FLY-ASH PARTICLES IN LAKE SEDIMENTS:

EXTRACTION, CHARACTERISATION & DISTRIBUTION.

Thesis submitted for the degree of
Doctor of Philosophy
in the University of London
by
Neil Leslie Rose

University College London
May 1991



""123 45-
+ ) %
49 %' %

1

"tHS% $

* *
+',

*( )

7 + *(,
, 8

lllll_

0 .0 (

<

9 = <



ABSTRACT

Fly-ash particles produced from the high temperature combustion of fossil-fuels
are found in high c¢oncentrations in the lake sediments of regions of high acid
deposition. The sediment record of these particles showing the onset of
industrialisation correlates well with the record of acidification as indicated by
diatom analysis. There are two types of fly-ash particle; spheroidal carbonaceous
particles produced from the incomplete combustion of the fossil-fuel and inorganic

ash spheres formed by the fusing of mineral inclusions present within the fuel.

Procedures were developed to extract both types of particle from lake sediments.
These involved selective chemical attack to remove unwanted sediment fractions thus
enabling quick and accurate particle enumeration. A reference data-set of
carbonaceous particle surface chemistries was produced using EDS measurements
and a fuel-type characterisation developed using multivariate statistics. This
characterisation allocated over 97% of the particles to the correct fuel-type. These
methods were then applied to a series of sediment cores to study temporal changes
in particle deposition and spatial trends over Scotland.

The concentrations of both particle types in sediment cores correlate well to fossil-
fuel combustion histories, and the characterisation of the carbonaceous particles from
a #°Pb-dated core from a north London lake showed good agreement with the
change in coal and oil use through time in the area.

Spatial trends were studied using surface sediments from 94 lakes in Scotland and
the north of England. These showed higher concentrations near industrial areas and
generally good agreement with sulphur deposition data. Characterisation revealed two
areas where above average concentrations of oil particles occurred, indicating source

areas outside the country to the east and the south-west.

There is potential to extend this characterisation to other fossil-fuel types such as
peat, lignite and brown coal and to apply the techniques to a range of environmental
questions in Britain, Europe and on a global scale.
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CHAPTER 1. INTRODUCTION.

Lake sediments provide a record of atmospheric contamination and they have been
important in studies of surface water acidification. These studies have shown that
the primary cause of recent lake acidification is acid deposition and one of the
major pieces of evidence supporting this conclusion is the close correlation between
the onset of atmospheric contamination as indicated by industrially-derived pollutants
and the acidification of lakes as indicated by diatom analysis. These industrial
pollutants include trace metals (e.g. Pb, Zn, Cu and Cd), polycyclic aromatic
hydrocarbons (PAH) and fly-ash particles derived from fossil-fuel combustion. All
are found in elevated concentrations in the upper levels of sediment cores taken
from areas of high acid deposition (Battarbee et al., 1988).

Fossil-fuels can be burmed to produce heat and power at both low temperatures
in domestic situations and at high temperatures in the power generation and other
industries. When burned at industrial temperatures of up to 1,750°C (Comm. Energy
& Envir., 1981) at a rate of heating approaching 10*°C/s, (Lightman & Street, 1983)
the fuel is burned more efficiently leaving only a porous spheroid of mainly
elemental carbon (Goldberg, 1985) and fused inorganic spheres from any mineral
inclusions present within the fuel (Raask, 1984). These carbonaceous particles and
inorganic ash spheres form fly-ash, the term used to describe the particulate matter
within flue gases.

1.1. Particle formation.

The particulate matter which constitutes fly-ash has three possible sources (Chigier,
1975) :

1) Matter which was not combustible.
ii) Combustible material which was not burned.

iii) Material formed during the combustion process.

