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Abstract—In recent years, deep learning-based person re-
identification (Re-ID) methods have made significant progress.
However, the performance of these methods substantially de-
creases when dealing with occlusion, which is ubiquitous in
realistic scenarios. In this paper, we propose a novel semantic-
aware occlusion-robust network (SORN) that effectively exploits
the intrinsic relationship between the tasks of person Re-ID and
semantic segmentation for occluded person Re-ID. Specifically,
the SORN is composed of three branches, including a local
branch, a global branch, and a semantic branch. In particular,
the local branch extracts part-based local features, and the
global branch leverages a novel spatial-patch contrastive loss
(SPC) to extract occlusion-robust global features. Meanwhile,
the semantic branch generates a foreground-background mask
for a pedestrian image, which indicates the non-occluded areas
of the human body. The three branches are jointly trained in a
unified multi-task learning network. Finally, pedestrian matching
is performed based on the local features extracted from the non-
occluded areas and the global features extracted from the whole
pedestrian image. Extensive experimental results on a large-scale
occluded person Re-ID dataset (i.e., Occluded-DukeMTMC) and
two partial person Re-ID datasets (i.e., Partial-REID and Partial-
iLIDS) show the superiority of the proposed method compared
with several state-of-the-art methods for occluded and partial
person Re-ID. We also demonstrate the effectiveness of the
proposed method on two general person Re-ID datasets (i.e.,
Market-1501 and DukeMTMC-reID).

Index Terms—Person re-identification, occlusion, semantic seg-
mentation, multi-task learning.

I. INTRODUCTION

PERSON re-identification (Re-ID) aims to retrieve a query
pedestrian image from a gallery collected across several

non-overlapping cameras. It has attracted considerable atten-
tion because of its variety of applications, such as person
search in video surveillance and person tracking. During the
last few decades, significant progress has been made in person
Re-ID. However, it is still a challenging task confronted with
many challenges, such as various background clutter and
complex pedestrian appearance variations caused by different
poses, camera views, and illuminations.

Over the past few years, deep learning-based methods have
dominated the person Re-ID research due to their outstanding
performance on retrieval accuracy. Some methods [1], [2]
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Fig. 1. Examples of occluded pedestrian images from the Occluded-DukeMT-
MC [12], Partial-iLIDS [13], and Partial-REID [14] datasets.

employ deeply learned global features, while a large number
of methods [3]–[5] resort to taking advantage of predefined
rigid regions to extract local features. A few methods [6]–
[11] employ external auxiliary models (such as pose estimation
models) for feature extraction and alignment.

In realistic person Re-ID scenarios, occlusion is ubiquitous,
especially in crowded public places. For example, pedestrians
are often occluded by various obstacles, such as cars, umbrel-
las, pillars, and other pedestrians. Several examples are shown
in Fig. 1. Occlusion may introduce severe disturbance to the
trained models, thus resulting in difficulty in learning robust
feature representations by conventional deep learning-based
methods. As a result, the performance of these methods sub-
stantially decreases when dealing with the occlusion problem
(see Fig. 2 for an illustrative example).

Recently, several methods [14]–[18] have been proposed
to address the problem of partial person Re-ID, where the
query images are occluded by various obstacles while the
gallery images are non-occluded. However, these methods
usually manually crop the occluded areas of the query images
and then use the non-occluded areas for retrieval to alleviate
the disturbance caused by occlusion. Clearly, such a manner
is not practical since both the query and the gallery may
contain occluded images in real-world scenarios. Moreover,
the manual cropping process is not efficient.

Different from the problem of partial person Re-ID, the
problem of occluded person Re-ID is more challenging and
practical, where both the query and the gallery can contain
occluded images. In addition, the manual cropping operation
is not allowed, to avoid human bias. Representative works for
handling occluded person Re-ID are the pose-guided feature
alignment (PGFA) method [12] and the high-order person Re-
ID (HOReID) method [36]. PGFA relies on human landmarks
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to disentangle informative information in the non-occluded
areas from occluded images. HOReID learns high-order re-
lation information for extracting discriminative features and
topology information for performing robust alignment based
on a pose estimator. However, PGFA and HOReID train the
tasks of person Re-ID and pose estimation separately, and they
ignore the close connection between the two tasks. Moreover,
the performance of these methods depends heavily on the
accuracy of the pose estimation model. As a result, these
methods might not be able to extract effective features based
on these landmarks when the generated human landmarks are
not accurate due to occlusion, thus leading to a performance
decrease.

In this paper, to solve the challenging problem of occluded
person Re-ID, we propose a deep model called the semantic-
aware occlusion-robust network (SORN) by taking advantage
of semantic segmentation and exploring the important relation-
ship between the tasks of occluded person Re-ID and semantic
segmentation. Specifically, the SORN contains a local branch,
a global branch, and a semantic branch. Inspired by the part-
based convolutional baseline (PCB) method [3], the local
branch evenly partitions the feature map into several horizontal
stripes and adopts average pooling to obtain effective local
features. Meanwhile, the global branch extracts occlusion-
robust global features, where a novel spatial-patch contrastive
(SPC) loss is proposed to enforce the global features to encode
discriminative local information. The semantic branch plays
the role of semantic segmentation, which can indicate the non-
occluded areas of the human body. Since current person Re-
ID datasets do not have the semantic labels for pedestrian
images, we adopt a pretrained semantic segmentation model
and label smoothing to predict the semantic labels. In this
way, the semantic branch can be jointly trained with the local
and global branches in an end-to-end manner. Based on the
trained model, pedestrian matching is performed by using the
local features extracted from the non-occluded areas and the
global features extracted from the whole pedestrian image.

Fig. 2 gives the top 5 retrieval results obtained by the
PCB method and the proposed method for a query image in
the Occluded-DukeMTMC dataset. By considering the tasks
of occluded person Re-ID and semantic segmentation in a
unified multi-task learning network, the proposed method
significantly alleviates the disturbance caused by occlusion and
thus correctly retrieves the person of interest.

In summary, the major contributions of our work are sum-
marized as follows:

• We propose a novel semantic-aware occlusion-robust net-
work (SORN), which consists of a local branch, a global
branch, and a semantic branch, for occluded person Re-
ID. By incorporating semantic segmentation into occlud-
ed person Re-ID, the intrinsic relationship between these
two tasks is fully exploited. Moreover, the negative effect
of occluded areas and background clutter is effectively
alleviated.

• We propose a novel spatial-patch contrastive (SPC) loss
to extract occlusion-robust global features in the global
branch. The global features are highly discriminative and
robust to occlusion. More importantly, the global features

Ours

Query 1 2 3 4 5

PCB

Fig. 2. The top 5 retrieval results obtained by PCB and our proposed SORN
method for a query image in the Occluded-DukeMTMC dataset. The images
with green and red borders denote the correct and incorrect retrieval results,
respectively. The patch in the query image with a blue border indicates that
the region is not severely occluded, while that with a yellow border represents
that the region is occluded by an obstacle.

can be reliably used for occluded pedestrian matching,
especially when the occluded areas are different for the
query and gallery images.

• Experimental results demonstrate that the proposed
method performs favorably against state-of-the-art meth-
ods on the problem of occluded person Re-ID. Moreover,
we also show the effectiveness of the proposed method on
the problems of partial person Re-ID and general person
Re-ID.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III first introduces the
overall framework of the proposed method and then illustrates
the three branches and the pedestrian matching strategy. Sec-
tion IV presents the experimental results. Finally, Section V
draws the conclusion.

II. RELATED WORK

In this section, we briefly review the related work on general
person Re-ID methods, partial person Re-ID methods, and
occluded person Re-ID methods.

