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ABSTRACT
In E-commerce advertising, where product recommendations and
product ads are presented to users simultaneously, the traditional
setting is to display ads at fixed positions. However, under such a
setting, the advertising system loses the flexibility to control the
number and positions of ads, resulting in sub-optimal platform
revenue and user experience. Consequently, major e-commerce
platforms (e.g., Taobao.com) have begun to consider more flexible
ways to display ads. In this paper, we investigate the problem of
advertising with adaptive exposure: can we dynamically determine
the number and positions of ads for each user visit under certain
business constraints so that the platform revenue can be increased?
More specifically, we consider two types of constraints: request-
level constraint ensures user experience for each user visit, and
platform-level constraint controls the overall platform monetiza-
tion rate. We model this problem as a Constrained Markov Decision
Process with per-state constraint (psCMDP) and propose a con-
strained two-level reinforcement learning approach to decompose
the original problem into two relatively independent sub-problems.
To accelerate policy learning, we also devise a constrained hind-
sight experience replay mechanism. Experimental evaluations on
industry-scale real-world datasets demonstrate the merits of our
approach in both obtaining higher revenue under the constraints
and the effectiveness of the constrained hindsight experience replay
mechanism.

KEYWORDS
Learning to Advertise, Adaptive Ads Exposure, Real-Time Adver-
tising, Deep Reinforcement Learning, Constrained Two-Level Rein-
forcement Learning

1 INTRODUCTION
With the advances of deep neural network [14, 21], Deep Reinforce-
ment Learning (DRL) approaches have made significant progress
in a number of applications including Atari games [27] and robot
locomotion and manipulation [23, 31]. Recently, we also witness
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The previous name is: Learning to Advertise with Adaptive Exposure via Constrained
Two-Level Reinforcement Learning.

successful applications of DRL techniques to optimize the decision-
making process in E-commerce from different aspects including
online recommendation [11], impression allocation [10, 41], adver-
tising bidding strategies [19, 37, 40] and product ranking [16].

In traditional online advertising, the ad positions are fixed, and
we only need to determine which ads to be shown in these positions
for each user request [26]. This can be modeled as an ads position
bidding problem and DRL techniques have been shown to be ef-
fective in learning bidding strategies for advertisers [19, 37, 40].
However, fixing ad positions limit the flexibility of the advertising
system. Intuitively, if a user is with high monetization value (e.g.,
likes to click ads), it is reasonable for the advertising platform to
display more ads when this user visits. On the other hand, we are
also concerned with displaying too many ads for two reasons. First,
it might lead to poor user experience and have a negative impact
on user retention. Second, monetization rate is an important busi-
ness index for a company to moderate. Therefore, in this paper, we
consider two levels of constraints: (1) request-level: the maximum
number of ads on each request 1 (a.k.a. user visit) cannot exceed a
threshold; and (2) platform-level: the average number of ads over
all the requests (within a time window) cannot exceeda thresh-
old. Under the above constraints, we investigate the problem of
advertising with adaptive exposure: can we dynamically determine
the set of ads and their positions for each user visit so that the
platform revenue can be maximized? We call the above problem as
advertising with adaptive exposure problem.

Fig.1 illustrates the flexible adaptive exposuremechanism adopted
by Taobao 2 e-commerce company in China. For each user visit, the
platform presents a dynamic mixture of product recommendations
and product ads. The ad positions are not a fixed prior, and they are
determined by the user’s profile and behaviors. The adaptive expo-
sure problem can be formalized as a sequential decision problem.
In each step, the recommendation and the advertising systems first
select some items based on their scoring systems independently.
Then these commodities are sorted altogether by their scores and
the top few items are exposed to the request (user).

1It is worth pointing out that the request here refers to the user’s access to the platform
(for example: opening the mobile app, swipe the screen)
2One of the largest
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Figure 1: Advertising with Adaptive Exposure and Our System Structure.

We model the above problem as a Constrained Markov Deci-
sion Process (CMDP) [3]. Although optimal policies for small-sized
CMDPs can be derived using linear programming [3], it is difficult
to construct such policies for large-scale and complex real-world e-
commerce platforms. Thus, we resort to model-free RL approaches
to learn approximately optimal solutions [1, 34]. Existing model-
free RL approaches for solving CMDP are trajectory-based: they
update policies by propagating constraint-violation signals over the
entire trajectory [1, 29]. Unfortunately, most of them fail to meet
the constraints [34]. To address this issue, Tessler et al. [34] pro-
pose the Reward Constrained Policy Optimization (RCPO), which
decomposes the trajectory constraints into per-state penalties and
dynamically adjusts their weights. To ensure that the overall penalty
of a trajectory satisfies the given constraint, the constraint-violation
signals are also propagated back along the entire trajectory. How-
ever, in the advertising with adaptive exposure problem, we need to
satisfy both state-level (request-level) and trajectory-level (platform-
level) constraints. RCPO only considers trajectory-level constraints
and thus cannot be directly applied here.

In this paper, we first model the advertising with adaptive ex-
posure problem as a CMDP with per-state constraint (psCMDP).
Then we propose a constrained two-level reinforcement learning
framework to learn optimal advertising policies satisfying both
state-level and trajectory-level constraints. In our framework, the
trajectory-level constraint and the state-level constraint are di-
vided into different levels in the learning process. The higher level
policy breaks a trajectory into multiple sub-trajectories and tack-
les the problem of selecting constraints for each sub-trajectory to
maximize total revenue under the trajectory-level constraint. Each
sub-trajectory identifies an independent optimization problem with
both sub-trajectory constraint and state-level constraint. Here we
simplify the sub-trajectory optimization problem at the cost of sacri-
ficing the policy optimality by treating the sub-trajectory constraint
as another state-level constraint. In this way, we can easily combine
the sub-trajectory constraint with the original state-level constraint
and use off-policy methods such as Deep Deterministic Policy Gra-
dient (DDPG) [24] with auxiliary task [18] to train the lower level
policy. We also propose Constrained Hindsight Experience Replay
(CHER) to accelerate the lower level policy training.

