Novo Matos, J;
Garcia-Canadilla, P;
Simcock, IC;
Hutchinson, JC;
Dobromylskyj, M;
Guy, A;
Arthurs, OJ;
... Luis Fuentes, V; + view all
(2020)
Micro-computed tomography (micro-CT) for the assessment of myocardial disarray, fibrosis and ventricular mass in a feline model of hypertrophic cardiomyopathy.
Scientific Reports
, 10
, Article 20169. 10.1038/s41598-020-76809-5.
Preview |
Text
s41598-020-76809-5.pdf - Published Version Download (3MB) | Preview |
Abstract
Micro-computed tomography (micro-CT) is a high-resolution imaging modality that provides accurate tissue characterization. Hypertrophic cardiomyopathy (HCM) occurs as a spontaneous disease in cats, and is characterized by myocardial hypertrophy, disarray and fibrosis, as in humans. While hypertrophy/mass (LVM) can be objectively measured, fibrosis and myocyte disarray are difficult to assess. We evaluated the accuracy of micro-CT for detection and quantification of myocardial disarray and fibrosis by direct comparison with histopathology. 29 cat hearts (12 normal and 17 HCM hearts) underwent micro-CT and pathologic examination. Myocyte orientation was assessed using structure tensor analysis by determination of helical angle (HA), fractional anisotropy (FA) and myocardial disarray index (MDI). Fibrosis was segmented and quantified based on comparison of gray-scale values in normal and fibrotic myocardium. LVM was obtained by determining myocardial volume. Myocardial segments with low FA, low MDI and disruption of normal HA transmural profile on micro-CT were associated with myocardial disarray on histopathology. FA was consistently lower in HCM than normal hearts. Assessment of fibrosis on micro-CT closely matched the histopathologic evaluation. LVM determined by micro-CT was higher in HCM than normal hearts. Micro-CT can be used to detect and quantify myocardial disarray and fibrosis and determine myocardial mass in HCM.
Type: | Article |
---|---|
Title: | Micro-computed tomography (micro-CT) for the assessment of myocardial disarray, fibrosis and ventricular mass in a feline model of hypertrophic cardiomyopathy |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41598-020-76809-5 |
Publisher version: | https://doi.org/10.1038/s41598-020-76809-5 |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Cardiac hypertrophy, Cardiovascular biology |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Childrens Cardiovascular Disease UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Neurosciences Dept UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Population, Policy and Practice Dept |
URI: | https://discovery.ucl.ac.uk/id/eprint/10116210 |
Archive Staff Only
![]() |
View Item |