I may well have contained Bichrome Ware, and called into question the dichotomous relationship Kenyon had set up between the Palace I and Palace II loci. This was largely ignored, in spite of the support Tufnell's final pronouncements gave to Parr's caveats, and Bichrome Ware became the hallmark of LBI occupation. An unacknowledged sidelight to this was that CoW became the hallmark of the late MBIIC period, provided only that it was not found in association with Bichrome Ware.

9 See Albright (1938b), and Merrillee apud. Stewart (1974). Note that Stewart changed his views after Hennessy's isolation of what is now regarded as the initial stage of LCI at Stephania, for which see Hennessy (1963). This is Åström's LCIA1, for which see Åström (1972c). Stewart (1974), pp. 62-63, noted the presence of Stephania type material in Palace II, and concluded that this too had to be dated to the late MBA, and as the later of the two MBA cities, became the most likely candidate for the Ahmose's Sharuhen. Whilst this is in keeping with Negbi's (1970) jewellery analyses, the close association of Palace II, Megiddo IX and Atchana VI anchors a traditional LBI dating for this level. To redate Palace II into the MBA involves a re-definition of the generally accepted phasing data.

10 Kenyon (1973b), pp. 528-530.

11 See Parr (1970) and Tufnell (1975). Both drew attention to the technical flaws in the Ajjul excavations, and the likely presence of Bichrome ware in Palace I loci. Bietak's recent finds from late SIP Tell ed-Daba Levels D3-D2 make this increasingly likely.

12 This definition was restated clearly in the Shechem reports, for which see Toombs &
This paradigm was accepted throughout MB/LB scholarship, as it purported to define precisely the difference between MBIIIC period assemblages and those associated with the LBI phase, and further, offered a close historical association with the campaigns of Ahmose, and the transition from the Second Intermediate Period to the Imperial Eighteenth Dynasty.

However, the paradigm was based on the technically imprecise excavations at Megiddo and Tell el Ajjul, and the assumption of a dichotomous relationship between stratigraphic and ceramic assemblages that in both cases were questionable. The association between the destruction horizon at Ajjul and the campaigns of Ahmose was not borne out by any single feature of the archaeological evidence, even if Tell el Ajjul could be inferred to be Sharuhen, and this has remained a subject of dispute. The degree of stratigraphic precision claimed for the Bichrome attributions at Megiddo and Tell el Ajjul could not stand up to any form of rigorous examination.

Even so, the paradigm persisted throughout the sixties and the seventies, and was crucial to the deliberations over dates allocated to the MB/LB strata at Jericho, Shechem and Gezer. It was with the publication of these three sites that the paradigm found its final expression, and individual site analysis gave way to synthesis.

3. Jericho

Garstang's Liverpool University excavations at Jericho claimed to have identified good archaeological strata and rich tombs attributable to the MB/LB period. Occupation ceased after a catastrophic destruction that Garstang placed at the end of the LBI period, around 1400 B.C. This he chose to relate to the Hebrew Conquest under Joshua.

However, it was generally acknowledged that Garstang's reliance on the flawed Beth Shan stratigraphy for comparative analysis and absolute chronology robbed his conclusions of the force they overwise might well have had, and Kenyon's review of the predominantly tomb-derived ceramic evidence concluded that the absence of Bichrome Ware and related forms dictated the attribution of an LBI period gap in the Jericho sequence.

Wright (1963) and Seger (1965b) and (1974).
13 See conveniently, Garstang & Garstang (1948), and Kenyon (1951), for a review of Garstang's evidence.
14 Kenyon (1951), pp. 121-122. Here she notes Garstang's reliance on the flawed stratigraphy of Beth Shan IX, which she dated, unseen, to the first half of the Fourteenth century B.C., on the grounds that the Beth Shan VIII material was to be dated to the second half of the Fourteenth Century. I would like to thank Patrick McGovern for allowing me to examine his forthcoming publication of the Beth Shan Level IX-VII material in Philadelphia in June 1988, and for discussing the many problems of the Philadelphia
Soon thereafter, Kenyon's BSAJ excavations at Jericho reinforced her earlier conclusions, noting that the absence of Bichrome ware and early Cypriot imports in her extensive tomb deposits dictated a gap in occupation at the end of the Middle Bronze Age. On the tell, the massive destruction was to be dated to the end of the Middle Bronze Age, again because of the absence of Bichrome Ware and characteristic early Late Cypriot imports, and the presence of small quantities of CoW. As the horizon of destruction equated to that isolated at Tell el Ajjul Palace I, it was natural for Kenyon to attribute the Jericho destruction to the same Egyptian agency 15.

4. Shechem

The Drew-McCormick/ASOR excavations at Shechem, under the direction of G.E. Wright, represented the first large American project in Palestine after the Second World War. Wright was the most important of Albright's archaeological students, and his knowledge of Palestinian ceramics derived from the information Albright had so brilliantly synthesized from the Tell Beit Mirsim excavations.

Albright had been central to the reinterpretation of the Tell el Ajjul sequence, where he used the TBM material to downdate Petrie's allocations. Albright drew support for his theory of an LBI gap at TBM from the difference in the assemblages between TBM and Tell el Ajjul after the destruction. The main difference was the absence of early Late Cypriot imports and that of Bichrome Ware, as the coarseware pottery was admitted to be closely related, and by itself, suggested no radical alterations from the pre-destruction modes 16.

Wright took this knowledge to Shechem, and when he discovered analogous remains, it was not unnatural that he followed closely Albright's explanation of events. However, the circumstances were not quite identical. Whereas Albright claimed one main phase of MB IIIC, which was destroyed, Wright had to admit to at least four major construction periods in both the North-West and East Gate excavation areas of the city. Each of at least three destruction/rebuilding horizons was dated to the late MB IIIC period on the grounds of the presence of Chocolate on White ware in small quantities, and the absence of Bichrome ware, as the then-current MB/LB paradigm dictated 17.

It was here that reservations began to be expressed about the dating excavations with me. He agrees in all essentials with Kenyon's assessment.

16 For Albright's work, see Albright (1938a) for the dates of TBM E and D, and Albright (1938b), for the re-interpretation of Tell el Ajjul. For his last general summary, see Albright (1960), pp. 83-99. For two re-assessments, see Kempinski (1983) and Bienkowski (1989a).
17 For the date and phasing of the Shechem material, see Wright (1965), and Dever (1974) and Seger (1974) and (1975).
system. It was Kenyon who cast most doubt on the wholly MBIIC date for each of the four major MB/LB building periods at Shechem. She doubted the propriety of compressing so many major building periods into a single century, and suggested that the final one, if not two, building periods might well date to the LBI period 18. The implication of such a suggestion was clear, although not commented upon at the time. The long-held view that the absence of Bichrome ware was adequate indication of an LBI gap in occupation would have to be discarded.

Seger and Dever both published a spirited defence of Wright's original dating of the Shechem gateways, but Dever is most clear in his defence, stating that the local coarseware ceramic assemblage of the terminal stage of the Northwest Gate did not stand in the way of an LBI dating, commenting upon the presence of incipient LBI features in the assemblage. Seger's late MBIIC date was based wholly on the presence of a small quantity of CoW and the absence of Bichrome Ware 19.

5. Gezer

The next major American excavation was that of Gezer, led by Wright's two senior students, Dever and Seger. Extensive MB/LB occupational horizons were unearthed in four of the Fields of excavation. The archaeological history appeared closely similar to that discovered at Shechem, with a series of impressive late MBIIC constructions recorded, followed by a catastrophic destruction 20.

The initial date suggested for the destruction was placed towards the end of the LBI period. This was quickly amended to the time of Ahmose, falling into line with the historical conclusions derived from the TBM excavations, and strengthened at Shechem 21.

However, problems quickly arose. A hoard of gold jewellery, discovered during the last major season of excavations within the fortification complex, found its best parallels with material firmly associated with classic LBI loci of

19 For Seger (1974), note particularly his criticism of Kenyon's method, p. 123 and p.130, but also, his own faulty reasoning, p. 130, for preferring an MBIIC over an LBI date. For Dever (1974), note particularly his comments within the footnotes, especially fns. 38-44.
20 For a close comparison of the Shechem and Gezer constructional phases, see Seger (1975). For a review, see Bienkowski (1989a).
Tell el Ajjul Palace II.

A further difficulty arose, as the Shechem loci from which most Gezer coarseware parallels were drawn was held to be firmly dated to the end of the MBIIIC, whilst the associated jewellery, on equally strong grounds, was held to date to some time within the LBI period.

Seger suggested a compromise here, as he did with the Shechem East Gate material, advocating an early LBI destruction, which he dated to the time of Thutmosis I. As this differed from the original attribution to Ahmose by as little as thirty years, he argued that the archaeological assemblages in question, those from the East Gate at Shechem, which he dated to the time of Ahmose or perhaps even Amenhotep I, and those associated with the jewellery deposit and the casemate defences at Gezer, which he dated to the time of Thutmosis I, would appear equivalent, thus leaving intact the Bichrome-derived late MBIIIC destruction dates for most other Palestinian cities 22.

However, Dever clearly disagreed with Seger's compromise solution, and in his most recent works he has taken to dating the end of the Middle Bronze Age city to the Fifteenth Century B.C., and nominating Thutmosis III as the destroyer in question. Exactly how he came to this radical departure from previous dogma is unclear, as he does not seem to acknowledge it for what it is, or the circumstances that led him to such a conclusion 23.

If Dever's conclusions were felt to be an acceptable reading of the archaeological data, then the ramifications for any reinterpretation of the so-called late MBIIIC strata at Shechem and Jericho excavations are clear. Analysis must centre on material present in the destruction assemblages, not on that absent from them.

The Work of Bimson and Kempinski

Bimson's Doctoral thesis centred on efforts to redate the Exodus/Conquest to the middle of the Fifteenth Century B.C.. There are two main strands of evidence that he employs in the archaeological component of his argument. The first is a close analysis of the use of Bichrome Ware in the dating of archaeological strata in Palestine 24. Following on from this, the second concentrates its efforts on re-dating Kenyon's late Middle Bronze Age destruction

23 Dever (1987), p.175, and Dever [ed.] (1987), p.35, fn. 59 states that he prefers the Thutmosis III date over the Thutmosis I [Seger] or Ahmose [Weinstein] dates, although he does not explain the reasoning behind the preference, other than by mentioning the inscriptional support for such an attribution. Kempinski (1972) has rightly criticised him for such cavalier treatment of the established typological and stratigraphic definitions of MBIIIC and LBI assemblages.

at Jericho to the Fifteenth Century B.C. 25.

Bimson's analysis of the use of Bichrome Ware as the single-most important arbiter of MB/LB chronology demonstrates how the cumulative effect of flawed assumptions on the origin of the ware, unnecessary assumptions on distribution patterns of the ware, and circularity of argument on the absolute dating of the ware, resulted in a relative chronology for Palestine that was inherently flawed.

Having disposed of Bichrome ware as the arbiter of MB/LB chronology, Bimson reworked the Jericho evidence to suggest the possibility of an LBI date for the destruction. In this, he was merely following the tendency, already evident at Gezer, to redate those assemblages which did contain CoW, but not Bichrome ware, from their original MBIIC date, down into the LBI period. However, the weakness of this argument is that it replaces one uncertain and perhaps flawed interpretation, with another based either on a thinly disguised reliance on notoriously unreliable Egyptian inscriptive evidence in the case of Gezer, or an even more problematic reliance on the literal accuracy of the Biblical text in the case of Jericho. Neither is satisfactory. Whilst Bimson demonstrates that the previous construct was grievously flawed, he does not provide any reason, beyond an appeal to Biblical authority, to install his own synthesis in its place. To supplant the previous synthesis one must present new data that bears on the problem, and that Bimson has not done.

Since Bimson's work was published, Kempinski's Doctoral thesis on the MBIIC period has appeared, and it rightly identifies the considerable difficulties inherent in distinguishing the MBIIC period from the LBI in the absence of fine ware arbiters 26.

Kempinski suggested dating all strata containing CoW and Bichrome Ware to the LB I period. This has the effect of raising the date for the beginning of the Late Bronze Age to some indeterminate period shortly before the onset of the MB/LB destructions. This definitional change removes the previous arbitrary, historically derived 'convenience' date of c.1550 B.C., associated with the rise of the Eighteenth Dynasty, and replaces it with an archaeologically derived assemblage/horizon, based on the presence of a series of diagnostic fine wares.

Kempinski argues for this alteration on the grounds that the present system, which is forced to acknowledge the presence of CoW and probably Bichrome in both MB and LB strata27, renders the division meaningless, as the

27 Whilst it has been recognised that CoW appears in the latter stages of the MBIIC period, at least since the Shechem excavations, the re-analysis of the Ajjul strata by
local coarsewares display a significant continuity between the periods. In short, Kempinski recognised the central role of fine and imported pottery in dividing the ceramic assemblages of the MBIIC period from those of the LBI. Without them, Kempinski suggests that a meaningful distinction between the periods MBIIC and LBI might not be possible 28.

The main problem with Kempinski's system is that it still advocates a central role for the scarce fine and imported wares in any chronological definition. Neither CoW nor Bichrome wares occurs in sufficient numbers, nor is their pattern of distribution sufficiently well known, to allow them to provide an adequate arbitration between individual repertoires of standard MB/LB occupational assemblages. Whilst the presence of these wares in any given assemblage strongly indicates MB/LB occupation, they can never adequately delimit occupation during any discrete part of the MB/LB, nor can their absence, given their habitual scarcity, ever be used to define occupational history29.

Bienkowski and Jericho in the LBA

If one removes the Bichrome-derived impediment to an LBI date for the Jericho assemblage, as Bimson has argued, then evaluation must centre on the coarseware assemblages from the destruction loci. This has only proved possible in recent years with the final detailed publication of Kenyon's meticulously excavated sequence, coupled with a full re-evaluation of Garstang's older, but nonetheless important material by Bienkowski 30.

Although Bienkowski's material was published after Kenyon's, it is useful to review his findings first, as they erect the framework in which all debate must work.

Although Garstang believed that his MB/LB tomb material spanned the Stewart (1974) and Tufnell (1975), and Bietak's (1991) statements on the late SIP strata at Dab'a, would seem to have Bichrome ware in existence well before the onset of the Eighteenth Dynasty, supporting Merrillees (1970) originally tomb-derived observations stratigraphically.

29 This is the particularly serious flaw in Gonen's (1984) methodology. Whilst she assembles an impressive barrage of statistics to illustrate the LBI collapse in Palestinian prosperity, she defines LBI strata almost wholly on the grounds of the presence of Bichrome Ware. Consequent on this, she registers a catastrophic drop in inland LBI settlements. A quick comparison between the coastal distribution of Bichrome Ware and that of other Cypriot fabrics will reveal the dangers of employing such unreliable arbiters to define entire periods of occupation. Gonen's entire thesis needs careful re-analysis.

30 For Kenyon's excavations, see Kenyon (1957b) and (1981), and Kenyon & Holland (1982) and (1983). For Bienkowski's re-analysis of Garstang's work, see Bienkowski (1985) and (1986).
period from the Sixteenth Century through to the Fourteenth without interruption, Kenyon and Bienkowski have both argued that Garstang’s material consisted of two distinct deposits, datable to the MBII and LBII. Both Kenyon and Bienkowski agree on dividing the tomb contents into two distinct groups, and both felt there was sufficient evidence to demonstrate a break between the two 31. This is the crucial point.

Bienkowski’s analysis of Garstang’s tell excavations, based as it is on Kenyon’s Area H excavations, which were deliberately placed adjacent to Garstang’s ‘Middle Building’ excavation area to check his findings, emphasizes the point that both Kenyon and Garstang’s excavations agree in suggesting that the late Middle Bronze Age city and the LBII re-occupation of the eastern-central slopes were separated by a period in which there was a gap in occupation 32.

The final publication of Kenyon’s Area H material has allowed for a detailed evaluation of tell-derived sherd-based deposits for the periods in question. Kenyon’s final conclusions seem to reiterate the line first espoused in her preliminary reports. The vast bulk of her material is dated to the latter stages of the Middle Bronze Age, with only a few miscellaneous pieces attributed to the later epoch 33. However, there was no attempt at a comprehensive comparative analysis of the Jericho material.

Within a larger defence of traditional phasing by Bienkowski, Chapman’s short analysis of type sherd incidences from Area H has identified a revealing phenomenon, and that is the increase in typological variety in the final, post-occupational ‘wash/debris’ phases at Jericho. Chapman has shown that a large number of new types appear in the so-called ‘wash’ deposits 34. The implications of this are clear. There are more periods of occupation represented in the ‘wash’

31 For Bienkowski’s analyses, see Bienkowski (1986), pp.105-111. Of more interest are Kenyon’s (1951) observations on Garstang’s tomb material. Whilst she strongly favoured the two-phase usage scheme, she noted that the scarab evidence could be interpreted to be at variance with this scenario, as scarabs of Hatshepsut, Thutmosis III and Amenhotep III were found in Tombs 4 and 5, Kenyon (1951), pp. 116-117. Of equal interest is her identification of what could be seen as a late Bichrome Ware biconical jug, which Kenyon rightly compares with examples from Megiddo IX-VII. Wood (1982) stressed that it was dangerous to attempt to divide Bichrome Ware into chronologically significant subcategories on the authority of Megiddo occurrences. If his conclusions are accepted, then the post-destruction debris material, at least, should be allowed a more general LBII-II dating.

32 For a detailed comparison of Garstang and Kenyon’s excavations, see Bienkowski (1985), passim., and Bienkowski (1986), pp. 113-124.

33 For which, see Kenyon & Holland (1983), pp. 363-371. Area H Phases V-XII were suggested as MBA, with only Phase XIII, wash/debris material, phased as MB/LB, before the LBII re-occupation of Phase XIV.

material than in the occupational strata from which they are held to derive.

The simplest explanation for this phenomenon would be for post-
destruction occupation to have existed upslope and to the west of the Area H
excavations. Material from this occupation could then have become mixed in with
the generalised erosion of the MB/LB levels at Jericho. Kenyon seems to have
recognised this possibility in her phasing, as she dated the wash material to the
MB/LB period, later than her late MBA destruction of the city 35.

In an important footnote to his survey of the LB material at Jericho,
Bienkowski mentioned Gonen's recent discovery of LB I material in the cemetery
area to the south of Jericho, implying that there was at least limited early LB
occupation in the immediate vicinity of the tell 36.

Even so, Bienkowski concluded that the only significant Late Bronze Age
occupation at Jericho derived from Garstang's Middle Building excavations,
equivalent to Kenyon's Area H, Phase XIV material. Occupation was both
localised, and discontinued after a short period of time. Cemetery material
consisted of later deposits in three of Garstang's tombs, supplemented by Gonen's
recent unpublished discoveries.

Wood and Jericho in the LBA

As Bimson pointed out long ago, all attempts to bring the archaeological
and the Biblical material into alignment must suggest that the evidence derived
from Garstang's and Kenyon's trenches merely represent localised desertion, and
that other areas of the tell were occupied during the LB period. Bimson observes
that all post-Kenyon analyses have faltered on this point 37.

In recent years, Bryant Wood has analysed much of the Jericho coarseware
material as part of his Doctoral thesis, and has come to markedly different
conclusions to those advocated by Bienkowski.

Wood has suggested that the so-called late Middle Bronze Age coarseware
assemblage finds parallels within the LBI assemblages at sites such as Hazor and
Megiddo, concluding that the date of the destruction must be lowered to some time
within the LBI period 38.

35 Kenyon & Holland (1983), p. xlvii, Chart X. Note the anomalous positioning of
Phase XIII, both within the Area H MB sequence, and after it. Of equal interest is the
apparent two-phase destruction in Area H, Room M, for which see, Kenyon & Holland
(1983), p. 369. However, this might equally well be interpreted as the collapsed upper
storey of a two-storeyed dwelling.

36 Bienkowski (1986), p. 136. This is consistent with Kenyon's (1951) observations on
'late' Bichrome ware within Garstang's streak deposits.

38 Wood (1990a). It is worth noting that Kenyon's original (1951) evaluation of
Garstang's tell material included several Megiddo IX parallels, which would still appear to
Bienkowski took issue with Wood's analyses, and whilst he is technically correct in refuting Wood's purported examples of Bichrome Ware from Garstang's excavations 39, his main argument revolves around a contention that coarseware parallel matching is not a legitimate means of establishing a reliable relative chronology. In this contention he must be challenged, for it strikes at the heart of the present analysis.

Bienkowski claims that parallel matching is misleading, as ceramic products from one area may be expected to occur in its production centres earlier than in exported horizons. Whilst this is an interesting suggestion, Bienkowski offers no evidence to substantiate the claim 40. Nor can he, as the only means of establishing his case would be through extensive parallel matching. Whilst Bienkowski offers no evidence to support his claims, there is a deal of evidence against it.

To begin with, the vast majority of coarseware ceramic is found in local contexts. Coarseware ceramic is rarely traded, and generally found in the immediate environs of its production centres. There is little question of 'export lag' in parallel matching exercises. Incidentally, this is one of the more crucial problems with using scarce imported ceramics such as Bichrome and Cypriot White Slip and Base Ring wares in relative chronological studies. The use of coarseware parallel matching in relative chronological studies is specifically designed to eliminate this problem of export lag.

Bienkowski's generic criticism of Wood's analytical technique lacks impact, as it does not refute the methodology of parallel matching, nor demonstrate that Wood's specific parallels between LBI assemblages at Hazor, Megiddo, Lachish and Mevorakh and the Phase XII-XIII assemblages at Jericho are invalid 41.

be datable to the LBI period, even allowing for Gonen's (1987) thoroughgoing re-analysis of the Megiddo X-IX Areas AA and BB material.

39 Bienkowski (1990), p.46 and fn. 8. Whilst Bienkowski is technically correct, as this piece is from a Palestinian 'Bichrome' biconical jug, rather than a 'Cypriot' Bichrome jug, even Kenyon acknowledged the LBI ancestry of the piece, and as Wood (1982) has pointed out, the chronological differentiation of Cypriot and Palestinian Bichrome wares is not clear-cut. He specifically refuted Artzy, Perlman & Asaro's (1978) claim for Cypriot priority, based on the Megiddo incidences. For further discussion, see Wood (1990b), p. 48 and fn. 54.

40 Bienkowski (1990), p. 46. He suggests that the various MBA townships of Palestine ended at different times, although it is difficult to see how he could demonstrate this without recourse to parallel-matching.

41 One small problem with Wood's work is that he does not distinguish between Phase XII and Phase XIII material when analysing the Jericho data. Several of his forms, Nos. 1, 4 and 10-12, are most common in the Phase XIII wash/streak deposits, rather than the Phase XII destruction debris.
Tell Nebi Mend and Jericho in the Late Bronze Age

If there is a single problem with Wood's argument, it is that his analysis is not extensive enough to avoid the criticism that he has been selective in his parallel matching. If he were guilty of failing to treat the majority of the Jericho Phase XII assemblage, it might still be argued that the majority of the forms are Middle Bronze Age, and that those forms paralleled in Late Bronze Age contexts at Megiddo, Hazor, Lachish and Mevorakh are late survivals of essentially Middle Bronze Age forms.

The extensive listing of parallels for our study of the TNM pottery negates any such criticism. The present analysis has been far more extensive than that offered by Wood, and it agrees in all essentials with Wood's contention that the material from Jericho Area H, Phase XIII contains a significant proportion of Late Bronze Age I material, suggesting that occupation continued on the site immediately after the late Middle Bronze Age destruction documented by Kenyon's excavations.

Chapman's analysis of Jericho Area H form frequencies bears out this observation. Chapman quantified the changing frequencies of new forms in the coarseware repertoire, with the aim of detecting major alterations in the coarseware assemblage. When comparing the Phase XII and Phase XIII material, he observed a marked increase in new forms in the latter phase, a fact that was not readily explainable if one held to Bienkowski's argument that the wash deposits represented erosion from the preceding destruction.

The likely explanation for Chapman's phenomenon is that the Phase XIII material contains significant addition of new material. This new material finds its best parallels in the Palestinian Late Bronze Age I repertoire.

Summary: Jericho in the Late Bronze Age

Taking together Kempinski and Bienkowski's observations on the difficulty of delineating differences between late Middle Bronze Age and early Late Bronze Age coarseware assemblages, it must be acknowledged that there is nothing in the local ceramic assemblage from Jericho Area H Phases XII/XIII that provides a decisive argument against an LBI occupational horizon at Jericho. The present study provides further evidence in favour of Wood's argument for a significant LBI occupation at Jericho, although it does not support Wood and Bimson's contention that the Phase XII destruction can be placed in the LBI period. It is important to differentiate between the Phase XII destruction material and the Phase XIII wash/streak material, as the former should retain its late Middle Bronze Age attribution, whilst the latter can arguably be re-dated into the LBI period.
Summary: The Definition of LBI assemblages in the Southern Levant

A short review of the definitional history of LBI assemblages in the southern Levant has led to several conclusions. Pre-war definitions were firmly rooted in the type-fossil concept, with Bichrome Ware and Cypriot White Slip and Base Ring wares being the type-fossils in question. Post-war research expanded knowledge of the coarseware assemblages, but held to the traditional definitional canons. Recent research has demonstrated the distortions resulting from over-reliance on type-fossils.

The present definition of Late Bronze Age ceramic horizons is rooted in the assemblage concept. What this has come to mean for LBI definitional studies is that many assemblages, particularly those derived from the Palestinian uplands and their reverse slopes, hitherto regarded as late Middle Bronze Age assemblages, must now be re-examined to see if the coarseware components of the assemblage indicate a date in the Late Bronze Age. For northern Levantine studies there are two significant points to emerge from this review of the southern Levantine sequences. They are:

1. the pre-war and early post-war definitions of 'typical' LBI assemblages may now have to be expanded to include some of what was previously regarded as exclusively late Middle Bronze Age material.

2. the use of Cypriot or Palestinian type-fossils to define LBI assemblages in the northern Levant must be questioned.

Any viable regional relative chronology must be based primarily on the local coarseware assemblages. Whilst Cypriot and Palestinian fine wares provide useful corroborative evidence, particularly within or between regions where their frequencies of occurrence within the local coarseware assemblages run at similar levels, the validity of any proposed regional relative chronology must derive primarily from the local coarseware assemblages.

The Definition of LBI assemblages in the Northern Levant

Introduction

Second Millennium ceramic material has been recovered from Syrian excavations from the early years of the Twentieth Century onwards. The British Museum excavations at Carchemish discovered extensive Middle and Late Bronze Age materials, but the variety of misfortunes that dogged the excavation and its archives effectively prevented any but the most cursory publication of the ceramic material.