Note that our framework can be naturally extended to more
levels by further decomposing each sub-trajectory into a number of
sub-trajectories. Thus it is expected that the quality of the learned
policy would be improved when we increase the number of levels,

which means the length of each sub-trajectory at the lower lev-
els is reduced. Thus our framework is flexible enough to make a
compromise between training efficiency and policy optimality. In
this paper, we set our framework to be two levels. One additional
benefit of our two-level framework is that we can easily reuse the
lower level policy to train the higher level constraint selection pol-
icy in case the trajectory-level constraint is adjusted. We evaluate
our approach using real-world datasets from Taobao platform both
offline and online. Our approach can improve the advertising rev-
enue and the advertisers’ income while satisfying the constraints at
both levels. In the lower level, we verify that CHER mechanism can
significantly improve the training speed and reduce the deviation of
the per-state constraint. Moreover, in the higher level, our method
can make good use of the lower level policy set to learn higher level
policies with respect to different platform-level constraints.

2 PRELIMINARY: CONSTRAINED
REINFORCEMENT LEARNING

Reinforcement learning (RL) allows agents to interact with the en-
vironment by sequentially taking actions and observing rewards
to maximize the cumulative reward [32]. RL can be modeled as
a Markov Decision Process (MDP), which is defined as a tuple
(S,A,R, P). S is the state space and A is the action space. The im-
mediate reward function is R : S × A × S → R. P is the state
transition probability, S × A × S → [0, 1]. There exists a policy π
on A, which defines an agent’s behavior. The agent uses its pol-
icy to interact with the environment and generates a trajectory
τ : {s0,a0, r0, s1, . . . st ,at , rt , st+1, . . . }. Its goal is to learn an op-
timal policy π∗ which maximizes the expected return given the
initial state:

π∗ = argmax
π

E[
T∑
t=0

γ t rt |π ] (1)

Hereγ ∈ [0, 1] is the discount factor,T is the length of the trajectory
τ . The Constrained Markov Decision Process (CMDP) [3] is gener-
ally used to deal with the situation, by which the feasible policies
are restricted. Specifically, CMDP is augmented with auxiliary cost
functions CT , S ×A × S → R and a upperbound constraint uT . Let
JCT (π ) be the cumulative discounted cost of policy π . The expected
discounted return is defined as follows:

JCT (π ) = E
τ∼π
[
T∑
t=0

γ tCT (st ,at , st+1)|π ] (2)
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Table 1: List of notations.

Notation Description

Q The sequence of incoming requests. Q =

{q1, q2, ..., qM }, |Q | = M , M is the total num-
ber of requests visiting the platform within one day,
different days have different M .

qi The i-th request in the day.
N d the number of candidate ads.
N r The number of recommended products.
Ni The number of commodities shown to qi . Usually, Ni =

Ni′, ∀1 ≤ i, i′ ≤ M . And Ni < N d + N r

N d
i The number of ads exposed for qi

PVR The total percentage of ads exposed in one day. PVR =
Σ1≤i≤MNd

i
Σ1≤i≤MNi

PVRi The percentage of ads exposed for qi . PVRi =
Nd
i

Ni
.

α The maximum percentage of the total ads exposed in
one day

β The maximum percentage of the ads exposed for each
request

Di The candidate ads set for qi . |Di | = N d

The set of feasible stationary policies for a CMDP is then:

ΠC � {π ∈ Π : JCT (π ) ≤ uT } (3)

And the policy is optimized by limiting the policy π ∈ ΠC in the
Equation 1. For DRL methods, Achiam et al. [1] propose a new
approach which replaces the optimization objective and constraints
with surrogate functions, and uses Trust Region PolicyOptimization
[30] to learn the policy, achieving near-constraint satisfaction in
each iteration. Tessler et al. [34] use a method similar to WeiMDP
[13]. WeiMDP [13] introduces a weight parameter ζ ∈ [0, 1] and a
derived weighted reward function r ′t , which is defined as:

r ′t = ζ × rt + (1 − ζ ) ×CT (st ,at , st+1) (4)

where rt and CT (st ,at , st+1) are the reward and the auxiliary cost
under the transition (st ,at , st+1) respectively. For a fixed ζ , this
new unconstrained MDP can be solved with standard methods,
e.g. Q-Learning [32]. Tessler et al. [34] use the weight ζ as the
input to the value function and dynamically adjust the weight by
backpropagation.

3 ADVERTISINGWITH ADAPTIVE
EXPOSURE

3.1 Adaptive Exposure Mechanism
In an E-commerce platform, user requests come in order, Q =
{q1,q2, ...,qM }3. When a user sends a shopping request qi , Ni com-
modities are exposed to the request based on the user’s shopping
history and personal preferences. The Ni commodities are com-
posed of advertising and recommendation products. Exposing more
ads may increase the advertising revenue. However, the exposed
ads for users are not necessarily their favorite or needed products.

3Table 1 summarizes the notations. In this paper, we usually use i subscript to refer to
the i-th request and j subscript to refer to the j-th ad in request.

Therefore, we should limit the number of exposed ads for each
user’s request.

For each request qi , traditional E-commerce systems use fixed-
positions to expose ads: Nd

i = K ,∀1 ≤ i ≤ M , where K is the num-
ber of fixed positions. However, it is obvious that this advertising
mechanism is not optimal. Different consumers have different shop-
ping habits and preferences to different products and ads. Therefore,
we can expose more advertising products to those consumers who
are more likely to click and purchase them (thus increasing the
advertising revenue) and vice versa.

To this end, recently Taobao (one of the largest Chinese E-
commerce platform) has begun to adopt more flexible and mixed
exposing mechanism for exposing advertising and recommended
products (Fig. 1). Specifically, for each request qi , the recommen-
dation and the advertising systems first select the top N r and Nd

items based on their scoring systems independently (Fig. 1, Step
(2) and Step (3)). Then these commodities are sorted altogether
according to scores in descending order(Fig. 1, Step (5)) and the top
Ni items are exposed to this request (Fig. 1, Step (6)).

