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Highlights 

- Calibrating energy simulation models is crucial when assessing existing buildings. 

- Sensitivity analysis is key to reduce computational time in the calibration process. 

- Uncertainty techniques may be applied to assess energy models’ accuracy. 

- Test Cells allow the performance of building simulation tools to be estimated. 

Abstract 

Improving the energy efficiency of existing buildings is a priority for meeting energy 

consumption and CO2 emission targets in buildings. Building simulation tools play a crucial role 

in evaluating the performance of energy retrofit options. In this paper, a Bayesian calibration 

approach is applied to reduce the discrepancies between measured and simulated temperature 

data. Through its application to a test cell case study, the incorporation of sensitivity analysis 

and Bayesian calibration techniques are proven to improve the level of agreement between on-

site measurements and simulated outputs, whilst accounting for both experimental and 

simulation uncertainties. The accuracy of a building simulation model developed using 

EnergyPlus was evaluated before and after calibration. Uncalibrated models were within the 

uncertainty ranges specified by the ASHARE Guidelines, with hourly simulation data over-

predicting measurements by 3.2 ºC on average. After Bayesian calibration, the average 

maximum temperature difference was reduced to around 0.68 ºC, an improvement of almost 

80%. 

 

Keywords: Bayesian calibration; sensitivity analysis; uncertainty analysis; building energy 

modelling; Mediterranean climate; housing stock. 



 2 

1. Introduction 

In the European Union, the number of existing dwellings is about 196 million [1]. The average 

annual rate of construction of new buildings is around 1.1%, with an estimated annual ratio of 

building replacement of only 0.07% [2]. The existing European building stock accounts for over 

40% of total  energy consumption, of which residential represents 63% [3].The building sector is 

responsible for approximately 30% of carbon dioxide emissions [4], which means that retrofit 

and refurbishment must be one of the key priorities in meeting the objectives proposed for 2030 

[5]. 

Building Energy Modelling (BEM) allows for the evaluation of alternative options for achieving 

building energy efficiency. Although originally intended for the building design and operation 

stages [6], nowadays BEM is increasingly being used in other stages of a project [7], especially 

in the refurbishment phase [8]. Nevertheless, BEM has its limitations, and may only capture 

limited parts of a large number of dynamic, stochastic and probabilistic elements (e.g. building 

geometry, thermal zones, material properties, Heating, Ventilation and Air Conditioning (HVAC) 

systems, occupant behaviour, appliance, use scheduling, etc.) [9], inevitably leading to a 

simplified prediction of real building performance. In addition, software limitations, construction, 

users, inputs, weather data inaccuracy and errors in measurements may lead to a significant 

performance gap [10] between real and simulated data 11]. The  dynamic complexity of 

calculation methods and the choice of simulation tool can also result in the inaccuracy [12] and 

uncertainty [13] associated with BEM. 

For the above reasons, to ensure the accuracy and reliability of the simulation results and 

reduce the performance gap when assessing existing buildings, model calibration is a key step 

in the BEM to minimize the discrepancies between predicted and monitored data [14]. During 

this process, information about the building is collected and used to tune the BEM, in order to 

achieve a greater level of accuracy [15]. Although there is no single generally accepted 

methodology for BEM calibration [16],  Clarke, Strachan and Pernot [17] devised a proposal that 

was later revised by Reddy, Maor and Panjapornpon [18], by which model calibration may be 

classified into four different categories: (1) heuristic or pragmatic intervention, (2) graphical-

based calibration methods, (3) calibration based on special tests and (4) automated techniques. 

During the calibration process, different methods may be combined, as established by Clarke, 



 3 

Strachan and Pernot [17]: the heuristic technique involves selecting parameters and manually 

calibrating them based on monitored data, through trial-and-error, usually changing one variable 

at a time to be compared to the original model; graphical-based calibration is normally used in 

combination with manual methods and consists of time-series and scatter-plot representations; 

analytical calibration includes special tests which do not involve statistical procedures and are 

normally quite invasive, for instance blower door or thermal transmittance tests and audits; 

lastly, automated techniques apply mathematical and statistical tests, involving optimization 

functions, parameter estimation or uncertainty incorporation. 

A large number of previous studies have used manual calibration [19]:  Royapoor and Roskilly 

[9] apply a heuristic iterative approach to calibrate an office building running 19 models, each 

with incremental manual input adjustments, related in particular to the electricity and HVAC 

systems. Raftery, Keane and Costa [13] also calibrate an office building by manually varying 

internal loads and the HVAC systems’ characteristics, representing the building to a high level 

of detail and taking considerable time and resources. Parker, Cropper and Shao [20] conducted 

up to 118 individual parameter modifications for an airport terminal building, iteratively updating 

construction properties, systems details, equipment energy and airflow, among other variables, 

needing extensive information.  

One of the major problems of manual calibration is the high dependency on parameter and 

value selection [21], which may significantly reduce the calibration quality and effectiveness. 

This is because analysts rely on their subjective judgment to select the input variables they 

believe will most likely influence the outputs iteratively running simulations to determine the 

scenario where differences between simulated and measured data are reasonably small. A 

drawback of this approach is reported by Heo, Choudhary and Augenbroe [22]: identifying a 

single combination of parameter values that leads to a good fit does not guarantee that those 

values represent reality with confidence. Besides, calibrating every parameter that influences 

the simulation may also be  a poor use of time and resources [23]. Given that a typical building 

energy model could have an average of 3,000 parameters, manual calibration could require 

months through a trial-and-error process [24], depending on the model complexity. Thus, 

manual calibration involves limited simulation runs, may become time-consuming, its credibility 

may be questioned given its subjectivity and it cannot be easily scaled up to other models [24].  
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Automated calibration is now being increasingly used by the scientific community [25], although 

it only represents  around 26% of existing studies [26]. Several approaches may be used, such 

as sensitivity analysis, meta-models, optimization-based problems or Bayesian techniques [27]. 

It is generally accepted that the fewer parameters to be optimized, the more efficient the 

optimization [19]. Thus, sensitivity analysis is normally incorporated into any calibration method 

[28] to reduce the number of parameters to be calibrated [29].  