The French Orontes valley excavations under Pézard and du Mesnil du Buisson in the decade after the First World War recovered extensive Middle and Late Bronze Age ceramic material, but the premature death of the former and the
faulty excavation and publication techniques of the latter resulted in little advance in knowledge after a great deal of industry.

The second decade after the First World war was decisive for Second Millenium studies, as it saw the excavations at Ras Shamra, Hama, Tell Judaideh and Atchana produce the quantity and quality of material needed to place Second Millenium studies on a firm footing.

Of the four, the Danish Hama excavations (1932-38) proved of most immediate importance. It was here that Ing"olt erected the first comprehensive Second Millenium relative chronology, and in so doing, gave first expression to what we have called "MB/LB Gap Hypothesis", an issue that continues to bedevil MB/LB studies to this day.

1. Hama and the MB/LB Gap Hypothesis

The site of Hama had been excavated by a Danish Mission under Harald Ing"olt over six seasons between 1932 and 1938. Ing"olt published a full preliminary account in 1940, but died before completing the final publication of the excavations. In his preliminary report, Ing"olt suggested, on the grounds of the virtual absence of imported Tell el Yahudiye ware pottery in Level H, that there was a significant gap in occupation at Hama covering the greater part of the then estimated lifetime of the ceramic, seen as something in the order of two hundred years, between c.1750-1550 B.C. 43.

Soon after the Second World War, Schaeffer's great regional analysis of Second Millenium assemblages came to similar conclusions with respect to the continuity of occupation at Ras Shamra. His observations went further, attributing the similar circumstances at Ras Shamra and Hama to catastrophic earthquake activity, and suggested that occupation was interrupted on a regional scale. What was originally posited as a purely local discontinuity at Hama grew to become a theory of widespread settlement discontinuity at some stage in the Middle Bronze Age, and so the MB/LB Gap Hypothesis was born.

Difficulties arose when Fugmann, the architect of the Hama project, published his final report on the architecture of Hama H and G, and specifically denied any significant gap in occupation between Levels H and G. He marshalled cogent arguments against Ing"olt's claims, detailing reuse of Level H1 walls and cisterns in the succeeding Level G3, and noted significant architectural similarity in layout and city function of the two levels. As well, he observed many ceramic and small find equivalences between the latter phases of Level H and the early phases of Level G. Together, his observations cast considerable doubt on

42 Ing"olt (1940), pp. 49-66.
43 Ibid., pp. 65-66.
Ingolt’s two hundred year gap hypothesis. Fugmann did not deny the fact of a
destruction at the end of Hama H, and indeed presented evidence for three
significant breaks in the sequence, between Levels H2 and H1, H1 and G3 and
between G3 and G2, but posited no significant break in continuity of settlement at
any stage. He proposed to lower the date for the end of Hama H to ca.1550 B.C.,
some two hundred years later than Ingolt’s original formulation 46.

At about the same time, Kantor published her important study of Syro-
Palestinian ivory workshops, and through comparative stratigraphic analysis,
came out strongly in favour of continuity from the MB into the LB. Her tabular
summary reaffirmed Fugmann’s conclusions with respect to Hama 47.

Shortly thereafter, Amiran examined the distribution of Tell el Yahudiye
ware in Syria, and as part of her study re-examined the three fragments from
Hama. She concluded that they were not true Tell el Yahudiye Ware at all,
suggesting rather that they be best classified as Black Impressed Ware 48.

Two important points emerged from her study. The first underlined the
rarity of Tell el Yahudiye Ware in inland Syria, and cautioned against using the
absence of this ware from inland sites as a reliable chronological marker. The
second point related to Hama specifically. The re-classification of the former Tell
el Yahudiye ware sherds as Black Impressed Ware favoured a considerable
lowering of the date of the end of Hama H, and Amiran suggested that this might
come down even further than Kantor proposed, as far as the end of the LBI period
49.

Parr was the first to propose distinct local ceramic culture-provinces as a
solution to the debate over the date of the Hama H assemblage. He suggested that
the inland Syrian cultural provinces seemed to have had a different developmental
sequence from the coastal Syrian and Palestinian sequences, casting doubt on the
assumptions behind simple comparative analyses over long distances, such as
those employed by Ingolt at Hama 50. It was further suggested that the apparently
wholly MBIIA ceramic sequence at Hama might well span the entire Middle
Bronze Age, if the MBIIIB-C ceramic horizons defined at Tell Beit Mirsim and
Megiddo turned out to be an entirely southern, Palestinian phenomenon.

Since that time, North and Courtois have re-examined the Ras Shamra
sequence, and now seems less convinced that any significant gap in occupation
exists 51.

46 Ibid., p.178.
47 Kantor (1956), pp.158-159, fn. 22.
48 Amiran (1957), pp. 95-97.
49 Ibid., p. 96.
50 Parr (1968), p.35, and especially fn.108. Parr, following Fugmann (1958), pp.113-
116, demonstrates that sufficient Hama H material can be found good MBIIIB-C parallels at
Hazor and Megiddo to reinforce theoretical arguments for contemporaneity.
With the two main pillars undermined, one might have thought that the MB/LB gap Hypothesis should have been cast aside. Perhaps surprisingly, this did not prove to be the case.

In her authoritative summary of the Syrian MB/LB evidence, Drower reaffirmed Ingblt's line, claiming that Hama was unoccupied in the MB/LB period, and unattested in the historical records of the time. This ignored all research after Schaeffer's pronouncements, as her references illustrate.

Astour quickly challenged her statements on historical and archaeological grounds. He proposed that Hama be equated with the historical Tunip, to which a large body of literature refers in the MB/LB period, and appealed to the more recent archaeological analyses, with their emphasis on cultural continuity, to support his posited equation.

In a separate study, based largely on comparative metallurgy, Tubb restated Ingblt's conclusions on the date for the end of Hama H. He based this conclusion not on his re-evaluation of the Hama metallurgy, but on the absence of the 'more developed' MBIIIC pottery at the site. This, disregards most research after Ingblt and Schaeffer's original analyses.

The comprehensive study of the Levantine MBIIA period offered by Gerstenblith would seem to support Ingblt's conclusions, if one referred to the text alone. However, this support is very heavily qualified in her footnotes, as she could not discount the possibility that the apparent absence of so-called Levantine MBII-III ceramic forms at Hama, and at other sites, may be due to differential developmental sequences.

In a most recent development, Dever has twice reported on an unpublished survey in northern Syria carried out by Sauer. In both cases Dever notes that Sauer's conclusions suggest that much of northern Syria was deserted in the MBIIIC period. How Sauer reached these far-reaching conclusions is left unsaid, but one must assume that this is based on the absence of distinctive ceramic forms attributed to this period in the southern Levant. This ignores all the foregoing discussion on the possible effects distinct culture-provinces would have on

51 See North (1973) for a summary of the MB/LB sequence; Courtois et alii. (1973), for the new excavations on the eastern extremities of the tell. See Courtois (1974) for a clear statement on the Ugarit Moyen II/Ugarit Recent I dating. He concluded that whilst some form of destruction interrupted settlement at Ras Shamra at the end of the Middle Bronze Age, the interruption was short-lived.

54 Tubb (1980), pp. 64-65.

55 Gerstenblith (1983), pp. 45-46, on the absence of southern Levantine MBIII forms at Hama, but more importantly note her heavy qualifying statements, p. 57, fn.73.

comparative ceramic analyses

Dever has supported Sauer's arguments through an appeal to the Ebla IIIB evidence. As Ebla IIIB is said to have suffered a catastrophic destruction at some stage in the latter half of the Middle Bronze Age, Dever sees this as symptomatic of a much more widespread phenomenon, which he dates to ca.1650 B.C. at Ebla, in line with Sauer's survey results.

However, a close reading of Matthiae's comments makes it clear that the proposed dating of ca.1650 B.C. for the end of Ebla IIIB is nothing more than an approximation. If Matthiae proposes Mursilis I as the agency of destruction for Ebla, as he has done in both his popular and more recent scholarly works on the destruction date of Ebla IIIB, then the date would, of necessity, have to be lowered into the early Sixteenth Century B.C.. If we accept Matthiae's association of the IIIB destruction with that of Atchana VIB, then an LB I date for the destruction might be suggested. However, Matthiae presents no compelling evidence for associating the destruction of Atchana VIB with that of Mardikh IIIB. Indeed, there is little data presented that would enable us to move beyond a more general ascription to the MB/LB period. Dever's recent comments do not bear close scrutiny, and amount to nothing less than a re-statement of the MB/LB Gap Hypothesis under another guise.

An analysis of the evidence on which the MB/LB Gap Hypothesis was based reveals that the two main pillars of the argument were undermined over thirty years ago. These conclusions have been restated many times, and ignored in almost as many cases. There is no good evidence to suggest that there ever was a gap in the occupational history of north-central Syria, and a considerable body of historical and archaeological evidence against such a conclusion.

2. Filling the Syrian MB/LB 'Gap'

Initially, the MB/LB Gap Hypothesis sprang from the difficulty in defining a reliable Second Millenium sequence for the northern Levantine inland regions. Until archaeological research resumed after the end of the Second World War, the only way to link the northern and southern inland sequences was via the better known coastal sequences. However, both Amiran and Parr had suggested that the coastal assemblages formed part of a distinctive culture province, rendering them of little use in stitching the northern and southern inland sequences

57 One should add the important studies by Tubb (1981) and (1983), on distinct painted ceramic culture provinces in Syro-Cilicia, and Beck's (1985) study of the distinct coarseware culture provinces in Syro-Palestine.

58 Dever (1990), p. 77, for the use of the Ebla evidence. See Matthiae (1987), p. 147, for the very approximate date for the end of Mardikh IIIB, and the unsupported suggestion that the campaigns of Mursilis I provide a suitable context for the destruction.

59 Amiran (1957) and Parr (1968).
together.

Only with the excavation of Hazor in Israel, Tell Ghassil and Kamid el Loz in the Lebanese Beqa’a and the re-excavation of Tell Nebi Mend in the Syrian Orontes, was this impasse broken. It is now possible to form a reliable regional comparative stratigraphy for the first time.

Drawing on the extensive comparative analysis that formed the subject of the preceding chapter, strong comparative stratigraphic links can be posited between the northern inland sites and their better documented southern associates, through the linking medium of the Tell Nebi Mend sequence. From this, reliable MBIIIC and LBI ceramic horizons can be isolated for much of the inland region of the northern Levant. As most recent minor excavations still reference their comparative stratigraphy to the three major sequences from Hama, Ras Shamra and Atchana 60, any attempt to redefine MBIIIC and LBI assemblages must begin with these.

1. Hama

a) Coarseware parallels

Although many coarseware forms are long-lived types, the basic associations outlined in the Chapter 4 reinforce the research of most post-Ingblt Hama revisionists. There is a fairly strong equation between TNM Phase G, Hama H3-H2, Tell Mardikh IIIIB and Atchana VII. Equally, there is a close equation between TNM Phase G, Tell Ghassil Phase IX, Kamid el Loz Phase 10 and Hazor Phase XVI [Upper]/Phase IV [Lower]. Whilst some degree of overlap is unavoidable in what is an unbroken coarseware tradition, there is the suggestion that the Late Bronze I TNM Phases F-E, anchored to the reliable LBI deposits of Tell Ghassil VIII, Kamid el Loz 11-13 and Hazor XV [Upper]/III [Lower], finds a fair number of parallels with Hama H1. It raises anew the issue of the date for the end of Hama H1, but rather than suggesting an early, Seventeenth Century date, as is so often implied in the literature on the subject, the TNM material suggests a considerably later date, perhaps into the Fifteenth Century B.C.

This is in keeping with Astour’s suggestion of basic continuity of occupation throughout the Sixteenth and early Fifteenth Centuries at the site, and Fugmann’s specific association of the destruction of Hama G3 with the Qatna destruction horizon dated on historical and ceramic grounds to the middle of the Fourteenth Century B.C., thereby delimiting the occupation of Hama G3 to the later Fifteenth and the first half of the Fourteenth Century B.C.

Whether or not one accepts Astour’s tentative historical-documentary arguments in favour of a late date for the end of Hama H, the numerous reliable

60 For example, the Japanese excavations at Idlib, Egami (1983), the American excavations at Qarqar, Lindquist (1983), and the Syrian excavations at Homs, Mousstli (1984), and Ansari, Suleiman (1983), (1984), and Suleiman & Gritsenko (1987), all refer extensively to the Hama and Atchana corpora for their chronological definitions.
coarseware associations between the Hama H/G and the TNM H-B corpora suggest that the Hama H sequence continued throughout the latter phases of the Middle Bronze Age, and most probably on into the early phases of the Late Bronze Age, as originally posited by Kantor and Parr.

b) fine and imported wares

The presence of the rare Cypriot Bichrome White Slip I of Stephania type in a Hama H1 context would seem to place the destruction sometime within the Sixteenth Century B.C., if one is prepared to associate the Bichrome White Slip I from Tell el-Ajjul Palace I, reported by Merrillees, with that from Hama H1. Whether one can go further, and associate the destruction of Palace I with the campaigns of Ahmose against Sharuhen has been questioned for nearly twenty years. Whilst one must use the Cypriot evidence with caution, if the chronology of Åström and Hennessy is accepted, and the work of Dickinson in Greece, Vermeule in Cyprus and Bietak in Egypt would seem to have strengthened it, then the presence of Bichrome White Slip I of Stephania type in Hama H1

61 See Fig. 71:1, below. This sherd of Cypriot WSI was originally noted by Ingolt (1940), p. 68, and compared with similar material from Atchana. Through the kindness of Drs. Ingolf Thiesen and John Lund, the sherd was made available, with all other material from Hama held by the National Museum, and was examined and redrawn by the author. It is a piece of Cypriot Bichrome WS I, the best parallels for which come from Hennessy's Stephania excavations, for which see Hennessy (1963), Pl. XXXIII:14 and 23; Pl. LX: 47. Both Hennessy (1963), pp. 50-56, and Stewart (1974), pp. 62-63, identify the Stephania phase as the earliest of the LCIA horizons, and date it to the latest stages of the mainland Middle Bronze Age. Merrillees early (1975b) and (1977) and Bourriou (1989) and Bietak's recent (1991) statements on the late SIP contexts of Stephania stage material reinforce Hennessy and Stewart's original suggestions.

62 Stewart originally thought that this was likely, but changed his mind on the basis of Hennessy's Stephania discoveries, Stewart (1974), pp. 62-63, preferring to see the destruction of Palace I occurring before the campaigns of Ahmose, who he felt was responsible for the destruction of Palace II. Albright (1938b) and Hennessy (1963) accepted the equation of the Palace I destruction and Ahmose, as did Kenyon (1973b) and (1979) and Weinstein (1981) and (1991). Shea (1979) and Hoffmeier (1989) have led revisionists, who maintain reservations about the equation.

63 Hennessy (1963) and Åström & Åström (1972), propose a linkage between LCIA:1 and LMIA and LCIA:2 and LHIA. They would also link LCIA:1 and the final years of the SIP, and LCIA:2 and the early years of the Eighteenth Dynasty. Vermeule & Wolsky (1978) and (1990) would seem to have confirmed the link between LCIA:1 and LMIA at Toumba tou Skourou, and Dickinson (1977), pp. 29-31 would seem to have established the priority of LMIA over LHIA at a number of mainland Greek and Aegean sites. Bietak (1968), (1970), (1984), (1989) and (1991) would seem to have confirmed the association between LCIA:1 and the latest phases of the SIP at Tell ed Dab'a Levels D/3 and D/2.
suggests a period of perhaps a generation either side of the expulsion of the Hyksos, roughly the second half of the Sixteenth Century B.C..

The re-attribution of the three pieces of what Ingblt took to be Tell el-Yahudiyyeh ware to the Black Impressed Ware fabric by Amiran set up a comparison between corpora from Hama H1 and Atchana Levels VI and V. This is fully borne out by the coarseware parallels cited in the previous chapter, but further fine ware associations help to reinforce the Bichrome White Slip I linkages proposed above. The association between Cypriot Bichrome Wheelmade Ware and Atchana Levels VIA and V on the one hand, and Tell el-Ajjul Palaces I and II on the other, is well documented in the archaeological literature. The association of the Hama H1 Black Impressed Ware and that from Atchana Levels VI and V is assured, thus reinforcing the association of Hama H1 and Tell el Ajjul Palaces I and II, which adds further support to the coarseware parallels outlined above.

The destruction horizon at Hama between Levels G3 and G2 has been associated with the extensive destruction of LBIIA Qatna by Fugmann. Both destructions have been attributed to the First Syrian War of Suppiluliumas I, on the basis of textual evidence. Whilst this relied initially on Furumark's tentative chronology for the Mycenaean IIIA1/IIIA2 ceramics present in the destruction debris, half a century of research has failed to invalidate the association of the transition from LHIIIA1 to LHIIIA2 ceramics with the reign of Amenhotep III. Whilst Leonard rightly draws attention to the problematic original context of the Qatna finds, there is no cogent reason to deny the association, and considerable additional support for such an equation.

The Hama G3/Qatna LBIIA destruction may relate to the destruction of TNM Trench I Phase C, which may be associated with that of TNM Trench II, Phase C. Until the Trench II sequence is fully integrated with that of Trenches I and III, associations between the putative Trench I and II destructions must remain

Bourriou (1989) and Eriksson (personal communication) suggest corroborating results from Memphis Kom Rabia, where early LCIA and late SIP material are found together.

64 See especially Epstein (1966) and Gates (1981).
65 Fugmann (1958), p. 133, following du Mesnil du Buisson (1935), p. 77 and p. 95. Fugmann notes (loc. cit.) Schaeffer's alternative proposition, Schaeffer (1948), p.100, of a severe regional earthquake. This proposition would seem to draw some support from Abimilki's Amarna correspondence on the state of affairs at Ugarit shortly after the First Syrian War. On this last I wish to thank Dr. F. Giles for discussing with me the Amarna letters in question.
67 See Leonard (1988) on the problematic Qatna contexts. However, see also Cline (1987) and (1989), on the upsurge of probably direct Egyptian relations with the Aegean world during the reign of Amenhotep III, and the growing number of Aegean LHIIIA1/2 synchronisms with his reign.
However, the coarseware comparative analyses documented in the previous chapter, supplemented by the fine ware analyses in this chapter, strongly favour the isolation of later MBII, MB/LB and LBI assemblages at Hama. These relate to Hama Levels H3/H2, Level H1 and Level G3 respectively.

2. Ras Shamra

Schaeffer chose to publish the Ras Shamra coarseware corpus in such a way that our ability to subdivide earlier from later material is severely impaired. The tell-derived coarseware corpus has been published as individual type categories only. There is no attempt to provide tell-derived assemblages based on observed layers of association. When assemblages are published, they are invariably tomb deposits. If contextual information on non-tomb types is supplied, it is generally in relation to a previously described tomb deposit. Often contextual details are limited to general area of excavation, triangulation point and absolute height. Thus, if one has access to the triangulation data associated with the nominated triangulation point, there is some ability to relate the finds to each other in three dimensions.

However, there is no way of relating any given sherd or tomb assemblage to a master stratigraphy, or even one limited to any particular area of excavation, and therefore, no way of reconstructing tell-derived assemblage groups. No information of a quantitative nature is made available in any of the reports, nor can one reconstruct such from the information provided. A very sizeable majority of the published material is made up of fine or imported wares, which are admitted to have been grossly overpublished if the aim was to illustrate a representative sample of the corpus.

Whilst there is enough information to attribute a given sherd to one of the two Middle Bronze Age subdivisions, Ugarit Moyen II.1-2, there is no way of reconstructing non-tomb assemblages, and thus no ability to assess change in any given assemblage through time.

The ability to isolate MB, MB/LB or LBI occupational horizons does not exist, given the present state of the evidence. From Schaeffer's publications of the tomb material, one may surmise that occupation dating to each of these periods did exist, but there is no way of demonstrating continuity of occupation through the tomb series, nor from the tell-derived corpus as published.

This is particularly important when one comes to investigate Schaeffer's...
procedure for dating the occupational horizons on the site. De Vaux and North have demonstrated that Schaeffer did not determine these dates exclusively with reference to his own excavated material. He often allocated phase numbers to time periods when the tell was unoccupied, and changed his views on the dating of whole strata without obvious reference to the material actually found in the layers in question 69.

A prime example of this somewhat haphazard attribution process concerns the MB/LB strata of the Ugarit Moyen 2 and Ugarit Récent I periods. After the second and third seasons of excavation, Schaeffer ascribed impressive tomb and architectural remains of the Ugarit Moyen 2 period to the Hyksos epoch, a view most reviewers concurred with 70. With the publication of his monumental synthetic summary of Levantine comparative stratigraphy, he reversed his views, assigning all of the Ugarit Moyen 2 material to the much earlier epoch of the MBIIA/B, and proposed an occupational hiatus at Ras Shamra of between one and two hundred years, to be dated between 1750-1550 B.C.. His absolute dates were approximate at best, and admitted to be more impressionistic than overtly associated with either historical or archaeological circumstance. Very often his relative and absolute dating was keyed to apparently well-dated Egyptian stone statuary and stone vessel imports, even when his own studies illustrated that much of this material was demonstrably out of context when excavated 71.

In the generation after the publication of Comparative Stratigraphy, Courtois has reviewed and revised many of Schaeffer's conclusions. Courtois' own excavations on the eastern extremities of the main tell have demonstrated reliable late Middle Bronze Age occupation horizons. Mallet's recent summary of a decade of MB/LB research supports Courtois' amendments, and details reliable MBIIIC occupation horizons unearthed in the last decade 72.

However, the limited and problematic publication of the tell-derived coarseware materials severely restricts any attempt to establish a reliable comparative stratigraphy between Ugarit and Tell Nebi Mend. The few documented parallels with the TNM assemblages demonstrate little other than a broadly similar depositional sequence.

Whilst there has been a considerable amount of coarseware material published from Ras Shamran tomb assemblages, this 'pseudo-stratigraphy' should

69 See De Vaux (1951b), Fitzgerald (1949) and North (1973), for a close analysis of Schaeffer's dating methods. See Courtois (1974), for a lukewarm defence of Schaeffer's methods.
70 Schaeffer (1938) and (1939), for the Hyksos period materials, and North (1973), for a commentary.
71 Schaeffer (1948), for the revision of his pre-war thoughts.
72 For Courtois' work, see Courtois (1973), (1974), and Courtois apud. Contensen et.alii. (1973). For a recent summary of MB/LB research at Ras Shamra, see Mallet (1990).
not be used in comparative efforts with the TNM material. There is no way to
determine the time span during which any given tomb was used, as the associated
stratigraphy is never published, nor is it possible to determine whether any period
of use was continuous or not. It is not possible to determine whether the tomb
and tell derived sequences are similar in composition, as the tell-derived
assemblages are incompletely and selectively published. Given the many
documented cases of very high fine ware and import frequencies in MB/LB and
LBA tomb assemblages, both along the Syrian coast and further to the south in
Palestine, the representativeness of the type and number of coarsewares taken from
these tomb-derived assemblages must remain suspect until the complete tell
sequence is published.

In short, although Schaeffer used the tomb assemblages to form a 'pseudo-
stratigraphy' for the entire site, dating the associated occupational horizons with
reference to apparently diagnostic fine and imported wares found as part of the
tomb material, the artificial stratigraphy so constructed bears an uncertain
relationship to the observed stratigraphy of the site. A detailed comparison
between the TNM tell-derived coarseware corpus and the Ras Shamran
coursewares, as they are presently known, would serve little purpose.

However, all analyses agree that Middle Bronze Age occupation at Ras
Shamra was brought to a sudden halt by a severe, widespread destruction. Schaeffer
thought the most likely agency to be an earthquake. This view has never been
seriously challenged in the years since Schaeffer first advanced it. Whilst
Schaeffer's synthetic pronouncements had it date to some time within the MBIIB
period, Courtois and Mallet have demonstrated that the destruction is best placed
towards the end of the MBIIC period.

The very few coarseware parallels between the TNM and Ras Shamran
corpora do not allow for any strength of association in the comparative
stratigraphy of the two sites. However, the evidence that does exist is not
inconsistent with an association of the Ugarit Moyen II.3/Phase 6
destruction and
that at the end of TNM G.

The length of the apparent discontinuity in occupation at Ras Shamra after
the late Middle Bronze Age destruction has been watered down from Schaeffer's
original suggestion of two hundred years to virtually nought, if Courtois' vague
statements are to be taken at face value 73. What Schaeffer and Courtois seem to
make clear is that there was some short recession in settlement immediately after
the destruction, associated with abandonment/erosion surfaces, although many rich
tomb deposits, traditionally dated to the early LBI period, would seem to indicate
that this recession was neither a severe nor a lengthy one.

All of this is not inconsistent with the circumstances revealed in the TNM
Phase F occupation, and the few coarseware comparisons do not rule out such an
association. Beyond this, the limited evidence will not permit us to venture.

a) coarseware parallels

Woolley's publication of the Atchana coarseware material contains much that is innovative with respect to quantitative/frequency analyses of the patterns of occurrence of the various coarseware types throughout the Atchana sequence. However, there are major flaws in the presentation that have rendered the Atchana typology of questionable value in any formulations on associative patterning.

Woolley states that the Atchana coarseware typology originally consisted of something over three hundred and fifty types. Whilst this would not be considered an unreasonably sized typology for a more or less continuous Second Millennium sequence, Woolley clearly regarded it as such, and conflated his types into a much more limited series of about a third the size of the original. It is important to note that Woolley did not simply suppress two thirds of the typology, but combined various features present in associated forms (e.g. bowls) into new, artificial types, made up from this variety of features. No single piece illustrated in Woolley's final volume can be relied upon to have existed in the exact form presented. Therefore, comparative analyses cannot expect to find entirely satisfactory parallels within Woolley's corpus. Whilst this typological conflation compromises much of the apparent utility of the corpus, there is an equally grave difficulty in making use of Woolley's conflated coarseware frequency tables.

Williams and Hassert's study of the early levels at Atchana has revealed the alarming fact that many of the type cards had their phasing details arbitrarily altered at some time subsequent to excavation. Their analysis calls into question the reliability of Woolley's attributions, as it seems that much of the earlier Level XVII-VIII material certainly, and perhaps much of the later material as well, was phased and then re-phased on the grounds of absolute height reckonings alone.

Taken together, these two facts of typological conflation and arbitrary rephasing would seem to have cast considerable doubt on the potential utility of Woolley's coarseware typology in any attempt to isolate discrete MB, MB/LB and LBI occupational horizons on the site.