In the meantime, to ensure users’ shopping experience, we need
to impose the following constraints:

• platform-level constraintCplat f orm , the total percentage
of ads exposed in one day should not exceed a certain thresh-
old α :

PVR ≤ α (5)

• request-level constraint Cr equest , the percentage of ads
exposed for each request should not exceed a certain thresh-
old β :

PVRi ≤ β ,∀1 ≤ i ≤ M (6)

where α ≤ β . This means that we can exploit this inequality re-
quirement to expose different numbers of ads to different requests
according to users’ profiles, e.g. expose more ads to users who are
more interested in the ads and can increase the average advertising
revenue, and fewer ads for the others. On one hand, for each re-
quest, the size of Nd

i can be automatically adjusted according to the
quality of the candidate products and ads. On the other hand, the
positions of Ni items are determined by the quality of the products
and ads, which can further optimize the user experience. In this
way, we can increase the total advertising revenue while satisfying
both the request-level and platform-level constraints. The scoring
systems for both recommendation and advertising sides can be
viewed as black boxes. However, from the advertising perspective,
we can adaptively adjust the score of each ad to change their rela-
tive rankings and the number of ads to be exposed eventually (Fig.
1, Step (4)).

The adaptive exposure mechanism can potentially improve the
advertising revenue, however, it faces a number of challenges. First,
the ads score adjusting strategy is highly sensitive to the dynam-
ics of recommendation system (e.g., system upgrading) and other
components of advertising system (e.g., the candidate ads selection
mechanism may upgraded). Our advertising system needs to be
adjusted to meet the constraints. Second, actual business needs to
change from time to time (adjust to platform-level and request-level
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constrain), so does our advertising system. These challenges force
us to design a more flexible algorithm. 4

3.2 Formulation
3.2.1 Problem Description. From the advertising perspective,
the above advertising exposure problem can be seen as a bidding
problem: The product displayed in each user request is determined
by the score (bid price) of the advertising item and the recommended
item (Rank by bid price, the higher the price, the more possible to
be displayed), and the advertising system adjusts the score of the
original advertisement (the auction bid) to satisfy the constraint
and increase revenue (auction results). We follow the settings of
the bidding problem in Display Advertising [9, 39] and extend it to
advertising with adaptive exposure problem. Formally, for the j-th
ad dj ∈ Di in request qi , its score is adjusted as follows:

score ′i, j = scorei, j × ηi, j (7)

where ηi, j = b(qi ,dj ;θ ). b is a bidding function and θ is the pa-
rameters of b. scorei, j is the original score given by the advertising
system for dj in request qi . Within the advertising system only, we
cannot directly figure out whether the ad (which score has been
adjusted) will be finally exposed to the request. We can only get
the final displayed results from the Shuffle System (Fig. 1, Step
(5)). So we definew(b(qi ,dj ;θ ),qi ,dj ) = Eϕ [I (b(qi ,dj ;θ ),ϕ)] as the
probability of winning the bid request (qi ,dj ) with bid adjustment
ratio b(qi ,dj ;θ ), where ϕ is the parameter of the recommendation
system and I (b(qi ,dj ;θ ),ϕ) indicates whether the advertisement
dj is finally displayed in request qi given the recommendation
system’s parameters ϕ. We use v(b(qi ,dj ;θ ),qi ,dj )to denote the
expected revenue value of the advertising product dj under request
qi .5 Then under the premise of satisfying the constraints Cr equest
andCplat f orm , the optimization goal of the advertising system can
be written as follows:

max
θ

∑
qi ∈Q

∑
dj ∈Di

v(b(qi ,dj ;θ ),qi ,dj ) ×w(b(qi ,dj ;θ ),qi ,dj )

s .t .



∑
dj ∈Di

w (b(qi ,dj ;θ ),qi ,dj )

Ni
≤ β,∀qi ∈ Q∑

qi ∈Q

∑
dj ∈Di

w (b(qi ,dj ;θ ),qi ,dj )∑
qi ∈Q

Ni
≤ α

(8)

Requests arrive in chronological order. To satisfy the constraint
Cplat f orm (e.g. the maximum proportion of displaying ads during
a day of the platform ), if the system exposes too many ads during
early period, it should expose fewer ads later. Hence the above
problem is naturally a sequential decision-making problem.

3.2.2 Problem Formulation. To solve such a sequential decision-
making problem, one typical method is to model it as MDP [9] or
CMDP [37]. and then use reinforcement learning techniques to
solve the problem. In practice, we cannot acquire andmake accurate
predictions of the environmental information likev(b(qi ,dj ;θ ),qi ,dj )
and w(b(qi ,dj ;θ ),qi ,dj ) aforehand, thus we resort to model-free

4Due to space constraints, we further discuss the novelty and related work of our
setup and methods in the appendix.
5 v(b(qi , dj ; θ ), qi , dj ) can be computed in a truthful or Generalized Second Price
(GSP) fashion.

reinforcement learning techniques. However, since there exist both
platform-level and request-level constraints, the traditional CMDP
[3] cannot be directly applied here. We propose a special CMDP
which we term as CMDP with per-state constraint (psCMDP). For-
mally a psCMDP can be defined as a tuple (S,A,R, P ,CT ,CS ). Com-
paring to the original CMDP [3], we see that the difference here is
that for each trajectory τ , psCMDP needs to satisfy not only the
trajectory-level constraint CT :

JCT (π ) =
T∑
t=0

γ tCT (st ,π (st ), st+1) ≤ uT (9)

but also the per-state constraint CS over each request:

JCS (π ) = CS (st ,π (st ), st+1) ≤ uS ,∀(st ,at , st+1) ∈ τ (10)

where CS : S ×A × S → R and uS is the upper bound of CS . So the
set of feasible stationary policies for a psCMDP is:

Πps = {π ∈ Π : JCT (π ) ≤ uT } ∩ {π ∈ Π : JCS (π ) ≤ uS } (11)

The components of a psCMPD are described in details as follows:
• S : The state should reflect both the environment and the
constraints in principle. In our settings, we consider the
following statistics for st : 1) information related to the the
current request qi , e.g., features of the candidate ads; 2) sys-
tem context information, e.g., the number of ads exposed up
to time t .
• A: Considering the system picks out products for each re-
quest by the score of all the products, we adjust all the ad
candidates’ score of a request at once. Accordingly, we de-
note at = (ηqi1 ,η

qi
2 , ...,η

qi
N d ), where η

qi
j is the coefficient of

the j-th ad dj for request qi , where 1 ≤ j ≤ Nd .
• R: R(st ,at ) =

∑
d ∈Dat

st
v(st ,d), where at is the score adjust-

ment action in state st , Dat
st is the set of ads finally exposed

in st and v(st ,d) is the revenue value of displaying ad d in
st , We set v(st ,d) as the Generalized Second-Price after the
actual sorting of the advertising items and recommended
items.
• P : State transition models the dynamics of requests visiting
sequence and system information changes. The effect of at
on state transitions is reflected in: Different at would lead to
different ads in st , which would also affect the total number
of ads that have been shown (which is a component of st+1).
Similar ways of modeling state transitions have also been
adopted previously in Cai et al. [9], Jin et al. [19] and Wu
et al. [37].