In the meta-model approach, a surrogate model is created to reduce the complexity of the 

original model through a mathematical function determined by a limited number of input-output 

combinations [27]. One advantage of this is the reduced computation time, allowing a large 

number of scenarios to be analysed, this method has been extensively used in BEM: O’Neil and 

Eisenhower [30] apply a meta-model to calibrate an office building by sampling nominal values 

for all parameters within the model, identifying which parameter combinations provide the best 

fit to monitored data. Manfren, Aste and Moshksar [31] also applied meta-model calibration to 

assess an office building, standardizing and categorizing the input-output parameters to 

construct a dataset and run many simulations to account for input variation. Thus, meta-models 

have the advantage of considering all the parameters in the model,allowing numeric algorithms 

to decide which ones are the most critical in terms of calibration. Gaussian processes (GP) is 

the most widely used meta-model due to its robustness in interpolation. Although meta-

modelling considerably reduces computational burden during calibration, GP can be 

computationally intensive compared to other meta-modelling approaches [32].   

Optimization methods define an objective function through an optimization algorithm to identify 

the best parameter combination to minimise the difference between monitored and simulated 

data. Optimization algorithms often require a large amount of computer resources. For example, 

Hong, Kim, Jeong, Lee and Ji [33] calibrated a school building using a genetic algorithm to find 

global optimal solutions; and Sanyal, New and Edwards [34] automatically calibrated a BEM 

using trained machine agents from a large set of parametric simulations through machine 

learning, exploiting supercomputing resources. A general disadvantage of optimization methods 

is the dependency of the calibration procedure on the optimization settings [35].Difficulties may 

arise in selecting optimization hyperparameters settings, which can lead to local minima 

problems [32]. 
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Quantifying uncertainties in BEM is recognized as fundamental for evaluating the cumulative 

impact on simulated outputs’ reliability [36]. Most building calibration methods tackle the 

incorporation of uncertainties regarding measured data,  model predictions [37] and input 

parameters, [38], through classical statistical methods, such as uncertainty [39] or sensitivity 

analysis that determines the impact of uncertain variables on simulation outcomes [40]. Among 

the various calibration methods used during recent decades, optimization algorithms and 

Bayesian techniques have become the most favourable [32]. The main advantage of Bayesian 

methods is allowing the incorporation of uncertainties into the calibration process using 

statistical inference through probabilistic predictions. This can considerably contribute to the 

improvement of parameter estimation and model resolution. Given its expandability and 

accuracy, Bayesian calibration has received increasing attention, as reported by Lim and Zhai 

[41], which provides an extensive list of studies where this technique is used in BEM at both 

individual and stock levels. As concluded by Riddle and Muehleisen [42]: this approach 

balances the ability to reach a good fit between monitored and simulated data, with the 

knowledge about the uncertainty involved with parameter estimation.. Furthermore, Bayesian 

calibration can be automated with minimal user input, allowing the algorithm to identify which 

parameter values are most likely, whilst accounting for various probability distributions. 

However, audits and measurements of a real building’s performance are vital for achieving a 

good  calibration, thus affecting the effectiveness of this method [43]. 

 

2. Objectives and research scope 

Given the benefits previously established, this research addresses model calibration through 

the use of Bayesian techniques, explained in detail in subsection 3.5. The computational burden 

of Bayesian calibration may noticeably increase when adding more output or calibration 

parameters [42], thus, most BEM studies are limited to using monthly energy data. However, 

indoor comfort assessment is also crucial when retrofitting existing buildings and is normally 

reported hourly.  

As such, the scope of this study is to determine if Bayesian calibration techniques can 

adequately provide an accurate calibration of BEM based on an hourly basis analysis. 
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Simulation predictions have been compared with measured indoor air temperatures under 

various data taking protocols, quantifying the level of agreement according to current guidelines.  

In order to determine whether the proposed calibration methodology is suitable and applicable, 

a case study with controlled boundary conditions and high resolution measured data has been 

conducted. Test Cells have been commonly used to evaluate experimental and dynamic 

performance of building components under controlled conditions [44]. Data monitored in a pair 

of Test Cells, located in Seville, southern Spain (Mediterranean climate) have been used. The 

main aim of this paper is to provide a global and representative first approach to an hourly-

based statistical calibration-simulation Bayesian technique which combines sensitivity analysis, 

evaluating its appropriateness for obtaining reasonable results within computing-time and 

resource constraints. An extensive comparison of the benefits of this technique in comparison 

with other research in the field is described in section 5. 

 

3. Methods  

The methodology used in this research combines empirical monitoring, thermodynamic building 

simulations and statistical techniques. It follows a Bayesian method to calibrate the temperature 

predictions of a building simulation model using high quality monitoring data from a pair of Test 

Cells. On site indoor air temperature measurements taken during different experimental 

protocols have been compared to the outputs reported by the simulation tool. The following 

analysis steps (Figure 1) have been followed, which are explained in detail in subsequent 

subsections:  

 

Figure 1. Methodology followed. 
 

In the first phase of the methodology; “Experimental setup: Test Cells and Protocols description” 

(described in subsections 3.1 and 3.2), an experimental case study is selected and monitored 

during different protocols to obtain high quality measurements of indoor and outdoor ambient 

variables. In the following phase; “Construction of the energy building model”, a building 
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simulation model of the case study is constructed in an energy simulation tool, making the 

necessary geometrical, physical and constructive assumptions and simplifications, described in 

subsection 3.3. Prior to model calibration, the most influential input parameters on output results 

are determined, with these parameters subsequently used in calibration. This is achieved 

through phase 3 of the analysis, “Sensitivity analysis of input setting variation”, detailed in 

subsection 3.4. Once the parameters with the highest impact on outputs have been identified, 

they are analysed in detail and calibrated through Bayesian techniques during phase four, 

“Calibration of the most influential parameters” (subsection 3.5). Finally, the viability of the 

calibrated model is tested during phase 5, “Uncertainty analysis: accuracy measurement of the 

energy building model”, as explained in subsection 3.6. Here, calibrated model predictions are 

compared with monitored data recorded in phase 1. 

 

3.1 Experimental setup: Test Cell Description  

The selected case study consists of two Test Cells located in a Mediterranean area of southern 

Spain (37º 23’ N, 5º 58’ W), which are modelled on a typical Andalusian bedroom (Figure 2). 

Each cell is autonomous and records high quality data on the performance of different façade 

components, under real outdoor conditions.  