74 Woolley (1955), pp. 320-322. Whilst Woolley's "arbitrary suppression of minor characteristics", p. 320, would be a problem in itself, it becomes moreso when one notes that the decision to suppress or publish was based on the perceived diagnostic worth of the type in question, with this in turn being decided on incidences per phase, based on Woolley's admittedly arbitrary phasing decisions. A full and thorough re-working of the surviving data is urgently required.

75 See Williams & Hassert (1977-78), pp. 42-43. For further commentary on the Atchana coarsewares, see McClellan (1989).
However, if one accepts that the most serious phasing difficulties occur with respect to the Level XVII-VIII soundings, as Williams and Hassert suggest, and that parallels drawn between the TNM and Atchana coarseware corpora are heavily qualified and taken at the most generic level, then it is possible to make limited use of Woolley’s formulation. From this, one may suggest that the limited parallels between the corpora are not inconsistent with an equation of Atchana VII and TNM Phase G. The few parallels between TNM H and Atchana IX-VIII and those between TNM F-E and Atchana VI-V lack any force, although they are still consistent with the pattern of associations documented between the Hama H levels and the TNM phases.

b) fine ware parallels

Woolley derived much of his original comparative stratigraphic data from the patterns of fine and imported ware occurrence. Most revisionists, particularly Epstein, Gates and Kantor, and commentators such as Hennessy and Muhly, have focussed on the fine and imported wares in their efforts to rework Woolley’s original construct.76

The presence of several pieces of the so-called Syro-Cilician ware in the early Atchana Levels XVII-VIII may be compared with a piece of the same fabric found at Tell Nebi Mend during the first season of excavations in Trench I, in 1975, and commented upon by Tubb in his later survey of Syro-Cilician Painted ware distribution.77 The piece in question was found in a test probe, designated Area 300, below and to the east of the Middle Bronze Age city wall, which, at the time, could not be securely positioned within the Middle Bronze Age sequence. The excavation of the Trench I Northern Probe in 1988 has allowed for some tentative correlations with the 1975 Area 300 excavations. The Syro-Cilician piece is to be associated with Trench I Phase K material, suggesting a tentative generic correlation between TNM Phases K and Atchana XVII-VIII.

It may be possible to refine this association a little. Much of the Syro-Cilician material from Atchana was not published by Woolley. Hennessy drew a large selection of this unpublished Syro-Cilician material in 1949. He concluded that the vast majority of the Syro-Cilician material occurred in Levels XIII-XI, 76 See Epstein (1966), Gates (1981) and (1987), and Kantor (1956), for major revisions to the sequence based on fine and imported ware analyses, Swift (1958) and McClellan (1989) for those based on coarsewares. Major commentaries are those by Hennessy (1949) and (1963), and Muhly (1975) and especially (1985).
77 Tubb (1981), p. 405. Here he claims the material was found in a reliable MBIIA context. The context of this 1975 find was by no means clearly MBIIA, although rough correlations between the Area 300 wash/debris levels and stratified Phase K material from the Trench I Area 184 North Probe, excavated in 1988, suggests that a late MBIIA context is possible.
with a few pieces continuing through the later levels X-VIII78.

Tubb has argued that the Syro-Cilician ceramic be confined to the MBIIA period, in the first quarter of the Second Millennium B.C. He would date the entire Atchana XVII-VIII sequence to this period, allocating Atchana VII to the MBIIB period, and presumably Atchana VI to the MBIIC period.79 Hennessy's scenario, more in keeping with those of Epstein, Kantor, Amiran and Gates for the Atchana VI/V material, would place only the Atchana XVII-XI material in the MBIIA period, with Atchana X-VIII in the MBIIB period, Atchana VII in the MBIIC period, and Atchana VI/V in the LBI period.

If one were to accept Tubb's initial position on the MBIIA chronological range of Syro-Cilician material, and Hennessy and Gates conclusions on the

78 Some of the Atchana X-VIII pieces could be equally belong to the Levantine Painted ware ceramic. Hennessy's manuscript remains unpublished. It consists of notes made during Hennessy's visit to Atchana in 1949, and from his notes on finds held in the Antakya Museum. These include important observations on the early material from the Amuq sites, as well as that from Atchana. Hennessy plans to prepare the notes for publication shortly. I thank him here for permission to examine them, and to comment upon them here.

79 For Tubb's work, see especially Tubb (1981) and (1983). Note also the important article by Merrillees & Tubb (1979), on Syro-Cilician material in Cyprus. Whilst Merrillees would see the context as MCI, and date the piece early, Stewart felt the RPIII vessels were later MCII developments, with clear parallels among the Palaelona material. Hennessy, who is currently working the Palaelona material up for publication, inclines towards Stewart's view. This would suggest a later synchronism than that advocated by Tubb, as Merrillees (1978) synchronisms between MCI and Syrian MBIIA are well documented. For a detailed examination of the MCI/MBIIA synchronisms, see Kehrberg (1982) and especially Kehrberg (1987).

80 Tubb (1983), pp. 52-55, outlines what could be argued as a somewhat later, MBIIB, floruit for Levantine Painted Ware, compared with the more familiar Syro-Cilician painted ceramic. Most incidences of the Levantine Painted ceramic are from poorly documented Lebanese coastal tomb groups, or inland Lebanese and southern Syrian sites, often attributed to the MBIIA period on the grounds of their coarseware parallels, which in turn are anchored by the Hama H sequence, which Tubb (1980), among many others has suggested as being confined to the MBIIA period in date. The present study has suggested that the Hama H sequence extends well beyond the bounds of the MBIIA period, necessitating a re-assessment of the chronological parameters for Levantine Painted ware. Equally, both the Tell Beit Mirsim F and the recently reported Tell ed-Dab'a Level G occurrences of Levantine Painted ware, for which see Bietak (1991), p. 33, would be in keeping with an early MBIIB floruit for the ceramic. Rather than suggesting distinct painted pottery culture-provinces for Syro-Cilician and Levantine Painted wares, it would seem possible that the former influences the latter, with minimal chronological as well as geographical overlap.
Atchana X-V material, it would suggest a correlation between Atchana XIII-XI and Tell Nebi Mend K, which is consistent with the already documented coarseware associations between Atchana IX-VIII with Tell Nebi Mend J/H.

The Cypriot ceramic material found at Atchana is widely seen as being of decisive importance in all comparative stratigraphy scenarios which seek to link the northern and southern Levantine sequences together. Equally, since Sjöqvist's synthesis, the Atchana material has been seen as vitally important to any considerations on Cypriot relative and absolute chronology.

Cypriot material is generally held to occur in Atchana Levels VI-II, although Woolley asserted that it occurred in Levels VIII-VII as well. Whilst some commentators have sought to derive Cypriot relative chronological information from the pattern of occurrences in the Atchana levels, such efforts are methodologically flawed. Relative chronological information should be derived from local Cypriot sequences. If one seeks to derive such relative chronological information from non-local depositional sequences, then considerations of trade selectivity and export time-lag must be considered, unnecessarily complicating matters when the local sequences are available, and relatively free of such potential biases 81.

Ignoring Cypriot relative chronological considerations, there is general agreement that Cypriot White Slip I pottery occurs in Atchana Levels VI-IV. However, there have been persistent suggestions that some White Slip material may occur in Atchana VII and VIII. These have generally been discounted altogether, or posited as being late Middle Cypriot White Painted material. Hennessy's notes are again of importance, as he records a piece of Bichrome White Slip I from Atchana VII. There may well be questions over the reliability of the contextual information accompanying the description, but it is no less secure for this piece than it is for any other in the Atchana corpus. With few exceptions, one should either accept each attribution on face value, or one should ignore them all. If one accepts Hennessy's attribution, then one can record a correlation between Atchana VII-VI, Hama H1 and Tell el Ajjul Palaces I and II 82.

Bichrome Wheelmade ware is perhaps the most controversial fabric identified in the Atchana corpus, as the presence, and more importantly, the absence of this fabric, has been seen as vital to most chronological considerations.

81 For Sjöqvist's synthesis, see Sjöqvist (1940). For its impact on all subsequent deliberations, see Hennessy (1963), Åström & Åström (1972), and especially Muhly (1975) and (1985). For an attempt to use foreign provenanced Middle Cypriot material to impact on local Cypriot relative chronology, see Johnson (1982). For a spirited defence of the role of local stratified sequences, see Barlow (1985). For a somewhat confused reply, see Merrillees (1985).

82 For the White Slip material from Atchana, see Woolley (1955), pp. 359-360, and Gittlen (1975); for that from Ajjul, see Merrillees apud. Stewart (1974); for the White Slip material from Hama, see Appendix I, below.
of an LBI nature. Epstein and Gates place great emphasis on the presence of Bichrome Ware in Atchana Levels VIA-V. Through this association, Atchana VI-V is correlated with Hazor XV [Upper]/III [Lower], Megiddo IX, Tell el Ajjul Palaces I-II and through this pattern of associations, tightly linked with the LBI period in Palestine.

Black Impressed Ware pottery is associated exclusively with Level V by Gates, although Woolley stated that the fabric could range in date from Levels VI-IV, even if its floruit was concentrated in Level V. Amiran had long identified the three sherds of so-called Tell el Yahudiyeh Ware from Hama H1 as being of the Black Impressed fabric. This would suggest an association between Atchana V and Hama H1.

A rare and little known predecessor to Black Impressed ware, termed "Sgraffiato Ware", occurs in Atchana VI-V after a single occurrence in Atchana VIIIB, according to Woolley. Hennessy records at least two further pieces from Level VII as well, which agrees with Woolley's suggestion of an apparently related fabric in this level. Two sherds of the ware are recorded from Hazor XVI/XV, which would suggest an MB/LB date for the horizon.

Mycenaean II/III ceramic is recorded in Atchana Levels V-I by Woolley. Whilst one has severe methodological qualms with Crouwel and Morris' somewhat cavalier dismissal of the inconveniently early Level V pictorial material, if they were talking of a single piece isolated in Level V, then their argument might have some force. However, Hennessy's notes reveal at least one Mycenaean IIIA pictorial piece as coming from Atchana Level IV. Rather than accepting the chronological framework for Atchana dictated by adherence to Collon's Middle Chronology, some consideration might have been given to the possibility of redating at least some of the Atchana pictorial material to the earlier Mycenaean IIIA1/IIIA2 periods, as proposed for much of the Cypriot pictorial material by Karageorghis and Vermeule, and for some of the Peloponessian pictorial material by Slencza. Otherwise, lowering the dates of Atchana Levels V-IV into the

83 For the Ajjul material, see Hearlty (1939) and especially Epstein (1966); for Atchana, see Gates (1981) and (1987); for Megiddo, see Wood (1982); for a review of Bichrome usage, see Merrillees (1970), and especially Bimson (1981) and Muhly (1985).
87 Crouwel & Morris (1985), p. 86; for their reliance on Collon's Middle Chronology, see Crouwel & Morris (1985), p. 85. See Na'aman (1976) and (1979) and Collon (1977) for discussions on the chronology of Atchana VII.
88 On the chronology of Mycenaean Pictorial vases, see Crouwel & Morris (1985), pp. 96-97; for the Peloponessian evidence, see Slenczka (1974); for the major study of Mycenaean pictorial vases, see Vermeule & Karageorghis (1982); for Crouwel's recent
first half of the Fourteenth Century B.C. would seem the only viable alternative, which would only seem possible if one supplanted Collon’s Middle with Albright’s Low Chronology.

When taken together, a consideration of the contexts of the fine and imported wares from Atchana would suggest the following general correlations.

<table>
<thead>
<tr>
<th>Period</th>
<th>Atchana Phase</th>
<th>TNM Phase</th>
<th>Fine Wares</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBIIA</td>
<td>Atchana XVII-XI</td>
<td>TNM Phases M-K</td>
<td>Syro-Cilician</td>
</tr>
<tr>
<td>MBIIIB</td>
<td>Atchana X-VIII</td>
<td>TNM Phases J-H</td>
<td>"Lev" Painted</td>
</tr>
<tr>
<td>MBIIIC</td>
<td>Atchana VII</td>
<td>TNM Phase G</td>
<td>Bich.WS I/CoW</td>
</tr>
<tr>
<td>LBI A</td>
<td>Atchana VI B</td>
<td>TNM Phase F</td>
<td>Bich./"Sgraf."</td>
</tr>
<tr>
<td>LBI B</td>
<td>Atchana VIA-V</td>
<td>TNM Phase E</td>
<td>Bl.Imp./WS II</td>
</tr>
<tr>
<td>LBIIA</td>
<td>Atchana IV-III</td>
<td>TNM Phases D-C</td>
<td>BRII/Myc.IIIA1/2</td>
</tr>
<tr>
<td>LBIIB</td>
<td>Atchana II-I</td>
<td>TNM Phases B-A</td>
<td>Myc. IIIIB</td>
</tr>
</tbody>
</table>

The coarsewares and fine and imported wares employed in this review of the Atchana evidence are consistent in their testimony of comparative associations. Whilst most previous comparative chronological and/or stratigraphic analyses have developed patterns of association around apparently fixed points at Atchana and sites such as Megiddo, the most recent review of the evidence by McClellan has demonstrated that few of the apparently fixed points stand up to any rigorous analysis. Two that McClellan successfully challenged are the apparently fixed dates for the end of Atchana VI, associated with the wars of Mursilis I, and the beginning of Atchana IV, associated with a pre-Thutmosis conquest date.

However, the main underpinning of the Atchana discussion has always been the association of the destruction of Atchana VII with the campaigns of Hattusilis I. Whilst Parr demonstrated long ago that the fortifications could as easily be associated with any of Atchana VI-IV as Atchana VII, what is generally ignored is Woolley’s own reluctance to attribute the destruction of Atchana VII to external military action. His original observations on the lack of

89 The only impediment might be thought to be the association of the Atchana IV palace with Idrimi, and its assumed floruit prior to the suggested conquest of the region by Thutmosis III in the middle of the Fifteenth Century. However, both these connections are questionable, and need not stand in the way of applying a Low Chronology to the Atchana V-III material; for this, see especially Albright (1956) and (1957).

90 McClellan (1989), pp.188-198.

91 Parr (1968), pp. 28-30. Whilst Parr did not challenge Woolley's attribution, he certainly demonstrated that such was possible.
sufficient carnage and destructional debris within the Level VII Palace-Temple complex led him to propose an internal revolt scenario for the desertion and patchy destruction, rather than wholesale destruction under either of Mursilis or Hattusālis. These doubts were passed over and subsequently ignored by scholars such as Göetze, who were anxious to associate the apparent destruction with the documentary evidence for Hattusālis' campaigns. As much of the destructional material derived from the fortifications may be associated with city levels later than VII, the problematic Palace destruction need not be associated with that attested for the fortifications, and neither destruction need be associated with the campaigns of Hattusālis or Mursilis.

If one limits discussion to what the archaeological material allows, a much more general pattern of associations is to be adopted. Whilst most commentators agree on a late Middle Bronze Age date for the ceramic assemblage of Atchana VII, most ceramics seem to have come from the Palace-Temple complex, which need not be associated with any putative Hittite destruction of the site. Even so, the coarseware parallels and the associated Cypriot imports are consistent with a terminal Middle Bronze Age date for the assemblage.

The association of the construction of the Level IV Palace with the reign of Idrimi, prior to the campaigns of Thutmose III, has always been based on historical/inscriptional data, which recent studies have shown to be equivocal at best. The accepted dates for the imported material found in Atchana IV has never necessitated anything earlier than an early Fourteenth Century B.C. date. Both McClellan's statistical analyses, which seek to associate Atchana IV with Megiddo VIII, and Hennessy's ceramic observations, which document Mycenaean IIIA1/2 material in Atchana IV, would seem to strengthen this contention.

Gates, Epstein, Kantor and Albright would all agree on associating Atchana VI-V with the LBI period, although some recent analyses, particularly those of Matthiae and Kempinski, would have a least the earliest phases of Atchana VI dated to the MBIIIC period. The crucial questions are whether or not this particular association is based on an assumed destruction of Atchana VII by Hattusālis, the sometime suggested destruction of Atchana VI by Mursilis, or the assumed destruction of Megiddo IX by Thutmose III. All of these

92 Woolley (1953), pp. 79-81; here Woolley carefully outlines his reasons for doubting that Atchana VII fell to external military assault.
93 See Göetze (1957a) and (1957b), on the association between Hattusālis' campaigns and the destruction of Alalakh VII.
94 For recent studies of the Idrimi inscription, which cast doubts on the contemporaneity of the inscription and the events described theron, see Dietrich & Loretz (1981), Klengel (1981), and Feyter (1989).
95 For Matthiae's views, see Matthiae (1980a), pp.112-113; for Kempinski's, see Kempinski (1983), pp. 80-88.
96 For the Atchana VII-IV material, McClellan (1989) is the best summary; for Megiddo,
contentions have been shown to be questionable. Equally, if the association is based on the absence of Bichrome ware from the Atchana Level VIB "Fortress" as Gates and Epstein would suggest, or the apparent association of the Atchana VI-V Black Impressed ware with the late Middle Bronze Age forms of the Tell el-Yahudiyyeh ware fabric, as Kempinski would imply 97, then the contention can be put aside, as neither contain chronologically binding data.

In short, the vast majority of the admittedly imprecise coarseware parallels, and those fine and imported ware parallels relevant to the discussion, are consistent with an LBI date for the Atchana Level VI to V material.

Concluding the discussion on Atchana, the stratigraphic, typological and chronological considerations would suggest that the sequence undergoes some form of major disruption, ending the Level VII Palace-Temple sequence. Whilst this is probably to be associated with a destruction of the fortifications, this is not required by the stratigraphy. A short abandonment occurs between Atchana VII and VI98, a period of no great length if one contends only with the archaeological evidence. Although possibly localised to the Fortress structure, some further slight disruption occurs during the reduced settlement of Atchana VI. This is followed shortly thereafter by renewed prosperity and major building activity during Atchana V-IV.

Relative chronological considerations favour a late Middle Bronze Age date for the Atchana VII material, and although the archaeological data cannot arbitrate adequately, a terminal Middle Bronze Age date for the Atchana VIB Fortress material cannot be ruled out. However, the vast majority of the Atchana VI/V material is to be dated to the LBI period. Whilst historical considerations would still seem to prefer a Fifteenth Century B.C. date for at least the earliest phases of the Level IV material, the imported ceramics do not necessitate any date earlier than the early Fourteenth century B.C., a date not unsupported by coarseware analyses.

The LBI Period in the Northern Levant

The foregoing primarily fine and imported ware analyses, coupled with the detailed comparative coarseware analyses of the preceding chapters, suggest that reliable LBI strata can be defined in all three of the key stratigraphic sequences in the Northern Levant, although each are not without controversial features. All three sequences show a consistent large-scale destruction/disruption towards the end of the Middle Bronze Age, and at least Atchana and Hama suggest some subsequent disruption, on a smaller scale, shortly thereafter during the LBI period.

see Shea (1979) and Hoffmeier (1989).

97 Kempinski (1983), pp. 83-86. He also notes the importance of the link between Black Impressed and Sgraffiato wares.

This is followed in all cases by large-scale rebuilding, and an apparent return to prosperity in the LBIIA period.

The most important point to take from the review of the Northern Levantine sequences is that the MB/LB Gap Hypothesis has no currency. The major tenets of the hypothesis had been undermined over forty years ago, and a number of recent reviews of the original data, coupled with new excavations at Ras Shamra, emphasize this conclusion.

Of equal importance is the consistent testimony to a large-scale disruption of most Northern Levantine settlements towards the end of the Middle Bronze Age. In many sites, this is followed by a period of reduced/restricted settlement. Shortly thereafter, a second, limited destruction/disruption occurs. Both these latter phases date to some time within the Late Bronze Age I period.

As a review of the southern Levantine sequences has shown, a similar pattern of events exists there. A large-scale destruction/disruption at the end of the Middle Bronze Age is followed by a period of reduced settlement and recurring disruption, both datable within the LBI period.

MBA Destructons and Egyptian/Hittite Military Action

Most commentators have tended to attribute the horizons of destruction to one or more of the early Eighteenth Dynasty pharaohs if these occur in the south-central Levant, and to either of the Old Hittite Empire kings Hattušili I or Mursili I if they occur in the northern Levant. Whilst Leonard has accurately if irreverently referred to this tendency as "find a pharaoh", to which we might add, "find a Hittite", there has been a growing realisation that the scale and range of the terminal Middle Bronze Age destructions do not sit well with the well-attested Egyptian, and the less well-attested Hittite, inability to take massively fortified, well-defended enemy cities rapidly. Several commentators have suggested other means, more specifically earthquake activity, to explain individual destructions.

However, unless one regards the Egyptian textual and inscriptional evidence as totally unreliable, and few commentators would agree with this, then one must seek to explain the achievement of Thutmose I in marching from Egypt to the Euphrates without the apparent need to besiege a single enemy city. Some

99 For the southern Levant, see Weinstein (1981) and (1991); for the northern Levant, see Matthiae (1980a) and (1987), and Dever (1990).

102 See Shea (1979) and Bimson & Livingston (1987), for the need to look beyond military agencies, and Bartlett (1982), p. 94, specifically on the possible role of earthquake in the Jericho MBA destruction.
have suggested that much of the south-central Levantine region had already been conquered by Ahmose and Amenhotep I, and that Thutmosis' campaigns merely added a small area to an already considerable empire. However, there are few references to military campaigns in Asia during the reign of Ahmose, and most authorities tend to discount any major efforts towards empire in Asia under his reign. Only two fragmentary, and controversial, inscriptions may be attributed to Amenhotep I. Whilst these do seem to allude to military activity in Syria, they could equally be attributed to Thutmosis I, and merely confirm the activities already known from the Tombos Stele.

In short, before the reign of Thutmosis I, there is little reliable evidence of Egyptian military involvement in Asia. If, therefore, Thutmosis I seems to have been able to subdue the entire Levantine region south of the Euphrates bend, one must explain the inability of the powerful Syro-Palestinian city states to stand against him. Given the average rate of march of perhaps fifteen miles a day, the Egyptians would have been doing well merely to reach the Euphrates and return in a single campaign, far less conquer the region as they went. Only if we assume that extensive military activity was not required, can we account for his rapid success. However, as we have seen, there is no good inscriptive evidence for large-scale military activity in Asia before his reign. This is the crux of the problem.

Equally, in the northern Levant, Hattusâlis I or Mursilis I are often invoked as the most likely agencies of destruction and disruption with respect to the terminal Middle Bronze Age destructions. However, Hittite textual evidence would seem to limit Hattusâlis' involvement to a possible conquest of Atchana. Mursilis' annals might imply further destructive activity, in that he records Hattusâlis' campaigns as having inflicted much damage on the Aleppo kingdom, presumably through the reduction of the countryside about the capital. Aleppo was apparently finally destroyed during the reign of Mursilis. The destruction of sites other than Aleppo are not attributable to Mursilis' campaigns, although, as with Hattusâlis' campaigns, it may be assumed that some collateral damage to provincial cities resulted from Mursilis' activities. However, it is worth pointing

103 For a close study of all inscriptive evidence pertaining to the Early Eighteenth Dynasty, see Spalinger (1982). For a careful review of Spalinger's work, see Rainey (1987).
104 See Goedicke's (1986) discussion of the campaigns of Ahmose. Note particularly his interpretation of the meaning of Djahy in the early New Kingdom.
105 See the thorough and cautious discussion by Redford (1979). Whilst he is inclined to see the fragmentary inscriptions as belonging to Amenhotep I, the pharaoh concerned is not identified, and the campaign description is consistent with that of Thutmosis I recorded on the Tombos Stele.
106 For a detailed discussion of Egyptian movement rates, be they individuals or armies, see Murnane (1985).
out that both of these very active reigns failed signally to establish any permanent foothold in Syria, suggesting that any authority they had achieved through a generation of warfare was relatively limited in extent. Indeed, as with the Egyptian textual evidence, if one refers to the Hittite sources, few successful siege operations are attested to, and those mentioned occur only after considerable preparations, many campaigns, and a long siege.

Archaeologically, most sites record a severe and widespread destruction at the end of the Middle Bronze Age, but provide little evidence for a suitably impressive agency. Whilst the Egyptian and Hittite records do record widespread military activity during the MB/LB period, it is largely a warfare of movement, with few clear cases of siege and assault attested to in the historical records that survive. Given the distances covered in many of these early campaigns, one gains the impression that siege warfare was much the exception, rather than the rule. If this is the case, then a military agency cannot be easily posited for all of the numerous Levantine Middle Bronze Age destructions.

As the textual/inscriptional and archaeological evidence would seem to suggest contradictory scenarios, alternative hypotheses should be examined. This will be the subject of the succeeding chapter, below.
CHAPTER 6

EARTHQUAKE ACTIVITY AND THE MB/LB DESTRUCTIONs

Introduction

An analysis of Levantine MB/LB comparative stratigraphy, as documented by the pattern of coarseware interrelationships, and supplemented by a consideration of fine and imported wares occurrences, have revealed a consistent testimony to a major regional catastrophe at the end of the Middle Bronze Age, that witnessed the destruction of many of the most prominent city states in Syria and Palestine. Following this, a period of much reduced settlement and a second, more limited, series of destructions follow, these last two phases being confined to the Late Bronze Age I period. An analysis of the Egyptian and Hittite textual records have demonstrated that there is little literary support for the many attempts at portraying either of the Hittite or Egyptian kingdoms as the primary agency responsible for this horizon of destruction. Equally, a consideration of the textual evidence has emphasised the exceptional rarity of any destructive activities when attested.

Both of these observations suggest that alternative explanations to the 'Wars and Pharaohs' scenario should be investigated.

MB/LB Levantine Destructions and Earthquake Activity

The most common alternative hypothesis advanced to account for the late Middle Bronze Age destructions is earthquake activity 1. Whilst many commentators have drawn attention to the magnitude and wide geographical spread of the destructions, this is not inconsistent with earthquake activity.

Russell has successfully documented a number of major earthquakes in the Levantine region in the Roman, Byzantine and Early Islamic periods, that fully cover the region from the Nile Delta to the north Syrian and Mesopotamian regions, and on occasion include the island of Cyprus 2. The earthquakes of 363, 551 and 747 A.D. are the most notable among many more localised disturbances, and each of these three earthquakes levelled large portions of cities in Egypt, Palestine, Jordan, Syria and Cyprus. This specific geographical extent compares closely with the approximate limits of the terminal Middle Bronze Age destructions3.

