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Abstract 

A new tomographic reconstruction algorithm is presented, termed Direct Least-Squares 

Reconstruction (DLSR), which solves the well-known parallax problem in X-ray scattering-based 

experiments. The parallax artefact arises from relatively large samples where X-rays, scattered 

from a scattering angle 2θ, arrive at multiple detector elements. This phenomenon leads to loss 

of physico-chemical information associated with diffraction peak shape and position (i.e. altering 

the calculated crystallite size and lattice parameter values respectively) and is currently the major 

barrier to investigating samples and devices at the cm-level (scale-up problem). The accuracy of 

the DLSR algorithm has been tested against simulated and experimental X-ray diffraction 

computed tomography data using the TOPAS software. 

Synopsis 
A new reconstruction approach is presented that can directly yield physico-chemical images and 

overcome the parallax problem in X-ray diffraction computed tomography (XRD-CT) experiments. 
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Introduction 
 

X-ray diffraction computed tomography (XRD-CT) is a pencil beam scanning tomographic 

technique yielding reconstructed images corresponding to a sample’s cross section (Harding et 

al., 1987). The contrast in these images arises from differences in the signal of the 

scattered/diffracted X-rays. In conventional X-ray absorption-contrast computed tomography (X-

ray CT), contrast arises from differences in the density of the sample. For this reason, XRD-CT is 

able to spatially-resolve chemical species of similar density where conventional X-ray CT often 

fails. This property of XRD-CT explains why this technique is sometimes referred to as 

Diffraction/Scattering Computed Tomography (DSCT). This clarification avoids confusion to 

newcomers in the field. The first synchrotron implementation of the technique was performed in 

1998 by Kleuker et al. (Kleuker et al., 1998) at the medical imaging beamline of the ESRF. 

However, it was the work of Stock et al. (Stock et al., 2008) in 2007 and Bleuet et al. (Bleuet et 

al., 2008) in 2008, at the APS and ESRF synchrotrons respectively, that re-introduced the 

technique to a wider audience. 

 

Since then, the potential of XRD-CT as a characterisation tool has been realised; it has been 

applied to a wide range of materials systems including cultural heritage paints (Vanmeert et al., 

2015; Price et al., 2019; Gonzalez et al., 2020), automotive paints (De Nolf & Janssens, 2010), 

ceramic cement (Artioli et al., 2010; Valentini et al., 2011, 2012; Voltolini et al., 2013; Claret et al., 

2018), uranium-based materials for nuclear reactor applications (Palancher et al., 2011; Bonnin 

et al., 2014), high pressure disordered graphite (Álvarez-Murga et al., 2011), Al-matrix SiC-

monofilament composites (Stock & Almer, 2012), solid catalysts (Basile et al., 2010; Ruiz-

Martínez et al., 2013; Beale, Gibson et al., 2014; Price, Ignatyev et al., 2015; Wragg et al., 2015; 

Ihli et al., 2017; Grande et al., 2020; Gambino et al., 2020), batteries and battery electrodes 

(Jensen et al., 2015; Daemi et al., 2020), fuel cells (Sanchez et al., 2017; Heenan et al., 2020) 

and biological samples/ samples used for biological applications (Egan et al., 2013; Leemreize et 

al., 2013; Cedola et al., 2013; Gürsoy et al., 2015; Frølich & Birkedal, 2015; Wittig et al., 2019). 

Importantly, apart from the aforementioned static scans at ambient conditions, XRD-CT has been 

applied to study heterogeneous catalysts during preparation (Jacques et al., 2011), activation 

(Jacques et al., 2013; Senecal et al., 2017) and indeed under reaction conditions (O’Brien et al., 

2012; Price, Geraki et al., 2015; Vamvakeros, Jacques, Middelkoop et al., 2015; Sheppard et al., 

2017; Price et al., 2017; Beale et al., 2018; Matras et al., 2018; Vamvakeros et al., 2018; 

Middelkoop et al., 2019; Matras et al., 2019; Matras, Vamvakeros, Jacques, Grosjean et al., 2020; 

Matras, Vamvakeros, Jacques, Middelkoop et al., 2020; Vamvakeros, Matras, Jacques, di 

Michiel, Price et al., 2020; Vamvakeros, Matras, Jacques, di Michiel, Middelkoop et al., 2020). It 

has also been successfully applied to other operating functional materials and devices, such as 

electrodes used in Li-ion (Finegan et al., 2019; Liu et al., 2019; Finegan et al., 2020), Li-S (Tonin 

et al., 2020) and Na-ion (Sottmann et al., 2017) batteries as well as in proton exchange membrane 

(PEM) (Martens et al., 2019, 2020) and solid oxide fuel cells (SOFCs) (Li et al., 2019). 