Specifically, for the constraints:
• CT : It is defined as the platform level constraint Cplat f orm -
the advertising exposure constraint over a day (trajectory),

and set discount factor γ to 1, CT : Σ1≤i≤MN d
i

Σ1≤i≤MNi
≤ α .

• CS : It is defined as the request level constraintCr equest - the
advertising exposure constraint over each request (state),

and set discount factor γ to 1, CS : N
d
i

Ni
≤ β,∀i ∈ N.

With all the definitions above, an optimal policy π∗ is defined as
follows:
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Figure 2: The Framework Structure.

π∗ = argmax
π ∈Πps

E[
M∑
t=0

R(st ,π (st ))]

= argmax
π ∈Πps

E[
M∑
t=0

∑
d ∈Dat

st |at=π (st )
v(st ,d)]

(12)

Our problem also shares similarity with contextual bandit prob-
lem well-studied in the E-commerce literature. However, one major
difference is that contextual bandit mainly studies choosing an
action from the fixed and known set of possible actions, such as
deciding whether to display advertisements, and which locations to
display advertisements [2, 8, 33, 38]. In our case, however we have
to adjust the scores (which are continuous variables) of hundreds
of millions of items to maximize the total reward, which drives
us to model the state transitions explicitly. The other reasons for
adopting RL instead of contextual bandit are as follows: 1) Wu et al.
[37] show that modeling trajectory constraints into RL will lead
to higher profits since RL can naturally track the changes of con-
straints in a long run and make longer term decisions. 2), Hu et al.
[16] further confirm that RL methods can bring higher long-term
returns than contextual bandit methods for ranking recommended
products in e-commerce.

3.3 Solution: Constrained Two-level
Reinforcement Learning

We propose a constrained two-level reinforcement learning frame-
work to address the constrained advertising optimization problem.
The overall structure is shown in Fig. 2 and the framework is de-
scribed in Algorithm 1. We split the entire trajectory into a number
of sub-trajectories. The optimization task of the higher level is to
learn the optimal policy πCT for selecting constraints for different
sub-trajectories to maximize long-term revenue while ensuring that
the constraint over the whole trajectory CT is satisfied (Algorithm
1, Line 4). Given a sub-trajectory constraint CST from the higher
level, the lower level is responsible for learning the optimal policy
πb (st ;CST ) over its sub-trajectory while ensuring that both the
sub-trajectory constraint CST and the per-state constraints CS are

Algorithm 1 Constrained Two-level Reinforcement Learning
1: Given: constraintsCT andCS , an off-policy RL algorithm Alдo
2: Initialize the state-level constraint set CS based on CS and the

environmental information.
3: Lower Level: Under the premise of satisfying the constraintCS ,

train the state-level behavior policy set according to CS and
use Constrained Hindsight Experience Replay (introduced in
section 3.3.1) to speed up the training process.

4: Higher Level: According to the state-level behavior policy set,
assign constraints on different sub-trajectory to maximize the
expected long-term advertising revenue while satisfying the
trajectory-level constraint CT .

satisfied (Algorithm 1, Line 2 - 3). In this way, the original psCMDP
optimization problem is simplified by decoupling it into the two
independent optimization sub-problems.

By decoupling the adaptive exposure learning problem in such
a two-level manner, we have higher adaptability and can quickly
make response to dynamically changing e-commerce environments.
This property is critical in online e-commerce environments since
slower response would result in significant amount of monetary
loss to the company. First, the platform-level constraint may vary
frequently due to the company’s business strategic change. In this
case, the lower level policies we have learned can be reused and
only the higher level policy needs to be retrained. Second, the
recommendation system or other components of the adverting
system may change frequently, and our adjustment policy needs
to be updated accordingly. In this case, we only need to retrain the
lower level policies while the higher level part can be retained.

3.3.1 Lower Level Control. In the lower level, we have to ad-
dress the sub-problem of learning an optimal advertising policy
under a particular sub-trajectory constraint CST provided by the
higher level part. In our approach, we convert the constraint of
each CST straightforward into state level constraints to do more
precise manipulating. We simplify the sub-trajectory optimization
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problem at the cost of sacrificing the policy optimality by treating
the sub-trajectory constraint CST as a state-level constraint. It is
obvious that the original state-level constraint CS is more strict
than CST . Thus, we can easily combine CST and CS into a single
state-level constraintCST . Obviously once the state level constraint
is satisfied, the higher level constraint would be satisfied at the same
time. Thus, given a sub-trajectory constraint CST by the higher
level policy, we can directly optimize the lower level policy at the
state level. One natural approach in CMDP is to guide the agent’s
policy update by adding an auxiliary value related to the per-state
constraint to each immediate reward (Equation. 4). And, during
policy update, both the current and the future penalty values are
considered. However, in our lower level, since each transition sat-
isfies the constraint CS independently, each action selection does
not need to consider its future per-state constraints CS .