 
                         (a)                                              (b) 

Figure 2. (a) Experimental Test Cells; (b) Floor plan of the Test Cells. 
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For this research, only the south-facing Cell 3 (with window) and north-facing Cell 4 (without 

window) were considered. Further information regarding the Test Cells’ geometry, 

thermophysical properties (e.g. U-values, blower door test…) and technical aspects can be 

found in [45]. For monitoring purposes, four sensors were installed inside the Cells, to measure 

dry-bulb air temperatures at 5-min intervals. Outdoor ambient variables were recorded by a 

local weather station, located on the roof of the Cells, which were used to develop a weather file 

for the building simulations. Outdoor variables monitored were: dry-bulb air temperature, relative 

humidity, wind speed and direction and solar radiation (global horizontal, diffuse horizontal and 

direct normal irradiance). Detailed technical characteristics of the probes installed can be found 

in [46]. 

 

3.2 Experimental protocols  

To assess the impact of different model input parameters, four experimental protocols were 

defined (Table 1), with each protocol having a slightly different emphasis.  

Table 1. Characteristics of the experimental protocols. 

Protocol Cell 
Monitoring 

period* 
Training 
period* 

Testing 
period* 

Window blinds 
(% aperture) 

Mechanical 
Ventilation 

C4MVOFF C4 10-16/07/2017 11/07/2017 12-16/07/2017 No window OFF 

C4MVON C4 12-18/09/2017 13/09/2017 14-18/09/2017 No window 
ON (22-8h),  

1.75 ACH 

C3MVOFF50 C3 10-16/07/2017 11/07/2017 12-16/07/2017 50% open OFF 

C3MVON50 C3 12-18/09/2017 13/09/2017 14-18/09/2017 50% open 
ON (22-8h),  

1.75 ACH 

* On site measurements were recorded in the Test Cells during a 168-hour period. In the calibration 

phase, a 24-hour training period was considered. Calibration was then tested using an independent 120-

hour period.  

 

Sensitivity analysis and Bayesian calibration were conducted for each of the four protocols, via 

the following steps. Firstly, a protocol with no influence of solar radiation nor Mechanical 

Ventilation (MV) was analysed (C4MVOFF), in order to focus on the uncertainty related to the 

envelope’s thermophysical properties (cell 4). Subsequently, MV was incorporated into the 

study (C4MVON) to assess the impact of the MV system within simulations. In parallel, cell 3 

was configured with the window’s blinds half open to quantify the parametric uncertainty 
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associated with solar radiation (C3MVOFF50). Finally, MV was once again incorporated into the 

previous protocol (C3MVON50). 

 

3.3 Construction of the energy building model 

The Cells described in the previous section were modelled in DesignBuilder v.4.7.0.027, 

recognized by the US-DOE [47], and coupled with the EnergyPlus v.9.0.1 simulation engine 

[48]. In this process, geometric, technical and construction information have been input into the 

simulation tool. Weather data measured by a local weather station were incorporated as known 

variables into the weather file used in simulations, assuming to have a negligible measurement 

error [49]. Since weather data provides hourly information for ambient variables, the temporal 

resolution of the model was also hourly, allowing thermal comfort assessment to be done. 

In developing the building simulation model for the test cell, some simplifications and 

assumptions had to inevitably be made, mainly due to physical and simulation tool limitations. 

First, even though only Cells 3 and 4 were analysed, the model included all four cells and 

services rooms to take into account their shading and thermal influence. Each Cell and service 

room was considered to be a thermal zone. The thermal envelope was modelled by introducing 

the material layers of each construction system. The physical properties included in the 

available technical sheets were introduced into the simulation software, although there was 

some missing information, particularly in relation to density, conductivity and solar absorptance 

of materials. 

Regarding MV, the schedule and air change rates set in the simulation model were as 

established in Table 1. Both air chambers in the roof and floor of the cells were modelled, as 

well as the interior and exterior MV air grids.  

For considering a window blind aperture of 50% open, the window had to be modelled in two 

parts (upper and lower), so that the model resembles reality as close as is feasibly possible.  

Since the cells are unoccupied, neither occupation loads nor occupation schedules were 

required, so it was not possible to assess the users’ influence in this research. The Cells were 

analysed in free-running conditions, meaning no HVAC systems were considered, no lighting 

systems were activated and no extensive flow path equations were implemented for CFD 

analysis during the selected protocols. Lastly, given that the case study is located in an open 
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space, no shading effect by surrounding buildings was modelled. Shadow calculations were 

done following the Sky Diffuse Modelling Algorithm. The inside and outside surface convention 

algorithms applied were TARP [50] and DOE-2 [51], respectively. Surface heat conduction was 

modelled using the Conduction Transfer Function.  

 

3.4 Sensitivity analysis of input setting variation 

Sensitivity analysis has been conducted to determine the impact on output variation due to 

modifications in the input settings. The ultimate objective is to reduce the number of parameters 

to be considered in the calibration process, since the Bayesian method is computationally 

prohibitive in a high-dimensional parameter space [52] and an increase in the number of 

calibration parameters may lead to inaccuracy and ineffectiveness [53].  

The parameter screening technique considered is the Morris method [49], later extended by 

Campolongo, Cariboni and Saltelli [54]. This method is widely used in building performance 

analysis because of its balance between low computational cost and accuracy [55], when 

compared to other approaches, such as Sobol’ [56] or Standardized Rank Regression 

Coefficient [57]. Petersen, Kristensen and Knudsen [58] reported an extensive literature review 

where Morris method is used for BEM analysis. 

The Morris method discretizes the parameter space, creating a grid of values from a pre-

selected number of levels, dividing each parameter interval. Starting from an initial fixed point, 

the movement in the space is carried out along the axes, changing one parameter value at a 

time, while maintaining the remaining values. This one-step-at-a-time procedure allows the 

determination of an elementary effect (EE) for each trajectory (r) and for each parameter (k) 

[59], evaluating the influence of uncertain parameters over their whole range. The Morris 

method requires k+1 model simulations to calculate one EE for each of the k input variables 

[60]. Variables are ranked taking into account their relative effect on the reported output. It 

calculates the standard deviation (σ) (Equation 1) for each parameter’s elementary effects 

(which provides a measure of the parameter’s interaction with other parameters), as well as the 

modified mean (µ*) (Equations 2 and 3) (which quantifies the parameter’s impact on the model 

output): 
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σ = !
!
· 𝐸𝐸! −  µ !!

!!!                                                                                                   (Equation 

1) 

µ = !
!
· 𝐸𝐸!!