The non-combustible material (up to 25% of coal is mineral matter) when rapidly

heated, undergoes some volatilisation to give rise to very fine particulates called
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fume. In the case of siliceous minerals, silica fume particles of 0.0lum - 0.1um
diameter are formed. The non-volatile silicate species dispersed in coal coalesce to
form cenospheres (hollow ash spheres) and less frequently plerospheres
(cenospheres containing encapsulated smaller spheres - see Plate 6) (Carpenter et al.,
1980), up to 200um in diameter (Raask, 1984). The formation and size of the
cenospheres are controlled by the viscosity and surface tension of the fused silicate,
by the rate of change in particle temperature and by the rate of diffusion of gases
in the silicate. The optimum temperature for cenosphere formation is about 1,400°C.
Above this, the viscosity of the fused silicate is too low and the sphere is liable to
burst. Other ash cenosphere forming criteria are the need for greater than 5% iron
oxide present in the ash, the nitrogen content, and contact of the ash particle with

carbonaceous material in the furnace (Raask, 1968).

Non-silicate iron minerals in coal undergo extensive fragmentation on rapid
heating. Fragmented pyrite (FeS,) and iron carbonates are oxidised to magnetite
(Fe;0,) in the flue gases. Calcium carbonate and alkali metal sulphate minerals form
fume particles of 0.lum - 0.3um in diameter and consequently are in high
concentrations in the sub-micron fraction of emitted solids (Raask, 1984). Fuel oil
contains very little inorganic material, usually less than 0.1% (Goldstein &
Siegmund, 1976) and so fewer inorganic ash spheres are formed and emitted,
although Mamane et al., (1986) found that mineral matter accounts for 20-25% of
oil fly-ash.

When pulverised coal particles are heated rapidly in a combustion chamber, they
change from angular non-porous coal fragments to porous, and often partitioned
spheroids (Plate 3). This occurs in several stages. At 300°C, fissures open up in the
particles and as the temperature rises to about 450°C, the fissures grow and enclosed
gas bubbles can occur. By 500°C, most of the particles contain closed gas spaces
and also spaces which connect to the outside of the particle. Ignition occurs at
640°C and above this temperature few obvious differences occur in the particle
structure, except at the highest temperatures when ’erosion’ occurs around the pores
and surface holes. Burning continues both internally and externally, the final residual
particle often having a molten appearance (Lightman & Street, 1968). If the particle

remains in the combustion chamber, fragmentation will occur.
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Pulverised coal ash normally contains 2-5% unburned combustible material, chiefly
in the form of highly porous carbonaceous particles 10 - 100pum in diameter (Raask,
1984). There are four main particle types :

i) Relatively solid particles often with ash filled fissures. This type of particle is
related to the fusain maceral (Street et al., 1969).

ii) Lacy cenospheres, with internal cross partitions, small pores and sometimes small
ash particles embedded in the walls.

iii) Very thin walled particles with few partitions, sometimes with very large
external pores.

iv) Thick-walled hollow spheres, with very large surface holes and no partitions.

In oil-droplet combustion, volatiles start to be evolved at 250°C, the droplet
expands, and a halo of small droplets forms around it. At about 300°C - 400°C
bubbles begin to be formed and this continues up to about 800°C accompanied by
distortion and swelling. Expansion and collapse alternate rapidly but there is an
overall increase in diameter. Ignition initially occurs in the expelled hydrocarbon
cloud and then, as heat is given back to the droplet, burning of the volatiles
remaining on the drop takes place. As volatile emission decreases, the drop
collapses, becomes rigid, and at 800°C - 1,000°C becomes the final carbonaceous
particle. Peak temperatures of about 1,500°C are attained soon after this has formed.
Combustion proceeds with a widening of the pores, until about 75% of the
carbonaceous mass has been consumed when fragmentation occurs. This process
lasts about 1 second (Lightman & Street, 1983). Oil carbonaceous particles are
hollow and roughly spherical (Plate 1). The outer wall has a number of holes whose
size and shape vary considerably and often there is a complex internal structure. On
some particles, a contour effect around the pores is seen (Plate 2) which some
authors have claimed to be characteristic of oil carbonaceous particles (Lightman &
Street, 1983; Kothari & Wahlen, 1984; Griffin & Goldberg, 1981). However, this