Enforce Constraints with Auxiliary Tasks. Considering the above
reasons, we propose a method similar to auxiliary tasks [18] by
adding an auxiliary loss function based on per-state constraints. We
use LRL and LCS to denote the RL loss function and the per-state
constraintCS loss function respectively. During training, the policy
is updated towards the direction of minimizing the weighted sum
of the above two:

min L′(θ ) = w1 × LRL(θ ) +w2 × LCS (θ ) (13)

wherew1 andw2 are the weights, θ are the parameters of the value
network. For example, for critic part in DDPG [24], the original
critic loss function is:

LRL(θ ) = [r + γQ(st+1,π (st+1 |θπ );θ ′) −Q(st ,at ;θ )]2 (14)

and the additional loss function for per-state constraints can be
defined as follows:

LCS (θ ) = [Q(st ,at ;θ
′) + δ (st ,at , st+1 |CS ) −Q(st ,at ;θ )]2 (15)

where θ , θπ and θ ′ are the online critic network parameters, ac-
tor network parameters and the target critic network parameters
respectively and δ (st ,at , st+1 |CS ) is the function of CS . The value
of δ (st ,at , st+1 |CS ) is used to control the degree that Q-function
is updated when the constraint is violated. For example, when
we want to limit the pvr of each request close to 0.4, we can set
δ (st ,at , st+1 |Cs ) = −(pvrt − 0.4)2, where pvrt is the pvr value
of request qt . Intuitively, the more (st ,at , st+1) deviates from the
target pvr, the more its corresponding Q-value will be decreased.
Similar techniques have also been used to ensure the optimality
of the expert demonstrations by using a margin classification loss
[15].

Constrained Hindsight Experience Replay. To increase the sam-
ple efficiency, we propose leveraging the idea of hindsight experi-
ence replay (HER) [5] to accelerate the training of optimal policies
for different sub-trajectory constraints. HER relieves the problem of
sample inefficiency in DRL training by reusing transitions, which
can be obtained by using different goals to modify reward. We
extend this idea to propose the constrained hindsight experience
replay (CHER). Different from HER, CHER does not directly revise
the reward. Instead, it uses different constraints to define the extra
loss LCS during training. The overall algorithm for training lower
level policies under CHER is given in Algorithm 2. When we learn

Algorithm 2 Constrained Hindsight Experience Replay

1: Given: a state-level constraints set CS , epoch numberMe , train-
ing repeat number N .

2: Initialize: replay buffer B.
3: for epoch = 1,Me do
4: Sample a constraint cs in CS and initial state s0.
5: while st is not terminating state do
6: Sample an action at using the behavioral policy: at ←

πb (st ; cs ).
7: Execute at and observe state st+1, reward rt .
8: Store the transition (st ,at , rt , st+1, cs ) in B.
9: for t = 1,N do
10: Sample a transition (st ,at , rt , st+1, cs ) from B, and train

πb using add constrained: L′ = LRL + Lcs .
11: for cs ′ ∈ CS do
12: use transition (st ,at , rt , st+1, cs ′) to train πb (st ; csfi) by

L′ = LRL + Lcs′ .

a policy to satisfy constraint cs (specific constraints on each state),
it obtains the transition: (st ,at , rt , st+1, cs ) (Algorithm 2, Line5 - 8).
We can replace cs with another constraint cs ′ and then reuse those
samples (st ,at , rt , st+1, cs ′) and δ (st ,at , st+1 |cs ′) to train a policy
satisfying constraint cs ′ (Algorithm 2, Line12).

3.3.2 Higher Level Control. The higher level task is to determine
trajectory-level constraints for each sub-trajectory to maximize
the expected long-term advertising revenue while satisfying the
original trajectory constraint CT . 6 At each decision point, the
higher level policy (we term as constraint choice policy, CCP) selects
a constraint for the next sub-trajectory, and the corresponding
lower level policy takes over and determines the ads adjustment
score for each request within that sub-trajectory. After the lower
level policy execution is finished, the accumulated revenue over
that sub-trajectory is returned to the higher level policy as its
abstraction immediate reward rab . The above steps repeat until
we reach the end of the trajectory, and then we obtain the actual
percentage of of ads displayed over the whole trajectory, which can
be compared with the trajectory constraint as an additional reward
rτ with weightedw2:

rab
′
= rab +w2 × rτ (16)

Similar toWeiMDP [13], we use DQN [27] for the higher level policy
optimization. More advanced RL techniques (such as CPO [1], SPSA
[29]) can be applied as well. Note that our higher level control is
similar to the temporal abstraction of hierarchical reinforcement
learning (HRL) [7, 20]. However, in contrast to learning how to
switch option [7] and alleviate the sparse reward problem[20] in
HRL, ourwork leverage the idea of hierarchy to decompose different
constraints into different levels.

6By satisfying the state-level constraint in the lower level, we reduce the optimization
problem of the higher level into an optimization problem that only needs to consider
the trajectory-level constraint.
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Figure 3: Learning Curves: DDPG with CHER Compared with DDPG without CHER.

4 EXPERIMENTS
4.1 Experimental Setup
Our experiments are conducted on a real dataset of the Chinese
largest E-commerce platform Taobao, and the data collection sce-
nario is consistent with the problem description in Section 3. In Fig.
1, we have demonstrated that the score adjustment of a product
produced by the advertising system does not affect the selection
and scoring of the candidate products produced by the recommen-
dation system. It only influences the relative ranking of the ads
compared with the recommendation products and affects the final
mixed sorting results. Therefore, the online data collected from
platform can be reused to evaluate the effects of score adjusting
through resorting the mixture of the original recommended prod-
ucts and the regraded ad products. Similar settings can be found
in related work [9, 19, 28, 39]. Specificailly, we replay the users’
access logs in chronological order to simulate the users’ requests.
The state of our psCMDP is represented by integrating the features
of all candidate ads and the system contextual information. The
action is defined as the score adjusting ratios for candidate ads.
Finally, the reward and the satisfaction condition of each constraint
are calculated accordingly following the definition in Section 3.2.
All details can be found in the appendix.

4.2 Does CHER improve performance?
To verify the effectiveness of using CHER, we compare the impact
of using CHER on the learning speed and stability with a baseline
DDPG [24] under the same network structure and parameters.4
Suppose CS is the number of exposure ads for each request, and
cannot exceed 5, so we set CS to be consisting of 5 constraints.
Each goal in PVRi = 0.3, 0.35, 0.4, 0.45, 0.5 represents the expected
average number of ads exposed per request. Intuitively, we can use
the constraint as part of the input and use a network to satisfy all
constraints [5]. However, considering the learning stability, we use
5 different networks to satisfy different constraints. Since we use
DDPG, we add LC to LCrit ic during Critic training,

L′Crit ic = LCrit ic +w × LC (17)

LC = Ei [(−|PVRi − PVRt | +Q(s,a;θ ′) −Q(s,a;θ ))2] (18)
where w is set to 10, and PVRi is the percentage of ads exposed
for i-th request qi . We set up 4 different random seeds, and the
experiment results are shown in Fig. 3. We only show the results of
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Figure 4: The relationship between ratio and the value of
advertising products. (a): The relationship between ratio and
commodity ecpm, price. (b): The relationship between ratio
and commodity ecpm

PVRi = 0.35, 0.4, 0.45 due to the space limit. The criterion for an
algorithm will be better if its result is closer to the target constraint.
We can find that, under different constraints, DDPG with CHER
is better than DDPG in terms of training speed, achieving and
stabilizing around constraints. In order to understand the rationality
of the policy after training, we randomly sampled some user visits
in the dataset. By recording the actions of adjusting scores of the
advertisements in these user visits (Fig. 4), our approach learning
can be intuitively understood as follows: if the advertising product
has higher value (ecpm, price), then its score is adjusted higher.