1 Among the more recent, see Shea (1979), Bartlett (1982), Bimson (1981) and Hoffmeier (1989).
2 Russell (1985), pp. 40-49. See also, Amiran (1951) and (1952).
3 Russell (1985), pp. 42-49. For the particularly severe 363A.D. earthquake, see also
Earthquake destruction has recently been suggested as an alternative to the apparently historical conquest/razzia of Shoshenq I into Iron Age IIA/B Palestine. Here the pattern of destructions is apparently confined to southern Levantine sites, but rather than positing widespread destruction under Shoshenq, Wightman has suggested that the Megiddo evidence may well be consistent with an earthquake, as has Ibrahim and van der Kooij for a very similar destruction at Deir Alla 4. As with the Middle Bronze Age destructions, a close reading of the Iron Age Egyptian inscriptive evidence suggests that Shoshenq does not claim widespread destruction of southern Levantine centres, merely their control 5. This, in turn, is consistent with the Biblical recounting of events 6.

When one turns to the terminal Middle Bronze Age destructions, the first major observation is that Schaeffer proposed a very similar scenario over forty years ago, to explain the pattern of destructions along the Levantine coast7. In his Comparative Stratigraphy, Schaeffer favoured a late MBIIA devastation, dated ca. 1750 B.C., followed by a long break in occupation spanning the two hundred years, ca.1750-1550 B.C., of the MBIIB-C periods, developing a regional scenario which we have called the MB/LB Gap Hypothesis.

Typological and comparative stratigraphic analyses in the previous two chapters, demonstrate the presence of MBIIB-C and LBI horizons in both the northern and southern Levantine sequences, rendering at least one part of Schaeffer's synthesis invalid. However, if the earthquake destruction is shifted from Schaeffer's suggested MBIIA/B period to the MB/LB period, then the theory has much to recommend it.

As outlined above, there are persistent military/technical and inscriptional/textual difficulties associated with the attribution of the MB/LB destructions to invading Egyptians. This applies equally to the Hittites as agency of the north Syrian destructions. On the other hand, Russell has demonstrated that historically attested earthquake activity of similar magnitude and geographical spread was a depressingly regular feature of life in the Levant adjacent to the

Russell (1980).

5 For an analysis of Shoshenq's campaign, see Mazar (1975), and Kitchen (1986). Shoshenq does not claim the destruction of the cities listed in the Karnak inscription, simply their control. Nor does his fragmentary stele, found in one of Schumacher's dumps at Megiddo vindicate a destruction of that site.

6 II Chronicles 12:7-8 and I Kings 14:25-28 describes the razzia and looting of the temple, but both are consistent in documenting a raid and looting, but not widespread destruction, nor lasting hardship.

7 Schaeffer (1948), pp. 40-121. For a detailed contemporary review, see Fitzgerald (1949), and De Vaux (1951a).
geologically unstable Rift Valley.

Archaeological Evidence for MB/LB Earthquake Activity

A close analysis of the MB/LB destruction horizons in the Levant allows one to derive some limited evidence in support of the earthquake destruction hypothesis. Excavators tend to record the wholesale destruction of each particular site without providing sufficient circumstantial details to allow for the investigation of the type of destruction that has occurred. Too often the literary evidence is allowed to provide the general context and supposed agency of destruction, with little effort being made to evaluate the archaeological evidence in isolation from the supposedly reliable textually-attested agency of destruction.

At Pella in Jordan there is good evidence for a large-scale earthquake destruction towards the end of the Middle Bronze Age, which severely damaged the inside face of the mudbrick city wall [Wall 41], and the adjoining housing structures of the East Cut Phase VII. These were levelled off and completely reconstructed as East Cut Phase VI, which incorporated the much renovated city wall [Wall 41] and major crosswall [Wall 27] into an entirely new building complex 8.

At Atchana, Woolley commented on evidence for some form of slippage or collapse of the north-eastern margins of the Level VII city defence wall, or the terrace on which it was built 9. The admittedly equivocal evidence is consistent with earthquake damage. This phenomenon is probably best associated with the destruction and abandonment of the Level VII Palace 10. The associated destruction of the Level VII gatehouse fortifications is accompanied by extensive mudbrick collapse layers which buried the entire complex up to five metres in mudbrick rubble 11.

8 Potts et alii. (1988), pp.130-131; Hennessy et alii. (1989), pp. 418-420; for short comments on East Cut Phase VII. This and the earlier Phase VIII material has not been extensively published. Most information on the earthquake damage to Phase VII is recorded in the IIIC 1986 dig notebook, particularly pp. 15-19 for Wall 41 and reconstruction F.83, and pp. 95-101 concerning Wall 27. I thank Project Director J.B. Hennessy for permission to comment on the unpublished Pella material, and excavator Ms. P.M. Watson for discussing the excavation circumstances with me.

10 It is not entirely clear when the entire Palace complex went out of use. Woolley seems to imply that some rooms remained in use after the Palace destruction, Woolley (1955), p.105.

11 Woolley (1955), p.148. The mass of collapsed material, in places up to six metres high, which completely blocked the gateway access, would indicate a major destruction of the fortifications, which is difficult to square with an enemy assault. It would, however, be consistent with a major earth movement.
Schaeffer suggested that the major Middle Bronze Age destruction at Ugarit be associated with a catastrophic earthquake, a judgement that the more recent work of Courtois has agreed with. Both Schaeffer and Fugmann advocated earthquake activity as the most likely explanation for the destruction of the Hama H2 and Hama H1 levels. Bartlett has joined the scholars who believe late Middle Bronze Age Jericho was destroyed by earthquake activity. Seger and Dever did not rule out earthquake activity in at least some of the destruction horizons at Shechem, nor did Seger for those at Gezer.

In the light of the foregoing analyses of the archaeological data, which have failed to demonstrate any clear support for the very problematic inscriptive/textual scenario of a military destruction of sites, coupled with the failure to detect any distinct phasing in the pattern of destructions, and the relatively clear evidence that at least some of the MB/LB destructions are earthquake related, all combine to suggest that the most likely cause of the MB/LB destructions was a severe, widespread earthquake, of a similar magnitude and geographical spread to the historically documented earthquakes of 363 and 747 A.D., which left large portions of many Levantine cities, stretching from the Egyptian delta to Syria and Cyprus in the north, in ruins.

An Absolute Date for the MB/LB Earthquake: The Thera Eruption

When one comes to suggest an absolute date for the earthquake, the obvious starting point is to strip the numerous reconstructions proposed of their attempts to relate specific site destructions with specific Pharaonic or Hittite campaigns. When this is achieved, a much more generalised MB/LB determination emerges. Our previous analyses have concentrated attention on the late MBIIIC/early LBI assemblages as those relevant to the discussion. Most

12 For Schaeffer’s analysis of the Ugarit material, see Schaeffer (1948), pp. 8-39. For Courtois’ own excavations at the site, see Courtois apud. de Contensen et alii. (1973), and for his comments on Schaeffer’s work, Courtois (1974).

13 For Hama, see Fugmann (1958), pp. 93-109, and Schaeffer (1948), p.100.

14 Bartlett (1982), p. 94. For further discussion of Jericho, see Shea (1979), and especially Bimson & Livingston (1987), Bimson (1988), and Wood (1990a).

15 Both Seger (1974) and (1975) and Dever (1974) did not demonstrate the necessity of the military option at Shechem. Indeed, Seger’s detailed description of the East Gate excavations makes it clear that the debris from the destruction was both massive and extensive, which might be held to favour earthquake activity over military conquest. A like situation is described at Gezer, for which see Seger (1975) and (1976), and Dever (1987) and Dever [ed.] (1987).

commentators agree on the approximate association of this MB/LB assemblage with the end of the Hyksos period and the early reigns of the Eighteenth Dynasty in the southern Levant, or the reigns of Hattusilis I and Mursilis I of the Hittite Old Kingdom in the north. There would seem to be few stratigraphic and archaeological objections to the association of a major earthquake with the archaeological period of the MB/LB, and the historical period of the reigns of Ahmose and Thutmosis I in the south, and Hattusilis I and Mursilis I in the north.

Whilst it is not necessary to posit an extraordinarily large or widespread earthquake to account for the MB/LB destructions, as several historically attested earthquakes are of the required magnitude and extent, there is one major geological event in this period that should be considered as a possible cause for the earthquake, and that is the geological activity associated with the eruption of the Thera volcano. Whilst any such association is not required to validate the hypothesis, it is worth consideration for both the relative and absolute chronological associations that such an attribution would generate.

Archaeometric Dating of the Thera Eruption

The traditional relative chronological dating of the Thera eruption to the end of the LMIA period is still generally accepted, based on evidence from Pylakopi and Knossos. This period must now be closely associated with the earliest phases of the LCIA period in western Cyprus, with the attribution of some of the LMIA material from the Toumba tou Skourou tombs to the same workshop as that sealed in the Akrotiri destruction. The early Late Cypriote IA assemblage, as defined by the occupational and tomb material from Toumba tou Skourou, and tomb material from Stephania and Ayia Irini, is to be associated with the Egyptian delta assemblage from Tell ed-Dab'a Level D/2. The end of Tell ed-Dab'a Level D/2 is linked to the expulsion of the Hyksos from Egypt, although this attribution is based on the identification of Dab'a with Avaris, and the association of the observed looting/destruction horizon at the end of Tell ed-Dab'a Level D/2 with Ahmose' apparently well-documented sack of the site.

Whilst each of these various links are not without problems, the overall

17 For a thoroughgoing review of the Aegean relative chronologies associated with the event of the Thera eruption, see Manning (1988).
19 For the Dab'a evidence, see Bietak (1984), (1988) and (1991). For a critical review of Bietak's work, see Dever (1985) and (1991). Note that Dever's main criticisms concern the earlier Middle Bronze Age dates at Dab'a; he appears to accept the equation of the D/2 horizon with the campaigns of Ahmose.
relative chronological associations are not in dispute. It is the traditional absolute chronology, which places the date of the Thera eruption between ca. 1550-1500 B.C., which has recently come under attack. Manning has suggested that ongoing 14C analyses mandate a mid-Seventeenth Century B.C. date for the eruption of the volcano. These 14C determinations were held to have been strengthened by independent ice-core emission analyses by Hammer and his co-workers, which highlighted a major mid-Seventeenth century B.C. peak in northern hemisphere volcanic activity, which was said to be attributable to the Thera eruption.

However, recent detailed analyses of the sulphur content of the Dye-3 core by Pyle have suggested a much higher sulphur content than that consistent with an Aegean association. Manning and other High Chronologists has been forced to put this 'verification' of the 14C evidence to one side.

Since Manning's early formulation, the 14C determinations have been called into question by Olssen on fractionation grounds, as she has observed that much pre-treatment of the 14C samples for 13C contamination was inadequate. She has also raised the possibility of volcanic 'old carbon' contamination of the Thera archaeological material. Both of these objections have not been adequately dealt with by Manning, although he does address them in passing.

Equally, the statistical averaging methods Manning routinely employs to maintain the high weighted mean date for the eruption, are not without their difficulties, particularly as they tend to discount the inevitable presence of residual material in the Thera destruction horizon, as is the case in all archaeological deposits. It is difficult to understand why Manning holds the belief that the identification of so-called "short-life" samples, seeds and the like, militates against their being residual material. It is not the type of the material that determines the likelihood of contemporaneity, but its archaeological context. There is little data presented on the findspot contexts of the various 14C samples, and it is these contexts that would strengthen any argument for contemporaneity with the

20 For Manning's statements, see especially Manning (1988), (1989) and (1990). In their absolute chronological determinations, they follow the earlier work of Betancourt & Weinstein (1976), Betancourt (1987) and Betancourt & Michael (1987).

22 See Pyle (1989), and Manning (1990), p. 92.

23 See Olssen (1987), passim.

25 For Manning's recent averaging statistics, see Manning (1990), pp. 94-98. This technique allows him to discard or underweight the less numerous late, his 'anomalous', dates from the site. For all his questionable statistical manipulations, he is forced to admit that the 14C evidence is still consistent with, if equivocal in, a traditional, mid-Sixteenth Century B.C., date for the eruption, for which see Manning (1990), p. 98. See also Aitken (1987) and Warren (1987), for an analysis of the 14C evidence that is in keeping with the traditional chronology for the eruption.
eruption. There is nothing intrinsically short-lived about seed, rush or twig samples. Such material can survive for millenia after harvesting, and unless one can demonstrate adequate contextual contemporaneity with the destruction horizon, then there is no reason to give this material any special prominence in deliberations. Equally, averaging out all dates to achieve a weighted mean date comes uncomfortably close to advocating dating archaeological levels by the preponderant material present, rather than by the latest material present. The latter method is the accepted practice with all other archaeological data, and it is not made clear why 14C data should be treated any differently.

If one discards the ice-core data, and dates the Thera eruption on the complete sequence of the 14C readings, given the calibration 'spike' occurring in this part of the curve, it would appear possible to harmonise the 14C chronology and traditional ceramic-based relative chronology, and place the two-phase eruptive episode in the region of ca. 1550-1500 B.C..

Relative Chronology of the Thera Eruption

The eruption of the Thera volcano occurred as a long drawn-out episode, over a period of perhaps fifty years, with at least two major episodes of activity, the first being primarily earthquake, and the second a catastrophic eruption of the volcano, probably associated with a second earthquake. The first of these events is to be placed well within the LMIA period. It is important to note that the majority of Akrotiri archaeological evidence will derive from this early earthquake phase, when the site of Akrotiri was destroyed. The second eruptive episode, occurring at some later stage, would have sealed permanently the largely deserted site.

This two-stage eruption occurred within the LMIA period according to all well documented Aegean stratigraphic evidence, with the first stage certainly well within the period, and the second perhaps towards its end. Thus East Cretan LMIB destructions have no demonstrable linkage with the Thera eruption, and should postdate it, unless one can demonstrate an overlap between the west/central Cretan and Akrotiri LMIA sequences and the east Cretan LMIB sequences. Whilst the latter is not impossible, Manning has not supplied any compelling evidence to suggest such a state of events.

26 There is little data on the findspots of the majority of the 'short-life' samples. Although Manning (1988), pp. 39-40 accepts all contexts as equally reliable, this has been questioned by Shaw (1977).

27 Particularly as Manning's reasons for discarding some of the late dates do not seem justifiable outside of his own statistical manipulations, for which see especially Manning (1988), pp. 43-44, and Manning (1990), pp. 95-96.

28 For this two-stage process, see Manning (1988), pp. 21-24.

29 Ibid., pp. 32-36. Manning is aware of this, but has stated his personal belief that the
As Vermeule would link at least some of the Toumba tou Skourou LMIA material directly to that sealed in the Akrotiri destruction deposit, this is to be associated with the first, earthquake, stage of the eruption, as must the associated early phase LCIA ceramics. This early "Stephania Phase" of the LCIA:1 period is to be associated with the Tell ed-Daba Level D/2 occupation and funerary horizons. If this occupation is brought to a close by the campaigns of Ahmose, then the Stephania phase of the LCIA:1 period at least partially predates these campaigns 30.

Various relative chronological synchronisms, amongst the most recent being the Maroni Tomb 1 evidence linking the LCIA period with the terminal MBIIIC period at Tell Arqa 31, the Palaeopaphos Teratsoudhia Tomb 1, the Toumba tou Skourou Tomb 1, and the Tell ed-Daba Level D/2 evidence linking the LCIA period with the latest Hyksos/early Eighteenth Dynasty horizons 32, and the recent works of Gittlen, Stern and Saltz, Johnson and Berghoffen, which have emphasized the late MBIIIC Palestinian contexts of the earliest phase of LMIB destructions are related to the second stage of the eruption, in conversations with the author. I must thank Mr. Manning for discussing the problems of Minoan chronology, and those surrounding the Theran eruption, at great length with me.

This has always been in keeping with the chronology of Hennessy (1963) and Åström & Åström (1972), if not that of Stewart (1974), Merrillees (1977), and Kemp & Merrillees (1980). Whereas Hennessy and Åström would allow a very slight overlap of LCIA:1 and SIP Egypt, Merrillees and Manning would favour the entire LCIA period overlapping SIP Egypt. The few pieces of evidence until recently available, have been capable of being interpreted both ways. However, the detailed SIP stratigraphy emerging from the Austrian excavations at Dab'a, the British excavations at Memphis and the Canadian excavations at Mashkuta, would seem to be establishing a firm late SIP presence of LCIA:1 material. The only issue remaining is how long a period of overlap is to be credited. Bietak's statements on an arbitrary 'thirty-year' period per level, Bietak (1989), p. 93, is clearly unsatisfactory, as is Bourriou's (1989) and (1990) assertions that the pre-Eighteenth Dynasty contexts of the 'pre-sand' levels at Kom Rabia, are ascertainable either by scarab evidence for an early Eighteenth Dynasty 'post-sand' date, or through parallels with Arnold's (1982) and (1988) Middle Kingdom Dashur/Lisht ceramic typology, for which many questions pertaining to the date range and context of the material studied remain.

30 This has always been in keeping with the chronology of Hennessy (1963) and Åström & Åström (1972), if not that of Stewart (1974), Merrillees (1977), and Kemp & Merrillees (1980). Whereas Hennessy and Åström would allow a very slight overlap of LCIA:1 and SIP Egypt, Merrillees and Manning would favour the entire LCIA period overlapping SIP Egypt. The few pieces of evidence until recently available, have been capable of being interpreted both ways. However, the detailed SIP stratigraphy emerging from the Austrian excavations at Dab'a, the British excavations at Memphis and the Canadian excavations at Mashkuta, would seem to be establishing a firm late SIP presence of LCIA:1 material. The only issue remaining is how long a period of overlap is to be credited. Bietak's statements on an arbitrary 'thirty-year' period per level, Bietak (1989), p. 93, is clearly unsatisfactory, as is Bourriou's (1989) and (1990) assertions that the pre-Eighteenth Dynasty contexts of the 'pre-sand' levels at Kom Rabia, are ascertainable either by scarab evidence for an early Eighteenth Dynasty 'post-sand' date, or through parallels with Arnold's (1982) and (1988) Middle Kingdom Dashur/Lisht ceramic typology, for which many questions pertaining to the date range and context of the material studied remain.

31 I thank Dr. Cadogan for allowing me to examine photographs of this material in Oxford in June 1985, and for pointing out the importance of the Syrian trefoil-mouthed jug contained therein. Excellent parallels exist in late MBIIIC Tell Arqa Level 12, for which see Thalmann (1978), Fig. 50:7 and (1979), Pl. 4, Upper Left.

32 For Teratsoudhia Tomb 1, see Karageorghis & Demas (1990) and Eriksson (forthcoming); for Toumba tou Skourou Tomb 1, see Vermeule & Wolsky (1990), and Eriksson (forthcoming); for Tell ed-Dab'a Level D/2, see Bietak (1968), (1970), (1984), (1989) and (1991), Merrillees (1975) and (1977), Maguire (1989), and Eriksson (forthcoming).
LCIA period imports into the southern Levant \(^{33}\), all reinforce the equation of the latest phases of the northern and southern Levantine MBIIC period with the earliest phase of the LCIA period, and the Tell ed-Dab'a Level D/2 destruction.

This earthquake/destruction scenario is supported by an examination of the stratified and funerary evidence from Enkomi, Phaneromeni, Nitovikla and Nikolidhes in Cyprus \(^{34}\). Two phases of destructive activity are documented, with the first destruction dating to the early phase of the east Cypriot LCIA period, which agrees well in relative chronological terms with the Tell ed-Dab'a destruction of Level D/2. Associated with this destruction horizon at Enkomi is the unusual funerary practice of multiple simultaneous burial, which the excavators suggested as being the result of an epidemic, but could equally well be the result of earthquake destruction of the city and/or disease consequent on such an event \(^{35}\).

Comparative stratigraphic considerations dictate that the destruction horizon at Tell ed-Daba Level D/2 can be equated with the MB/LB destructions are documented throughout the Levant at this time. This relatively sudden, non-military devastation of the Hyksos capital harmonises well with the documentary evidence that records a short siege followed by a movement of the Asiatic populace out of Egypt, as Goedicke has emphasised \(^{36}\). If Goedicke is correct in his interpretation of obscure Nineteenth Dynasty Egyptian texts relating to the cult-temple of Seth at Avaris, then some textual correlation for this early earthquake phase of destruction may be forthcoming \(^{37}\).

\(^{34}\) See Astrom (1972c), pp. 30-35, for the construction, and rapid destruction thereafter, of the fortresses of Nikolidhes and Nitovikla. The construction date of the Nikolidhes fortress is debated, with Astrom's claimed late LCIA/early LCIB date resting on the assumption that the early LCIA pottery found below the fortress does not relate to its construction. For further discussion of the date see Hult (1986). For Phaneromeni, see Swiny (1986), pp. 115-116. Whilst the dating of the MC/LC transition in the south is complicated by the absence of the majority of the LCIA type fossils, for which see Hersher (1976) and Barlow (1985), the presence of Proto-White Slip ware in the destruction horizon at Phaneromeni provides adequate evidence for a transitional MC/LC date for the destruction. Proto-White Slip has been found in the destruction horizon at Tell ed-Dab'a Level D/2, for which see Merrillees (1975), and Bietak (1991).

\(^{35}\) For the destruction of the Enkomi fortress in the earliest phase of the eastern LCIA, see Åström (1972c), p.38; for the practice of multiple simultaneous burial, see Åström & Åström (1972), p. 764 and references.

\(^{36}\) See Goedicke (1986), passim. He draws particular attention to the strangely short siege before the fall of Avaris, and the fact that Ahmose does not claim the destruction of Avaris, but merely its pillaging.
Archaeometric Dating and the MB/LB destructions

Although Weinstein has recommended that 14C determinations are largely inappropriate to Middle Bronze Age chronological concerns, especially given the existence of the calibration 'spike', some 14C data can be offered in support of the argument for contemporaneity between the Thera eruption and the Levantine MB/LB destruction horizons. Single 14C determinations from each of the terminal Middle Bronze Age destruction horizons at Shechem and Lachish are equivalent to those from Thera. Very recently, Goedicke has reported a 14C determination from a pumice horizon in the Egyptian delta, which is equivalent to both the Palestinian and Theran dates. It is of interest that both Seger at Shechem, and Ussishkin at Lachish, reject the calibrated 14C determinations as being too early. Whilst the calibration spike allows for the possibility of a traditional relative chronological determination, it would seem possible that circumstances similar to those proposed to account for many of the high Theran determinations

38 Weinstein (1984), pp. 308-309. Overall, the Middle Bronze Age is poorly documented in 14C terms, making it difficult to erect even a relative chronology of 14C determinations.
39 For the Shechem and Lachish dates, see Weinstein (1984), p. 347. The dates are 3450 +/- 120 for Lachish, and 3510 +/- 120 for Shechem. Both were rejected out of hand by their excavators. For the Delta date, see Goedicke (1988), pp. 170-171; the reading is 3500 +/- 100. Two further points based on 14C data are of interest. In their discussion of western Anatolian chronology, Lloyd & Mellaart (1965), p.73, established a 14C date for the severe destruction Beycesultan V, at 3450 +/- 150, although they rejected it as not fitting in with their notions of relative chronology, although they admit that the relative chronology of the west Anatolian Middle Bronze Age was totally unknown before their efforts. They seek to associate the destruction of Beycesultan with the campaigns of either Larbaranas or Hattusilis, although they admit there is no textual support for such an assertion. Given the few close ceramic parallels between the TNM and Beycesultan material, they would seek to associate the reduced settlement of Beycesultan IVc with that of TNM F-E, and therefore prosperous TNM G with Beycesultan V, if one is to give the 14C data any credence, then it would seem possible that the destruction of Beycesultan V is to be associated with the Thera eruption. Of equal note is the apparently anomalous LBI date from the Jericho Area H Phase XII/XIII wash/debris levels for which see Weinstein (1984), p. 347, which dates to 3080 +/- 40, and might add support to the contention advanced above of an LBI occupation upslope from Kenyon's excavated squares, as this date could derive from debris from the hypothesized occupation.

293
are at work. As Olssen has suggested, problems surrounding 13C calibration, and
the possible presence of significant amounts of 'fossil-carbon' in materials
submitted for analysis, should be considered 40.

In any case, given the Seventeenth/Sixteenth Century calibration 'spike', it
is best that 14C determinations be restricted to use as a relative dating tool, until
such issues as the impact of fractionation and the presence of fossil-carbon be
resolved. If this is accepted, then the major point to draw from the few 14C
determinations that are relevant to the MB/LB destruction horizon is that they are
consistent with an equation of the two events. They provide a modest
corroboration of the hypothesis linking Thera and the Levantine MB/LB
destruction horizon.

The Late Bronze Age Aftermath: Thera and Thutmosis I

At some stage after the first stage earthquake destruction, estimated by
vulcanologists as a period up to fifty years later, the final eruption of the Thera
volcano occurred. Whilst it is unclear just how severe this second stage of
eruption was, it certainly buried the largely abandoned settlement on Akrotiri, and
may be equated with the early LMIB destructions on eastern Crete 41. Equally,
this second episode may be related to a second, more limited, series of destructions
throughout the Levant recorded at Tell el Ajju Palace II, Gezer Field VI Phase
5A-B, Jericho H Phase XIII and Shechem Field IV, Phase 1 in the south, and Tell
Nebi Mend E, Tell Ghassil VIII, Tell Arqa 12A, Kamid el Loz 12, Hama H1,
Atchana VIB in the north, dated to some time within, but probably towards the
end of, the LB IA period.

Intriguing, but fragmentary and obscure Egyptian inscriptive evidence
from Speos Artemidos could, perhaps, be a reflection of this second phase of the
Thera eruption. This inscriptive evidence is to be associated with the reign of
Thutmosis II or Hatshepsut, if one follows Goedicke's cautious outline of the
chronological and climatological evidence 42.

40 For which see Olssen (1987), and references.
41 For this two-phase earthquake/eruption model, see Manning (1988), pp. 21-24, and
references to his forthcoming monograph in the JMA Monograph Series. I thank Mr.
Manning for a chance to read an early draft of this monograph in 1987.
42 Goedicke (1988), passim.; Eriksson (forthcoming), accepts this date, and provides
extensive relative chronological evidence in support of it, particularly centring on the Thera
pumice reported by Goedicke (1988), p.170, as from the LBIA Gurob Tomb of Maket. For
further analysis of the problematic Maket material, which dates from the time of
Thutmosis I to III, see Hankey & Tufnell (1973), Warren & Hankey (1989), pp. 45-46,
and Eriksson (forthcoming).
An Historical Context for the Thera Eruption

If one allows the earthquake hypothesis to stand for the moment, several of the more pressing historical difficulties surrounding early Late Bronze Age Egyptian and Hittite histories move towards a resolution. It has always been difficult to explain the startlingly rapid success of Thutmosis I’s razzia/conquest of the entire Levant south of Euphrates Bend. One is either forced to propose an extensive ongoing series of completely unattested Egyptian military campaigns into northern Palestine and south/central Syria under Ahmose and Amenhotep I, or one must attribute Thutmosis’ success to a personal brilliance and a spectacular Levantine incompetence. Neither scenario is acceptable.