!!!                                                                                                               (Equation 

2) 

µ∗= !
!
· 𝐸𝐸!!

!!!                                                                                                              (Equation 

3) 

Where: 

σ: standard deviation 

𝑟: set of trajectories in which the space grid is sampled (independent EE) 

𝐸𝐸!: elementary effect (measures interactions with other parameters) 

µ: mean of the value of the elementary effects 

µ*: modified mean of the finite distribution of absolute values of the EE  

According to Campolongo and Braddock [61], the standard deviation σ determines the spread 

(variance) of the finite distribution of EE values, indicating possible interactions with other 

variables. The same authors define the µ index as the sensitivity strength between the input 

variable and the reported output, caused by all first- and higher- order effects. The larger the µ 

index, the higher sensitivity an output has to an input variable. To provide a true importance 

measure and avoid cancellation effects due to negative elements of non-monotonic models,  µ∗ 

as proposed by Campolongo, Cariboni and Saltelli [54] is used.  

For the sensitivity analysis, the necessary adjustments to the simulation file were made through 

a parametric definition [62], improving the management of large and complex BEM. This allows 

simulations to be automatically run to explore different values of the parameterized variables, 

reducing manual variation tasks. For this, the open source tool jEPlus v.1.7.2 [63] was used in 

combination with the R v.3.5.3 [64]statistical programming environment, through its sensitivity 

package v.1.16.2 [65].  

In this case study, given that free-running conditions are considered (without heating and 

cooling systems), the impact of the input variables on the hourly indoor air temperatures of the 

Test Cells has been assessed to determine the dominant input parameters. Variable selection is 

explained in detail in subsection 4.1. The recommendations reported by Petersen, Kristensen 
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and Knudsen [58] regarding consistency in parameter ranking, were followed for setting the 

necessary variables in the Morris method: the number of repetitions of the design (r = 500), the 

number of levels (levels = 12) and the number of levels that are increased/decreased for 

computing effects (grid jump = 6), which Morris himself recommends to be at least half the 

number of levels [4949].  

Table 2 shows the variables considered in this analysis for the four protocols. Design (central), 

minimum and maximum values are described for each parameter distribution, representing the 

uncertainties of the initial parameter values in the model. Minimum and maximum values 

correspond to the boundary conditions (upper and lower limits) of the building energy model 

variables and the ranges are determined considering the values established in the Spanish 

Technical Building Code [66]. Design values were the expected values of each parameter and 

were informed by the technical sheets of the building equipment and materials used in the Test 

Cells construction. 

 
 

Table 2. Prior distribution functions considered in the experimental protocols for the sensitivity analysis.  

ID Parameter description Protocols 
Design 

value 

Min/Max. 

value 
Unit 

BRICKc Conductivity of brick 
C4MVOFF/ON 

C3MVOFF50 
0.8 0.7/0.9 W/m·K 

BRICKd Density of brick C4MVOFF 1700 1600/1800 kg/m3 

BRICKsh Specific heat of brick C4MVOFF 1000 950/1050 J/kg·K 

FAN Fan efficiency (MV) 
C4MVON 

C3MVON50 
0.6 0.6/0.9 - 

FLOW Ventilation rate (MV) 
C4MVON 

C3MVON50 
1.75 1.50/2.00 ACH 

FRAMEc Conductance of frame C3MVOFF/ON50 8.0 6.0/10.0 
W/m2·

K 

FRAMEsa Solar absorptance of frame C3MVOFF/ON50 0.6 0.5/0.8 - 

INFIL Infiltration rate 
C4MVOFF/ON 

C3MVOFF/ON50 
0.2 0.1/0.4 ACH 

MASS 
Thermal mass: thickness of 

concrete layer  
C4MVOFF 0.2 0.1/0.3 m 

MWc Conductivity of mineral wool 
C4MVOFF/ON 

C3MVOFF/ON50 
0.035 0.03/0.04 W/m·K 

MWd Density of mineral wool C4MVOFF 100 90/110 kg/m3 

MWsh 
Specific heat of mineral 

wool 

C4MVOFF/ON 

C3MVOFF50 
840 830/850 J/kg·K 
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PURc Conductivity of polyurethane 
C4MVOFF/ON 

C3MVOFF50 
0.02 0.02/0.03 W/m·K 

PURd Density of polyurethane 
C4MVOFF/ON 

C3MVOFF50 
40 30/50 kg/m3 

PURsh 
Specific heat of 

polyurethane 
C4MVOFF 1000 950/1050 J/kg·K 

RENDta 
Thermal absorptance of 

exterior mortar rendering 

C4MVOFF/ON 

C3MVOFF/ON50 
0.5 0.4/0.6 - 

RUBta 
Thermal absorptance of 

rubber 
C4MVOFF 0.9 0.8/0.95 - 

STEELta 
Thermal absorptance of 

steel 

C4MVOFF/ON 

C3MVOFF/ON50 
0.9 0.8/0.95 - 

WDWc Conductivity of glazing C3MVOFF/ON50 0.9 0.8/0.95 W/m·K 

WDWst 
Solar transmittance of 

glazing 
C3MVOFF/ON50 0.9 0.8/0.95 - 

Note: Min/Max. value refer to the boundary conditions considered in the building simulation model. 

 

3.5 Calibration of the most influential parameters. 

In the calibration process, Bayesian techniques were implemented  due to the following 

advantages:  (1) easy incorporation of prior information and expert knowledge; (2) capacity of 

computing probabilistic outcomes as reasonable expectations; (3) analysis of uncertainties 

associated to the predictions of model parameters; (4) possibility to consider multiple sources of 

uncertainty, regarding model inputs, model discrepancies due to the physical limitations of BEM, 

errors in field observations or noisy measurements; (5) updating posterior distributions based on 

prior knowledge and measured data [67]. The statistical formulation of this method was 

established by Kennedy and O’Hagan (Equation 4) [68]:  

𝑦(𝑥)= η(𝑥, 𝑡) + δ 𝑥 + Є(𝑥)                                                                                         (Equation 4) 

Where: 

𝑦(𝑥): field observations at known conditions 𝑥. Known conditions 𝑥 considered in this paper 

were: dry-bulb outdoor air temperature, outdoor relative humidity and global horizontal 

irradiance. η(𝑥, 𝑡): energy model outputs, computed at known conditions 𝑥 and with calibration 

parameters 𝑡. 

δ 𝑥 : model discrepancy or bias (discrepancies between model and true physical behaviour). 