A. General Person Re-ID Methods

Recently, with the development of deep learning, the per-
formance of general person Re-ID methods has received
significant improvements [19]. Existing general person Re-ID
methods mainly focus on two aspects: (1) learning discrimi-
native feature representations [3], [7], [8], [20]–[25]; and (2)
learning effective metrics [1], [26]–[30].

On the one hand, for learning discriminative feature repre-
sentations, many methods attempt to extract fine-grained local
features. For instance, Sun et al. [3] propose the PCB method,
which extracts local features by dividing the feature map into
uniform patches. PCB also introduces refined part pooling
(RPP) to further boost the performance of person Re-ID. Lei et

al. [7] propose to perform person Re-ID based on the semantic
region representation and a mapping space topology constraint,
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where the semantic information is employed to alleviate the
misalignment problem (caused by viewpoint changes and pose
variations). Zheng et al. [20] develop a pedestrian alignment
network (PAN) to jointly align pedestrian images and learn
discriminative features. Shen et al. [21] propose sharp attention
networks (SAN) to generate sharp attention masks, which can
assertively select subtle visual structures by sampling from
convolutional features. The above methods explicitly address
various challenges (such as the misalignment problem and
attention mask generation) for general person Re-ID.

On the other hand, for learning effective metrics, most
methods adopt some regularization terms or constraints to
enforce the person Re-ID model to learn discriminative feature
embedding. Representative methods include triplet loss [27],
hard-aware point-to-set (HAP2S) loss [28], quadruplet loss
[1], group similarity loss [29], and hinge loss [30], where the
design of loss functions and the strategy of hard sample mining
play critical roles. Note that these methods are developed
to address the problem of general person Re-ID. Therefore,
when the pedestrian is occluded by obstacles in the image,
the feature representations extracted by these methods tend to
be noisy, thus leading to a significant performance decrease.

Recently, some pose-guided methods use human landmarks
to locate the human body and alleviate the misalignment
problem for matching pedestrian images. For example, Su
et al. [6] propose a pose-driven deep convolutional (PDC)
model to learn effective feature representations and adap-
tive similarity measures. PDC explicitly leverages human
landmarks to handle the problem of person Re-ID under
pose variations. Ge et al. [9] propose a pose-guided feature
distilling generative adversarial network (FD-GAN) model,
which makes use of human landmarks to generate pedestrian
images. A novel same-pose loss is integrated into the FD-
GAN model to simultaneously learn identity-related and pose-
unrelated representations. Zheng et al. [11] propose to address
the pedestrian misalignment problem by introducing pose
invariant embedding (PIE) as a pedestrian descriptor. Suh
et al. [31] propose a two-stream network that can generate
appearance and body-part feature maps.

Some mask-guided methods employ person masks to extract
features for person Re-ID. For instance, Kalayh et al. [8]
propose the SPReID method to extract body-part features by
using an additionally trained human parsing model. Song et

al. [32] use the source image and the corresponding binary
segmentation mask as inputs to extract discriminative features
that are invariant to background clutter. Qi et al. [24] adopt
both the source image and the masked image as the network
inputs, where a multi-layer fusion scheme and a ranking loss
are developed to fuse the different levels of features and
optimize the network, respectively. The mask-guided methods
can extract aligned local features and focus on foreground
areas by exploiting the results from semantic segmentation.
However, these methods cannot effectively perform occluded
person Re-ID, where the occluded areas can be different for
the query and the gallery.

The pose-guided or mask-guided methods resort to external
models (e.g., pose estimation or human parsing models) for
general person Re-ID. Although these methods can alleviate

occlusion to some extent, they depend heavily on accurate pose
estimation (or human parsing). Moreover, the pose estimation
(or human parsing) model and the person Re-ID model are
usually independently trained since the ground-truth human
landmarks (or semantic labels) are not available in the person
Re-ID datasets. As a result, these methods ignore the inherent
dependency between the tasks of pose estimation (or human
parsing) and person Re-ID. In contrast, our method jointly
trains the tasks of occluded person Re-ID and semantic
segmentation in a unified multi-task learning network. In
particular, we predict the semantic labels of the training dataset
by using the DANet model [33] and adopt label smoothing
to prevent overfitting (caused by some false semantic labels
predicted by DANet) on the training dataset. In this way, our
method effectively explores the intrinsic relationship between
the two tasks. More importantly, semantic segmentation is
helpful to reduce the negative influence of occluded areas
and background clutter, thus leading to performance improve-
ments.

B. Partial Person Re-ID Methods

Partial person Re-ID aims to match the query partial pedes-
trian image against the full-body pedestrian images in the
gallery. Zheng et al. [14] propose a local patch-level matching
method to explicitly model the ambiguity of the occlusion
patterns. They also introduce a global part-based matching
model to encode the spatial layout information. He et al. [15]
propose to leverage a fully convolutional network (FCN) to
generate fixed-sized spatial feature maps and use deep spatial
feature reconstruction (DSR) to match pedestrian images.

Recently, He et al. [16] develop a dictionary learning-based
spatial feature reconstruction (SFR) method to match different
sized feature maps for partial person Re-ID. Luo et al. [17]
propose a spatial transformer network (STN) to sample a
semantic patch from the holistic image to match the partial
image and jointly train the STN module and the person ReID
module in a two-step procedure. Sun et al. [18] propose a
visibility-aware part model (VPM) that automatically identifies
the visibility of regions in a partial image based on self-
supervision.

The above methods usually manually crop the occluded
areas of the query pedestrian image. However, the manual
cropping process is not practical and efficient. Different from
these methods, the proposed method addresses a more general
scenario (both the query images and the gallery images can
contain occlusion) and does not require manual cropping.

C. Occluded Person Re-ID Methods

Although occlusion is a major challenge in person Re-ID,
there are only a few studies on the problem of occluded
person Re-ID. Zhuo et al. [34] propose an attention framework
of person body (AFPB) method for occluded person Re-ID.
The method employs an occlusion simulator (OS) to generate
artificial occluded images by randomly adding background
patches to full-body pedestrian images. However, such a
method cannot effectively deal with the case in which both
the query and the gallery contain occlusion. He et al. [35]
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Fig. 3. The overall framework of our proposed SORN for occluded person Re-ID. Our method consists of a ResNet50 backbone, a local branch (Section
III-B), a global branch (Section III-C), and a semantic branch (Section III-D). The three branches are effectively combined and jointly trained in an end-to-end
way. Here, ‘ c�’ represents the concatenation operation. The number of patches P and the number of channel sets N are both set to 3 for simplicity.

employ an FCN and pyramid pooling to extract spatial pyramid
features, and use foreground-aware pyramid reconstruction
(FPR) to calculate the matching scores between the query
image and the gallery. However, to effectively reconstruct
the query image, the images in the gallery are required to
be non-occluded. Wang et al. [36] leverage a convolution-
al neural network (CNN) backbone and a pose estimation
model to extract local features. An adaptive direction graph
convolutional (ADGC) layer and a cross-graph embedded-
alignment (CGEA) layer are developed to embed the relation
information and the topology information, respectively. Zhuo
et al. [37] design a teacher-student learning framework to
learn an occlusion-robust model. Miao et al. [12] propose the
PGFA method for occluded person Re-ID. PGFA leverages an
additionally trained pose estimator to generate pose landmarks,
which indicate the occluded areas.

In this paper, we integrate semantic segmentation with oc-
cluded person Re-ID in a unified multi-task learning network,
where a semantic branch, a global branch, and a local branch
are jointly trained in an end-to-end manner. Therefore, our
method fully exploits the semantic information to enable the
model to pay attention to the non-occluded areas. Moreover,
compared with PGFA [12] that depends on accurate pose
estimation, our method is more tolerant to small segmentation
errors by taking the semantic information into account.