However, if one were to propose a widespread earthquake, occurring at some stage shortly before Thutmosis’ raid, which stripped the Levantine cities of their massive defences, then his success would be more readily explainable. Indeed, the smaller city states of the early Late Bronze Age Levant are likely to have been unable to stand against the Royal field army of Egypt, and may well have acquiesced to a temporary Egyptian suzerainty rather than attempt to stand off an attacking army, particularly if they were stripped of their protective city fortifications by a major earthquake.

Equally, it has always seemed extraordinary that the young Hittite king Mursilis I was able to penetrate so deeply into the apparently unknown Mesopotamian heartlands, and at the very end of a huge supply line muster the strength to put the heavily fortified city of Babylon to the sack. However, if a major earthquake had stripped many of the Mesopotamian cities of their fortifications, then this spectacularly successful razzia is at least a little more understandable.

43 Goedicke (1986), has demonstrated that it is difficult to document any campaign by Ahmose beyond south Palestine. Whilst Redford (1979) seeks to document a campaign by Amenhotep I, through reference to newly discovered gate inscriptions, the pharaoh in question is unnamed, and, as Redford himself admits, the campaigns in question could easily, and perhaps more satisfactorily, pertain to the well documented campaigns of Thutmosis I. For an analysis of these campaigns, see Spalinger (1982) and Rainey (1987).

44 This is one interpretation of Thutmosis’ boast, recorded on the Tombos stele, for which see Gardiner (1961), p. 178 and references, that no single enemy stood against him. Whilst Dever (1990), would see the campaigns of Thutmosis against a background of a Syrian political vacuum caused by the combined assaults of the Hittites Hattusiliś and Mursilis’, this ignores the fact that both of these Hittite kings had much hard fighting to do after their successful raids on Atchana and Babylon respectively, for which see Hoffner (1980), suggesting that the reduction and fall of Aleppo need not imply the complete collapse of the state of Yamkhad.

45 Assuming the absolute chronological contexts provided by the Low Chronology, which the archaeological analyses at Atchana, Toumba tou Skourou, and Tell ed Dab’a would all seem to support, for which see Gates (1987), Bietak (1991) and Eriksson (forthcoming).
Summary and General Conclusions

The foregoing analyses have sought to examine the transition from the Middle to the Late Bronze Age in the northern Levant. The first chapter established that few adequate northern sequences existed, and that those that did exist were inextricably wedded to accepted southern Levantine typological and chronological schema. The most convenient and satisfactory way out of the impasse was to construct a new, internally consistent, locally based northern sequence from recently excavated material, unencumbered, at least initially, by southern Levantine analytical schema. The presentation of the Tell Nebi Mend stratigraphy and coarseware ceramic typology in the second and third chapters facilitated the construction of an independent northern sequence. Integration of this local sequence into its north Levantine regional ceramic context in the fourth chapter allowed one to establish a satisfactory regional relative chronology.

When this northern relative chronology was viewed from a Syrian perspective in the fifth chapter, many of the apparent typological and chronological anomalies detected in northern sequences, resulting from the too rigorous application of a southern typological perspective, were found to be illusory. Most scholarship on the developmental sequences of Second Millennium Syria had always assumed a large-scale destruction/abandonment event at the end of the first half of the Middle Bronze II period which left vast tracts of inland Syria unoccupied in the latter half of the Middle Bronze II period. Such a reading of the evidence has been shown to be groundless, with occupation continuing throughout the Middle Bronze Age, before being disrupted by a major destructive event at the end of the period.

The occurrence of this major destructive event can be demonstrated to have been contemporaneous throughout the northern and southern Levant, and given the, albeit scant, archaeological evidence for a linked geological cause for the disaster, the likelihood is that the event was simultaneous throughout the region. It is proposed herein that both the northern and southern Middle Bronze Age sequences were disrupted by a major regional earthquake, similar in magnitude and geography to several historically attested earthquakes in the region.

Although not necessarily the linchpin of the argument, some association between the hypothesised regional earthquake and the first earthquake phase of the Thera eruption is posited. A limited amount of Egyptian inscriptive/textual evidence would suggest an association with the reign of Ahmose, the first king of the Eighteenth Dynasty. This reign is to be placed somewhere within the third quarter of the Sixteenth Century B.C., which is not in conflict with an analysis of the complete sequence of 14C dates from the site of Akrotiri.

At some stage shortly thereafter, perhaps in the region of fifty years later, within the archaeological horizon of the Late Bronze Age IA period, the second eruptive episode of the Thera destruction took place. This may well be associated with a second, more limited, horizon of destruction documented in quite a number
of both the northern and southern Levantine sites.

There are no good archaeological reasons to associate either of these horizons of destruction with the various activities of the Egyptian and Hittite monarchies, although the severe weakening of the indigenous societies consequent on the recurrent disasters wreaked by the double-eruption of the Thera volcano may well have facilitated both the Egyptian conquest of Palestine and south/central Syria, and the Hittite conquest of the north Syrian Plain.

The transition from the Middle to the Late Bronze Age in the northern Levant was marked by the major regional catastrophe of an earthquake that levelled many of the major cities in the Levant, and facilitated, if not prompting, the military activity that followed. A second, less important, eruptive event followed shortly thereafter, adding to what must have been an already severe disruption of the economic and political well-being of the land.

It is within this context of widespread political and economic fragmentation and decline that we must place the spectacular razzias of Thutmosis I and Mursilis I, and somewhat later, the more thoroughgoing conquests of Thutmosis III and Saustatar, which gave birth to the Mitannian and Egyptian empires that long dominated the subsequent Late Bronze Age history and archaeology of the northern Levant.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAS</td>
<td>Annales Archéologiques Arabes Syriennes</td>
</tr>
<tr>
<td>AASOR</td>
<td>Annual of the American Schools of Oriental Research</td>
</tr>
<tr>
<td>ABSA</td>
<td>Annual of the British School at Athens</td>
</tr>
<tr>
<td>ADAJ</td>
<td>Annual of the Department of Antiquities Jordan</td>
</tr>
<tr>
<td>AJA</td>
<td>American Journal of Archaeology</td>
</tr>
<tr>
<td>AJSL</td>
<td>American Journal of Semitic Languages and Literature</td>
</tr>
<tr>
<td>Ar. Or.</td>
<td>Archives Orientálni</td>
</tr>
<tr>
<td>AJBA</td>
<td>Australian Journal of Biblical Archaeology</td>
</tr>
<tr>
<td>AS</td>
<td>Anatolian Studies</td>
</tr>
<tr>
<td>ASAE</td>
<td>Annales de Service de Antiquités de Egypte</td>
</tr>
<tr>
<td>BA</td>
<td>Biblical Archaeologist</td>
</tr>
<tr>
<td>BAIAS</td>
<td>Bulletin of the Anglo-Israeli Archaeological Society</td>
</tr>
<tr>
<td>BAR</td>
<td>Biblical Archaeology Review</td>
</tr>
<tr>
<td>BASOR</td>
<td>Bulletin of the American Schools of Oriental Research</td>
</tr>
<tr>
<td>BES</td>
<td>Bulletin of the Egyptology Seminar</td>
</tr>
<tr>
<td>BIA</td>
<td>Bulletin of the Institute of Archaeology London</td>
</tr>
<tr>
<td>BICS</td>
<td>Bulletin of the Institute of Classical Studies</td>
</tr>
<tr>
<td>BMB</td>
<td>Bulletin de Musée Beirut</td>
</tr>
<tr>
<td>CRAIBL</td>
<td>Comptes-rendus de l'Académie des Inscriptions et Belles-Lettres</td>
</tr>
<tr>
<td>EI</td>
<td>Eretz Israel</td>
</tr>
<tr>
<td>GM</td>
<td>Göttinger Miszellen</td>
</tr>
<tr>
<td>IEJ</td>
<td>Israel Exploration Journal</td>
</tr>
<tr>
<td>JAOS</td>
<td>Journal of the American Oriental Society</td>
</tr>
<tr>
<td>JARCE</td>
<td>Journal of the American Research Centre in Egypt</td>
</tr>
<tr>
<td>JCS</td>
<td>Journal of Cuneiform Studies</td>
</tr>
<tr>
<td>JEA</td>
<td>Journal of Egyptian Archaeology</td>
</tr>
<tr>
<td>JESHO</td>
<td>Journal of the Economic and Social History of the Orient</td>
</tr>
<tr>
<td>JFA</td>
<td>Journal of Field Archaeology</td>
</tr>
<tr>
<td>JJS</td>
<td>Journal of Jewish Studies</td>
</tr>
<tr>
<td>JMA</td>
<td>Journal of Mediterranean Archaeology</td>
</tr>
<tr>
<td>JNES</td>
<td>Journal of Near Eastern Studies</td>
</tr>
<tr>
<td>JSSEA</td>
<td>Journal for the Scientific Study of Egyptian Antiquities</td>
</tr>
<tr>
<td>LA</td>
<td>Lehrbuch de Ägyptologie</td>
</tr>
<tr>
<td>LAAA</td>
<td>Liverpool Annals of Archaeology and Anthropology</td>
</tr>
<tr>
<td>LBA</td>
<td>Late Bronze Age</td>
</tr>
<tr>
<td>MBA</td>
<td>Middle Bronze Age</td>
</tr>
<tr>
<td>MDAIK</td>
<td>Mitteilungen der Deutschen Archäologisches Instituts Kairo</td>
</tr>
<tr>
<td>MDOG</td>
<td>Mitteilungen der Deutschen Orient-Gesellschaft</td>
</tr>
<tr>
<td>NGR</td>
<td>National Geographic Reports</td>
</tr>
<tr>
<td>Acronym</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>OJA</td>
<td>Oxford Journal of Archaeology</td>
</tr>
<tr>
<td>PBA</td>
<td>Proceedings of the British Academy</td>
</tr>
<tr>
<td>PEFA</td>
<td>Palestine Exploration Fund Annual</td>
</tr>
<tr>
<td>PEQ</td>
<td>Palestine Exploration Quarterly</td>
</tr>
<tr>
<td>QDAP</td>
<td>Quarterly of the Department of Antiquities Palestine</td>
</tr>
<tr>
<td>RB</td>
<td>Revue Biblique</td>
</tr>
<tr>
<td>RDAC</td>
<td>Report of the Department of Antiquities Cyprus</td>
</tr>
<tr>
<td>SHAJ</td>
<td>Studies in the History and Archaeology of Jordan</td>
</tr>
<tr>
<td>SMS</td>
<td>Syro-Mesopotamian Studies</td>
</tr>
<tr>
<td>St. Eb.</td>
<td>Studi Eblaiti</td>
</tr>
<tr>
<td>TNM</td>
<td>Tell Nebi Mend</td>
</tr>
<tr>
<td>TA</td>
<td>Tel Aviv</td>
</tr>
<tr>
<td>UF</td>
<td>Ugarit-Forschungen</td>
</tr>
<tr>
<td>VT</td>
<td>Vetus Testamentum</td>
</tr>
<tr>
<td>WA</td>
<td>World Archaeology</td>
</tr>
<tr>
<td>ZDPV</td>
<td>Zeitschrift der Deutschen Palästina-Vereins</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

Abou Assaf, A. (1967) "Der Friedhof von Yabrud", AAAS 17, pp. 55-68.

Albright, W.F. (1933) The Excavation of Tell Beit Mirsim IA: The Bronze Age Pottery of the Fourth Campaign (New Haven)
Albright, W.F. (1938a) *The Excavation of Tell Beit Mirsim. Vol. II. The Bronze Age* (New Haven)

Albright, W.F. (1964) "The Eighteenth Century Princes of Byblos and the Chronology of the Middle Bronze Age", *BASOR* 176, pp. 38-46.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiran, R.</td>
<td>1957</td>
<td>"Tell el Yahudiyeh Ware in Syria", IEJ 7, pp. 93-97.</td>
</tr>
<tr>
<td>Amiran, R.</td>
<td>1969</td>
<td>Ancient Pottery of the Holy Land (New Brunswick)</td>
</tr>
<tr>
<td>Anderson, W.P.</td>
<td>1988</td>
<td>Sarepta I: The Late Bronze and Iron Age Strata of Area II.Y (Beirut).</td>
</tr>
<tr>
<td>Artzy, M., Perlman, I. & Asaro, F.</td>
<td>1973</td>
<td>"The Origin of 'Palestinian' Bichrome Ware", JAOS 93, pp. 446-461.</td>
</tr>
<tr>
<td>Astour, M.C.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Astour, M.C.

Äström, P.

Äström, P.

(1972b) *The Swedish Cyprus Expedition. Vol IV: Part IB. The Middle Cypriot Bronze Age* (Lund)

Äström, P.

(1972c) *The Swedish Cyprus Expedition. Vol IV: Part IC. The Late Cypriot Bronze Age: Architecture and Pottery* (Lund)

Äström, P.

Äström, P. [ed.]

(1987) *High, Middle or Low ?* (Vols. 1-2, Gothenberg).

Äström, P. [ed.]

(1989) *High, Middle or Low ?* (Vol. 3, Gothenberg)

Äström, L & Äström, P.

Avi-Yonah, M. & Stern E. (eds.)

Beck, P. (1975) "The Pottery of the Middle Bronze Age IIA at Tel Aphek", Tel Aviv 2, pp.45-85.

Bell, M. R. (1985) "Gurob Tomb 605 and Mycenaean Chronology", pp. 61-86, Mélanges Gamel Eddin Mokhtar (Cairo)

Ben-Dor, I. (1945) "Palestinian Alabaster Vases", QDAP 11, pp. 93-112.

Ben-Dor, I. (1950) "A Middle Bronze Age Temple at Nahariya", QDAP 14, pp. 1-41.

Bergoffen, C.J. (forthcoming) "Two 'Chocolate on White' Vessels from Enkomi", RDAC (forthcoming)

Betancourt, P.P. (1987) "Dating the Aegean Late Bronze Age with Radiocarbon", Archaeometry 29, 305

Bienkowski, P. (1986) *Jericho in the Late Bronze Age* (Warminster)

Bienkowski, P. (1990) "Jericho was destroyed in the Middle Bronze Age, Not the Late Bronze Age", *BAR* 16 [5], pp. 45-49, 68-69.

Bietak, M. (1968) "Vorläufiger Bericht über die erst und
Bietak, M.(1970) "Vorläufiger Bericht über die dritte
Kampagne der Österreiches
Ausgrabungen auf Tell el Dab'a in
Östdelta Ägypten, 1968",
MDAIK 26, pp. 15-47.

Bietak, M.
(1979) "Avaris and Piramesse:
Archaeological Exploration in the
Eastern Nile Delta",
PBA LXV, pp. 225-290

Bietak, M.
(1984) "Problems of Middle Bronze Age
Chronology: New Evidence from Egypt",
AJA 88, pp. 471-485.

Bietak, M.
(1986) "Tell el Jahudija-Keramik", LA VI,
pp. 335-348.

Bietak, M.
(1989a) "The Middle Bronze Age of the Levant-
A New Approach to Relative and
Absolute Chronology", pp.78-123 in
P. Astron [ed.] High, Middle or Low?.
Part 3 (Gothenberg)

Bietak, M.
(1989b) "Servant Burials in the Middle Bronze
Age Culture of the Eastern Nile Delta",
ET 20, pp. 44-51.

Bietak, M.
(1990) "The Concept of Eternity in Ancient
Egypt and the Bronze Age World: An
Archaeological Approach", ET 21,
pp. 10-17.

Bietak, M.
(1991) "Egypt and Canaan During the Middle
Bronze Age", BASOR 281, pp. 27-72.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Publisher/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourke, S. J. & Parr, P. J.</td>
<td>(forthcoming)</td>
<td>"A Second Millenium Sequence from Tell Nebi Mend, Syria", Levant</td>
<td></td>
</tr>
</tbody>
</table>

308

Braidwood, R.J. (1940) "Report on Two Sondages on the Coast of Syria, South of Tartous", Syria 21, pp. 183-221.

309
pp.19-30.

Buccellati, G.
(1988)
"The Kingdom and Period of Khana",
BASOR 270, pp. 43-61.

Buhl, M-L.
(1983)
Tell Sukas VII (Copenhagen).

Bull, R.J., Callaway, J.A.,
Campbell, E.F. Jr., Ross, J.F. &
Wright, G.E.
(1965)
"The Fifth Campaign at Tell Balatah
(Shechem)", BASOR 180, pp. 7-41.

Bull, R.J. & Campbell, E.F. Jr.
(1968)
"The Sixth Campaign at Tell Balatah
(Shechem)", BASOR 190, pp. 2-41.

Campbell, E.F. Jr., Ross, J.F. &
Toombs, L.E.
(1971)
"The Eighth Campaign at Balatah
(Shechem)", BASOR 204, pp. 2-17.

Chapman, R.L.
(1986)
"Excavation techniques and recording
systems: a theoretical study",
PEQ 118, pp. 5-26.

Cline, E.
(1987)
"Amenhotep III and the Aegean: A
Reassessment of Egypto-Aegean
Relations in the 14th. Century B.C.",
Orientalia 56, pp. 1-36.

Cline, E.
(1989)
"An unpublished Amenhotep III Faience
Plaque from Mycenae",
Orientalia 58, pp. 200-212.

Cole, D.P.
(1984)
Shechem I: The Middle Bronze IIB
Pottery (Winona Lake)

Collon, D.
(1975)
The Seal Impressions from Tell
Atchana/Alalakh (Kevelaer).

Collon, D.
(1977)
"A New Look at the Chronology of

Contensen, H. de, Courtois, J-C.
Lagarce E. et J. & Stucky, R.

Courtois, J-C.

Courtois, J-C.
(1973) "Prospection archéologique dans la moyenne vallée de l'Oronte (El Ghab et Er Roudj Syrie du Nord-Ouest", Syria 50, pp. 53-100.

Courtois, J-C.

Courtois, J-C & Courtois, L.

Courtois, L.

Crouwel, J.H.

Crouwel, J.H. & Morris, C.E.
(1985) "Mycenaean Pictorial Pottery from Tell Atchana (Alalakh)”,
ABSA 80, pp. 85-98.

Culican, W. & McClellan, T.L.
Abr-Nahrain 22, pp.29-63.

Curtis, A.

Dajani, A.K.
(1953) "Hyksos Tombs at Kalandia",
ADAJ 2, pp. 75-77

Dajani, A.K.
(1960) " Middle Bronze Age Pottery".

ADAJ 4-5, pp. 99-113.

Davies, G.I.

de Vaux, R.
(1951a) "La troisième campagne de fouilles à Tell el-Far'ah, pres Naplouse: Rapport préliminaire", RB 58, pp. 566-590.

de Vaux, R.
(1951b) REVIEW of C.F.A. Schaeffer [ed.]
Ugaritica II (Paris), RB 58, pp. 477-478.

de Vaux, R.
(1952) "La quatrième campagne de fouilles à Tell el-Far'ah, pres Naplouse: Rapport préliminaire", RB 59, pp. 551-583.

de Vaux, R.

de Vaux, R.
de Vaux, R.

de Vaux, R.

de Vaux, R. & Steve, A.M.

de Vaux, R. & Steve, A.M.
(1948) "La seconde campagne de fouilles à Tell el-Far'ah, pres Naplouse: Rapport préliminaire", RB 55, pp. 544-580.

de Vaux, R. & Steve, A.M.
(1949) "La deuxième campagne de fouilles à Tell el-Far'ah, pres Naplouse: Rapport préliminaire", RB 56, pp. 102-138.

Dever, W.G.

Dever, W.G.

Dever, W.G.

(1985) Dever, W.G. "Relations between Syria-Palestine
Dever, W.G.

Dever, W.G.
(1989a) "Archaeology in Israel Today: A Summation and Critique", AASOR 49, pp. 143-152.

Dever, W.G.

Dever, W.G.

Dever, W.G.

Dever, W.G.
(1990) "Hyksos, Egyptian Destructions, and the end of the Palestinian Middle Bronze Age", Levant XXII, pp.75-81.

Dever, W.G.
(1991) "Tell el-Dab‘a and Levantine Middle Bronze Age Chronology: A Rejoinder to Manfred Bietak", BASOR 281, pp. 73-79.

Dever, W.G. (ed.)

Gezer II: Report of the 1967-70 Seasons in Fields I and II
(Jerusalem)

(1981) Dion, P.E.

(1979) Domemann, R.H.
"Tell Hadidi: A Millennium of Bronze Age City Occupation", AASOR 44, pp. 113-151.

(1980) Domemann, R.H.
"Tell Hadidi: An important centre of the Mitannian period and earlier", pp. 218-234 in J. C. Margueron [ed.] Le Moyen Euphrate: Zone de Contacts et d'Echanges (Strasbourg)

(1981a) Domemann, R.H.
"The Late Bronze Age Pottery Tradition at Tell Hadidi, Syria" BASOR 241, pp. 29-47.

(1981b) Domemann, R.H.
"The Excavations at Ras Shamra and Their Place in the Current Archaeological Picture of Ancient Syria", pp. 59-69 in G.D. Young [ed.] Ugarit in Retrospect: Fifty Years of Ugarit and Ugaritic (Winona Lake).

(1983) Domemann, R.H.
The Archaeology of Transjordan in the Bronze and Iron Ages (Milwaukee)

316
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Journal/Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domemann, R.H.</td>
<td>1984</td>
<td>"The Syrian Euphrates Valley as a Bronze Age Cultural Unit, seen from the Point of View of Mari and Tell Hadidi"</td>
<td>AAAS 34</td>
<td>63-73</td>
</tr>
<tr>
<td>Domemann, R.H.</td>
<td>1985</td>
<td>"Salvage Excavations at Tell Hadidi in the Euphrates River Valley"</td>
<td>BA48</td>
<td>49-59</td>
</tr>
<tr>
<td>Domemann, R.H.</td>
<td>1988</td>
<td>"Tell Hadidi: One Bronze Age Site Among Many in the Tabqa Dam Salvage Area"</td>
<td>BASOR 270</td>
<td>13-42</td>
</tr>
<tr>
<td>Domemann, R.H.</td>
<td>1990</td>
<td>"Preliminary Comments on the Pottery Traditions at Tell Nimrin, Illustrated from the 1989 Season of Excavations"</td>
<td>ADAQ XXXIV</td>
<td>153-181</td>
</tr>
<tr>
<td>Dothan, M.</td>
<td>1990</td>
<td>"An Infant Jar Burial"</td>
<td>EI 21</td>
<td>148-151</td>
</tr>
<tr>
<td>Doumet, C.</td>
<td>1986</td>
<td>Les Fouilles de Tell el Ghassil de 1972 'a 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Unpublished PhD. Thesis, Universite de Paris 1 Sorbonne, Paris)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Atlanta).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drower, M.S.</td>
<td>1973</td>
<td>"Syria c. 1550-1400 B.C."</td>
<td></td>
<td>417-</td>
</tr>
</tbody>
</table>

Hammond, N.G.L. & Sollberger, E. (eds.) (1973)

"Preliminary Report on the University of Sydney's Tenth Season of Excavation at Pella in Jordan", ADAJ 34, pp. 54-75.

Egami, N (1983)

Eitan, A. (1972)

Engberg, R.M. (1938)
Megiddo Tombs (Chicago)

Engberg, R.M. (1942)
"Tombs of the Early Second Millenium from Baghuz on the Middle Euphrates", BASOR 87, pp.17-23.

Epstein, C. (1965a)
"An Interpretation of the Megiddo Sacred Area During the Middle Bronze II", IEJ 15, pp. 204-221.

Epstein, C. (1965b)
"Bichrome Vessels in the Cross-Line Style", PEQ 97, pp. 42-53.

Epstein, C. (1966)
Palestinian Bichrome Ware (Leiden).

"Pilgrim Flasks: How were they
"Red Lustrous Wheel-made Ware: A Product of Late Bronze Age Cyprus", Paper Presented to the Philadelphia Cypriote Conference, October 1989.

Eriksson, K.O. (forthcoming)
"Late Cypriot I and Its Foreign Associations: Relative Chronology in the Eastern Mediterranean around the time of the Eruption of the Thera Volcano", 66pp. in P.Astrom (ed.) Acta Cypria (SIMA Pktbk., Goteborg)

Faulkner, R.O. (1942)

Faulkner, R.O. (1946)
"The Euphrates Campaign of Thutmosis III", JEA 32, pp. 39-42.

Feyter, T. de (1989)

Fitzgerald, G. (1949)
REVIEW of C. Schaeffer Stratigraphie Comparée et Chronologie de l'Asie Occidentale (Paris 1948), PEQ 81, pp. 149-159.

Frankfort, H. (1979)

Fugmann, E. (1958)
Hama II.I: L'Architecture des Periodes Pre-Hellenistiques (Copenhagen).

Garstang, J. (1932) "Jericho: City and Necropolis", *LAAA* 19, pp. 3-22.

Garstang, J. (1933) "Jericho: City and Necropolis", *LAAA* 20, pp. 3-42.

Record: Test Cases from Bronze Age Syria", *BASOR* 270, pp. 63-91.

Gautier, J.E. (1895)

Gerstenblith, P. (1980)

"A Reassessment of the Beginning of the Middle Bronze Age in Syria-Palestine", *BASOR* 237, pp.65-84.

Gerstenblith, P. (1983)

The Levant at the Beginning of the Middle Bronze Age (Philadelphia).

Gittlen, B.M. (1975)

Gittlen, B.M. (1977)

Studies in the Late Cypriote Pottery found in Palestine (Ann Arbor).

"The Cultural and Chronological Implications of the Cypro-Palestinian Trade During the Late Bronze Age", *BASOR* 241, pp.49-59.

Giveon, R. (1985)

Egyptian Scarabs from Western Asia from the Collections of the British Museum (Gottingen).

Glock, A.E. (1975)

Glock, A.E. (1983)

"Texts and Archaeology at Tell Ta'annek", *Berytus* 31, pp. 57-66.