Є(𝑥): errors in measurements and observations. 
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This technique allows for consideration of parameter uncertainty, by specifying a prior 

distribution for parameters. This distribution includes the most likely range of possible values 

[42] taking into account building specifications, surveys or expert judgment. Prior distributions 

are then updated given measured data through Bayes’ rule [67]: model simulation runs are used 

to identify which parameters are most likely to lead to the observed measurements and, then, 

Bayes’ theorem is implemented to calculate a posterior parameter distribution. Thus, posterior 

distributions result from the combination of prior distributions (prior knowledge) and a likelihood 

that a set of parameters would yield the observed measurements. The likelihood function is 

based on how observed data 𝑦(𝑥), relates to calibration parameters 𝑡 and observable inputs 𝑥, 

considering the model prediction η(𝑥, 𝑡), the model inadequacy δ 𝑥  and the measurement error 

Є(𝑥) [42]. The model discrepancy term captures the model bias and prevents the model 

overfitting during calibration [69]. 

In the Bayesian approach adopted, the building energy model outputs η(𝑥, 𝑡!)  and the 

discrepancy term δ 𝑥  are modelled using  GP, capturing the effects and interactions of 

individual parameters on the outputs through a covariance matrix (nonlinear multivariable 

region). GP does not impose a fixed functional form, defining its properties by its mean and 

covariance functions (Equations 5 to 9). Thus, GP are used as a surrogate model for the 

EnergyPlus tool, since the calibration approach would otherwise be toocomputationally 

expensive. A more detailed explanation of this is provided in [52]. 

=  !
!!

 · exp· {− 𝛽!!
!
!!! 𝑥!" − 𝑥!"

!
− 𝛽!!!!!!

!!!! 𝑡!"!
! − 𝑡!"!

! !
}!,!"                                (Equation 5) 

=  !
!!

 · exp· {− 𝛽!!
!
!!! 𝑥!" − 𝑥!"

!
}!,!"                                                                        (Equation 6) 

L 𝑧 𝑡! ,𝛽!, 𝜆!,𝛽!, 𝜆!,𝜆∈  ∝ ∑! !!/!·exp· {− !
!
(𝑧 − µ)! (𝑧 − µ)}!!

!                                  (Equation 7) 

=! +  + ,!! 0
0 0!                                                                                               (Equation 8) 

=  𝐼! / 𝜆∈!                                                                                                                   (Equation 9) 

Where: 

∑!: covariance function (depends on known input conditions 𝑥 and calibration parameters 𝑡!). 

∑!: covariance function that depends on known input conditions 𝑥. 

∑!: covariance matrix that accounts for observation errors.  

𝛽!: correlation hyperparameter of the GP model for the simulator η. 
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𝛽!: correlation hyperparameter of the GP model for the discrepancy term δ. 

𝜆!: precision hyperparameter of the GP model for the simulator η. 

𝜆!,: precision hyperparameter of the GP model for the discrepancy term δ. 

𝜆∈: precision hyperparameter of the GP model for the observation errors Є. 

𝑝: number of known input conditions 𝑥. 

𝑞: number of calibration parameters 𝑡. 

𝑧: n+m vector (establishes the relationship between the field observations 𝑦 and predictions η). 

L: refers to the normal likelihood function [52]. 

Although, GP is proven to provide the best accuracy of various meta-modelling techniques [70], 

its computational costs are high [71]. As building simulation is typically nonlinear, the posterior 

distribution usually results in an intractable expression [72], making it difficult to analytically 

sample from high-dimensional posterior distributions. To solve this, several studies recommend 

using Markov Chain Monte Carlo (MCMC) sampling [69], whose stationary distribution is the 

posterior distribution [73]. Following the step-by-step guidance provided by Chong and Menberg 

[52], the No-U-Turn Sampler, an extension of the Hamiltonian Monte Carlo algorithm was used, 

avoiding the random walk behaviour[67], allowing faster convergence for high-dimensional 

posterior distributions [74].  

Latin hypercube sampling (LHS) was used to construct the simulated training set for the 

Bayesian calibration. LHS aims to effectively sample in the multi-dimensional space of the 

calibration parameters [75] and a generally accepted rule is to consider 10 LHS samples per 

parameter [76]. Thus, the number of simulations m considered was m=40, for 4 calibration 

parameters. Since the assessment of indoor thermal conditions is usually based on temporal 

data, it requires a higher precision than that of energy consumption (generally evaluated at a 

12-month resolution: 12 measurements) [41], a 24-hour training period was used, with a total of 

960 number of simulated points (Table 1). 

The MCMC creates chains in the high probability regions (those with the highest impact on the 

output) for approximating the posterior distributions. The number of chains was fixed at 3, 

minimum value recommended by Annis, Miller and Palmeri [77]. The bigger the number of 

chains, the more computationally time-consuming the task [7171]. The number of iterations the 

algorithm runs was set at an initial value of 500 and the warm-up argument (number of steps 
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used to automatically tune the sampler) was set at 250, following the same authors suggestions 

[77]. Since the model normally begins in regions far away from the more plausible values (low 

probability regions), the warm-up argument reduces the influence of the starting values [52]. 

 

3.6 Uncertainty analysis: accuracy measurement of the building simulation model 

As established by Ruiz and Bandera [78], the accuracy of a calibrated model may be measured 

using uncertainty analysis. Even though there is a lack of consensus on BEM calibration 

standards [26], the most common uncertainty indices used in calibration are defined in the 

ASHRAE Guideline 14:2002 [79]: the Normalized Mean Bias Error (NMBE), the Coefficient of 

Variation of the Root Mean Square Error (CVRMSE) and the Coefficient of Determination (R²) 

(Equations 10 to 12), where: mi are the measured values, si refers to the simulated data, n is the 

number of measured data points, ρ is the number of adjustable model parameters and m 

represents the mean of measured values. 

NMBE= !
!
· !!!!!!

!!!
!!!

· 100(%)                     (Equation 10) 
 
 

CV(RMSE)= !
!
· !!!!!!

!!!
!

!!!
· 100(%)                  (Equation 11) 

 
 

R!=
n· mi·si−

n
i=1 mi·

n
i=1 si·

n
i=1

n· mi
2−

n

i=1
mi

n
i=1

2
· n· si2−

n

i=1
si

n
i=1

2

!