4.3 Verify the Effectiveness of Constrained
Two-level Reinforcement Learning

In order to verify the two-level structure can bring about an increase
in revenue, we compare the performance of different methods un-
der different platform-level constraints PVR=0.35, 0.41, 0.46 (the
upper bound of the advertising rate of each day is 0.35, 0.41, 0.46
respectively,CT =0.35, 0.41, 0.46) with the state level constraint fixed
(PVRi = 0.5, the upper bound of the advertising rate of each request
is 0.5,CS = 0.5). Since we are considering a new adaptive exposure
mechanism, there are no existing approaches suitable for compar-
ison. In our paper, we consider the following two approaches as
baselines: 1). manual: the score of an advertisement is manually
adjusted by human experts. 2). CHER + DDPG: a previous trained
model of Section 4.2. It corresponds to a policy of using a fixed
request-level constraint for the whole trajectory without adaptive
adjustment. Since the performance of DDPG varies a lot , we add a
complementary CHER to DDPG and use this optimized approach
(CHER+DDPG) to attain a more stable PVRi .
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Table 2: The Performance of Our Approach in One Day.

Policy performance Policy performance Policy performance
PVR Revenue PVR Revenue PVR Revenue

target 0.35 - target 0.41 - target 0.46 -
manual 0.3561 143121 (100%) manual 0.4179 157120 (100%) manual 0.4640 167489 (100%)
CHER π1 0.3558 290260 (202.8%) CHER π2 0.4100 362676 (230.8%) CHER π3 0.4608 399712 (238.6%)
CCP 0.3576 308108 (215.3%) CCP 0.4141 370914 (236.1%) CCP 0.4673 420119 (250.8%)

Table 3: The Performance of Our Approach for each Hour.

Hour Revenue PVR Revenue / PVR
DDPG+CHER π1 CCP CCP - π1 ∗ DDPG+CHER π1 CCP CCP - π1 ∗ DDPG+CHER π1 CCP CCP - π1 ∗

8 11556 15845 4289 0.01280837 0.01590289 0.003094520 902222 996359 94137
9 15595 23422 7827 0.0162089 0.02192751 0.005718610 962125 1068155 106030
10 20157 28979 8822 0.0184266 0.02321300 0.004786400 1093907 1248395 154487
11 18221 24739 6518 0.01880709 0.02246692 0.003659830 968836 1101130 132293
12 16777 18646 1869 0.01794808 0.01895375 0.001005670 934751 983763 49011
- - - - - - - - - -
15 18129 16023 -2106 0.02096899 0.01851524 -0.00245375 864562 865395 832
16 22913 20450 -2463 0.02233828 0.01964052 -0.00269776 1025727 1041214 15486
- - - - - - - - - -
17 12919 11432 -1487 0.01914268 0.01718366 -0.00195901 674879 665283 -9596
18 11424 9786 -1638 0.01633943 0.01428198 -0.00205745 699167 685199 -13968
19 11586 10081 -1505 0.01570854 0.01391865 -0.00178989 737560 724280 -13280
- - - - - - - - - -
22 18362 15391 -2971 0.02780465 0.02398777 -0.00381688 660393 641618 -18774
23 12720 10584 -2136 0.02291417 0.01988751 -0.00302666 555115 532193 -22921

notice that CCP - π1 ∗ is the performance difference of CCP and π1 under different evaluation indicators (e.g. Revenue, PVR, Revenue/PVR)
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Figure 5: Learning Curves Compared with Policy π1.
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Figure 7: Learning Curves Compared with Policy π3.

Does higher level control improve performance? To distinguish
different policies in the behaviour policy set, we use π0, π1, π2, π3, π4
to refer to the different lower level policies (DDPG+CHER) previous
trained in Section 4.2 under different platform-level constraints
PVR = 0.3, 0.35, 0.4, 0.45, 0.5. The temporal abstraction value is set
to 1 hour, which means the higher level CCP makes a decision per
hour.7 After selecting the sub-trajectory constraint, the behavior
policy of the state level is activated for adjusting ads’ scores in
the flowing hour with the sub-trajectory constraint fixed. In our
experiments, We combine the double DQN architecture with the
dueling structure4 to train CCP. The state of CCP consists of hourly
information, such as the timestamp, hourly eCPM, PVR from 00:00
to current time. The objectives of the higher level policy are: (1)
achieving approximately the same number of exposure ads with
target PVR; (2) improving revenue as much as possible. Detailed
results are shown in Table. 2 and Fig. 5 - 7, in which we see the CCP
can increase the revenue of each day compared to the manual and
DDPG+CHER policies under the same constraintCT . Therefore, we
demonstrate that our approach learns to expose different numbers
of ads in different time periods, which means that more ads are
exposed when the value of the ads in a request is higher and fewer
ads are shown in other time slots.