 

In synchrotron XRD-CT, the sample is probed using a narrow focused monochromatic X-ray beam 

also known as a “pencil-beam”. There exist several different acquisition strategies, such as the 

bisection/interlaced (Anders P. Kaestner et al., 2011; Vamvakeros et al., 2016) and the 



 

 

continuous rotation-translation (Vamvakeros et al., 2018) methods, the simplest being a zigzag 

approach comprising a series of linescans each performed at a different tomographic angle. A 2D 

diffraction pattern is collected at each translation step (nT steps) at each tomographic angle (nA 

angles) in transmission geometry using an area detector. After the azimuthal integration of the 2D 

diffraction patterns, the data are reshaped to form a stack of sinograms with nT ⨯ nA ⨯ nB 

dimensions, where nB are the chosen number of bins for the 1d diffraction patterns.  

Reconstruction algorithms 

Conventional 

 

The data analysis performed in most studies is termed “reverse-analysis” (Bleuet et al., 2008) 

where each sinogram is independently reconstructed using conventional tomographic 

reconstruction algorithms. The process yields an image where each voxel corresponds to a local 

diffraction pattern (or a stack of nB images, with nT ⨯ nT dimensions, each corresponding to one 

bin in the 1d diffraction patterns). The analysis of these spatially-resolved diffraction patterns can 

vary from simple single peak sequential batch fitting to a one step full profile analysis, termed 

“Rietveld-CT” (Wragg et al., 2015). The latter approach is superior to the commonly used 

sequential approach as global parameters are shared between all local models (e.g. zero error, 

instrumental broadening); this stabilises the refinements. To clarify, each voxel in the 

reconstructed images consists of a local model (e.g. multi-phase scale factors, lattice parameters 

and crystallite sizes) refined against the respective local diffraction pattern. This means that only 

the global parameters are shared amongst the local models. Rietveld-CT has only been 

demonstrated on small images (i.e. 60 ⨯ 60 voxels); with larger images dependent on available 

computer memory). Regardless of the data analysis strategy, the final results are nP images 

containing local physico-chemical information (Figure 1), where nP is the number of refined 

parameters in the local models (e.g. maps corresponding to scale factors, lattice parameters and 

crystallite sizes). It should be noted that in all the aforementioned approaches, fitting is performed 

using the reconstructed diffraction patterns which are of inferior quality to the projected diffraction 

patterns present in the sinograms.  

Direct Least-Squares Reconstruction 

In contrast, the “Direct Least-Squares Reconstruction” (DLSR) algorithm combines the 

reconstruction and fitting steps into a single step, yielding nP physico-chemical images with nT ⨯ 

nT size (or a matrix with nT ⨯ nT ⨯ nP dimensions) directly from the sinograms (nT ⨯ nA ⨯ nB). 

To achieve this, an empty canvas is first created equal to the size of the translation steps in the 

sinograms (nT ⨯ nT). Each pixel is then associated with a local model and the reconstruction 

process is performed by solving the  A x = b system of equations. Local models that are linear 

can be solved with iterative reconstruction algorithms commonly used in computed tomography 

(Beister et al., 2012). These techniques can be used in the DLSR algorithm for certain chemical 

tomography techniques, where the analysis involves a linear combination of scattering pattern or 

spectra, such as the linear combination fitting approach used in X-ray absorption near edge 



 

 

structure CT (XANES-CT). In XRD-CT, the local models comprise a large nonlinear set of 

equations which are solved using DLSR. Although DLSR is clearly a computationally expensive 

reconstruction algorithm, it has the benefit of being inherently stable as many parameters are 

shared. The DLSR algorithm tries to solve a modified A x = b system of nonlinear equations using 

a nonlinear least-squares minimization approach, where: 

● A is a (nT × nA × nB, nT × nT × nB) dimension sparse coefficient matrix corresponding to 

ray tracing during the tomographic scan 

● x is a (nT × nT × nB, 1) dimension matrix containing the nT × nT nonlinear models. 

● b is a (nT × nA × nB, 1) dimension matrix which corresponds to the stack of sinograms. 