contouring may also be present on the surfaces of coal particles (Plate 4).
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Of the fossil-fuels commonly used in Britain, only coal and oil produce spheroidal
carbonaceous particles. Those produced from peat combustion have an amorphous
appearance, many still retaining a cellular structure. Peat does produce inorganic ash
spheres however, and the quantity varies depending on the peat type. The
combustion of moss peat produces few spheres but sedge peat produces more,
probably due to the accumulation of silica in the phytoliths of the original plant.

1.2, Fly-ash particles in the environment.

The quantity of both carbonaceous and inorganic ash particles produced and
ultimately emitted to the atmosphere depends on the size of the individual
combustion source. According to the Electricity Council Statistics for 1986/87 a
power generating station with a gross capability of 2,000MW (e.g. Didcot,
Ferrybridge, Ratcliffe-on-Soar) will burn approximately 1,740kg/s of pulverised fuel.
If this is 17% ash coal (the average ash content of coal - Comm. Energy & Envir.,
1981), the station must dispose of over one million kilograms of ash an hour. The
particles which are not removed by the various ash handling systems travel up the
stack with the flue gases. If 50% is removed within the furnace in ash hoppers and
the electrostatic precipitators are 99% efficient, then over 5,000kg of ash an hour
will still be emitted to the atmosphere from this one station, an amount equivalent
to many thousands of millions of fly-ash particles. Gaseous emissions would include

over 300,000kg of sulphur oxides and 180,000kg of nitrogen oxides per day.

The material emitted to the atmosphere must sooner or later be deposited, and this
will be at a point dependant on the meteorological phenomena the diffusing plume
encounters, and the physical characteristics of the particles themselves, such as size
and density. Particles are removed from the atmosphere by two methods, dry and
wet deposition. The plume of flue gases and particulates leaves the stack and
disperse at a rate dependant on wind speed and air turbulence. The plume mixes
vertically down to the ground and up to the top of the turbulent layer which is
about 1,000m deep. Once mixed, usually between 2km and 5km downwind of the
source (Dear & Laird, 1984), dry deposition occurs, although, depending on air
currents, particles may travel thousands of kilometres before this happens.
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Tall stacks are an effective means of reducing ground level concentrations near
to the source, but they do not reduce the amount of fly-ash in the atmosphere. For
wet deposition, they are less important as this must be preceded by transport up into
the rain system, during which time a difference of several hundred metres between
high and low sources is not significant (Fisher, 1986). 'Washout’, the removal of
particulates from the atmosphere by wet deposition, usually occurs between 5km and
100km from the source.

The majority of particles generated in a coal-fired power station fall within the
diameter range 0.05um to 20um (McElroy et al., 1982), and the size distribution for
oil fly-ash is much the same (Raeymaekers et al., 1988). Airborne particles with a
diameter between 1um and 20um have finite settling velocities which are very low
with respect to normal wind speeds (Wark & Warner, 1976) and consequently fly-
ash particles, and especially the smaller inorganic ash spheres, are able to travel
long distances in air streams. Dust particles of 10um and less from the Sahara
Desert have been recorded as travelling over 3,000 miles of open ocean (Parkin et
al.,, 1970), and so ash particles of this size may conceivably be found in any

environment.