                  (Equation 12) 

 

 

According to the ASHRAE Guideline, the difference between the monitored and simulated data 

is sufficiently small if the mentioned metrics are within the thresholds shown in Table 3. 

Although these indices are generally used to calibrate energy consumption [14] and demand in 

simulation models [23], there are also several studies that use them to calibrate ambient data: 

outdoor temperatures, wind speed [80], solar radiation [81],indoor temperatures [82] or humidity 

[83]. 
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Table 3. Uncertainty ranges according to ASHRAE Guideline 14:2002. 

Calibration Frequency Index ASHRAE 

Monthly 
NMBE ±5% 

CV(RMSE) 15% 

Hourly 
NMBE ±10% 

CV(RMSE) 30% 

Suggested R2 >0.75 

 

 

4. Analysis and Results 

4.1 Sensitivity Analysis Results 

As outlined in section 3.4, a sensitivity analysis has been conducted for each protocol, with the 

aim of determining the most influential parameters to be used in calibration.   

Using the Morris method, the variables analysed in each protocol have been ranked by order of 

importance, based on the modified mean (µ*) and standard deviation (σ) values obtained 

(Figure 3). In each graph, the top right corner represents the variables with the highest µ* and σ 

values, corresponding to the most influential variables on the modelled indoor air temperature. 

On the contrary, the bottom left corner groups the variables with less importance on the output 

results. 

 

 

(a)         (b) 
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(c)         (d) 

Figure 3. Sensitivity analysis results (Morris Method): parameter ranking in (a) C4MVOFF; (b) C4MVON; 

(c) C3MVOFF50; and (d) C3MVON50. The calibration parameters used in each protocol are in red. 
 

Results obtained for the first protocol (C4MVOFF) were used to screen-out non-sensitive 

parameters when assessing the second protocol (C4MVON). Specifically, the followingvariables 

were ruled out for the C4MVON protocol: density of mineral wool (MWd), specific heat of 

polyurethane (PURsh), density and specific heat of brick (BRICKd and BRICKsh), thermal mass 

(MASS) and thermal absorptance of rubber (RUBta). Similarly, from the third (C3MVOFF50) to 

the fourth protocol (C3MVON50), the least influential parameters were also screened-out: 

specific heat of mineral wool (MWsh), density of polyurethane (PURd) and conductivity of both 

polyurethane (PURc) and brick (BRICKc).  

Only the top 4 most influential variables in each protocol (indicated in red in Figure 3) were used 

in calibration, since a higher number of variables may lead to a loss of posterior precision [52].  

 

4.2 Bayesian Calibration Results 

The Bayesian technique has been applied to calibrate the top 4 most influential parameters for 

each protocol, as defined in subsection 4.1. For the sake of brevity, only results of the 

C3MVON50 protocol (south-facing cell with MV and blinds 50% open), are provided in this 

section to provide an example of the calibration process. Results obtained in the remaining 

protocols are included in the Appendix A (Figures A.1 to A.3), along with the prior distributions 

used for all calibration parameters (Table A.1). 
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Figure 4. Trace plots of the four calibration parameters (𝑡!), GP correlation hyperparameters (𝛽! and 𝛽!) 

and GP precision hyperparameters (𝜆!, 𝜆! and 𝜆!) set in the C3MVON50 protocol. X-axis represents the 

number of iterations (note that warm-up was set at 250) and Y-axis corresponds to the parameter values. 

Figure 4 shows the trace plots of the four calibration parameters (𝑡!), GP correlation (𝛽! and 𝛽!) 

and GP precision hyperparameters (𝜆!, 𝜆! and 𝜆!), used in the Bayesian calibration process for  

the C3MVON50 protocol. Their prior distributions were defined according to Chong and 

Menberg [52], and are as follows: 𝛽! (a=1,b=0.3), 𝛽! (a=1, b=0.3), 𝜆! (a=10, b=10), 𝜆! (a=10, 

b=0.3) and 𝜆! (a=10, b=0.03), where a refers to the mean and b to the standard deviation.Visual 

inspection of the plots suggests that the sampling algorithm is exploring the posterior 

distribution efficiently, since the plots obtained look similar to a “fuzzy caterpillar” [84], being 

difficult to distinguish between individual chains and remaining around a constant value. 
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The low variability between and within the three MCMC chains, indicates that the number of 

chains being considered is enough to ensure model convergence to a common stationary 

distribution, with no need to increase the number of iterations or chains [6767]. Moreover, when 

comparing the variations between chains and the variations within chains for each parameter in 

the model, the potential scale reduction statistic (Rhat) is within 1.0±0.1 in all four protocols, 

proving that convergence was successfully achieved [73]. 

 

 

Figure 5. Posterior distributions obtained for C3MVON50 (red histogram), determined from a normal 

distribution of calibration parameters (blue line). The green line refers to prior uncertainty distributions. 

 

The plausible normal posterior distributions of the four calibration parameters for C3MVON50, 

reported in the Bayesian process, are shown in Figure 5. Green lines represent prior uncertainty 

distributions used as input to the calibration process. When compared to the posterior 

distributions (blue lines indicate the most likely values to result based on the observed 

measurements) obtained in the Bayesian approach, it can be observed that previous 

estimations of the parameters needed to be refined in the model, particularly in the case of the 

thermal absorptance of the exterior mortar rendering (RENDta = tf[2]) and the infiltration rate 

(INFIL = tf[1]).  
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4.3 Uncertainty Analysis Results 

This section assesses the accuracy of the calibrated building energy model in comparison to 

on-site measurements during the training and testing periods.  Results for protocol C3MVON50 

are shown here as an example. Results obtained for the remaining protocols can be found in 

Appendix B (Figures B.1 to B.6). 

Figure 6 represents the comparison between monitored indoor air temperature (blue line) and 

simulated data, for both the uncalibrated model (green line) and after the Bayesian calibration 

(red line), during the 24-h training period. 

 

 

Figure 6. Comparison between monitored and simulated data during the 24-hour training period for the 

C3MVON50 protocol. The red line shows the prediction of the calibrated model. The uncertainty range 

(95% confidence intervals) relating to the posterior distributions of the calibrated model is shown in grey. 

MV indicates that mechanical ventilation is on. 

It is observed that the calibration process has significantly improved the simulation model when 

compared to the uncalibrated model, particularly during minimum and maximum temperatures. 