"The End of the Hyksos in Egypt", 322

Görzetze, A. (1957a)

Görzetze, A. (1957b)

Goldman, H. (1956)
Excavations at Gozlu Kule, Tarsus. Vol.2. From the Neolithic through the Bronze Age (Princeton)

"Urban Canaan in the Late Bronze Period", BASOR 253, pp. 61-73.

Gonen, R. (1984-5)
"Regional Patterns in Burial Customs in Late Bronze Age Canaan", BAIAS 6, pp. 70-74.

Gonen, R. (1987)
"Megiddo in the Late Bronze Age-Another Reassessment", Levant XIX, pp. 83-100.

Gophna, R. (1979)
"A Middle Bronze Age II Village in the Jordan Valley", Tel Aviv 6, pp. 28-33.

" The Rural Aspect of the Settlement Pattern of the Coastal Plain in the Middle Bronze Age II", Tel Aviv 8, pp. 45-80.

Gophna, R. & Portugali, J.
Grace, V.R.
(1988) "Settlement and Demographic Processes in Israel's Coastal Plain from the Chalcolithic to the Middle Bronze Age", BASOR 269, pp. 11-28.

Grant, E.

Grant, E. & Wright, G. E.

Gregori, B.

Guardata, F.B.

Guy, P.L.O. & Engberg, R.M.
(1938) Megiddo Tombs (Chicago).

Hachmann, R.
(1966a) Bericht über die Ergebnisse der Ausgrabungen in Kamid el-Loz (Libanon) in den Jahren 1963 und 1964 (Bonn).

Hachmann, R.

Hachmann, R.
(1969) "Rapport préliminaire sur les fouilles

324

Halpern, B.
(1987)
"Radical Exodus Redating Fatally Flawed", *BAR* 13 (6), pp. 56-61.

Hanffmann, G.M.A.
(1951)

Hanffmann, G.M.A.
(1952)
"The Bronze Age in the Near East: A Review Article", *AJA* 56, pp. 27-38

Hankey, V.
(1987)

Hankey, V. & Tufnell, O.
(1973)
"The Tomb of Maket and its Mycenaean Import", *ABSA* 68, pp.105-111

Hankey, V. & Warren, P.
(1974)
"The Absolute Chronology of the Aegean Late Bronze Age", *BICS* 21, pp.142-152.

Hansen, D.P.
(1969)
"Some Remarks on the Chronology and Style of Objects from Byblos", *AJA* 73, pp. 281-284.

Harding, A.F. & Tait, W.J.
(1989)
"The beginning of the end': progress and prospects in Old World chronology", *Antiquity* 63, pp.147-152.

Harding, G.L.
(1953)
"A Middle Bronze Age Tomb at Amman", *PEFA* 6, pp. 14-22.

Harif, A.
(1974)

Harif, A.
(1978a)
"Middle Kingdom Architectural
Elements in Middle Bronze Age Megiddo", *ZDPV* 94, pp. 24-31.

Hennessy, J.B. (1949) *Notes on Atchana Pottery* (unpublished manuscript, University of Sydney)

Hennessy, J.B. (1963) *Stephania: A Middle and Late Bronze Age Cemetery in Cyprus* (London)

Hersher, E. (1976)
"South Coast ceramic Styles at the end of the Middle Cypriot Period", RDAC 1976, pp. 11-19.

Hestrin, R. (1987)
"The Lachish Ewer and Asherah", IEJ 37, pp. 212-214.

Hestrin, R. (1991)
"Understanding Asherah: Exploring Semitic Iconography", BAR 17[5], pp. 50-59.

Heurtley, W.A. (1939)
"A Palestinian Vase-Painter of the Sixteenth Century B.C.", QDAP 8, pp. 21-37.

Hoffmeier, J.K. (1989)
"Reconsidering Egypt's part in the termination of the Middle Bronze Age in Palestine", Levant XXI, pp.181-193.

Hoffmeier, J.K. (1990)
"Some Thoughts on William G. Dever's 'Hyksos, Egyptian Destrations, and the End of the Palestinian Middle Bronze Age'", Levant XXII, pp. 83-89.

Hoffmeier, J.K. (1991)
"James Weinstein's 'Egypt and the Middle Bronze IIIC/Late Bronze IA Transition': A Rejoinder", Levant XXIII, pp.117-124.

Hoffner, H.A. (1980)

Holladay, J.S. (1982)
Cities of the Delta, Part III. Tell el-Maskhuta (Undena, Malibu)
Tell el Mashkuta I (Winona Lake)

Archaeology of Jordan (4 Vols.
Akkadica Supplementa, Leuven)

Hope, C.A.

Pottery of the Egyptian New Kingdom:
Three Studies (Melbourne)

Horn, S.H.

"Scarabs from Shechem",
JNES 21, pp. 1-14.

Horn, S.H.

"Scarabs and Scarab Impressions from
Shechem", JNES 25, pp. 48-56.

Horn, S.H.

"Scarabs and Scarab Impressions from
Shechem", JNES 32, pp. 281-289.

Ibrahim, M. M. &
van der Kooij, G.

"Excavations at Deir 'Alla, 1984",
ADAJ 30, pp. 131-144.

Ingholt, H.

Rapport préliminaire sur sept
Campagnes de fouilles à Hama
en Syrie (1932-1938)
(Copenhagen).

Johnson, P.

"The Middle Cypriote Pottery found in

Kafafi, Z.

"Late Bronze Age Pottery from
Qwelbe (Jordan)", ZDPV 100,
pp.12-29.

Kantor, H. J.

"Syro-Palestinian Ivories", JNES 15,

Kaplan, J.

"Mesopotamian Elements in the Middle
Bronze II Culture of Palestine"
Kaplan, J. (1975) "Further Aspects of the Middle Bronze Age II Fortifications in Palestine", ZDPV 91, pp.1-17.

Kassis, H.E. (1973) "The Beginnings of the Late Bronze Age at Megiddo: A Re-Examination of Stratum X", Berytus 22, pp. 5-22.

Kehrberg, I. (1987) Northern Cyprus in the Transition from the Early to the Middle Cypriote Period (unpub. MA (Hons.) Thesis, University of Sydney)

Kempinski, A.
(1972) Kempinski, A.

Kempinski, A.

Kempinski, A.

(1983) Syrien und Palästina in der letzten Phase der Mittelbronze II-B Zeit (1650-1570 v.Chr) (Wiesbaden)

Kempinski, A.

Kempinski, A.

Kenyon, K.M.

Kenyon, K.M.

(1952) "Excavations at Jericho, 1952", PEQ 84, pp. 62-82.

Kenyon, K.M.

(1953) "Excavations at Jericho, 1953", PEQ 85, pp. 81-95.

Kenyon, K.M.

Kenyon, K.M.
Kenyon, K.M.

Kenyon, K.M.

Kenyon, K.M.

Kenyon, K.M.
(1957b) *Digging up Jericho* (London)

Kenyon, K.M.
(1960a) "Excavations at Jericho", *PEQ* 92, pp. 88-113.

Kenyon K.M.

Kenyon, K.M.

Kenyon, K.M.

Kenyon, K.M.
(1969) "The Middle and Late Bronze Age Strata at Megiddo", *Levant* 1, pp. 25-60.

Kenyon, K.M.

Kenyon, K.M.

Knapp, A.B. (1989a) "Complexity and Collapse in the

Kochavi, M., Beck, P. & Gophna, R. (1979) "Aphek-Antipatris, Tel Poleg, Tel Zeror and Tel Burga: Four Fortified Sites of the Middle Bronze Age IIA in the Sharon Plain", ZDPV 95, pp.121-165.

Kuniholm, P.I. & Striker, C.L.

Kuschke, A.
(1978)

Kuschke, A.
(1979)
"Das Terrain der Schlacht bei Qades und die Annarschwege Ramses' II.", *ZDPV* 95, pp. 7-35.

Lapp, P.W.
(1964)
"The 1963 Excavations at Ta'annek", *BASOR* 173, pp. 4-44.

Lapp, P.W.
(1967)

Lapp, P.W.
(1969)
"The 1968 Excavations at Tell Ta'annek", *BASOR* 195, pp. 2-49.

Lebeau, M.
(1983)

Lenzen, C.J. & Knauf, A.
(1987)
"Notes on Syrian Toponyms in Egyptian Sources I", *GM* 96, pp. 59-64.

Leonard, A.
(1981)

Leonard, A.
(1987)
"The Significance of the Mycenaean Pottery found East of the Jordan River", *SHAJ* III, pp. 261-266.

Liebowitz, H. (1989) "LB IIB Ivories and the Material Culture of the Late Bronze Age", BASOR 275, pp. 63-64.

van Loon, M.N. (1985a) "Hammam et-Turkman on the Balikh: First Results of the University of
van Loon, M.N.
(1985b) "Recent Discoveries in Syria: The Excavations at Hammam et-Turkmann", *PBA* 71, pp. 91-102.

van Loon, M.N.

van Loon, M.N. (ed.)

van Loon, M. N., Meijer, D.J.W. & Akkermans, P.M.M.G.
(1986-87) "Hammam et Turkman and Sabi Abyad on the Balikh: The University of Amsterdam's 1986 Excavations"
AAAS 36-37, pp. 309-324.

van Loon, M.N. & Meijer, D.J.W.
(1987) "Hammam et-Turkman on the Balikh: First Results of the University of Amsterdam's 1986 Excavation",

Loud, G.

Macalister, R.A.S.

Malamat, A.
(1961) "Campaigns of Amenhotep II and Thutmose IV into Canaan", *Scripta Hierosolymitana* 8, pp.118-123.

Malamat, A.
(1984) *Mari and the Bible* (Jerusalem)

Mallet, J.
(1973) *Tell el-Far'ah (Region de Naplouse). L'installation du Moyen Bronze*

Marfoe, L. (1978) *A Preliminary Sequence of Pottery from the 2nd Millenium at Kamid el Loz: The Stratified Material from the Northern Slope, the Palace and the Temple Area* (Unpublished manuscript, University of Chicago, Chicago).

Marfoe, L. (1979) *Tell Kamid el Loz 1963-72*
Marfoe, L.
(1980)

Marfoe, L.
(1982)
"Empire and Ethnicity in Syrian Society: 'From Archaeology to Historical Sociology' Revisited", in *Archeologie au Levant: Recueil R. Saideh*, pp. 463-479, (Lyon)

Matthers, J.M. [ed.]
(1981)
The River Qoueiq, Northern Syria and Its Catchment (Oxford)

Matthiae, P.
(1979a)
"Scavi a Tell Mardikh-Ebla, 1978: rapporto sommario", *St.Eb.* 1, pp.129-184

Matthiae, P.
(1979b)
"Princely Cemetery and Ancestors Cult at Ebla During Middle Bronze II", *UF* 11, pp. 563-569.

Matthiae, P.
(1979c)
"Sondages a Tell Touqan (Syrie), 1978", *Akkadica* 14, pp. 6-16.

Matthiae, P.
(1980a)
Ebla: An Empire Rediscovered (London)

Matthiae, P.
(1980b)

McClellan, T.L. (1985)

McClellan, T.L. (1986a)

McClellan, T.L. (1986b)

McClellan, T.L. (1987)

McClellan, T.L. (1989)

Late Bronze Palestinian Pendants. Innovation in a Cosmopolitan Age (Sheffield).

McGovern, P.E. (1990)
"The Ultimate Attire: Jewelry from a
Canaanite Temple at Beth Shan",
Expedition 32, pp. 16-23.

McNicoll, A.W., Edwards, P.C.,
Hosking, J., Macumber, P.G.,
Walmsley, A.G. & Watson, P.M.
(1986) "Preliminary Report on the University
of Sydney's Seventh Season of
Excavations at Pella (Tabaqat Fahl) in
1985", *ADAJ* 30, pp.174-218

McNicoll, A.W., Smith, R.H.
& Hennessy, J.B. [eds.]
(1982) *Pella in Jordan 1*
(Canberra)

McNicoll, A.W., Smith, R.H.,
Watson, P.M. & Gordon, S. [eds.]
(in press) *Pella in Jordan 2*
(Sydney)

Mellaart, J.
(1982) "Archaeological Evidence for Trade
and Trade Routes between Syria and
Mesopotamia and Anatolia during the
Early and the Beginning of the Middle

Mellink, M.
(1957) REVIEW of C.L. Woolley *Alalakh*,
AJA 61, pp. 395-400.

Merrillees, R.S.
(1963) "Bronze Age Spindle Bottles from the

Merrillees, R.S.
(1968) *The Cypriote Bronze Age Pottery
Found in Egypt* (Lund).

Merrillees, R.S.
(1970) "Evidence for the Bichrome Wheel-
made Ware in Egypt", *AJBA* 1,
pp. 3-27.

Merrillees, R.S.
(1971) "The Early History of Late Cypriote I",

342
Merrillees, R.S.
(1973)
"Syrian pottery from Middle Kingdom Egypt", *AJBA* 2, pp. 51-59.

Merrillees, R.S.
(1974a)
Trade and Transcendence in the Bronze Age Levant (Lund)

Merrillees, R.S.
(1974b)
"Some Notes on Tell el-Yahudiya Ware", *Levant* VI, pp. 193-195.

Merrillees, R.S.
(1975a)
"Cypriote Black Slip Flasks", *Levant* VII, pp. 141-144.

Merrillees, R.S.
(1975b)

Merrillees, R.S.
(1977)

Merrillees, R.S.
(1978)
"'El-Lisht and Tell el Yahudiya Ware in the Archaeological Museum of the American University of Beirut", *Levant* 10, pp. 75-98.

Merrillees, R.S.
(1983)
"Late Cypriote Pottery from Byblos 'Necropole K''*, *RDAC 1983*, pp. 181-192.

Merrillees, R.S.
(1986)
"A 16th Century B.C. Tomb Group from Central Cyprus with Links Both East and West", pp. 114-148, in V. Karageorghis [ed.] *Cyprus Between Orient and Occident* (Nicosia)

Merrillees, R.S. & Tubb, J.N.
(1979)
"A Syro/Cilician Jug from Middle Bronze Age Cyprus", *RDAC 1979*,

Levant III, pp. 56-79.

Montet, P. (1928) Byblos et L'Egypte (Texte, Paris)

Mountjoy, P. (1986) Mycenaean Decorated Pottery (Gothenberg)

Negbi, O. (1970) *The Hoards of Goldwork from Tell el Ajjul* (Gothenberg)

Negbi, O. (1978) "Cypriote Imitations of Tell el-Yahudiyeh Ware from Toumba tou Skourou", *AJA* 82, pp.137-149.

Olsson, I.U. (1987) "Carbon 14 dating and the Interpretation of the Validity of Some dates from the Bronze Age in the Aegean", pp. 4-38, in P. Astrom [ed.], *High, Middle or Low?* (Gothenberg)

Oren, E. D. (1971) "A Middle Bronze Age I Warrior Tomb at Beth Shan" *ZDPV* 87, pp. 109-139.

Oren, E.D. (1973) *The Northern Cemetery at Beth Shan* (Leiden)

Ory, J. (1937) "Excavations at Ras el-'Ain II", QDAP 6, pp. 99-120.

Ory, J. (1948) "A Bronze Age Cemetery at Dhahrat el Humraiya", QDAP 13, pp. 75-89.

Parr, P.J. (1968) "The Origin of the Rampart Fortifications of Middle Bronze Age Palestine and Syria", ZDPV 84, pp. 18-45.

Petrie, W.M.F. (1931) Ancient Gaza I (London)
Petrie, W.M.F. (1932) *Ancient Gaza II* (London)
Petrie, W.M.F. (1933) *Ancient Gaza III* (London)
Petrie, W.M.F. (1934) *Ancient Gaza IV* (London)

Posener, G. (1940) *Princes et pays d'Asie et de la Nubie* (Brussels).
Potts, T.F. (1987) 'A Bronze Age Ivory-Decorated Box from Pella (Pahel) and its Foreign Relations', *SHAJ* III, pp. 57-71.
Potts, T.F., Bourke, S.J., Edwards, P.C. & Richards F.V.
"Preliminary Report on the University of Sydney's Eighth and Ninth Seasons of Excavation at Pella in Jordan",
ADAJ 32, pp.130-157.

"Preliminary Report on a Sixth Season of Excavations by the University of Sydney at Pella in Jordan (1983/84)",

"The 1959 Deep Sounding at Harran in Turkey",
Levant II, pp. 63-94.

Prag, K. (1973)
"A Tell el-Yahudiyyeh Style Vase in the Manchester Museum",

"A Tell el Yahudiyyeh Ware Fish Vase: An Additional Note",
Levant VI, p.192.

Prag, K. (1985)

Prausnitz, M.W. (1975)
"The Planning of the Middle Bronze Age Town at Achzib and its Defenses",

Price-Williams, D. (1977)
The Tombs of the Middle Bronze Age II Period from the '500' Cemetery at Tell Fara (S) (London)

Pritchard, J.B. (1963)
The Bronze Age Cemetery at Gibeon
(Philadelphia)

Pritchard, J.B. (1975)
*Sarepta: A Preliminary report on the
Iron Age (Beirut).

Rowe, A. (1936) A Catalogue of Egyptian Scarabs,

"The Earthquake of May 19, A.D. 363",
BASOR 238, pp. 47-64.

"The Earthquake Chronology of
Palestine and Northwest Arabia from
the 2nd through the Mid-8th Century

Saghieh, M. (1983)

Byblos in the Third Millennium B.C.
(Warminster)

"Middle Bronze Age Faience Vessels
From Palestine", *ZDPV* 96,
pp. 101-120.

Salles, J-F. (1980)

La Necropole "K" de Byblos (Paris).

Sasson, J.M. (1966)

"A Sketch of North Syrian Economic
Relations during the Middle Bronze
Age", *JESHO* 9, pp. 161-181.

Save-Soderbergh, T. (1951)

"The Hyksos Rule in Egypt",
JE A 37, pp. 53-71.

"Les Relations entre Ebla et l'Egypte
au IIIeme et au IIeme Millenaire av.J.-
Chr.", pp. 67-73, in H. Waetzoldt & H.
Hauptmann (eds.) *Wirtschaft und
Gesellschaft von Ebla* (Heidelberg)

Schaeffer, C.F.A. (1938)

"Les fouilles de Ras Shamra-Ugarit:
Neuvième Campagne (Printemps
1937)", *Syria* 19, pp.196-255.

Schaeffer, C.F.A. (1939)

Ugaritica I (Paris).

Schumacher, G. (1908) *Tell el Mutesellim I* (Leipzig)

Seger, J. D. (1974) "The Middle Bronze II C Date of the East Gate at Shechem", *Levant* VI, pp.117-130.

Seger, J.D. (1975) "The MB II Fortifications at Shechem and Gezer: A Hyksos Retrospective", 351

"Reflections on the Gold Hoard from Gezer", *BASOR* 221, pp.133-139.

Seton Williams, M.V. (1953) "A Painted Pottery of the Second Millenium from Southern Turkey and Northern Syria", *Iraq* 15, pp. 56-68.

Shipton, J. (1939) *Notes on Megiddo Pottery Levels VI-XX* (Chicago).

Sjoqvist, E. (1940) *Problems of the Late Cypriot Bronze Age* (Stockholm).

Smith, W.S. (1969) "Influence of the Middle Kingdom of Egypt in Western Asia, Especially in
Byblos", *AJA* 73, pp. 277-281.

Spalinger, A.J.
(1974)
"Some Notes on the Battle of Megiddo and Reflections on Egyptian Military Writing", *MDAIK* 30, pp. 221-229.

Spalinger, A.J.
(1978)
"A New Reference to an Egyptian Campaign of Thutmosis III in Asia", *JNES* 37, pp. 35-41.

Spalinger, A.J.
(1979)
"Some Additional Remarks on the Battle of Megiddo", *GM* 33, pp. 47-54.

Spalinger, A.J.
(1982)
Aspects of Military Documents of the Ancient Egyptians (New Haven).

Stager, L.
(1991)
"Ashkelon of the Canaanites", *BAR* 17[1], pp. 1-16

Stern, E [ed.].
(1984)
Excavations at Tel Mevorakh. Part Two: The Bronze Age (Jerusalem)

Stern, E. & Saltz, D.L.
(1978)
"Cypriote Pottery from the Middle Bronze Age Strata of Tel Mevorakh", *IEJ* 28, pp. 137-145.

Stewart, J.R.
(1957)
"When did Base Ring Ware First Appear in Palestine? ", *BASOR* 138, pp. 47-49.

Stewart, J. R.
(1974)
Tell el Ajjul: The Middle Bronze Age Remains (Goteborg).

Stiebing, W.H.
(1971)

Suleiman, A
(1983)
"Fouilles d'el Ansari-Alep",

353

Suleiman, A. & Gritsenko, A. (1987) "Landmarks of the Ancient City of Ansari (Yamhad)", *Syria* 64, pp. 231-243.

Toombs, L.E. (1972) "The Stratigraphy of Tell Balatah

Toombs, L.E. (1976)
"The Stratification of Tell Balatah (Shechem)", _BASOR_ 223, pp. 57-59.

"The Third Campaign at Tell Balatah (Shechem)", _BASOR_ 161, pp. 11-54.

Toombs, L.E. & Wright, G.E. (1963)
"The Fourth Campaign at Tell Balatah (Shechem)", _BASOR_ 169, pp. 1-60.

Trendall, A.D. & Stewart, J.R. (1948)
Handbook to the Nicholson Museum (Sydney, 2nd. edn., rev.)

Tubb, J.N. (1980)
"A Reconsideration of the date of the Second Millenium Pottery from the recent excavations at Terqa", _Levant_ XII, pp. 61-68.

Tubb, J.N. (1983)

Tufnell, O. (1962)

Tufnell, O. (1969)
"The Pottery from Royal Tombs I-III at Byblos" _Berytus_ 18, pp. 5-33.

Tufnell, O. (1975)
"Tell el Ajjul", pp. 52-61, in _Encyclopedia of Archaeological_
Excavations in the Holy Land,

Tufnell, O.
(1975-76)
"Tomb 66 at Ruweise, near Sidon",
Berytus 24, pp. 5-25.

Tufnell, O.
(1978)
"Graves at Tell el Yahudiyeh: Reviewed after a Lifetime",

Tufnell, O.
(1980)
"A Review of the contents of Cave 303 at Tell el Ajjul",

Tufnell, O.
(1984)
Studies on Scarab Seals. Vol. II.
(Warminster)

Tufnell, O., Inge, C.H. & Harding, L.
(1940)
Lachish II: The Fosse Temple (London)

Tufnell, O., Inge, C.H. & Harding, L.
(1958)
Lachish IV: The Bronze Age (Text and Plates, London)

Tufnell, O. & Ward, W.A.
(1966)
"Relations between Byblos, Egypt and Mesopotamia at the end of the Third Millenium B.C.: A Study of the Montet Jar",
Syria 43, pp.165-241.

Ussishkin, D.
(1989)
"Notes on the Fortifications of the Middle Bronze II Period at Jericho and Shechem",
BASOR 276, pp. 29-53.

Ussishkin, D.
(1990)
"Notes on the Middle Bronze Age Fortifications at Hazor",
EI 21, pp.1-5.

Van Seters, J.
(1966)
The Hyksos: A New Interpretation
Vermeule, E. & Karageorghis, V.

Vermeule, E. & Wolsky, F.

Vermeule, E.D.T. & Wolsky, F.Z.
(1990) *Toumba tou Skourou: A Bronze Age Potters' Quarter on Morphou Bay in Cyprus* (Boston)

(forthcoming) "Preliminary report on the University of Sydney's Eleventh and Twelfth Season of Excavation, *ADAJ* 37 [forthcoming].

Ward, W.A.
(1971) *Egypt and the East Mediterranean World 2200-1900 B.C.* (Beirut)

Ward, W.A.
(1979) "Remarks on some Middle Kingdom Statuary found at Ugarit", *UF* 11, pp. 799-806

Ward, W.A.

Warren, P.M.
(1987) "Absolute Dating of the Aegean Late Bronze Age", *Archaeometry* 29, pp. 205-211.

Warren, P. & Hankey, V.
(1989) *Aegean Bronze Age Chronology*

357
Watzinger, C. (1929) "Tell el Mutesellim II" (Leipzig).

Weinstein, J.M. (1975) "Egyptian Relations with Palestine in the Middle Kingdom", BASOR 217, pp. 1-16.

Williams, B. (1975) Archaeological and Historical Problems of the Second Intermediate

Woolley, C.L. (1934) "The Prehistoric Pottery from Carchemish", *Iraq* 1, pp. 146-162.

Wright, G.E. (1956) "The First Campaign at Tell Balatah (Shechem)", *BASOR* 144, pp. 9-20.

Wright, G.E.

Wright, G.R.H. (1968) "Tell el Yahudiyyeh and the Glacis" ZDPV 84, pp. 1-17.

Yadin, Y. (1975) Hazor: The Head of all those Kingdoms (London)

Yadin, Y., Aharoni, Y., Amiran, R., Dunayevsky, I. & Perrot, J.
(1958) *Hazor I* (Jerusalem).

Yadin, Y., Aharoni, Y., Amiran, R., Dunayevsky, I. & Perrot, J.
(1960) *Hazor II* (Jerusalem).

Yadin, Y., Aharoni, Y., Amiran, R., Dunayevsky, I. & Perrot, J.
(1961) *Hazor III-IV. The Plates* (Jerusalem)

Yadin, Y., Aharoni, Y., Amiran, R., Dunayevsky, I., Perrot, J. & Ben-Tor, A.
(1989) *Hazor III-IV. The Text* (Jerusalem)

Yon, M.

Zevulun, U.

Addendum to Bibliography

Cadogan, G.

Hult, G.
(1986) *Cypriote Bronze Age Ashlar Masonry* (Gothenberg).

Mathias, V. & Parr, P. J.

McGovern, P. E.
(forthcoming) *Beth Shan Levels IX - VII* (Philadelphia),

361
APPENDIX 1

CYPRiot AND MYCENAEAN POTTERY FROM
HAMa H-G

Introduction

The identification of the fine ware imports from Hama has been contentious since Ingolt's first publication of the material. Between Ingolt's preliminary report and Fugmann's publication of the associated architecture, both Kantor and Amiran highlighted the importance of correct and accurate identification of the scarce but apparently diagnostic fine wares. The single most distinctive of the Hama fine wares is the Cypriot White Slip ware.

Through the kindness of Dr. Ingolf Thüesen of the Carsten Niebuhr Institute of the University of Copenhagen, and Dr. John Lund, of the Copenhagen National Museum, the author was able to examine and draw the Cypriot material, in March of 1988. A short Catalogue follows.