Spherules, most probably of industrial origin, were found in all samples taken in
transects across the North Atlantic (Folger, 1970), constituting 5% of the total
airborne particulates in mid-ocean samples, but over 60% near land (Parkin et al.,
1970). Opaque spherules, often black and magnetic, have been recorded in marine
sediments of both coastal (Puffer et al., 1980) and deep-sea locations (Fredriksson
& Martin, 1963; Deuser et al., 1983), with highest concentrations occurring in the
mid-latitudes of the northern hemisphere, where industrial activity is highest.
Spherules have also been found at high latitudes in both Greenland (Hodge et al.,
1964) and Antarctic ice deposits (Fredriksson & Martin, 1963; Hodge et al., 1967).
It is possible that these may have an industrial origin, although meteorological
conditions which allow such particle movement are very rare. Chemical analyses
show that most spherules in polar ice are very different from those of industrial
origin (Hodge et al., 1964) and these particles are most likely to be volcanic or
extra-terrestrial (Hodge & Wright, 1964), although meteoritic dust and industrial fly-
ash spheres have been confused in the past (Handy & Davidson, 1953; Oldfield et
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al.,, 1978).

Spherical particles composed of magnetite have been recorded in marsh sediments
and beach sands in the New York City area. Spherule concentration decreased both
away from the industrial area and down sediment cores and it was concluded they
were of industrial origin (Puffer et al., 1980). Oldfield et al., (1978, 1981), showed
that spherules known to be the product of fossil-fuel combustion, contribute
significantly to the magnetic record in ombrotrophic peat bogs. These relate directly,
both spatially and temporally to industrial activity, pre-industrial levels being two
or three orders of magnitude lower than recent ones. Magnetic spherules identified
as industrial through chemical analysis were found in the sediments of Lake
Mendota, Wisconsin (Nriagu & Bowser, 1969) and opaque spheroids and white
aluminosilicate particles have been found in the sediments of the Severn Estuary
(Allen, 1987).

Contamination from deposited particulate matter can affect plant and animal life,
human health and may also cause corrosion of metals and stone (Del Monte &
Vittori, 1985). The principal factors affecting vegetation are the blocking of stomata
by deposits and attack by chemicals associated with the particles either directly or
via the soil. There is an indirect effect on grazing animals through plant
deterioration, respiratory illnesses or in extreme cases, poisoning (National Society
for Clean Air, 1971).

Generating station particle arrestors remove larger particles more efficiently, and
consequently the smaller size fraction form a larger proportion of emitted material
(McElroy et _al., 1982). Fine particles of less than 15um have been considered
potentially hazardous because they can penetrate deeply into the lungs (Amdur &
Corn, 1963). The direct effects of inhaling such particles can be increased
breathlessness, acute illnesses of the respiratory tract or bronchitis (Parker, 1978).
In 1979, power stations were responsible for the emission of 28,000 tonnes of

particles in this size range to the atmosphere (Comm. Energy & Envir., 1981).

Gladney et al., (1976), showed that some of the more volatile toxic trace elements,
such as Sb, As, Pb, Hg, Se, Br, and I, exhibit enrichment on smaller particles. This
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could be due to preferential recondensation onto smaller particles due to the higher
surface area per unit mass provided (Natusch & Wallace, 1974). Above 1lum,
particles are generally deposited in the nasopharyngeal system, but at the sub-micron
level, the majority reach the pulmonary and tracheal respiratory systems (U.S. Dept.
of Health, Education & Welfare, 1969). The sub-micron particles also have the
longest atmospheric residence times so the toxic trace elements enriched on the

surfaces have more chance to reach the deeper respiratory tracts (Davison et al.,
1974).

1.3. Fly-ash particles in lake sediments.

The first work in studying carbonaceous particles in lake sediments was done by
Griffin and Goldberg (1979). Particles were extracted from sediments and compared
against oil, coal and wood fly-ash particles. It was concluded that forest and grass
burning could contribute a significant amount of carbonaceous material to the
atmosphere, but the concentration of the ’spherical’ carbon particles reflected the
history of fossil fuel combustion in the area (Griffin & Goldberg, 1979, 1983).
Goldberg et al., (1981) showed that the concentrations of certain trace elements such
as Sn, Cr, Ni, Pb, Cu, Co, Cd, Zn and Fe showed similar profiles in the sediment
to carbonaceous particles. Magnetic ash spherules, formed by the oxidation of iron
minerals in the furnace to haematite (Fe,0;) and magnetite (Fe;0,), were also

correlated.