Moreover, monitored data is within the uncertainty range (95% confidence intervals) of the 

calibrated model (indicated in grey), which is obtained by considering variations within the 

posterior distribution ranges. 
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Figure 7. Comparison between monitored and simulated data during the 120-hour testing period for the 

C3MVON50 protocol. The red line shows the prediction of the calibrated model. The uncertainty range 

(95% confidence intervals) relating to the posterior distributions of the calibrated model is shown in grey. 

MV indicates that mechanical ventilation is on. 

 

After Bayesian calibration, results obtained for the model for each protocol were tested for a 

longer period of time (120 hours) in order to check for bias in the evaluation process. The 

graphical results for the C3MVON50 protocol during the testing period are shown in Figure 7, 

where on site air temperature measurements (blue line) are compared to simulation outputs. 

Once again, both uncalibrated results (green line) and calibrated data (red line) are included. 

The graphic indicates model improvement using Bayesian calibration, which is crucial for hourly 

thermal comfort analysis. The uncertainty range (95% confidence intervals) is shown in Figure 

7. 

Statistical performance indices calculated following AHSRAE Guidelines (subsection 3.6) for 

each protocol are summarised in Table 4. A comparison is made between the performance of 

calibrated and uncalibrated models. To check for bias in the evaluation process, these indices 

are determined using an independent 120-hour dataset (testing period), different from the one 

used in the calibration process (training period). The values presented for the calibrated models 

refers to the best fit of the calibration (i.e. the central estimates for calibration parameters were 

used). 
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Table 4. Statistical indices obtained in the assessment of the calibrated models’ accuracy with respect to 

test cell data for all four experimental protocols. 

Protocol Calibrated 
NMBE 

(±10%) 

CVRMSE 

(<30%) 

R2 

(>0.75) 

Max. 

Tdifference (°C) 

P-value    

(T-Test) 

C4MVOFF 
No 8.92% 10.04% 0.61 2.63 0.49 

Yes 0.44% 0.90% 0.98 0.51 0.82 

C4MVON 
No -7.46% 11.57% 0.72 2.41 0.25 

Yes -0.22% 1.42% 0.97 0.74 0.70 

C3MVOFF50 
No -8.35% 8.57% 0.84 3.31 0.38 

Yes -0.22% 0.81% 0.98 0.75 0.78 

C3MVON50 
No -9.31% 9.81% 0.93 4.42 0.43 

Yes -0.78% 1.45% 0.98 0.74 0.72 

Note: Results of the calibrated models are represented in grey. 

 

Results show that, although the discrepancy between monitored and simulated air temperatures 

in all the four uncalibrated models were within the uncertainty ranges established by ASHRAE 

Guidelines, the maximum temperature differences (Max. Tdifference) between measurements and 

predictions were significantly large. The worst agreement was obtained for C3MVON50 (south-

facing cell with MV and blinds 50% open), which exceeded the monitored temperature by 4.0 

ºC, which is unreasonable accuracy for hourly thermal comfort assessment. It should be 

highlighted that the statistical indices were noticeably improved after calibration in all four cases, 

significantly reducing the maximum temperature differences to below 0.75 ºC. Bearing in mind 

that the accuracy of the monitoring probes is ±0.5 ºC for temperature measurements in the 

range 10-30 ºC and ±1.0 ºC for 30-55 ºC, the model is considered to be well calibrated. In 

addition, p-values obtained are significantly higher than 0.05, meaning there is not enough 

evidence to conclude that the difference between the means of monitored and simulated data is 

greater than zero (null hypothesis is that the means of both samples are the same). 

In the case of C3MVON50, despite meeting the requirements of ASHRAE, the uncalibrated 

model clearly differs from the monitored data. Although the energy simulation model reproduces 

the overall performance of the cell with no time shift, it generally overpredicts air temperatures, 

with significant discrepancies at the maximum and minimum peaks. Although the uncalibrated 

model does not reproduce the thermal conditions of the cell, the calibrated model tackles this 

issue. Calibration results obtained for C4MVOFF, C4MVON and C3MVOFF50 protocols, 
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regarding the thermophysical properties of the cells, were taken into account for the calibration 

of C3MVON50 protocol, which was possible given the different datasets analysed.  

 

5. Discussion and comparison to other studies  

It should be borne in mind that Bayesian calibration for highly accurate energy building models 

can be a time-consuming procedure, with significant computational costs, especially for large 

and high-definition spaces. As a result, monthly calibration is usually performed and studies 

tend to focus on energy consumption and demand assessment: Kang and Krarti [85] apply 

Bayesian methods to calibrate electricity and gas consumption, considering a model resolution 

of 12 months (12 data points with monthly average values); Sokol, Cerezo and Reinhart [86] 

use the same resolution taking into account the residential building stock as the calibration 

target for monthly and annual energy consumption; Nagpal, Mueller, Aijazi and Reinhart [87] 

calibrate electricity and chilled water usage for a 12-point resolution building model; or Yuan, 

Nian and Su [88] evaluates Bayesian posterior distributions of an office building model using 

average monthly electricity consumption. Few studies conducted to date, use hourly training 

periods. Again, this tend to be for energy consumption [73] and utility data analysis [89] rather 

than thermal conditions. Moreover, most of the mentioned studies assess Bayesian calibration 

in commercial buildings such as offices [88] and university buildings [90], while a small number 

of them present residential buildings as calibration targets [89], again putting great efforts into 

analysing energy use data.   

The research approach adopted in this paper therefore presents several scientific innovations. 

Firstly, Bayesian calibration was implemented using hourly training periods (temperature data), 

instead of the commonly monthly approach, to provide a basis for thermal comfort assessment. 

This is done given that, instead of energy consumption and demand analysis, indoor thermal 

assessment is targeted, so monthly calibration with average values may be insufficiently 

detailed to tackle this analysis. Secondly, Test Cells that reproduce a bedroom of a typical 

residential Mediterranean building were used as case study adding to the building typologies 

studied in previous research. This allowed the viability of the calibration technique to be tested 

under a controlled setting. Thirdly, in this research a 24-hour training period and a 120-hour 

testing period were considered, which meant a larger amount of computational running time 
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was required compared to monthly calibration (Bayesian hourly calibration for this case study 

took on average 12-hours processing time for each protocol). To tackle this issue and in 

comparison to other studies where only Bayesian approaches were implemented [90], this 

technique was complemented with a sensitivity analysis for identifying the most influential 

variables on the output results. The combination of both methods has affordably reduced 

computation time and has led to a considerable improvement in prediction, in contrast to 

uncalibrated results. Besides, incorporating sensitivity analysis may tackle the inconvenience of 

needing large amount of input data to properly calibrate BEM to an accurate level. 