III. PROPOSED METHOD

In this section, we present the details of our proposed
SORN method for occluded person Re-ID. An overview of
the proposed method is introduced in Section III-A. Each
component of the proposed method is described in detail from

Section III-B to Section III-E. Finally, the discussions between
our proposed method and several state-of-the-art methods are
given in Section III-F.

A. Overview

The proposed SORN method contains four main compo-
nents, including a feature extraction backbone, a local branch,
a global branch, and a semantic branch. The overall framework
of the proposed method is shown in Fig. 3.

The pedestrian images are first input to a ResNet50 back-
bone [38] to generate a 3D feature map T 2 Rh⇥w⇥c,
where h, w, and c denote the height, width, and number
of channels, respectively. Similar to [3], the spatial down-
sampling operation in the last layer of ResNet50 is removed
to obtain the feature map with a higher spatial resolution.

Next, the feature map T is fed into a local branch, a global
branch, and a semantic branch. For the local branch, T is
divided into several patches in the horizontal direction, and
local features are then obtained by applying global average
pooling. For the global branch, occlusion-robust global fea-
tures, which can preserve local details of the pedestrian image,
are extracted based on the proposed spatial-patch contrastive
(SPC) loss. For the semantic branch, the feature maps from
different levels of the ResNet50 backbone are used as the
inputs, and several deconvolutional layers are employed to
generate a foreground-background mask. Finally, the three
branches are jointly trained in an end-to-end manner.

For the testing stage, the local features are selected from
the non-occluded areas based on the generated foreground-
background mask. Then, pedestrian matching is performed
according to the global features and the selected local features.
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B. Local Branch

For the local branch, we first evenly partition the feature
map T into P patches in the horizontal direction. Note that
each patch has a fixed position based on prior knowledge
about the human body structure. Then, the local features are
obtained by employing a global average pooling (GAP) layer
followed by a batch normalization (BN) layer for each patch.
In this way, the local branch can extract fine-grained local
features. We denote these local features as {fplocal}Pp=1, where
fplocal represents the local features extracted from the p-th
patch and P is the number of patches. Finally, each local
feature representation is fed into a fully-connected layer and
a softmax layer to predict the probability yp of a person ID.
Here, yp = [yp1 , · · · , y

p
J ], and J is the number of person IDs.

The classification loss of the local branch is formulated
according to the sum of the cross-entropy loss, that is,

Llocal = �
PX

p=1

JX

j=1

qj log(y
p
j ), (1)

where qj denotes the label indicator. That is, qj = 1 if j is
equal to the ground-truth label, and qj = 0, otherwise.

Note that PCB [3] and VPM [18] also employ the local
branch. However, different from these methods, we add a BN
layer after the GAP layer. Such a manner guarantees that
the gradients are more predictive and stable, which can avoid
overfitting during training [39].

C. Global Branch

For the global branch, we first apply a 1⇥ 1 convolutional
layer to the feature map T so that the number of channels is
extended from c to Nc0 (where N is the number of channel
sets and c0 is the reduced number of channels in each set).
Hence, a 3D feature map Tg 2 Rh⇥w⇥Nc0 is obtained. Then,
the Nc0 channels of Tg are uniformly divided into N different
sets of channels. Obviously, the n-th set of channels refers to
the channels from the [(n� 1)c0 + 1]-th channel to the nc0-th
channel, where n 2 {1, · · · , N}.

The 2D feature map of a single channel only contains weak
semantic information and can easily be affected by disturbance
[40]. Therefore, we combine the 2D feature maps of the n-th
set of channels and obtain a 2D aggregation map An 2 Rh⇥w

as follows:

An =
nc0X

i=(n�1)c0+1

Ti
g, (2)

where Ti
g denotes the i-th 2D feature map within Tg .

To ensure the stability of the training procedure, we adopt
a normalization step to constrain the range of An to [0, 1].
Specifically, we obtain the average value An of the aggregation
map An, which is defined as

An =

P
(x,y)2An

An(x, y)

h⇥ w
, (3)

where (x, y) denotes the spatial location in An.

Occluded Image

Fig. 4. Visualization of the normalized aggregation maps (N = 3) for
two occluded images in the Occluded-DukeMTMC dataset. M1, M2, and
M3 denote the aggregation maps from the first, second, and third sets of
channels, respectively.

Next, we employ a sigmoid function to normalize each
element of An as

Mn(x, y) = sig(An(x , y)� An), (4)

where Mn denotes the normalized aggregation map. sig(z) =
1/(1 + e�z) is the sigmoid function, which maps elements in
An with values larger than An closer to 1, while those smaller
than An closer to 0.

For general person Re-ID methods, the global features that
capture the full receptive field can be used to discriminate
different pedestrians. However, when dealing with occluded
person Re-ID, the global features extracted from these methods
usually contain noisy information due to the occluded areas.
Therefore, for occluded person Re-ID, the desired global
features are expected to exploit the information mainly from
the non-occluded areas. Moreover, they should be able to
effectively encode the context information to address the
misalignment problem.

To achieve this goal, we uniformly divide each normalized
aggregation map into N rectangular patches in the horizontal
direction (since there are N normalized aggregation maps in
total) and enforce each normalized aggregation map to activate
a specific patch. Therefore, we propose a novel spatial-patch
contrastive (SPC) loss as follows:

LSPC =
NX

n=1

(
X

(x,y)2Mn

Mn(x, y)�
X

(x,y)2Rn,n

Mn(x, y)). (5)

Here, Rn,l denotes the l-th rectangular patch of the n-th
normalized aggregation map. Thus, Rn,n represents the n-th
patch of the n-th normalized aggregation map.

In Eq. (5), we subtract the responses of Rn,n from those
of Mn. Therefore, the SPC loss minimizes the responses of
Rn,1 + · · · + Rn,n�1 + Rn,n+1 + · · · + Rn,N for the n-th
normalized aggregation map. In this way, by minimizing the
SPC loss, different normalized aggregation maps focus on
different patches (i.e., Mn focuses on the n-th patch Rn,n).
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Fig. 4 visualizes the normalized aggregation maps based
on the SPC loss for two occluded pedestrian images in the
Occluded-DukeMTMC dataset. We can see that each aggre-
gation map focuses on a specific patch. In particular, when
a patch is occluded (e.g., a woman is occluded by a car and
a woman is occluded by a tree in the first and second rows
of Fig. 4, respectively), the corresponding aggregation map
(e.g., the 4th and 2nd images in the first and second rows of
Fig. 4, respectively) suppresses the disturbance information in
this patch. Therefore, the global branch can concentrate on the
non-occluded areas of the pedestrian images, which makes the
global features robust to occlusion and highly discriminative.
Furthermore, the global features capture the full receptive field
of the input image, which is beneficial for alleviating the
misalignment problem.

Similar to the local branch, we also use global average pool-
ing on Tg to extract the global features fglobal and then obtain
the ID prediction probability distribution g = [g1, · · · , gJ ]
by applying a fully-connected layer and a softmax layer. The
classification loss of the global branch can be formulated as
follows:

Lglobal = �
JX

j=1

qj log (gj), (6)

where qj is the label indicator.

D. Semantic Branch

For occluded person Re-ID, the local features extracted from
occluded areas contain the disturbance information. Therefore,
it is of great importance to exclude disturbances in occluded
areas. Existing methods [8] [12] rely on external models
(such as the human parsing model or the pose estimation
model) to indicate the occluded areas. However, these external
models are usually independently trained, which ignores the
relationship between the tasks of occluded person Re-ID and
pose estimation (or human parsing).