In Sweden, carbonaceous particle profiles were used as an indirect dating method
by matching concentration levels with that of a core previously dated by varve
counting (Renberg & Wik, 1985a). The particle concentration profiles were found
to reflect the increase of industrial activity and the fossil-fuel combustion history of
the twentieth century (Wik et al., 1986). There was also seen to be a spatial
distribution of carbonaceous particles in both lake sediments (Renberg & Wik,
1985b) and forest soils (Wik & Renberg, 1987) which reflected the industrial
regions of Sweden. Work on carbonaceous particles in British lake sediments, have
involved lakes principally in Scotland (Darley, 1985; Wik et al., 1986; Battarbee et
al., 1988) and Wales (Battarbee et al., 1988) and as with the cores from Sweden
and the USA, the carbonaceous particle record follows the history of fossil-fuel
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combustion. This is discussed in more detail in Chapter 4.

Most of the work done on inorganic ash spheres has been on power station
material with studies on the distribution of elements within the ashes (e.g. Coles et
al., 1979; Kaakinen et al., 1975; Gladney et al., 1976; Hulett et al., 1980 etc.), and
how this relates to combustion and ash removal efficiency (Paulson & Ramsden,
1970). Other work has focused on potential uses of extracted ash and so the
pozzolanic properties (for use with cements in building technology) (Watt & Thorne,
1965; Raask & Street, 1978) and leachability of toxic elements where ash has been
used in land-fill sites (Wadge & Hutton, 1987) have been studied. Very little work
has been done on the chemical extraction of inorganic ash spheres from sediments.

1.4. Outline of the thesis.

This study was originally designed as part of the ongoing lake acidification work
at the Department of Geography, University College London, and as such set out
to do two things: first, to develop methods for the extraction of fly-ash particles
from lake sediments, either by improving those already available in the literature or
by designing new ones, and secondly, to characterise these extracted particles to
their fuel types.

Consequently, this thesis describes the development of the extraction and
characterisation techniques and their applications to study the distributions of fly-
ash particles in lake sediments spatially and temporally.

Chapter 2 describes the sites and methods used in this study, the development of
the laboratory procedures for the particle extraction techniques and their application
to a sediment core from Loch Tinker.

Chapter 3 describes previous attempts to characterise carbonaceous particles, the
use of energy dispersive spectroscopy (EDS) to obtain the elemental compositions
of the particle surfaces, the development of a particle reference data set from power
station material, and the use of this data set and multivariate statistical techniques

in the formation of a discriminant function effective at separating coal and oil

25



carbonaceous particles. Reference data from a peat-fired station are also used to
show the potential for extending this classification to include other fuel types.

Chapters 4 and 5 describe applications of these techniques. Chapter 4 discusses
the temporal patterns of fly-ash particles in sediment cores taken principally from
British lakes, but also from several cores taken from Norway and France. The
potential for using the profiles of carbonaceous particles in British lake sediments
for indirect dating is discussed and dates for the various features of the profile are
suggested for different regions within Britain. The additional dating potential of
characterised carbonaceous particles and the geochronological use of inorganic ash
sphere profiles are also discussed.

Chapter 5 describes the spatial distribution of the two particle types in Scottish
surface sediments and how, in the absence of sediment dating, particle
concentrations can be used to study regional patterns of deposition. The results from
carbonaceous particle characterisation and the ratios of inorganic ash spheres to
carbonaceous particles in surface sediments are used to study fossil-fuel combustion
influences on the region. Finally, the relationship between fly-ash particles and
sulphur deposition is discussed.

The conclusions of the study are summarised in Chapter 6. The Appendices give
the particle concentrations for the surface sediments and the cores analysed during
the course of this work and finally the papers already published by the author from

this thesis are included.
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