Besides, using the Bayesian calibration, the accuracy performances indices established by the 

ASHRAE Guidelines were noticeably improved: NMBE and CVRMSE indices were below 1.0% 

and 1.5%, respectively, in contrast to the initial values (which were up to 9.3% and 11.57%, 

respectively), improving the model’s accuracy by around 80%, while other Bayesian calibration 

studies reported improvement results of around a 40% [86].  Performances indices of the 

ASHARE for BEM accuracy verification have proven to be substantially permissive when 

calibrating thermal conditions (since temperature differences were significantly high), given that 

guideline ranges tend to be used for energy demand and consumption [26].  Nevertheless, this 

paper has presented a viable complementary calibration methodology that achieves better and 

higher-resolution performance for hourly thermal comfort assessment. 

 

6. Conclusions: Limitations and Future Research 

This paper demonstrates the viability of a calibration methodology, based on both sensitivity 

analysis and Bayesian techniques, for building energy models, when predicting hourly 

temperature data. Monitored Test Cell dry-bulb indoor air temperature data was compared to 

simulated predictions under different experimental protocols, with the accuracy of the energy 

models assessed through uncertainty indices. Bayesian calibration was able to achieve a 

significantly better prediction of the Test Cell temperature data compared to the uncalibrated 

protocols, with an average improvement of around 80%.  

Nonetheless, the specific results reported in this paper may only be applied to housing buildings 

or small single zone units (such as flats or small offices) with limited ventilation and few wall 

partitioning, where a global performance of the space or unit is assessed. Furthermore, a key 
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limitation of this research was that it was carried out in an unoccupied, highly controlled Test 

Cell environment with free-running conditions (no HVAC systems).  

Whilst the use of Tests Cells may be ideal for assessing the suitability of the proposed 

methodology under various experimental protocols, the findings may not be applicable to more 

complex case studies or real buildings. Taking into account the conclusions reported in this 

paper, future research should test this methodology in real building models, with the evaluation 

of its viability and accuracy in models with different grades of complexity and definition. In 

addition, given the limitations of the current research, the impact of adding more study variables 

into the building energy models (e.g. HVAC systems, occupant density and use schedules, flow 

paths, etc.) should also be extensively analysed. Likewise, comparing the impact of using both 

simplified and complex forms of algorithms and energy equations in building energy models 

may also provide useful information in addressing the simplification process whilst reducing 

simulation time. 

In terms of indoor thermal assessment calibration, an extensive evaluation of the combination of 

both detailed hourly and monthly on site data of representative seasonal periods may also be a 

strategy worth analysing on the results’ accuracy, since such results were not found in the 

literature. Besides, they may also report useful and clarifying results for calibration comparison 

between the building and stock levels for retrofitting purposes. 

Summarizing, despite of a possible further calibration optimization, which highly depends on 

computational burden, model complexity, input measurements, building level information or 

resources availability, these results prove that implementing a first level statistical calibration-

simulation methodology, combining sensitivity analyses and Bayesian techniques, significantly 

improves the accuracy of hourly indoor air temperature simulation outputs when compared to 

uncalibrated models. Therefore, the methodology presented is considered to be a useful and 

novel automated building calibration approach that can achieve good improvement in simulation 

results, within the limitations of computational resources and building data availability. 
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Appendix A. 

	

Figure A.1. Posterior distributions obtained in C4MVOFF (red histogram), determined from a normal 

distribution of calibration parameters (blue line). Green line refers to prior uncertainty distributions. 

 

 

Figure A.2. Posterior distributions obtained in C4MVON (red histogram), determined from a normal 

distribution of calibration parameters (blue line). Green line refers to prior uncertainty distributions. 
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Figure A.3. Posterior distributions obtained in C3MVOFF50 (red histogram), determined from a normal 

distribution of calibration parameters (blue line). Green line refers to prior uncertainty distributions. 

 

Table A.1 Normal prior distributions considered for each calibration parameter used. 

ID Parameter description Protocols Mean (µ) 
Standard 

deviation (σ) 

BRICKc Conductivity of brick C4MVOFF 0.80 0.03 

FAN Fan efficiency (MV) 
C4MVON 

C3MVON50 
0.70 0.05 

FLOW Ventilation rate (MV) 
C4MVON 

C3MVON50 
1.75 0.06 

INFIL Infiltration rate 
C4MVOFF/ON 

C3MVOFF/ON50 
0.35 0.05 

RENDta 
Thermal absorptance of 

exterior mortar rendering 

C4MVOFF/ON 

C3MVOFF/ON50 
0.45 0.05 

STEELta Thermal absorptance of steel C4MVOFF 0.90 0.025 

WDWc Conductivity of glazing C3MVOFF50 0.70 0.05 

WDWst Solar transmittance of glazing C3MVOFF50 0.80 0.03 
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Appendix B. 

 

Figure B.1. Comparison between monitored and simulated data during the 24-hour training period of the 

C4MVOFF protocol. The uncertainty range related to the posterior distributions is shown in grey. The red 

line represents the best calibration results.  

 

Figure B.2. Comparison between monitored and simulated data during the 24-hour training period of the 

C4MVON protocol. The uncertainty range related to the posterior distributions is shown in grey. The red 

line represents the best calibration results. MV means mechanical ventilation. 
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Figure B.3. Comparison between monitored and simulated data during the 24-hour training period of the 

C3MVOFF50 protocol. The uncertainty range related to the posterior distributions is shown in grey. The 

red line represents the best calibration results.  

 

 

Figure B.4. Comparison between monitored and simulated data during the 120-hour testing period of the 

C4MVOFF protocol. The uncertainty range related to the posterior distributions is shown in grey. The red 

line represents the best calibration results.  
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Figure B.5. Comparison between monitored and simulated data during the 120-hour testing period of the 

C4MVON protocol. The uncertainty range related to the posterior distributions is shown in grey. The red 

line represents the best calibration results. MV means mechanical ventilation. 

 

Figure B.6. Comparison between monitored and simulated data during the 120-hour testing period of the 

C3MVOFF50 protocol. The uncertainty range related to the posterior distributions is shown in grey. The red 

line represents the best calibration results.  