1. WHITE SLIP I BOWL: BICHROME II DECORATION (Fig. 71:1)

5A 533/012v
[Hama H1] Fairly finely levigated clay with some orangey grog and a few white lime grits. Oblique hand burnishing ext. and horizontal hand burnishing int. Decoration in dark chocolate brown and pale orangey-brown ext.

2. WHITE SLIP II BOWL: FRAMED LOZENGE STYLE (Fig. 71:2)

4B 556 012x
[Hama G3] Fairly finely levigated clay with a few white lime grits. Fired pale bluey-grey throughout. Grey-white slip ext./int. Horizontal decoration in dark chocolate brown, vertical decoration in lighter orangey-brown. Discoloured ashy grey ext. only, (from kiln stacking??)
3. **WHITE SLIP II BOWL: LADDER PATTERN** (Fig. 71:3)

7B 460 O13 X^6 (ink.)
or O13 IX^4 (pencil)
[Hama G1] Fairly finely levigated clay with quite some white grits. Fired hard gritty pinkish tan-brown throughout. Thick off white slip ext./int. Irregular hand burnishing ext./int.

4. **WHITE SLIP II [EARLY]** (Fig. 71:4)

2D 204 G11 B^VI
[Hama G3] Fairly finely levigated clay with quite some white lime grits. Fired hard gritty dark brown throughout. Thick off white slip ext./int. Irregular hand burnishing ext./int.

5. **MYCENAEAN IIIA2/IIB1e STIRRUP JAR b/s.** (Fig. 71:5)

7B 459 O13X^6
[Hama G3] Very finely levigated clay with some small white grits. Fired orangey buff throughout. Slipped in pale buff ext., and pale orangey buff int.. Highly burnished on wheel ext. Light Red decoration ext. only.

6. **MYCENAEAN IIIB SQUAT STIRRUP JAR (??) b/s.** (Fig. 71:6)

2E 76
[Hama G1] Quite finely levigated clay with some small white and a few small black grits. Fired orange throughout. Slipped in buff ext./int. Painted decoration in very dark chocolate brown to black ext. only. Wheel burnished, ext. only.
Comments

Cat. No.1, the Cypriot Bichrome WS I piece, had been identified as WS I by both Ingblt and Fugmann, but both attribute it to Phase G3. However, Fugmann notes that the sherd was found in the makeup/fill of that level, which he suggests as deriving, at least in part, from the preceding H1 destruction. Through the kindness of Dr. Ingolf Thliesen, a check with the excavation records held at the National Museum, suggests that the sherd in question is more likely to derive from the H1 destruction than the G3 fill layers, although certainty cannot be guaranteed given the methods of recording then employed by the Danish Hama expedition.

Cat. No.2, an early/middle WS II piece, finds excellent parallels with the Cypriot material found at Amarna. Whether the Amarna dumps are as closed a deposit as was first hoped is now something of a contentious issue, but it seems that the proposed association of Hama G3, and perhaps its destruction, with the general horizon of the Amarna period, would find some additional support through the associations of this piece. However, as the Mycenaean IIIA2/IIB1 distributions illustrate, the Amarna period and the so-called 'post-Amarna' period should probably still be considered as one, in all archaeological discussions. This makes the likelihood of differentiating between an Amarna period, a post-Amarna period, and an early Nineteenth Dynasty period, destruction virtually impossible, barring extraordinary find circumstances.

Cat. No. 3, a sherd of late White Slip II, would normally be placed towards the middle of the Thirteenth Century, and therefore causes little difficulty with its placement in Hama G1, a fairly typical LBII horizon.

Cat. No. 4, a difficult sherd to identify, but probably an early White Slip II piece, would normally date to the middle of the Fifteenth Century B.C.. Its Hama G3 findspot causes little difficulty, providing that one accepts Astour's largely textually-based observations on the continuity of settlement at Hama throughout the Late Bronze Age.

Cat. No. 5, a sherd of either Mycenaean IIIA2/IIB1, causes little difficulty with its Hama G3 findspot. Again, as with Cat. No. 2, the sherd finds good parallels in the Mycenaean deposit at Amarna, and adds further support to the suggested equation of the Hama G3 and the Amarna horizons.

Cat. No. 6, a difficult sherd to classify, is probably a Mycenaean IIB Squat Stirrup Jar, although the ware might well be Late Minoan. Satisfactory parallels are difficult to identify, but the overall identification as IIB does not seem to be in question. Either way, the sherd's presence in the Hama G1 assemblage does not cause any difficulty.
APPENDIX 2

THE TELL AL JUDAIDEH SEQUENCE

Introduction

Tell al Judaidah is a mound of approximately four hectares, located some 25 kilometres northeast of the Orontes River, on the east bank of the Nahr al-Judaidah/Kizil Irk stream.

It is strategically situated slightly northwest of the narrow gap in the Jabal Sim'an, through which the main Antioch-Aleppo roadway runs. The site was first located by the Oriental Institute's "Mounds in the Plain of Antioch" survey in 1933, and investigated by the Oriental Institute's "Syrian-Hittite Expedition" between 1933 and 1936.

Excavation began on the northwest slopes of the thirty metre high mound in 1933, and continued over the three field seasons of 1933/34, 1934/35 and 1935/36. Eleven small trenches (TT1 to TT11) were investigated in the northwest slope area during the first two seasons, and a major stratigraphic probe, numbered JK3, 15 by 10 metres in extent, was excavated in the third season.

Also during the third season, a long narrow step trench, numbered TT20, some 4 metres wide and ultimately 47 metres long, was cut into the southwest slope of the mound. This was to constitute the second stratigraphic probe into the mound, and was to be the only probe to reveal an entire Second Millennium sequence.

Braidwood and Braidwood published the early material (Amuq Phases A-J) from JK3 (Phases 1-28) and TT 20 (Phases X-XV) in 1960, and Swift prepared the Middle Bronze through Iron Age sequence (Amuq K-O/Judaidah TT 20 Step IX-I) for publication in his 1958 PhD. In the event this was never published.

Judaideh in the Second Millenium

Through the kindness of the Curator of the Oriental Institute Museum, Mr. Ray Tindall, and with the permission of Dr. Rudolph Dornemann of the Milwaukee Public Museum, the author was able to study the Second Millennium sequence from Tell al Judaidah in May of 1988.

1 Braidwood (1937), pp.4-7.
2 For reports on the early assemblages (A-J), see Braidwood and Braidwood (1960); For late period structural remains at Judaideh and other sites (K-S), see Haines (1971); pp.1-2 and Pl.53 for location of Trench TT20.
3 Braidwood and Braidwood (1960), passim.
4 Swift (1958), passim.
Attention is concentrated on the Step IX-IV material from Trench TT 20, as this came from a single, if somewhat unsatisfactory, stratigraphic unit covering most Second Millennium strata (Amuq Phase K-M) present at Judaideh. All Step IX-IV material from TT 20 retained at the Oriental Institute was examined, much was catalogued and most diagnostic material drawn.

Catalogue (Figs. 72-86)

The following short catalogue is in no way definitive, as it was taken primarily to facilitate comparisons with the Tell Nebi Mend sequence. Comparison with the Tell Nebi Mend and other sequences suggest that some modification to Swift's chronology may prove necessary. This will be explored in the discussion that follows the catalogue.

Step IX.1-2: Step VIII.1-2. 5: Judaideh K/MB IIA (Figs. 72-75)

1. Carinated Bowl (IX.1)
 "Oatmeal" pinkish tan throughout. Pale browny buff slip ext./int. Many small black stone and red grog and a few lime and chert grits.

2. Fine Carinated Bowl (IX.1)
 Traces of greyish core and pinkish pale browny buff surfaces. A few small black stone, lime and chert grits. Self slip ext./int. Band of uneven reddish brown paint horizontally around rim ext. over which a thin band of white paint has been applied. Band of uneven reddish brown paint around rim int.

3. Fine Bowl (VIII.2)
 Pale browny buff throughout. Some small lime and a few chert and black stone grits. Self slipped in orangey pinkish buff ext./int.

4. Open Bowl (IX.2)
 Traces of greyish core and pinkish pale browny buff surfaces. A few small black stone, lime and chert grits.

5 ibid. pp.2-5. The internal TT20 phasing, called "Steps" ranged from XV-I, with the Second Millennium Amuq K-M material contained in TT20 Step IX-IV.
5. Open Bowl (VIII.1)
Self slipped. Burnished ext. only.
Light greyish buff throughout. A few orangey grog, chert and lime grits.
Self slipped ext./int.

6. Open Bowl (VIII.2)
Dark grey throughout. Many large lime, some brown grog and chert, and a few small black stone grits. Slipped in dark reddish brown ext./int.

7. Open Bowl (VIII.2)
Traces of char grey core and light grey surfaces. Some small lime, brown grog and straw (?) inclusions. Self slipped in light grey ext./int. Wet smoothed on wheel. Wheel burnished (?) .

8. Open Bowl (VIII.2)
Light char grey throughout. Some lime, brown grog and a few black stone grits. Self slipped ext./int.

9. Deep Bowl (VIII.1)
"Oatmeally pinkish browny buff throughout. Very many brown grog, lime and black stone and some chert grits. Pinkish buff self slip ext./int.(?)

10. Deep Bowl (VIII.1)
"Sandy" pale browny buff throughout. Very many small and some medium lime, some black stone and brown grog grits. Thick orangey brown self slip ext./int.

11. Deep Bowl (VIII.2)
Light ashy grey core and orangey brown surfaces. Many orangey grog and lime, and a few chert grits. Self slipped (?) .

12. Storage Jar (IX.1)
Char grey core and greyish tan brown surfaces. Many quartz and some lime grits. Greyish chocolate brown slip ext./int. Two wide shallow grooves around upper rim surface.

367
13. Storage Jar (IX.1)
Traces of greyish core and pinkish "oatmeal" to brick red surfaces. Many small medium and large lime, some black stone and a few red grog grits. Light buff self slip ext./int. Seven (+) Incised Comb decoration around shoulder ext.

14. Storage Jar (VIII.1)
Pale pinkish buff throughout. Very many lime, some chert and a few black stone grits. Thick pale greenish buff slip ext./int.

15. Storage Jar (VIII.1)
Pinkish buff throughout. Many small lime, orangey grog and black stone grits. Pale browny buff slip ext./int.

16. Storage Jar (VIII.5)
Orangey tan brown throughout. Many small white lime, some orangey grog and black stone grits. Pale greenish buff slip ext. only

17. Storage Jar b/s (VIII.1)
Pale browny buff throughout. A few lime, orangey grog and brown stone grits. Off white slip ext./int. Painted decoration in dark chocolate brown, and Incised Three Comb decoration of 'Jab' type.

18. Storage Jar (R/N) (VIII.1)
Pinkish buff throughout. Many small lime, orangey grog, chert and black stone grits. Pale browny buff self slip ext./int.

19. Storage Jar (R/N) (VIII.2)
Pale browny buff at core and orangey buff at surfaces. Many small lime, some orangey grog and a few chert and black stone grits. Orangey buff self slip ext./int.
20. Storage Jar (R/N)
Fired pale browny buff throughout. Very many small black stone and some orangey grog grits. Mottled buff to orangey buff self slip ext./int.

21. Cooking Pot (IX. 1)
Fired dark char grey throughout. Many quartz, some chert and a few black stone grits. Greyish tan self (?) slip ext./int.

22. Cooking Pot (VIII. 1)
Browny char grey throughout. Many small, medium and large lime and orangey grog, some chert and a few black stone grits. Self slipped in orangey buff ext./int.

23. Cooking Pot (VIII. 1)
Char grey core and orangey brown surfaces. Many quartz, some chert and a few black stone grits. Self slipped ext./int.

24. Cooking Pot (VIII. 1)
Traces of grey core and greyish brown surfaces. Many quartz and black stone, and some chert grits. Thick chocolate brown slip ext./int.

25. Cooking Pot (VIII. 2)
Traces of pale brown core and dark tan surfaces. Many chert and a few brown grog grits. Self slipped (?)..

26. Cooking Tray (VIII. 5)
"Gritty" orangey buff throughout. Many small, medium and large chert and quartz, some black stone and a few white lime grits. Greyish buff self slip ext./int.

27. Jar (TNN) (IX. 1)
Yellowish browny buff core and pinkish buff surfaces. Many small black stone, some lime and a few red grog grits. Pinkish dark chocolate brown slip
28. Jar (TNN) (VIII.1)
Ext./int. Wet smoothed ext. only.
Dark char grey to black core and dark tan brown surfaces. Many quartz and some chert grits. Tan to chocolate brown self slip ext./int.

29. Jar (TNN) (VIII.2)
"Oatmeal" pinkish buff throughout. Many small orangey grog and black stone, and a few chert and lime grits. Pale greenish buff slip ext./int.

30. Jar (TNN) (VIII.2)
Pale greenish grey throughout. Many small orangey grog and black stone and a few lime grits. Self slipped ext./int.

31. Jar (TNN) (VIII.2)
"Oatmeal" pale browny buff throughout. Many small lime and orangey grog, some black stone and chert grits. Self slipped ext./int.

32. Jar (S/N) (IX.1)
Greyish tan brown core and orangey pinkish surfaces. Many small, medium and large lime, chert and black stone and a few red grog grits. Self slipped ext./int. Four wide shallow bands of incision horizontally around shoulder and upper body ext.

33. Jar (S/N) (IX.1)
Pale browny buff throughout. Many small black stone, dark brown stone, and a few lime and quartz grits. Self slipped ext./int. (?)

34. Jar (S/N) (VIII.1)
Tan brown core and orangey pinkish surfaces. Many small medium and large lime, chert and black stone, and a few orangey grog grits. Self slipped ext./int.

NB: This sherd joins with Cat. No. 32 (Jar S/N) from IX.1.
35. Jar (S/N) (VIII.1)
"Sandy" tan brown throughout. Many small black stone, some orangey grog and a few lime grits. Greenish buff slip ext. only.

36. Fine Jar (IX.1)
Sooty char grey core and orangey pinkish surfaces. Many quartz and lime, and a few black stone and chert grits. Pale browny buff self slip ext./int.

37. Fine Jar (VIII.1)

38. Fine Jar (VIII.1)
Pale browny buff throughout. Some lime and a few orangey grog and black stone grits. Pale buff self slip ext./int.

39. Fine Jar (VIII.1)
"Sandy" pale browny buff throughout. Many small black stone, some orangey grog and a few lime grits. Pale greenish buff slip ext./int.

40. Fine Jar (VIII.1)
Traces of greyish core and pale browny buff surfaces. Some lime and black stone and a few orangey grog grits. Thin greenish buff slip ext./int.

41. Fine Jar (VIII.2)
Traces of pale browny buff core and pinkish buff surfaces. Many small black stone, some orangey grog and a few lime grits. Self slipped ext./int.

42. Fine Jar (VIII.2)
"Oatmeal" pale tan brown throughout. Many small lime, some orangey grog, and a few black stone and chert grits.
43. Fine Jar (VIII.2)
 Off white slip ext./int.
 Pinkish pale browny buff throughout. Many small black stone, orangey grog and lime, and a few chert grits. Off white slip ext./int.

44. Fine Jar (VIII.2)
 Traces of tan brown core and orangey buff surfaces. Many small and medium to large lime, some orangey grog and a few black and brown stone grits. Self slipped ext./int. Decorated in fugitive dark chocolate brown paint. Freize of Latticed Triangles.

45. Fine Jar (VIII.5)
 Pale browny buff throughout. Many small black stone, orangey grog and a few white lime grits. Greenish pale browny buff self slip ext./int.

46. Jug (VIII.1)
 Light grey core and mottled orange to tan brown surfaces. Many small lime and a few orangey grog grits. One handle (stuck on) joins below rim. Decoration in reddish brown paint. Freize of Hollow Triangles below rim ext.

47. B/S Fine Bowl (IX.1)
 Fine buff to pinkish buff throughout. White slip ext./int. Black and red painted lozenge decoration ext.

48. Ring Base (IX.1)
 Greyish greeny buff throughout. Many small quartz and black stone grits. Self slipped (?) ext./int.

49. Ring Base (IX.1)
 Greenish buff throughout. Some small black stone and lime and a few chert grits. Off white slip ext./int.

50. Ring Base (IX.1)
 Traces of tan brown core and pinkish buff surfaces. Many small lime, black stone and chert, and a few orangey
51. Ring Base (IX.1)
Grog grits. Self slipped ext./int.

Pale browny buff throughout. Many small lime, some reddish grog and a few black stone grits. Orangey brown self slip ext./int.

52. Ring Base (VIII.2)
Pale browny buff throughout. Many small orangey grog and black stone, and a few lime grits. Thick greenish buff slip ext. only.

53. Flat Base (IX.1)
Greenish grey throughout. Many small black stone and lime, some quartz and orangey grog grits. Self slipped (?) ext./int.

54. Flat Base (IX.1)
Greenish grey throughout. Many small black stone, some chert and brown stone and a few quartz grits. Greyish buff self slip ext./int.

55. Flat Base (VIII.2)
Dark grey core and dark greyish chocolate brown surfaces. Some small and medium lime, some brown grog (?) and a few black stone grits. Friable char grey slip ext./int.

56. Solid Flat Base (IX.1)
Pale browny buff throughout. Some small black stone and lime grits. Pinkish buff self slip ext./int.

57. Disk Base (IX.1)
Pale browny buff throughout. Many small lime and some black stone grits. Orangey pinkish buff self slip ext./int.

58. Disk Base (VIII.1)
Greenish buff throughout. Many small lime and some black stone grits. Self slipped ext./int. Base slightly convex.

373
59. Fine Bowl (VII.1)
 Pale orangey buff throughout. Many small black stone and lime, some quartz and a few orangey grog grits. Self slipped ext./int.

60. Fine Bowl (VII.4)
 Pale browny buff throughout. Many small black stone, white lime and orangey grog grits. Self slipped ext./int.

61. Fine Bowl (VI.1)
 Pale browny buff throughout. Many small black stone, white lime and orangey grog grits. Self slipped ext./int.

62. Open Bowl (VII.4)
 Dark chocolate brown throughout. Self slipped ext./int. Burnished on wheel ext.

63. Open Bowl (VI.1)
 Brick red throughout. Dark greyish brown slip ext./int. Wheel burnished ext./int.

64. Open Bowl (VI.1)
 Dark chocolate brown throughout. Dark char grey slip ext./int. Wheel burnished ext./int.

65. Deep Bowl (VIII.3)
 "Oatmeally" pinkish buff throughout. Pale greenish buff slip ext./int.

66. Deep Bowl (VIII.3)
 Pinkish pale browny buff throughout. Many small black stone and white lime, some orangey grog and a few grey chert grits. Self slipped (?)..

67. Deep Bowl (VI.1)
 Orangey buff throughout. Pale buff self slip ext./int.
68. Storage Jar (VIII*)
Traces of light greyish buff core and tan brown surfaces. Many small grey chert and white lime, some black stone and orangey grog grits. Self slipped ext./int.

69. Storage Jar (VIII.3)
Orangey pinkish buff core and pale browny buff surfaces. Many small lime and brown stone, some black stone and orangey grog grits. Self slipped ext./int.

70. Storage Jar (VIII.3)
Pinkish pale browny buff throughout. Many small orangey grog and black stone, and a few lime and grey chert grits. Thick greenish buff slip ext. only.

71. Storage Jar (VII.2)
Pale browny buff throughout. Many small grey and black stone, some white lime and a few chert grits. Thick greenish buff self slip, fired greenish buff ext. and buff int.

72. Storage Jar (VII.3)
Pale browny buff throughout. Many small black stone and orangey grog and a few lime grits. Greenish buff self slip, fired greenish buff ext. and orangey buff int.

73. Storage Jar (VII.4)
Pale pinkish brown throughout. Many small lime, some orangey grog and a few black stone grits. Buff self slip ext./int.

74. Storage Jar (VII.6)
Pale browny buff throughout. Pale buff self slip ext./int.

75. Storage Jar (VII.3)
Pale browny buff throughout. Pale buff self slip ext./int.
76. Storage Jar (VII.1)
Pale browny buff throughout. Buff self slip ext./int.

77. Storage Jar (VII.1)
Pale buff throughout. Self slipped ext./int.

78. Storage Jar (VII.4)
Pale greenish buff throughout. Self slipped ext./int.

79. Storage Jar (VII.3)
Pale browny buff throughout. Buff self slip ext./int.

80. Storage Jar (VII.3)
Pinkish pale browny buff throughout. Many small white lime, some chert and a few orangey grog and black stone grits. Thick orangey buff self slip ext./int. Five wide shallow concave grooves around upper rim.

81. Storage Jar (VII.4)
Orangey buff throughout. Self slipped ext./int.

82. Storage Jar (VII.4)
Greyish buff core and pinkish orangey buff surfaces. Self slipped ext./int.

83. Holemouth Jar (VIII.3)
Traces of light grey core and pale browny buff surfaces. Many small black stone and white lime, and some large grey chert grits. Thick char grey slip ext./int.

84. Cooking Pot (VIII*)
Tan brown throughout. Many small black stone and white lime and a few orangey grog grits. Thick pale greenish buff slip ext./int.

85. Cooking Pot (VIII.3)
Light grey core and orangey buff surfaces. Many small and medium grey chert, some white lime and a few black stone and orangey grog grits. Orangey tan brown self slip ext./int.
86. Cooking Pot (VII.4)
Greyish brown core and reddish brown surfaces. Many white lime, orangey grog and black stone grits. Self slipped ext./int.

87. Cooking Pot (VII.4)
Traces of greyish brown core and reddish brown surfaces. Many small lime, black stone and grey chert grits. Dark brick red slip ext./int.

88. Cooking Pot (VII.1)
Orangey reddish brown throughout. Many small grey chert, lime and orangey grog and a few black stone grits. Self slipped ext./int.

89. Cooking Pot (VII.5)
Orangey brick red throughout. Dark brown slip ext./int.

90. Jar (S/N) (VII.3)
Pinkish brown throughout. Some black stone and white lime and a few orangey grog and grey chert grits.

91. Jar (S/N) (VII.*)
Fired brick red throughout. Very many grey chert and white lime, some black stone and a few orangey grog grits. Mottled black to brick red self slip ext./int.

92. Jar (S/N) (VII.*)
Greenish buff throughout. Many small medium and large white lime, some grey chert, and a few black stone and orangey grog grits. Self slipped ext./int.

93. Jar (S/N) (VII.3)
Pale pinkish orangey buff throughout. Many small black stone, lime and orangey grog grits. Self slipped in buff ext./int. Painted decoration in dark chocolate brown. Slashes around leading/upper edge of rim; Three horizontal lines around body below
rim; Groups of five oblique lines pendant from horizontal bands in freize-like format, creating 'Hollow Triangle' Effect.

94. Jar (S/N) (VII.3)

Pinkish orangey buff throughout. Many small black stone and white lime, some grey chert and orangey grog grits. Thick buff slip ext./int. Painted decoration in dark chocolate brown. Slashes around leading/upper edge of rim. One thick band around body below rim; Messy pendant lines below band around body ext.

95. Jar (S/N) (VII.3)

Light grey throughout. Very many white lime, some black stone and a few orangey grog grits. Pinkish pale buff slip ext./int. Painted decoration in brown, somewhat faded. One band around body below rim. A second band around upper body; Oblique lines pendant from second band.

96. Jar (S/N) (VII.2)

Pale browny buff throughout. Many small black stone, white lime and orangey grog grits. Self slipped ext./int. Decoration in dark brown to black paint. Horizontal band around body below rim with oblique lines pendant around body ext.

97. Jar (S/N) (VII.1)

Pale greenish grey throughout. Self slipped ext./int.

98. Jar (S/N) (VII.1)

Pinkish buff throughout. Buff self slip ext./int.

99. Jar (TNN) (VII.3)

Greyish pale browny buff throughout. Many small and medium white lime, some black stone and a few chert grits. Buff self slip ext. only.
100. Jar (TNN) (VII.3) Greenish buff throughout. Many small white lime, some black stone and a few orangey grog grits. Self slipped (?).

101. Jar (TNN) (VII.2) Traces of pinkish buff core and greenish buff surfaces. Many small white lime, some black stone and a few orangey grog grits. Self slipped (?).

102. Jar (TNN) (VII.3) Pale browny buff throughout. Many small black and brown stone, some chert and white lime and a few orangey grog grits. Self slipped ext./int.

103. Jar (TNN) (VII.3) Pale browny buff throughout. Very many white lime, some black stone and a few chert grits. Self slipped ext./int.

104. Jar (TNN) (VII.3) Orangey brown throughout. Many small red stone and white lime, some black stone and a few grey chert grits. Self slipped ext./int.

105. Jar (TNN) (VII.3) Traces of grey core and greenish buff surfaces. Many small black stone and white lime, some brown stone and a few orangey grog grits. Greenish buff self slip ext./int.

106. Jar (TNN) (VII.2) Pinkish pale brown throughout. Very many small black stone and white lime, some orangey grog and a few chert grits. Pale browny buff self slip ext./int.

<table>
<thead>
<tr>
<th>No.</th>
<th>Item Description</th>
<th>Color/Texture Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.</td>
<td>Jar (TNN) (VII.4)</td>
<td>Pale orangey brown throughout. Self slipped ext./int.</td>
</tr>
<tr>
<td>114.</td>
<td>Fine Jar (VII.1)</td>
<td>Pinkish orangey buff throughout. Many small black stone, some orangey grog and a few white lime grits. Slipped in pale greenish buff ext./int.</td>
</tr>
<tr>
<td>115.</td>
<td>Fine Jar (VII.1)</td>
<td>Pale browny buff throughout. Self slipped ext./int.</td>
</tr>
<tr>
<td>116.</td>
<td>Fine Jar (VII.4)</td>
<td>Pale browny buff throughout. Many small black stone and orangey grog grits. Greenish buff self slip, fired greenish buff ext. and orangey buff int. Painted decoration in dilute brown. One band horizontally around body below rim; Oblique pendant lines around body ext; Below this a second band horizontally around mid body ext.</td>
</tr>
<tr>
<td>117.</td>
<td>Fine Jar (VII.4)</td>
<td>Pale browny buff throughout. Many small orangey grog and white lime grits. Self slipped ext./int.</td>
</tr>
<tr>
<td>118.</td>
<td>Fine Jar (VII.4)</td>
<td>Pale browny buff throughout. Some small white lime and black stone grits.</td>
</tr>
</tbody>
</table>
119. **Fine Jar (VI.1)**
Self slipped ext./int.
Pale browny buff throughout. Self slipped ext./int.