Why higher level control can improve performance? Weanalyze
the finally exposed ads and all the corresponding candidate ads of
each request within a day. First, we set the advertising rate of each
7In fact, a more fine-grained decomposition can lead to a better performance. However,
we simply set the minimum temporal unit to 1 hour here to make the analysis of the
improvement of CCP easier.
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Figure 8: The changing curves of per-hour advertising rates
with one day. Fix: The proportion of ads exposed on each re-
quest is fixed and set to 0.35; Oracle: After one day, we could
figure out the best dynamical advertising rate available for
each hour under conditions that satisfy the daily constraint:
PVR = 0.35 through data analysis.

request to a fixed value 0.35. Then we calculate out the proportion
of the finally exposed ads within each hour to the total number
of ads in that day, which is represented as the Fix policy in Fig.
8. Keeping the total number of ads displayed in a day exactly the
same, Oracle is calculated by resorting all the candidates of all
requests together according to the scores and picks out the top
35% ads to display. Note that this Oracle policy shown in Fig. 8 is
the best strategy available for displaying ads in one day. We can
clearly find out that during the time period of hour 8 - hour 12,
the advertising rate of the Oracle policy is more than 35%, which
means that we should display more ads within this period to enlarge
revenue. Accordingly, during hour 17 - hour 20 and hour 22 - hour
23, the advertising rate of the Oracle policy is less than 35%, which
means that we should reduce the number of the unpromising ads
and leave this opportunity to the more valuable ones. The detailed
advertising performance of each hour is shown in Table. 3. We can
clearly see that the revenue gap between the baseline policy and our
approaches mainly appear on hour 8 - hour 12; Besides, our method
can obtain more cost-effective advertising exposure within hour 8 -
hour 12 and hour 15 - hour 16. Our method can dynamically adjust
the advertising number corresponding to different time periods
with the daily PVR constraint satisfied.

4.4 Online Results
Lastly, we also report the production A/B test experiments, which
compared the performance of our approach to a currently deployed
baseline (which displays a fixed number of ads to every user 8) in
Taobao’s online platform. We conduct the experiments on the sec-
tion of "guess what your like", where a mixture of recommendations
and advertisements are displayed to the users. Our method does
not fix the numbers and positions of ads. We apply our designed
mechanism to adaptively adjust the scores of each ad to different
users so as to display different numbers of ads to different users in
different positions. More detials are illustrated in section 3.1. For a
fair comparison, we keep the platform-level constraint the same for
all approaches. As a result, we find that our approach does present
different numbers of ads to different users in different positions
satisfying the preset constraint overall. Besides, we observe 9%, 3%,

8 In the online test, we have also tried the manual approach (as with the experimental
setup). However, we found the manual method could not ensure a relatively stable
satisfaction of the pvr constraint, so we omit the results for fair comparisons.

and 2% improvements in RPM (Revenue Per Mille), CTR (Click-
through rate) and GMV (Gross Merchandise Value) respectively,
which indicates that our adaptive exposure mechanism not only
significantly increase the revenue of the platform (RPM) but also
the revenues of advertisers (GMV). We also introduced the detailed
online implementation process in the appendix.

5 CONCLUSION
We first investigate the flaws in traditional E-commerce systems us-
ing fixed-positions to expose ads, and further propose more flexible
advertising methods (Adaptive Exposure Mechanism) to alleviate
the defects of fixed-positions. Further, we emphasize that there are
a series of challenges when applying adaptive Exposure Mecha-
nism in actual scenarios. We first model it as a psCMDP problem
with different level constraints, and propose a constrained two-level
reinforcement learning framework to solve this problem. Our frame-
work offers high adaptability and quick response to the dynamic
changing e-commerce environments. We also propose a novel re-
play buffer mechanism, CHER, to accelerate the policy training
of the lower level. We have demonstrated that our designed adap-
tive Exposure Mechanism can provide more flexible advertising
displaying methods while satisfying a series of constraints through
offline simulation experiments and online verification. At the same
time, we also verified that the constrained two-level reinforcement
learning framework can effectively utilize the adaptive Exposure
Mechanism to improve the platform revenue and user experience
while satisfying the constraints.
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A APPENDIX
A.1 Discussion: Adaptive Exposure
Current research on dynamic ad exposure focuses on sponsored
search[6], stream advertising in news feeds[17], etc. Their dynamic
ad exposure mainly refers to how to select the appropriate location
and quantity to display the ad in the fixed optional ad positions[6],
or how to dynamically insert the ad in the feeds through the
user’s previous browsing process[17]. Compared with sponsored
search[6], our mechanism does not limit the position of advertise-
ments. Instead, it chooses the number and location of ads by means
of score sorting, which means that our approach can bring more
flexibility. Compared with stream advertising in news feeds[17]
we consider the mixed-display scenario where both recommended
products and advertised products are displayed altogether to the
customers and their display orders are determined by their relative
rankings.

A.2 Related Work
A.2.1 Bidding Optimization in Real-Time Bidding. Under the
Real-Time Bidding (RTB) settings in E-commerce advertising, amounts
of work have been proposed to estimate the impression values,
e.g. click-through rate (CTR) [25] and conversion rate (CVR) [22],
which help to improve the bidding effectiveness via predicting more
precise impression values. Besides, the user impression analysis,
bidding optimization is one of another most concerned problems
in RTB, whose goal is to dynamically set a more appropriate price
for each auction aiming at maximizing some key performance indi-
cators (KPIs) (e.g. CTR) [36]. However, constraints are inevitable
while solving optimization problems in real world bidding situa-
tions. So, smarter bidding strategies are needed for attaining higher
KPI values (e.g. the cumulative impression value), which can be
achieved through reinforcement learning techniques [9, 28, 39]. In
these approaches, they optimize the bidding strategy under the fixed
budget constraint and the budget will be reset at the beginning of
each episode. Perlich et al. [28] and Zhang et al. [39] propose static
bid optimization frameworks based on the distribution analysis of
the previously collected log data. However, their approach can’t
apply well to the setting in which the data distribution is unstable
and will change from day to day in extreme circumstances. For
this reason, Cai et al. [9] model the bidding problem as a MDP and
consider the budgets allocation as a sequential decision problem.
Experimental results show the robustness of their reinforcement
learning approach under the non-stationary auction environments.

By contrast, we are the first to propose a more general deep
reinforcement learning framework which takes more realistic busi-
ness constraints into consideration. In our settings, we concentrate
on the practical advertising with adaptive exposure problem. Not
only do we consider the trajectory level constraint CT , but also the
state level constraint CS . This is the main reason why the previous
approaches are not applicable to our settings.