In this paper, we use a semantic branch for detecting the
occluded areas of pedestrian images in a unified network. The
benefits of adopting the semantic branch are twofold. 1) By
incorporating semantic segmentation into occluded person Re-
ID, we expect that the model can focus on the non-occluded
areas rather than background clutter or occluded areas. Such
a manner enables the trained model to effectively improve
the capability of distinguishing the non-occluded foreground
from the background. As a result, the intrinsic relationship
between occluded person Re-ID and semantic segmentation
is fully exploited. Thus, the joint training of semantic branch
and the other two branches (i.e., the global and local branches)
helps to improve the performance of occluded person Re-ID.
2) For pedestrian matching, we capitalize on the generated
foreground-background masks to determine the non-occluded
areas and extract the local features from these areas. In this
way, the disturbance in the occluded areas can be removed for
more accurate retrieval (Section III-E).

The lower layers of the convolutional networks contain
sufficient spatial information, while the upper layers of the
networks encode high-level semantic information. Therefore,

we leverage the feature maps from the different levels of the
ResNet50 backbone as the inputs of the semantic branch to
simultaneously exploit both spatial and semantic information.
The architecture of our semantic branch is shown in Fig. 3.

Specifically, the output feature maps (with a size of h⇥w)
from the 3rd and 4th residual blocks of ResNet50 are concate-
nated as the input, which is fed into a 3 ⇥ 3 deconvolutional
layer with stride 2, followed by batch normalization and
ReLU. Then, the output feature map (with a size of 2h⇥ 2w)
from the 2nd residual block of ResNet50 and the output
from the previous layer are concatenated and fed into another
3 ⇥ 3 deconvolutional layer with stride 2, followed by batch
normalization and ReLU. Finally, a 1⇥ 1 convolutional layer
is employed to classify each pixel of the final feature map
(with a size of 4h ⇥ 4w) into K semantic classes. In this
paper, eight semantic classes (including head, torso, upper
arm, lower arm, upper leg, lower leg, foot, and background)
are considered. The output of the convolutional layer is the
prediction probability s = [s1, · · · , sK ] of semantic classes.

The loss of the semantic branch is defined as follows:

Lseg =
KX

k=1

�qk log(sk). (7)

Here, qk = �k,t is the label distribution, where t is the ground-
truth label. �k,t denotes the Dirac delta function, which is equal
to 1 if k = t, and 0 otherwise.

It is worth noting that current person Re-ID datasets usually
do not provide ground-truth semantic labels. In this paper,
instead of relying on expensive manual labeling, we predict
the semantic labels of the training dataset by using the DANet
model [33] (i.e., a semantic segmentation model trained on
the DensePose-COCO dataset [41]). As a result, some false
semantic labels exist in the training dataset. These false
semantic labels may lead to overfitting of the semantic branch
since each training sample is assigned a full probability to the
ground-truth label (predicted by DANet) according to Eq. (7).
To overcome the above issue, we further adopt label smoothing
(LS) proposed in [42] as the model regularization.

Generally, LS encourages the model to be less confident
about the ground-truth label. Specifically, for a training sample
with the ground-truth label t, the label distribution qk is
changed as

qk = (1� ✏)�k,t + ✏uk, (8)

where ✏ is the label smoothing parameter. Eq. (8) can be
viewed as a weighted combination of the original ground-truth
label distribution �k,t and the fixed label distribution uk. For
simplicity, uk uses the uniform distribution, i.e., uk = 1

K .
Thus, qk can be reformulated as

qk =

⇢
1� K�1

K ✏ k = t
✏
K k 6= t,

(9)

where ✏ is empirically set to 0.10 in all the experiments.
Finally, the overall loss of our SORN method can be

formulated as

L = Llocal + �1Lglobal + �2LSPC + �3Lseg, (10)
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where Llocal and Lglobal denote the classification losses of the
local branch and the global branch, respectively. LSPC denotes
the proposed SPC loss. Lseg denotes the semantic segmenta-
tion loss. �1, �2 and �3 are the regularization parameters to
balance different losses.

Based on Eq. (10), we can jointly train the three branches
in an end-to-end manner.

E. Pedestrian Matching

For pedestrian matching, we consider the background label
and the foreground label of the human body. That is, we
aggregate all the semantic labels of the human body (seven
classes in total) from the semantic branch as one foreground
category. In this way, we can obtain a binary foreground-
background mask E 2 Rh0⇥w0

, where h0 = 4h and w0 = 4w
respectively denote the height and width of the mask E.
E(x, y) = 1 represents that the pixel at position (x, y) belongs
to the foreground, and E(x, y) = 0 represents that the pixel
belongs to the background.

In the following, we show how to use the generated
foreground-background mask E to select local features from
non-occluded areas and then fuse the global features and local
features for matching pedestrian images.

We first define P evenly partitioned patches on mask E in
the horizontal direction. Hence, the visibility score vp (p =
1, ..., P ) for each patch can be calculated as

vp =
1

d0 ⇥ w0

X

(x,y)2⌦p

E(x, y), (11)

where d0 = h0/P denotes the height for each patch, and ⌦p

is the p-th rectangular patch on mask E.
Obviously, vp 2 [0, 1] indicates the likelihood of foreground

for the p-th patch. Thus, a large value of vp indicates that the
corresponding patch is likely to be non-occluded. In this way,
the non-occlusion indicator Ip that infers the non-occluded
areas can be calculated as

Ip = ⇧{vp � ⌧}, (12)

where Ip 2 {0, 1} and ⌧ is the threshold. The indicator
function ⇧{·} takes on the value 1 if its argument is true, and
0 otherwise. When vp is equal to or greater than the threshold
⌧ , the p-th patch is considered to be non-occluded and can
provide useful foreground information, and thus, Ip is set to 1.
Otherwise, the corresponding patch is considered to be heavily
occluded, and thus, Ip is set to 0.

In this paper, pedestrian matching is performed based on the
local features extracted from the non-occluded areas according
to the foreground-background mask from the semantic branch
and the global features. The detailed pedestrian matching
strategy is described as follows.

Assume that Q and G are the images from the query and
the gallery, respectively. By using the trained SORN model,
we can obtain the global features, local features and the cor-
responding non-occlusion indicators as {fQglobal, {f1,Qlocal, I

Q
1 }

, ..., {fP,Q
local, I

Q
P }} and {fGglobal, {f1,Glocal, I

G
1 }, ..., {fP,G

local, I
G
P }},

of Q and G from the three branches, respectively.

The global distance of global features between Q and G
can be calculated as

DQG
global =

fQglobal · fGglobal
kfQglobalkkfGglobalk

, (13)

where k·k denotes the `2-norm.
The local distance of the p-th local features between Q and

G can be calculated as

DQG
p =

fp,Qlocal · fp,Glocal

kfp,Qlocalkkfp,Glocalk
. (14)

Therefore, the overall distance between Q and G is com-
puted as

DQG
total =

DQG
global +

PP
p=1 I

Q
p IGp DQG

p

1 +
PP

p=1 I
Q
p IGp

. (15)

Based on Eq. (15), if a patch is heavily occluded in the
query or gallery images, the local distance of this patch is
not considered for computing the overall distance. Note that,
even when there are no common non-occluded areas at the
same patch locations (i.e., IQp 6= IGp ) for the query and gallery
images, the global features that cover the full receptive field
can still provide useful information for pedestrian matching.

In [12], PGFA also employs a similar pedestrian matching s-
trategy, where the confidence scores of the detected landmarks
are used to determine the occluded area. In contrast, we take
advantage of the visibility score for each patch to indicate the
occluded area, which makes our method insensitive to small
segmentation errors.