120. **Jug (VII.1)**
"Sandy" pale pinkish buff throughout. Very many small black stone, some white lime and a few orangey grog grits. Self slipped ext./int.

121. **Jug (VII.4)**
Pale pinkish buff throughout. Self slipped ext./int.

122. **Ring Base (VIII.3)**
Orangey brownish buff throughout. Some small white lime, orangey grog and black stone grits. Self slipped (?)

123. **Ring Base (VIII.3)**
Traces of grey core and pinkish orangey buff throughout. A few white lime, orangey grog and black stone grits. Pinkish buff self slip ext./int.

124. **B/S (VII.2)**

125. **B/S (VII.2)**

126. **B/S (VII.3)**
127. B/S (VI.1)
Pale browny buff throughout. Self slipped ext./int. Painted decoration in dark red. Two bands horizontally around body ext. Pendant Hatched Triangle below lower band.

128. B/S (VI.1)
Pale browny buff throughout. Self slipped ext./int. Painted decoration in brown and orange. Three bands horizontally around body ext. Below which, oblique pendant lines in alternate bands of brown and orange paint.

Step VI.2-4; V.1-4: Judaidah M/LB 1 (Figs. 82-84)

129. Fine Bowl (VI.3)
Orangey browny buff throughout. Buff slip ext./int.

130. Open Bowl (VI.3)
Dark browny brick red throughout. Self slipped ext./int. Spaced single bands of horizontal incised lines around body ext.

131. Open Bowl (VI.3)
Grey throughout. Self slipped ext./int. Wet smoothed.

132. Open Bowl (VI.3)
Pale browny buff throughout. Buff slip ext./int.

133. Open Bowl (V.2)
Pale browny buff throughout. Orangey buff slip ext./int.

134. Open Bowl (V.1)
Pale buff throughout. Orangey buff self slip ext./int.

135. Open Bowl (V.1)
Pale browny buff throughout. Buff slip ext./int.

136. Open Bowl (V.3)
Brick red throughout. Many white lime
grits. Dark chocolate brown slip ext./int.

137. Open Bowl (V.3)
Pale browny buff throughout. Many small black stone and white lime, and some orangey grog grits. Off greenish buff slip ext./int.

138. Open Bowl (VI.2)
Dark char grey core and greyish brick red surfaces. Many small and medium white lime, some grey chert and orangey grog grits, and a few black stone grits. Dark reddish brown slip ext./int.

139. Open Bowl (VI.2)
Dark browny brick red throughout. Many small white lime, some orangey stone and grey chert, and a few black stone grits. Dark brown self slip ext./int.

140. Open Bowl (VI.2)
Dark char grey throughout. Some small white lime, and a few orangey grog and black stone grits. Self slipped ext./int. Wheel burnished ext./int.

141. Open Bowl (VI.2)
Char grey core and pale browny buff surfaces. Many small black stone and orangey grog, and a few white lime grits. Orangey buff self slip ext./int.

142. Open Bowl (VI.2)
Pale browny buff throughout. Orangey brown self slip ext./int.

143. Open Bowl (VI.2)
Pinkish pale browny buff throughout. Buff slip ext./int.

144. Open Bowl (VI.2)
Pale pinkish buff throughout. Buff slip ext./int.

145. Open Bowl (VI.2)
Light grey throughout. Self slipped
146. Open Bowl (VI.2)
Pinkish buff throughout. Self slipped ext./int.

147. Deep Bowl (VI.3)
Pinkish pale browny buff throughout. Buff self slip ext./int.

148. Deep Bowl (VI.3)
Pale browny buff throughout. Some small white lime and grey chert, and a few brown stone and orangey grog grits. Orangey buff self slip ext./int.

149. Open Bowl (VI.2)
Light greyish buff core and browny buff surfaces. Many small, medium and large white lime, grey chert and orangey grog, and a few black stone grits. Self slipped ext./int.

150. Storage Jar (VI.3)
Pinkish browny buff throughout. Many small, medium and large white lime, black stone, orangey grog and grey chert grits. Pale buff slip ext./int.
Four single lines of incision horizontally around neck below rim. Three lines of incision at neck/shoulder join.

151. Storage Jar (V.3)
Greenish buff throughout. Yellowish buff self slip ext./int.

152. Storage Jar (VI.3)
Pinkish pale browny buff throughout. Buff slip ext./int.

153. Storage Jar R/N (VI.3)
Traces of greyish core and greyish buff at surfaces. Some small white lime and orangey grog, and a few chert and black stone grits. Pale chocolate brown slip ext./int.

154. Storage Jar R/N (VI.3)
Traces of grey core and pale browny buff surfaces. Buff slip ext./int.
155. Storage Jar R/N (VI.3)
Pinkish pale browny buff throughout.
Buff slip ext./int.

156. Cooking Pot (VI.3)
Traces of char grey core, and greyish chocolate brown surfaces. Many small and medium white lime, some orangey grog and chert, and a few black stone grits. Brown self slip ext./int.

157. Cooking Pot (VI.3)
Brick red throughout. Dark brown slip ext./int.

158. Cooking Pot (VI.3)
Dark browny brick red throughout.
Self slipped ext./int.

159. Cooking Pot (V.3)
Grey core and tan brown surfaces.
Self slipped ext./int.

160. Cooking Pot (V.3)
Grey throughout. Dark browny grey self slip ext./int.

161. Cooking Pot (V.3)
Pale browny buff throughout. Greyish brown self slip ext./int.

162. Cooking Pot (V.3)
Orangey buff throughout. Many small white lime, some grey chert and black stone and a few orangey grog grits.
Self slipped ext./int.

163. Cooking Pot (VI.2)
Dark grey core and brick red surfaces.
Many small white lime and some orangey grog and chert grits.

164. Cooking Pot (VI.2)
Char grey core and browny brick red surfaces. Very many white lime grits. Self slipped ext./int. Hand burnished int. only.

165. Cooking Pot (VI.2)
Traces of char grey core and brick red surfaces. Many small lime and some orangey grog grits. Dark brown
166. Cooking Pot (VI.2)

Char grey throughout. Very many white lime, some chert and black stone, and a few orangey grog grits. Dark browny brick red slip ext./int.

167. Cooking Pot (VI.2)

Traces of char grey core and brick red surfaces. Many small and medium white lime and quartz, and some chert grits. Thick dark chocolate brown slip ext./int.

168. Cooking Pot (VI.2)

Dark grey throughout. Brick red slip ext./int.

169. Jar S/N (VI.2)

Pale browny buff throughout. Thick orangey brown slip ext. only.

170. Jar S/N (V.3)

Greyish core and pale browny buff surfaces. Many small and medium chert grits. Orangey buff slip ext./int.

171. Jar (TNN) (VI.3)

Pale browny buff throughout. Buff self slip ext./int.

172. Jar (TNN) (VI.3)

Pale browny buff throughout. Self slipped ext./int.

173. Jar (TNN) (V.4)

Pale browny buff throughout. Orangey buff self slip ext./int.

174. Fine Jar (VI.3)

Buff throughout. Some small white lime and a few orangey grog grits. Self slipped ext./int. One band of reddish brown paint around leading edge of rim. Second band of reddish brown paint around neck/shoulder join.

175. Jug (V.3)

Greyish buff core and buff surfaces. Orangey buff self slip ext./int. Band
of reddish brown painted decoration around leading/upper/inner edge of rim.

176. Ring Base (VI.3)

Traces of light grey core and pale browny buff surfaces. Some small white lime, chert and orangey grog grits. Self slipped ext./int. One band of reddish brown paint around lower body. Second thick band of reddish brown paint around foot ext.

177. B/S Jar/Jug (VI.3)

Orangey buff throughout. Buff self slip ext./int. Three bands of painted decoration around body/neck join; Two bands of brown to black paint flanking a single band of reddish brown paint.

178. B/S Jar (VI.2)

Pale browny buff throughout. Self slipped ext./int. Painted decoration in dark chocolate brown. Thick band (?) below criss-cross painted lattice.

Step V.5-6:IV.1-4: Judaidah N/LBIIB/EIA (Figs. 85-86)

179. Fine Bowl (IV.3)

Pale browny buff throughout. Many small chert, white lime and black stone, and a few orangey grog grits. Self slipped ext./int.

180. Open Bowl (IV.2)

Pale browny buff core and orangey buff surfaces. Some small chert and brown stone grits. Self slipped ext./int. Wheel burnished ext. only.

181. Open Bowl (IV.2)

Grey throughout. Some chert and white lime, and a few brown stone and orangey grog grits. Self slipped ext./int. Burnished ext./int.
182. Open Bowl (IV.3)
Traces of grey core and buff surfaces. Many small black stone and orangey grog, and a few white lime grits. Self slipped ext./int.

183. Open Bowl (IV.2)
Dark brown core and orangey brick red surfaces. Many small white lime and grey chert grits. Self slipped ext./int. Wheel burnished ext./int. Single wide deep incised groove below rim ext.

184. Open Bowl (IV.3)
Pale pinkish buff throughout. A few small white lime grits. Thick red slip ext./int. Wheel burnished ext./int.

185. Open Bowl (IV.1)
Pinkish tan brown throughout. Many small orangey grog, brown and black stone and some white lime grits. Slipped in pale greenish buff ext./int.

186. Open Bowl (IV.3)
Pale orangey buff throughout. Many small orangey grog and brown stone, and a few small white lime grits. Self slipped in orangey buff ext./int. Thick band of reddish brown paint around leading/upper/inner edge of rim.

187. Open Bowl (IV.3)
Orangey buff throughout. Off white to buff slip ext. only. Wet smoothed ext. only.

188. Open Bowl (IV.3)
Pale orangey buff throughout. Many small chert, some orangey grog, brown stone and white lime grits. Self slipped ext./int.

189. Open Bowl (IV.3)
Pale browny buff throughout. Some small chert, quartz and white lime grits. Self slipped ext./int. Painted decoration in reddish brown. Five
190. Deep Bowl (IV.3)

bands around upper body ext; Slashes around upper rim; Three thick bands around inner rim.

Traces of grey core and pale browny buff surfaces. Many small white lime, some chert and brown stone, and a few quartz grits. Self slipped ext./int.

191. Storage Jar (IV.3)

Pale greenish buff throughout. Some small orangey grog, black stone and white lime grits. Self slipped ext./int.

192. Storage Jar R/N (IV.3)

Dark grey core and greyish brown surfaces. Many small and medium chert and white lime and some black stone grits.

193. Cooking Pot (IV.2)

Dark grey core and pale brown buff surfaces. Many white lime and chert, and some black stone grits.

194. Cooking Pot (IV.3)

Greyish tan brown at core and reddish brown surfaces. Many small, medium and large chert grits.

195. Cooking Pot (IV.1)

Dark char grey throughout. Very many small, medium and large chert grits. Thick tan brown slip ext./int.

196. Cooking Pot (IV.3)

Brownish char grey throughout. Many small and medium chert and quartz grits. Tan brown slip ext./int.

197. Cooking Pot (IV.3)

Dark char grey core and pale browny buff surfaces. Very many small and medium chert grits.

198. Cooking Pot (IV.3)

Dark char grey core and brownish tan surfaces. Many small and medium chert grits.
199. Jar S/N (IV.3)
Pinkish buff throughout. Many small orangey grog, some white lime and a few chert grits. Slipped in pale greenish grey ext./int.

200. Jar S/N (IV.3)

201. Jar (TNN) (IV.2)
Pinkish tan brown throughout. Many small orangey grog, some white lime, and a few chert grits. Pale greenish buff slip ext./int.

202. Jar (TNN) (IV.1)
Pale browny buff core and orangey buff surfaces. Some small grey chert, brown stone and orangey grog, and a few white lime grits. Self slipped ext./int.

203. Fine Jar (IV.2)
Pale browny buff throughout. Some small orangey grog and brown stone, and a few white lime grits. Self slipped ext./int.
LIST OF FIGURES

1. Map of Sites mentioned in text.
2. Plan of London Trench I-III Locations
3. Plan of Pezard/London Trench Inter-relationships
4. North Section of Trench I
5. Central Section of Trench I
6. South Section of Trench I
7. Trench I Plan of Phase C
8. Trench I Plan of Phase D
9. Trench I Plan of Phase E
10. Trench I Plan of Phase F
12. Trench I Plan of Phase H
13. Trench II Plan
14. Trench III Plan
15. Trench III 206/210 Sections
16. Trench III 205 North Section.
17.-65. Type Series
66. Pie Charts of Shape Analysis
67. Pie Charts of Ware Analysis
68. Pie Charts of Decoration Analysis
69. Pie Charts of Incised Decoration Analysis
70. Pie Charts of Painted Decoration Analysis
71. Hama Cypriot and Mycenaean Material
72.-86. Judaideh TT20 Coarsewares
LIST OF FIGURES

1. Map of Sites mentioned in text.
2. Plan of TNM Trench Locations
3. Plan of Pezard/London Trench Inter-relationships
4. North Section of Trench I
5. Central Section of Trench I
6. Section of Trench I
7. Trench I Plan of Phase C
8. Trench I Plan of Phase D
9. Trench I Plan of Phase E
10. Trench I Plan of Phase F
12. Trench I Plan of Phase H
13. Trench II Plan
14. Trench III Plan
15. Trench III 206/210 Sections
16. Trench III 205 North Section.
17.-65. Type Series
66. Pie Charts of Shape Analysis
67. Pie Charts of Ware Analysis
68. Pie Charts of Decoration Analysis
69. Pie Charts of Incised Decoration Analysis
70. Pie Charts of Painted Decoration Analysis
71. Hama Cypriot and Mycenaean Material
72.-86. Judaideh TT20 Coarsewares

List of Tables

1 Table of Diagnostic Sherd Type Occurrences
TELL NEBI MEND
LOCATION OF
TRENCHES I & II
SHAPE

1 H-G
 4.00%
 14.00%
 24.00%
 27.00%
 31.00%

2 F-E
 10.0%
 17.00%
 14.00%
 24.00%
 35.00%

3 D-C
 13.00%
 15.00%
 10.0%
 21.00%
 41.00%

4 B-A
 14.00%
 15.00%
 7.00%
 24.00%
 40.0%

Storage Jars
Jars and Jugs
Bowls
Cooking Pots
Other
DECORATION

1. H-G
 - Plastic: 4.00%
 - Incised: 19.00%
 - Painted: 29.00%
 - Plastic/Incised: 42.00%
 - Painted/Incised: 11.00%
 - Other: 5.00%

2. F-E
 - Painted: 37.00%
 - Other: 10.00%
 - Plastic: 4.00%
 - Incised: 7.00%
 - Plastic/Incised: 11.00%
 - Painted/Incised: 3.00%

3. D-C
 - Plastic: 14.00%
 - Incised: 5.00%
 - Painted: 17.00%
 - Plastic/Incised: 22.00%
 - Painted/Incised: 11.00%
 - Other: 24.00%

4. B-A
 - Plastic: 17.00%
 - Incised: 14.00%
 - Painted: 17.00%
 - Plastic/Incised: 9.00%
 - Painted/Incised: 14.00%
 - Other: 24.00%
INCISED DECORATION

1. **H-G**
 - Incised Decoration: 31.00%
 - Combed Angular Motifs: 11.00%
 - Impressed/Punctured: 22.00%
 - 3 Combed Wavy Lines: 7.00%
 - Slash/Rope: 6.00%

2. **F-E**
 - Incised Decoration: 44.00%
 - Combed Angular Motifs: 9.00%
 - Impressed/Punctured: 29.00%
 - 3 Combed Wavy Lines: 7.00%
 - Slash/Rope: 7.00%

3. **D-C**
 - Incised Decoration: 54.00%
 - Combed Angular Motifs: 20.00%
 - Impressed/Punctured: 23.00%
 - 3 Combed Wavy Lines: 1.00%
 - Slash/Rope: 2.00%

4. **B-A**
 - Incised Decoration: 88.00%
 - Combed Angular Motifs: 5.00%
 - Impressed/Punctured: 7.00%

Legend:
- Incised Decoration
- Combed Wavy Lines
- Combed Angular Motifs
- Slash/Rope
- Impressed/Punctured
PAINTED DECORATION

1. H-G
 - Linear Bands: 13.00%
 - Geometric Motifs: 9.00%
 - Figured Motifs: 4.00%
 - Other: 74.00%

2. F-E
 - Linear Bands: 19.00%
 - Geometric Motifs: 9.00%
 - Figured Motifs: 1.00%
 - Other: 71.00%

3. D-C
 - Linear Bands: 6.00%
 - Geometric Motifs: 7.00%
 - Figured Motifs: 2.00%
 - Other: 85.00%

4. B-A
 - Linear Bands: 1.00%
 - Geometric Motifs: 1.00%
 - Figured Motifs: 1.00%
 - Other: 97.00%

Legend:
- Linear Bands
- Geometric Motifs
- Figured Motifs
- Other
Table 1. Table of Type Occurrences: Trench I & Trench III [1528 egs.]

<table>
<thead>
<tr>
<th>Phases</th>
<th>H</th>
<th>G</th>
<th>F</th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cooking Pots [228 egs.]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A (i)</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A (ii)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A (iii)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A (iv)</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type B (i)</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type B (ii)</td>
<td>29</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type B (iii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type C (i)</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type C (ii)</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type C (iii)</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type D</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type E (i)</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Type E (ii)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type E (iii)</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

2. Storage Bowls [38 egs.]

Type A (i)								3
Type A (ii)	3							
Type A (iii)	5							
Type A (iv)	4							
Type A (v)	5	1	2	2				
Type B	4							
Type C	2							
Type D	4	1	2	2				

3. Trays [2 egs.]

| Type A | 1 | 1 | | | | | | |

4. Open Bowls [143 egs.]

Type A (i)	14	8						
Type A (ii)								2
Type A (iii)	7	2	3	3	2			
Type A (iv)	3 2							
Type A (v)	7 4 3 3 5 2							
Type A (vi)	2 1							
Type B (i)	5 3							
Type B (ii)	3 1							
Type B (iii)	5 2							
Type B (iv)	2							
Type C	6 2 3 5 2							
Type D								
Type E (i)	2							
Type E (ii)	5 19							

5. Deep Bowls [125 egs.]

Type A (i)	4 2 3 2 4 2
Type A (ii)	5 2 2 4 2
Type A (iii)	5 2
Type A (iv)	3 1
Type A (v)	14 9 5 3 4 1
Type A (vi)	5
Type A (vii)	4 2 1 2
Type B	9 6 4 2 4 2
Type C	5

6. Fine Bowls [67 egs.]

Type A (i)	7 3 1 1 1 1
Type A (ii)	5 3 2 5 3
Type A (iii)	4 1 2 1
Type A (iv)	2
Type A (v)	2 3
Type B	1 2
Type C	1 2 2 2
Type D	2 2 4
Type E	2 2

7. Tall Narrow Necked Jars [163 egs.]

Type A (i)	5 2					
Type A (ii)	11 4					
Type A (iii)	2 1					
Type A (iv)	3					
Type A (v)	4 2					
Type A (vi)	7	3	2	2	5	
Type A (vii)	3	2	1			
Type A (viii)	2	4	3	2	2	4
Type A (ix)	3					
Type A (x)	4	2	2			
Type B (i)	1	2	2	2	2	
Type B (ii)	2					
Type B (iii)	2	1	2	1		
Type B (iv)	1	1	2	3		
Type B (v)	4	2	1	1		
Type C (i)	2					
Type C (ii)	7	4	2	2	14	
Type C (iii)	2	1	2			
Type C (iv)	2					
Type D	1	1	1	3		

8. Storage Jars [223 31s.]

Type A (i)	3	14						
Type A (ii)	7	2	2	5				
Type A (iii)	10	4						
Type A (iv)	19	2	1	4				
Type B (i)	7	2						
Type B (ii)	2							
Type B (iii)	13	4	2	2	3	1		
Type B (iv)	2	4						
Type B (v)	2							
Type C (i)	2	11	2	2	3	4	2	1
Type C (ii)	2							
Type C (iii)	11	3	1					
Type C (iv)	2	4						
Type C (v)	3	1	3					
Type D (i)	16	2						
Type D (ii)	2							
Type E (i)	2	4	4					
Type E (ii)	2	5	1					
Type F	3							
Type G	2	1	1	2	1			
9. Short Necked Jars [55 egs.]

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A (i)</td>
<td>7</td>
</tr>
<tr>
<td>Type A (ii)</td>
<td>11</td>
</tr>
<tr>
<td>Type B</td>
<td>4</td>
</tr>
<tr>
<td>Type C (i)</td>
<td>5</td>
</tr>
<tr>
<td>Type C (ii)</td>
<td>2</td>
</tr>
<tr>
<td>Type C (iii)</td>
<td>3</td>
</tr>
</tbody>
</table>

10. Fine Jars [144 egs.]

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>17</td>
</tr>
<tr>
<td>Type B (i)</td>
<td>3</td>
</tr>
<tr>
<td>Type B (ii)</td>
<td>5</td>
</tr>
<tr>
<td>Type B (iii)</td>
<td>2</td>
</tr>
<tr>
<td>Type B (iv)</td>
<td>9</td>
</tr>
<tr>
<td>Type B (v)</td>
<td>2</td>
</tr>
<tr>
<td>Type B (vi)</td>
<td>1</td>
</tr>
<tr>
<td>Type B (vii)</td>
<td>1</td>
</tr>
<tr>
<td>Type B (viii)</td>
<td>2</td>
</tr>
<tr>
<td>Type C (i)</td>
<td>4</td>
</tr>
<tr>
<td>Type C (ii)</td>
<td>9</td>
</tr>
<tr>
<td>Type C (iii)</td>
<td>4</td>
</tr>
<tr>
<td>Type D (i)</td>
<td>1</td>
</tr>
<tr>
<td>Type D (ii)</td>
<td>2</td>
</tr>
<tr>
<td>Type D (iii)</td>
<td>1</td>
</tr>
<tr>
<td>Type E</td>
<td>2</td>
</tr>
</tbody>
</table>

11. Jugs [51 egs.]

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A (i)</td>
<td>2</td>
</tr>
<tr>
<td>Type A (ii)</td>
<td>2</td>
</tr>
<tr>
<td>Type A (iii)</td>
<td>3</td>
</tr>
<tr>
<td>Type A (iv)</td>
<td>1</td>
</tr>
<tr>
<td>Type A (v)</td>
<td>3</td>
</tr>
<tr>
<td>Type B</td>
<td>2</td>
</tr>
<tr>
<td>Type C (i)</td>
<td>2</td>
</tr>
<tr>
<td>Type C (ii)</td>
<td>2</td>
</tr>
<tr>
<td>Type D (i)</td>
<td>2</td>
</tr>
<tr>
<td>Type D (ii)</td>
<td>2</td>
</tr>
<tr>
<td>Type E</td>
<td>3</td>
</tr>
</tbody>
</table>
12. Juglets [51 egs.]

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>4</td>
</tr>
<tr>
<td>Type B</td>
<td>2</td>
</tr>
<tr>
<td>Type C (i)</td>
<td>1</td>
</tr>
<tr>
<td>Type C (ii)</td>
<td>1</td>
</tr>
<tr>
<td>Type D</td>
<td>2</td>
</tr>
</tbody>
</table>

13. Lamps [2 egs.]

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>2</td>
</tr>
</tbody>
</table>

14. Bases [260 egs.]

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A (i)</td>
<td>3</td>
</tr>
<tr>
<td>Type A (ii)</td>
<td>5</td>
</tr>
<tr>
<td>Type A (iii)</td>
<td>17</td>
</tr>
<tr>
<td>Type A (iv)</td>
<td>2</td>
</tr>
<tr>
<td>Type A (v)</td>
<td>4</td>
</tr>
<tr>
<td>Type A (vi)</td>
<td>6</td>
</tr>
<tr>
<td>Type B (i)</td>
<td>7</td>
</tr>
<tr>
<td>Type B (ii)</td>
<td>9</td>
</tr>
<tr>
<td>Type C (i)</td>
<td>5</td>
</tr>
<tr>
<td>Type C (ii)</td>
<td>2</td>
</tr>
<tr>
<td>Type C (iii)</td>
<td>3</td>
</tr>
<tr>
<td>Type D (i)</td>
<td>9</td>
</tr>
<tr>
<td>Type D (ii)</td>
<td>7</td>
</tr>
<tr>
<td>Type E (i)</td>
<td>4</td>
</tr>
<tr>
<td>Type E (ii)</td>
<td>5</td>
</tr>
<tr>
<td>Type E (iii)</td>
<td>2</td>
</tr>
<tr>
<td>Type F</td>
<td>2</td>
</tr>
<tr>
<td>Type G (i)</td>
<td>4</td>
</tr>
<tr>
<td>Type G (ii)</td>
<td>2</td>
</tr>
<tr>
<td>Type H (i)</td>
<td>4</td>
</tr>
<tr>
<td>Type H (ii)</td>
<td>2</td>
</tr>
<tr>
<td>Type H (iii)</td>
<td>2</td>
</tr>
<tr>
<td>Type H (iv)</td>
<td>4</td>
</tr>
<tr>
<td>Type J (i)</td>
<td>1</td>
</tr>
<tr>
<td>Type J (ii)</td>
<td>2</td>
</tr>
</tbody>
</table>
15. Imports [14 egs.]

Type A (i) 1
Type A (ii) 1
Type B (i) 5
Type B (ii) 2
Type C 4 1

16. Summary Statistics [1528 egs.]

<table>
<thead>
<tr>
<th>Phases</th>
<th>H</th>
<th>G</th>
<th>F</th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pottery [Counts]</td>
<td>15</td>
<td>660</td>
<td>239</td>
<td>111</td>
<td>169</td>
<td>269</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>Pottery [%]</td>
<td>0.98</td>
<td>43.19</td>
<td>15.64</td>
<td>7.26</td>
<td>11.06</td>
<td>17.16</td>
<td>3.27</td>
<td>0.98</td>
</tr>
<tr>
<td>Area Excavated [%]</td>
<td>2.15</td>
<td>58.82</td>
<td>13.84</td>
<td>8.30</td>
<td>7.61</td>
<td>7.19²</td>
<td>1.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

¹ This very approximate calculation is based on the area excavated by the depth of deposit at the north section[s]. In Trench I all excavated areas were considered; in Trench III, only those areas from which pottery was catalogued in the present study.

² The only major anomaly is the differential between pottery and deposit excavated in Phase C. One of the major features of Trench I Phase C was a "pebble pavement", which consisted in large measure of crushed pottery, a good percentage of which was heavily eroded, which might suggest that slightly more of the Phase C material is residual than is normal in the other phases, a suggestion borne out by a consideration of the individual distribution patterns.