A.2.2 Constrained Reinforcement Learning. We are focusing
on a constrained optimization problem and a number of researches
have been done. One typical solution is the constrained reinforce-
ment learning. Uchibe and Doya [35] propose a policy gradient
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algorithm which uses gradient projection to enforce the active con-
straints. However, their approach is unable to prevent the policy
from becoming insecure at the beginning of the training. Later,
Ammar et al. [4] propose a theoretically-motivated policy gradient
method for lifelong learning under safety constraints. Unfortu-
nately, they involve an expensive inner loop which contains an
optimization of a semi-definite program, making it unsuitable for
the DRL settings. Similarly, Chow et al. [12] propose a primal-dual
sub-gradient method for risk-constrained reinforcement learning,
which takes policy gradient steps trading off return for lower risk
while simultaneously learning the trade-off coefficients (dual vari-
ables).

More recently, a number of DRL-based approaches have been
proposed to address the constrained optimization problem. Achiam
et al. [1] use the conjugate gradient method to optimize the pol-
icy. However, the computational cost will significantly arise as the
constraint number increases, resulting in such approaches inappli-
cable. Tessler et al. [34] propose the Reward Constrained Policy
Optimization (RCPO), which converts the trajectory constraints
into per-state penalties and dynamically adjusts the weight of each
per-state penalty during the learning procedure via propagating
the constraint violation signal over the entire trajectory.

Our work tackle the multi-constraint problem from a different
point of view and take the relationship between the different con-
straints into account. We decouple the original multi-constraints
optimization problem into relatively independent single constraint
optimization problems and propose a constrained two-level rein-
forcement learning framework. More importantly, our two-level
framework is quite general and any state-of-the-art RL algorithms
can be flexibly applied to learning procedures of both levels.

A.3 Network structure and training parameters
A.3.1 CHER. Both the actor network and the critic network are
four-layer fully connected neural networks, where each of the two
hidden layers consists of 20 neurons and a ReLU activation function
is applied on the outputs of the hidden layers. A tanh function is
applied to the output layer of the actor network to bound the size
of the adjusted scores. The input of the actor network and critic
network is a tensor of shape 46 representative feature vectors of the
request’s candidate ad items and the number of currently exposed
items. The output of the actor network and the critic network are
respectively 15 actions and corresponding Q-values. The learning
rate of the actor is 0.001, the learning rate of the critic is 0.0001, and
the size of the replay buffer is 50000. The exploration rate starts from
1 and decays linearly to 0.001 after 50,000 steps.It is worth pointing
out that in the environment, we will make certain adjustments
to the action, such as adding a certain value, performing certain
scaling, to ensure that the operation of adjusting the score is in line
with the business logic. Therefore, the output of the action is not
the actual adjusted scores. We consider this adjustment part as part
of the environmental logic. It does not affect the training of the
network.

A.3.2 Higher Level Control. DQN network has three-layer neu-
ral networks. The hidden layer consists of 20 neurons and a ReLU
activation function is applied on the outputs of the hidden layer.
Then we connect the hidden layer output to: 1) the nodes with the
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Figure 9: The impact of different positions on CTR.

same number of actions, which is used to simulate the action advan-
tage value A, 2) only one node, which is used to simulate the state
valueV . Finallywe obtainQ(s,a) = V (S)+(A(s,a)− 1

|A |
∑
a′ A(s,a′)).

The size of the replay buffer is 5000. We use the prioritized replay
to sample the replay buffer. The learning rate is 0.0006. The ex-
ploration rate starts from 1 and linearly decays to 0.001 after 1000
steps. Also we set the discount factor γ = 1.

A.4 Experimental Setup
Based on the log data, for each request, we collect 15 recommended
products and their scores marked by the recommendation system
as candidates for each request, and the information of 15 advertis-
ing products, such as: eCPM (effective cost per mille), price, pre-
dicted Click-Through-Rate (pCTR), and initial score. Since the actual
amount of data is significantly large, we sample a part of the data
for empirical evaluation, and verify that the sampled data has rep-
resentativeness to the real data set. In both training and evaluation
stages, we split the previously collected data by day and replay the
requests in chronological order for simulation. We consider the
data flow from 00:00 AM to the next day as a trajectory. At the
beginning of each day, the number of ads has been displayed and
number of requests have been reset to 0. At the end of each day,
we count the daily number of ads displayed and make a judgement
whether the trajectory-level constraint CT has been satisfied.

A state consists of 46 dimensions including the characteristics
of the 15 candidate ads: eCPM, price, pCTR, and the number of
exposed ads. Action is the coefficient to adjust scores for 15 ads,
action = {η1,η2, . . . ,η15}. After adjusting scores using actions, 15
candidate advertising commodities and 15 candidate recommended
commodities are sorted based on the new scores. The reward is
calculated according to the ads in the first 10 exposure items.We can
replay the data to train and test the effect of our algorithm offline
in two ways: 1) after ads adjusting scores, whether the quantity of
ads in the 10 exposure items meets CT and CS , and 2) the rewards
of the exposed ads. Actually, the positions of ads have impact on
user behaviors. E.g., the ads in front are more possible to be clicked,
and so on. Hence the reward is defined as:

r =
∑
d

fp (d) × eCPM(d) (1)

where eCPM(d) is the eCPM value of the ad d , and fp (d) corrects
the eCPM by considering the influence of different positions. fp (d)
is fitted using the real data. (Fig. 9)
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A.5 Online Experiment
Due to the architecture of the online engine in Taobao, we re-
placed the gradient based DDPG with the widely used gradient-free
Cross Entropy Method (CEM, an evolution based genetic algorithm)
within the platform. When deploying our algorithm to the online
environment, we consider two separate processes: (1) online serv-
ing and data collection; (2) offline training. For (1), we use Blink
(an open source stream processing framework which is specially
designed and optimized for e-commerce scenarios) to record the
constantly updated online data. Besides, to fully explore the pa-
rameter space of CEM, we split the online traffic into a number

of buckets and deploy different sets of parameter configurations
at the same time. Different buckets are controlled by different pa-
rameters. After processing each user’s request, the newly produced
data is recorded to corresponding data tables by Blink. For (2), a
centralized learner will periodically update its parameters based on
the latest recorded data, generate different sets of parameters for
different buckets and synchronize them to the parameter server. At
the same time, the online search engine deployed at each bucket
also regularly request the latest parameters from the parameter
server.
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