We summarize the pedestrian matching strategy in Algo-
rithm 1.

Algorithm 1 Pedestrian matching between a query image and
a gallery image.
Input:

A query image Q; A gallery image G; The trained SORN
model; The number of patches P ; Threshold ⌧ .

Output:
The distance DQG

total between the query and gallery images.

1: Extracting the global features fQglobal, fGglobal, local features
{fp,Glocal}Pp=1, {fp,Qlocal}Pp=1 and the foreground-background
masks EQ, EG based on the trained SORN model for the
query and gallery images, respectively.

2: Calculating the visibility scores{vQp }Pp=1 and {vGp }Pp=1 via
Eq. (11) for the query and gallery images, respectively.

3: Using the threshold ⌧ to obtain the non-occlusion indica-
tors {IQp }Pp=1 and {IGp }Pp=1 via Eq. (12) for the query and
gallery images, respectively.

4: Calculating the global distance DQG
global of global features

via Eq. (13).
5: Calculating the local distance {DQG

p }Pp=1 of local features
via Eq. (14).

6: Calculating the overall distance Dqg
total of the query and

gallery images via Eq. (15).
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F. Discussions

It is worth noting that both our proposed method and
some previous methods [8], [24], [25], [32] take advantage
of semantic segmentation for person Re-ID. However, there
are significant differences between our proposed method and
these methods.

First, our proposed method makes use of semantic seg-
mentation to specifically address the problem of occluded
person Re-ID. In particular, our method employs the generated
semantic masks from the semantic branch to indicate the non-
occluded areas and select local features from these areas. In
this way, the negative influence of occlusion can be greatly
mitigated. In contrast, previous methods [8], [24], [32] make
use of semantic segmentation (human parsing models are
usually employed) to extract aligned local features and capture
foreground areas. Therefore, these methods may not perform
well on occluded person Re-ID, mainly because the occluded
areas seriously affect the extraction of local features.

Second, our proposed method jointly trains the semantic
branch with the other two branches in a multi-task learning
manner. Semantic segmentation serves as an auxiliary task of
occluded person Re-ID, and the joint training of two tasks (i.e.,
semantic segmentation and occluded person Re-ID) can help
to effectively improve the performance of occluded person Re-
ID. However, the human parsing models in previous methods
[8], [24], [32] are only trained on external human semantic
segmentation datasets since the ground-truth semantic labels
are not available in person Re-ID datasets. In other words,
the two tasks are separately trained. Hence, the intrinsic
relationship between these two tasks is not taken into account.
Some methods (such as [25]) employ semantic labels to guide
the training of attention maps for extracting global and local
features. Nevertheless, these methods are not applicable to the
task of occluded person Re-ID, because the attention maps
contain the disturbance information from the occluded areas.

IV. EXPERIMENTS

In this section, extensive experiments are performed to
evaluate the performance of the proposed SORN method. In
Section IV-A, we introduce datasets and evaluation metrics.
In Section IV-B, we provide the implementation details. In
Section IV-C, we perform ablation studies to evaluate the key
components of the proposed SORN method. In Section IV-D,
we compare the proposed SORN method with several state-
of-the-art person Re-ID methods. Finally, in Section IV-E, we
show the parameter analysis.

A. Datasets and Evaluation Metrics

To show the effectiveness of the proposed SORN method,
we perform experiments on an occluded person Re-ID dataset
(Occluded-DukeMTMC) [12] and two partial person Re-ID
datasets (Partial-REID [14] and Partial-iLIDS [13]). Moreover,
we also evaluate the proposed method on two general person
Re-ID datasets, including Market-1501 [43] and DukeMTMC-
reID [44] [45], to further verify the generalization of the
proposed method to deal with the problem of general person
Re-ID.

Occluded-DukeMTMC is a large-scale occluded person Re-
ID dataset collected from DukeMTMC-reID. The training
set contains 15,618 images from 702 identities. The test set
contains 2,210 query images and 17,661 gallery images from
1,110 identities. The training set, query set, and gallery set of
Occluded-DukeMTMC contain 9%, 100%, and 10% occluded
images in the respective sets. Therefore, all the query images
are occluded, and the gallery set also contains a certain number
of occluded images. Note that the training set and the test set
of Occluded-DukeMTMC have different obstacles in case the
trained model “remembers” the particular occlusion pattern in
the inference stage.

Partial-REID and Partial-iLIDS are used to verify the ef-
fectiveness of our method on the problem of partial person
Re-ID. Partial-REID contains 600 images from 60 identities.
For each identity, there are five full-body images and five
partial images. The images are collected at a university campus
with different viewpoints, backgrounds, and different types of
severe occlusion. All the query images are occluded, while all
the gallery images are non-occluded. Partial-iLIDS is a partial
person Re-ID dataset derived from iLIDS [46]. It contains
238 images from 119 identities collected in an airport, where
the lower-body parts of pedestrians are often occluded by the
luggage.

Market-1501 contains 1,501 identities captured by six cam-
eras, where the dataset is split into 12,936 training images,
3,368 query images, and 19,732 gallery images. DukeMTMC-
reID consists of 16,522 training images, 2,228 query images,
and 17,661 gallery images from 1,404 identities.

We adopt the cumulative matching characteristic curves
(CMC) and mean average precision (mAP) to evaluate the
performance of person Re-ID methods. Here, R-1, R-5, and R-
10 denote CMC at Rank-1, Rank-5, and Rank-10, respectively.
All the following experiments are performed under the setting
of a single query image.

B. Implementation Details

We use the PyTorch framework to implement the proposed
SORN method, and a single GTX 2080 GPU is used for
training and testing. The backbone network of our method
is based on ResNet50 [38] (which is pretrained on ImageNet
[47]), where the stride of the last residual block is set to 1.
Following [48], we add a batch normalization layer [49] after
the global average pooling layer in both the global and local
branches.

The input image is resized to 384⇥128 for all experiments.
For data augmentation, only random horizontal flip is used.
The batch size is set to 32. We use the Adam optimizer [50]
to minimize the loss. The total training takes 80 epochs. In
the first 10 epochs, the learning rate is linearly increased from
3 ⇥ 10�5 to 3 ⇥ 10�4 and then decayed to 3 ⇥ 10�5 and
3⇥ 10�6 at the 30th epoch and the 60th epoch, respectively.

The regularization parameters �1, �2, and �3 are empirically
set to 0.75, 0.50, and 1.50, respectively. The threshold ⌧ is set
to 0.15. In our implementation, the numbers of patches P and
channel sets N are set to be the same value 3.
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TABLE I
THE INFLUENCE OF GLOBAL AND LOCAL BRANCHES ON THE R-1, R-5,

AND R-10 ACCURACY (%) AND MAP (%) ON THE
OCCLUDED-DUKEMTMC DATASET. THE BEST RESULTS ARE BOLDFACED.

Method R-1 R-5 R-10 mAP
Global+Semantic 48.8 63.6 69.8 38.1
Local+Semantic 48.0 61.8 66.2 39.0

SORN 57.6 73.7 79.0 46.3

C. Ablation Studies

We conduct experiments on the Occluded-DukeMTMC
dataset to demonstrate the effectiveness of each component
of our proposed method for occluded person Re-ID.

1) Effectiveness of the Local Branch and the Global

Branch: In this subsection, we verify the effectiveness of
the local branch and the global branch. We evaluate two
variants of our proposed method: (1) the method (denoted
as “Global+Semantic”) that adopts the global branch and
the semantic branch; and (2) the method (denoted as “Lo-
cal+Semantic”) that uses the local branch and the semantic
branch. We also evaluate the proposed SORN method, which
effectively combines the global, semantic, and local branches
in an integrated network. Table I gives the results obtained by
two variants and the proposed method.

From Table I, we can see that our proposed SORN method
significantly outperforms the two variants. This is mainly be-
cause the local branch learns fine-grained local features, while
the global branch learns salient global appearance representa-
tions with occlusion awareness. Therefore, these two branches
can complement each other, leading to the improvement of the
final performance.

2) Effectiveness of the SPC Loss and Pedestrian Match-

ing: In this subsection, we evaluate the effectiveness of the
proposed SPC loss and the proposed pedestrian matching
strategy. We evaluate two variants of our proposed method that
use different pedestrian matching strategies: (1) the method
(denoted as “Global Features”) that only uses the global
features for matching the query image and the gallery images;
and (2) the method (denoted as “Global+Local Features”)
that uses the global features and all local features extracted
from the whole pedestrian image for matching. The proposed
SORN method that employs the proposed pedestrian matching
strategy is also used for a comparison. The three methods
are evaluated by their models trained with the SPC loss and
without the SPC loss (denoted as “w/o SPC Loss”). Table II
gives the performance comparison obtained by these methods.

In Table II, we can see that the three methods trained with
the SPC loss achieve much better performance than those
trained without the SPC loss. Specifically, the Rank-1 and
mAP obtained by the Global Features method trained with
the SPC loss are improved by 2.6% and 2.5%, respectively,
compared with that trained without the SPC loss. The Rank-
1 and mAP obtained by the proposed SORN method are
respectively increased by 2.3% and 2.0% in comparison with
that trained without the SPC loss. The above results verify the
importance of the proposed SPC loss. The SPC loss effectively
enforces the model to learn occlusion-robust global features,
which are beneficial for improving the final performance.

TABLE II
THE INFLUENCE OF THE SPC LOSS AND PEDESTRIAN MATCHING

STRATEGY ON THE R-1, R-5, AND R-10 ACCURACY (%) AND MAP (%)
ON THE OCCLUDED-DUKEMTMC DATASET. THE BEST RESULTS ARE

BOLDFACED.

Method R-1 R-5 R-10 mAP

w/o SPC Loss
Global Features 51.5 66.5 71.9 41.6

Global+Local Features 50.0 63.2 68.5 41.0
SORN 55.3 71.4 77.1 44.3

SPC Loss
Global Features 54.1 69.7 74.3 44.1

Global+Local Features 50.2 65.1 70.9 41.7
SORN 57.6 73.7 79.0 46.3

Note that the Global Features method obtains better per-
formance (in terms of both CMC and mAP) than the Glob-
al+Local Features method. This is mainly because the local
features extracted from the local branch contain noise due to
the occlusion disturbance, thus leading to a performance de-
crease. However, compared with the Global Features method,
the proposed SORN achieves better performance. In particular,
the Rank-1 accuracy and mAP obtained by the SORN trained
with the SPC loss are respectively increased by 3.5% and
2.2%, compared with the Global Features method trained
with the SPC loss. This demonstrates the effectiveness of the
proposed pedestrian matching strategy.

3) Effectiveness of the Semantic Branch: In this subsection,
we verify the effectiveness of the semantic branch. We eval-
uate several methods (including the Global Features method,
the Global+Local Features method and the proposed SORN
method) under different settings. “w/o Semantic” denotes that
we train the model without using the semantic branch. “2
Labels” denotes that 2 semantic labels (i.e., foreground and
background) are predicted in the semantic branch. “5 Labels”
denotes that 5 semantic labels (i.e., head, torso, arm, leg, and
background) are predicted in the semantic branch. “8 Labels”
denotes that all 8 semantic labels are predicted in the semantic
branch. Note that “Global+Local Features+S” under the setting
of “w/o Semantic” denotes that we train an external semantic
segmentation model (for a fair comparison, we use an external
semantic segmentation model having the same network archi-
tecture as our method and use all 8 semantic labels to train the
network) and employ it to select non-occluded local features.
Furthermore, “Global+Local Features+P” under the setting of
“w/o Semantic” denotes that we employ an external pose
estimation model (the AlphaPose model [51] is used) to select
non-occluded local features. Table III shows the performance
comparison obtained by these methods.

Compared with the Global+Local Features+S method,
SORN with 8 labels performs better by 1.8% in terms of
Rank-1 accuracy and 3.4% in terms of mAP. Therefore, jointly
training the tasks of occluded person Re-ID and semantic
segmentation in a multi-task learning framework can effec-
tively improve the performance. In other words, the auxiliary
task of semantic segmentation is beneficial for increasing the
performance of occluded person Re-ID. Meanwhile, SORN
with 8 labels outperforms the Global+Local Features method
with 8 labels by 7.4% in terms of Rank-1 accuracy and 4.6%
in terms of mAP. This verifies the importance of removing
the disturbance of occluded areas during pedestrian matching.
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According to the above results, the use of the semantic
branch to alleviate the negative effect of occluded areas and
background clutter provides more performance improvements
than the joint training of two tasks.

For the Global+Local Features+S method and the Glob-
al+Local Features+P method, the semantic information (8
semantic labels) and the landmark information (18 landmarks)
provided by externally trained models are respectively used.
Therefore, the two methods achieve better results than the
Global Features and Global+Local Features methods using 2
labels since more detailed semantic information or landmark
information is employed. Meanwhile, the Global Features
and Global+Local Features methods using 2 labels achieve
similar results to those without using the semantic branch. The
main reason is that coarse semantic labeling cannot provide
sufficient information for extracting effective local features to
deal with occlusion when only 2 labels are predicted in the
semantic branch.

It is worth noting that the performance of the Global+Local
Features+P method (using an external pose estimation model)
is worse than that of the Global+Local Features+S method
(using an external semantic segmentation model). This is
because the occlusion information obtained by the semantic
segmentation model is more fine-grained and robust than that
obtained by the pose estimation model. The pose estimation
model only predicts a small number of keypoints. However, a
patch (e.g., a partially occluded patch) may still contain useful
information, even though no keypoint is detected in this region.

In addition, the performance of the proposed SORN is
improved, when more semantic labels are used. In particular,
SORN using all 8 labels in the semantic branch respectively
improves Rank-1 accuracy and mAP by 2.8% and 4.4%,
compared with that using only 2 labels. This indicates that
coarse semantic labeling is not advantageous for improving
the final performance. In other words, the semantic branch
trained with more fine-grained semantic labels can help to
enhance the performance of our method for occluded person
Re-ID. This is due to two reasons: 1) fine-grained body-part
labels provide detailed position information, which is useful
for alleviating the misalignment problem; and 2) fine-grained
labels can make the prediction of the semantic branch more
accurate, and these labels can be used to determine whether a
particular patch is occluded.

4) Effectiveness of Label Smoothing: In this subsection, we
evaluate the effectiveness of label smoothing. We qualitatively
give the segmentation masks of some images in the Occluded-
DukeMTMC dataset, as shown in Fig. 5. Specifically, we show
the segmentation masks obtained by our SORN (with label s-
moothing), SORN without label smoothing (denoted as SORN
w/o LS), and an external model. For a fair comparison, the
external model adopts the same architecture as the semantic
branch of the SORN and uses label smoothing for training.
For all the methods, 8 semantic labels are used to train the
models.

For the non-occluded pedestrian image (see the first row of
Fig. 5), the segmentation results obtained by the competing
methods are similar. However, for the occluded pedestrian
images (see the second row to the fourth row of Fig. 5),

TABLE III
THE INFLUENCE OF THE SEMANTIC BRANCH ON THE R-1, R-5, AND R-10

ACCURACY (%) AND MAP (%) ON THE OCCLUDED-DUKEMTMC
DATASET. THE BEST RESULTS ARE BOLDFACED.

Method R-1 R-5 R-10 mAP

w/o Semantic

Global Features 53.3 67.5 73.0 41.4
Global+Local Features 49.8 64.1 69.7 39.7

Global+Local Features+S 55.8 71.4 76.7 42.9
Global+Local Features+P 55.2 70.4 76.6 42.2

2 Labels
Global Features 52.8 67.5 74.0 41.2

Global+Local Features 49.5 64.4 70.3 39.5
SORN w/o LS 55.1 70.2 76.6 42.1

SORN 54.8 69.9 75.8 41.9

5 Labels
Global Features 53.9 67.9 72.9 42.6

Global+Local Features 50.4 64.2 68.8 40.6
SORN w/o LS 55.3 71.8 77.4 44.1

SORN 56.3 72.5 77.7 44.5

8 Labels
Global Features 54.1 69.7 74.3 44.1

Global+Local Features 50.2 65.1 70.9 41.7
SORN w/o LS 55.6 71.8 77.9 44.8

SORN 57.6 73.7 79.0 46.3

SORN  w/o LS External

(a)
SORN  w/o LS External

(b)
SORN  w/o LS External

(c)
SORN  w/o LS External

(d)

Fig. 5. Examples of generated segmentation masks. From left to right, (a)
the input images, the segmentation masks obtained by (b) SORN, (c) SORN
w/o LS, and (d) an external model.

the segmentation results obtained by the SORN are better
than those obtained by the SORN w/o LS. In particular, the
segmentation masks generated by the SORN contain less noise
in occluded areas. Therefore, label smoothing helps improve
the segmentation results since it can prevent overfitting on
the training data containing false semantic labels. In this way,
the masks generated by the SORN can be used to effectively
select non-occluded local features. Compared with the external
model, the SORN still achieves better segmentation results.
Hence, the joint training of occluded person Re-ID and se-
mantic segmentation improves the performance of each task.

Moreover, we also evaluate the influence of label smoothing
on the performance in Table III. The SORN achieves better
results than the SORN w/o LS when 5 or 8 labels are used.
Label smoothing plays an important role in improving the
performance of occluded person Re-ID. However, the SORN
obtains worse results than the SORN w/o LS when 2 labels
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are used. This shows the negative influence of label smoothing
on the performance in the case of coarse semantic labeling.

D. Comparisons with State-of-the-Art Methods

In this section, we compare our proposed SORN method
with several state-of-the-art methods on the Occluded-
DukeMTMC, Partial-REID, Partial-iLIDS, Market-1501, and
DukeMTMC-reID datasets.

1) Results on Occluded-DukeMTMC: Table IV shows the
performance obtained by our proposed SORN method and
twelve competing methods, including LOMO+XQDA [52],
DIM [53], Part Aligned [54], Random Erasing [55], HACNN
[56], AOS [23], PCB [3], Part Bilinear [31], FD-GAN [9],
DSR [15], SFR [16], PGFA [12], and HOReID [36], on
the Occluded-DukeMTMC dataset. Note that TCSDO [37]
requires an extra training dataset to train the teacher network
and FPR [35] assumes the gallery images are non-occluded.
Therefore, TCSDO and FPR are not used for comparisons.

LOMO+XQDA, DIM, Part Aligned, Random Erasing,
HACNN, AOS, and PCB are the representative methods
proposed for general person Re-ID. The proposed SORN
method achieves 57.6% Rank-1 accuracy and 46.3% mAP
on the Occluded-DukeMTMC dataset and outperforms these
methods by a large margin. Compared with Part Bilinear
[31] and FD-GAN [9] that make use of the external pose
estimation models, our method achieves better performance.
Our method integrates a semantic branch into a multi-task
learning network and does not rely on externally trained
models. DSR [15] and SFR [16] are specifically designed for
the problem of partial person Re-ID. However, our method
still obtains better performance than these methods. This is
because our method takes advantage of semantic segmentation
to deal with occlusion. PGFA [12] and HOReID [36] are state-
of-the-art occluded person Re-ID methods, and our method
significantly outperforms them by 6.2%/2.5% in terms of
Rank-1 accuracy and 9.0%/2.5% in terms of mAP, which
demonstrates the superiority of the proposed method.

Fig. 6 shows two very challenging query images and the
corresponding top 5 retrieval results obtained by our proposed
method and the Global+Local Features method (without using
the semantic branch). The Global+Local Features method fails
to accurately retrieve the correct results when the query images
are severely occluded. This can be ascribed to the fact that
the extracted global and local features are contaminated with
the noise from the occluded areas. In contrast, our proposed
method achieves promising results. This demonstrates the
effectiveness of the proposed method in dealing with the
problem of occluded person Re-ID.

2) Results on Partial-REID and Partial-iLIDS: Table V
shows the performance obtained by our method and several
competing methods, including MTRC [57], AMC+SWM [14],
DSR [15], SFR [16], VPM [18], PGFA [12], FPR [35], and
HOReID [36], on the Partial-REID and Partial-iLIDS datasets.
Following the same settings as previous methods [12], [18],
our method is trained on Market-1501 and tested on these two
partial Re-ID datasets.

The proposed method achieves 76.7% and 79.8% Rank-
1 accuracy on Partial-REID and Partial-iLIDS, respectively.

TABLE IV
PERFORMANCE COMPARISON IN TERMS OF R-1, R-5, AND R-10

ACCURACY (%) AND MAP (%) ON THE OCCLUDED-DUKEMTMC
DATASET. THE BEST RESULTS ARE BOLDFACED.

Method R-1 R-5 R-10 mAP
LOMO+XQDA [52] 8.1 17.0 22.0 5.0

DIM [53] 21.5 36.1 42.8 14.4
Part Aligned [54] 28.8 44.6 51.0 20.2

Random Erasing [55] 40.5 59.6 66.8 30.0
HACNN [56] 34.4 51.9 59.4 26.0

AOS [23] 44.5 - - 32.2
PCB [3] 42.6 57.1 62.9 33.7

Part Bilinear [31] 36.9 - - -
FD-GAN [9] 40.8 - - -

DSR [15] 40.8 58.2 65.2 30.4
SFR [16] 42.3 60.3 67.3 32.0

PGFA [12] 51.4 68.6 74.9 37.3
HOReID [36] 55.1 - - 43.8
SORN (ours) 57.6 73.7 79.0 46.3

Query 1 2 3 4 5

Fig. 6. The top 5 retrieval results obtained by the proposed SORN method
(the first two rows) and the Global+Local Features method (the last two rows)
for two query images in the Occluded-DukeMTMC Re-ID dataset. The images
with green and red borders denote correct and incorrect results, respectively.

Note that MTRC, AMC+SWM, DSR, SFR, STNReID, and
VPM are developed for partial person Re-ID, and they need
to manually crop the occluded areas of query images. In
contrast, our method can directly use the occluded images
as the query. MTRC [57] and AMC+SWM [14] are based
on handcrafted features. The proposed method outperforms
them by a large margin, which shows the excellent advantage
of deep neural networks. VPM [18] utilizes self-supervision
to obtain visibility scores and select local features. However,
the manual cropping process may discard some useful infor-
mation. Hence, the performance of VPM is inferior to that
of our method. Moreover, our method outperforms PGFA by
6.3% and 10.7% improvements in terms of Rank-1 accuracy
on the Partial-REID and Partial-iLIDS datasets, respectively.
This demonstrates the effectiveness of the proposed method
for partial person Re-ID.

Compared with the recently proposed occluded person Re-
ID methods (such as FPR and HOReID), the SORN achieves
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TABLE V
PERFORMANCE COMPARISON IN TERMS OF R-1 AND R-3 ACCURACY (%)

AND MAP (%) ON PARTIAL-REID AND PARTIAL-ILIDS. THE BEST
RESULTS ARE BOLDFACED.

Method Partial-REID Partial-iLIDS
R-1 R-3 R-1 R-3

MTRC [57] 23.7 27.3 17.7 26.1
AMC+SWM [14] 37.3 46.0 21.0 32.8

DSR [15] 50.7 70.0 58.8 67.2
SFR [16] 56.9 78.5 63.9 74.8

STNReID [17] 66.7 80.3 54.6 76.3
VPM [18] 67.7 81.9 67.2 76.5
PGFA [12] 68.0 80.0 69.1 80.9
FPR [35] 81.0 - 68.1 -

HOReID [36] 85.3 91.0 72.6 86.4
SORN (ours) 76.7 84.3 79.8 86.6

Query 1 2 3 4 5

Fig. 7. The top 5 retrieval results obtained by the proposed SORN method
(the first two rows) and the Global+Local Features method (the last two rows)
for one query image in the Partial-REID dataset and one query image in the
Partial-iLIDS dataset. The images with green and red borders denote correct
and incorrect results, respectively.

better performance on the Partial-iLIDS dataset. However, the
SORN is inferior to these two methods on the Partial-REID
dataset. This is mainly because we train our model on Market-
1501 since Partial-REID does not provide a training dataset.
The domain gap between Partial-REID and Market-1501 is
large, which affects the prediction accuracy of semantic labels
and thus reduces the performance of SORN.

Fig. 7 shows two challenging query images and the cor-
responding top 5 retrieval results obtained by our proposed
method and the Global+Local Features method (without using
the semantic branch) on the Partial-REID and the Partial-
iLIDS datasets. The Global+Local Features method obtains
worse retrieval results than our proposed method. Note that
there exists only one image having the same identity as the
query image in the gallery set of Partial-iLIDS. Therefore, the
second to fifth retrieval results in the second row of Fig. 7
cannot be correct, when the top retrieval 1 result is correct.

3) Results on Market-1501 and DukeMTMC-reID: Table
VI shows the performance evaluation obtained by our method

TABLE VI
PERFORMANCE COMPARISON IN TERMS OF R-1 ACCURACY (%) AND MAP
(%) ON MARKET-1501 AND DUKEMTMC-REID. THE BEST RESULTS ARE

BOLDFACED.

Method Market-1501 Duke-MTMC-reID
R-1 mAP R-1 mAP

BoW+Kissme [43] 44.4 20.8 25.1 12.2
SVDNet [2] 82.3 62.1 76.7 56.8

PAN [45] 82.8 63.4 71.7 51.5
PAR [54] 81.0 63.4 - -
PAN [20] 82.0 63.0 - -
DSR [15] 83.5 64.2 - -

Triplet loss [27] 84.9 69.1 - -
Quadruplet loss [1] 86.3 72.2 73.4 58.0

AOS [23] 86.5 78.3 79.1 62.1
APR [58] 87.0 66.9 73.9 55.6
DPFL [59] 88.9 73.1 79.2 60.6
MLFN [60] 90.0 74.3 81.0 62.8

PCB [3] 92.4 77.3 81.9 65.3
SPReID [8] 92.3 80.5 83.8 69.3
PGFA [12] 91.2 76.8 82.6 65.5

SORN (ours) 94.8 84.5 86.9 74.1

and other competing methods, including BoW+Kissme [43],
SVDNet [2], PAN [45], PAR [54], Pedestrian [20], DSR [15],
Triplet loss [27], Quadruplet loss [1], AOS [23], APR [58],
DPFL [59], MLFN [60], PCB [3], SPReID [8], and PGFA
[12], on Market-1501 and DukeMTMC-ReID.

The proposed method, which effectively combines the lo-
cal features from the non-occluded areas and the occlusion-
robust global features, outperforms the methods based on local
features (including PAN [45], PAR [54], and PCB [3]) and
the methods based on multi-level and multi-scale features
(including DPFL [59] and MLFN [60]). Note that our method
uses the simple classification loss and the SPC loss, but it
still obtains better performance than the methods based on
the specifically designed losses, such as Triplet loss [27]
and Quadruplet loss [1]. Moreover, our method outperforms
SPReID [8], which also uses semantic segmentation for per-
son Re-ID. In summary, our method achieves state-of-the-art
performance for general person Re-ID.

E. Parameter Analysis

In this section, we conduct experiments to evaluate the
influence of several key parameters in the proposed method
(including the threshold ⌧ in Eq. (12), the number of patches
P , and the number of channel sets N ) on the performance (in
terms of Rank-1 accuracy and mAP). We use the Occluded-
DukeMTMC and Partial-REID datasets for parameter analysis.
Here, we change the values of one parameter and fix the other
parameters for analysis.

1) Influence of the Threshold ⌧ : ⌧ is the threshold used to
select the non-occluded patches. Fig. 8(a) shows the influence
of threshold ⌧ on the Rank-1 accuracy and mAP. When ⌧ is
small, some severely occluded patches are used, and thus the
performance is poor. When ⌧ is large, the patches with slight
occlusion are discarded, but these patches may contain useful
information. Therefore, the performance decreases. When ⌧ =
0.15, our method achieves the best performance.

2) Influence of the Number of Patches P : Fig. 8(b) shows
the influence of the number of patches P on the final perfor-
mance. Our method is sensitive to the number of patches P in
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Fig. 8. The Rank-1 accuracy and mAP obtained by the proposed method with the different values of (a) the threshold ⌧ , (b) the number of patches P , and
(c) the number of channel sets N on the Occluded-DukeMTMC dataset (the first row) and the Partial-REID dataset (the second row).

terms of Rank-1 and mAP. In particular, our method obtains
the top performance on the two datasets when the number
of patches is set to 3. This shows that P can be empirically
chosen to a fixed value. On the one hand, when the number of
patches increases, the patch size becomes larger. As a result,
the local features extracted from the large patches cannot
effectively provide discriminative local information. On the
other hand, when the number of patches is too large, the patch
size is small. In this case, the semantically consistent human
body is over-segmented into many small patches. Hence, the
local context cannot be effectively captured from the small
patches, and thus the performance degenerates.

3) Influence of the Number of Channel Sets N : Fig. 8(c)
shows the influence of the number of channel sets N on the
final performance. Specifically, we fix the number of patches
P to 3 and change N from 1 to 4. When the value of N is
set to 3, our method obtains the best performance on the two
datasets. Hence, N can be empirically set to 3 to generally
ensure the retrieval performance of our method. Note that
each normalized aggregation map is divided into N horizontal
patches. Therefore, it is beneficial to extract discriminative
global features at a moderate patch size since the sizes and
positions of obstacles vary. Too large or too small values of
N adversely affect the extraction of effective global features,
thus leading to a performance decrease. When the value of N
is equal to 1, our method is trained without using the SPC
loss, and it achieves the worst performance.

V. CONCLUSION

In this paper, we propose a novel SORN method, a three-
branch (consisting of the global, local, and semantic branches)
CNN, for occluded person Re-ID. For the global branch,
we develop a new SPC loss, which enables the extracted
global features to encode occlusion-aware local information
and thus makes the extracted features robust to occlusion. For
the local branch, the fine-grained local features are extracted.

For the semantic branch, the semantic mask is generated to
indicate the non-occluded areas. These three branches are
jointly trained in a multi-task learning framework. Extensive
experiments show the effectiveness of SORN for the problems
of occluded, partial, and general person Re-ID.
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