When the nT × nT models use an P degree polynomial (instead of the non-linear used to model 

peak shapes in diffraction patterns) to fit the nT × nA × nB intensities, then the system becomes 

linear. For P = 0 and nB = 1, the system reverts to the system of linear equations A x = b used in 

conventional tomography to reconstruct one image (nT × nT) from one sinogram (nT × nA) with 

A having (nT × nA, nT × nT) dimensions. 

 

Figure 1: Schematic representation of the conventional data analysis route used in XRD-CT (top-

row) and the DLSR approach (bottom row) which yields physico-chemical images in a single step. 

In order to reconstruct the XRD-CT data, we implemented the DLSR algorithm in the well-known 

TOPAS software; it was chosen because of its speed (written in C++), robustness and ability to 

handle large amounts of diffraction data (Coelho, 2018).  

Parallax Artefact 

The DLSR/TOPAS approach overcomes the well-known parallax artefact but it can also be 

applied to artefact-free XRD-CT data. Specifically, in scattering-based CT experiments, it is 



 

 

assumed the scattered/diffracted X-rays at any given scattering angle 2θ along the sample 

thickness arrive at the same detector element; this is illustrated in panel a of Figure 2. This 

assumption is valid when the sample thickness is relatively thin (typically in the order of a few 

mm). In thick samples, the assumption is not valid as diffracted X-rays at a particular 2θ angle 

arrive at a multitude of detector elements; this is due to varying distances between sample 

elements and the detector. The phenomenon is known as the parallax effect and has a tan(2θ) 

dependence (Harding et al., 1987; Beale, Jacques et al., 2014). The parallax effect is illustrated 

in Figure 2b. The artefact takes the form of a peak shift and peak broadening and even peak 

splitting (Scarlett et al., 2011). 

Recently Stock et al. suggested a simple approach to overcome the parallax artefact (Stock et 

al., 2019): 

1. A translation scan is performed at a tomographic angle phi 

2. The same translation scan is performed at a tomographic angle 180 ° + phi 

3. Full profile analysis of the acquired diffraction patterns in order to extract the lattice 

parameter values for the various structure models 

4. The mean value of the lattice parameter values for each position is calculated using the 

diffraction patterns from the two angles 

Unfortunately, this approach is only applicable to fairly homogeneous samples where a single unit 

cell is used to accurately model the acquired diffraction pattern per translation step. This problem 

will be illustrated in a later section using experimental data where it is shown that the 0-360° 

approach does not solve the parallax problem. We have previously pointed out that it can be 

dangerous to use a single structure model to fit diffraction patterns collected from heterogeneous 

samples (Vamvakeros et al., 2016). As an example, if a phase is present as small crystallites 

(generating broad peaks) in some sample regions and larger crystallites elsewhere (generating 

sharp diffraction peaks), then using a single structure model can lead to wrong values for both 

peak positions (lattice parameters) and peak shapes/FWHM (crystallite sizes). If the diffraction 

patterns are collected using a tomographic approach, then the local information can be retrieved 

using the “reverse analysis” approach or the DLSR approach. In the latter, nM structure models 

are used to fit the acquired diffraction patterns (where nM is derived from ray tracing) overcoming 

the aforementioned problem.  

 



 

 

 

Figure 2: a) Schematic representation of an XRD pattern collected in transmission geometry with 

an area detector when there is no parallax artefact. The scattered X-rays at a given 2θ angle 

along the sample arrive at the same detector element. b) Illustration of a diffraction measurement 

in transmission geometry with parallax artefact. The X-rays scattered/diffracted along the sample 

at a certain 2θ angle arrive at different detector elements leading to peak broadening and even 

peak splitting. 

 

To clarify, in this work we are looking at the parallax artefact from the sample’s view point and it 

should not be confused with detector parallax artefact. The latter is associated with X-ray photons 

traversing multiple detector pixels at high 2θ angles for detectors with thick sensors. Detector 

parallax also results in peak position and peak shape artefacts; the former can be corrected using 

a simple quadratic polynomial as demonstrated by Marlton et al. (Marlton et al., 2019). 

In this work, we show that the DLSR approach accurately reconstructs physico-chemical images 

from XRD-CT data containing parallax artefact. First, we demonstrate the DLSR approach  using 

simulated artefact-free XRD-CT data and simulated XRD-CT data containing parallax artefact. 

Then we apply it to experimental XRD-CT data collected from a large phantom sample designed 

specifically for a parallax XRD-CT measurement. 

Methods & Materials 
 

The powder samples measured in this work were SiC (nanopowder, <100 nm particle size, 

594911-100G, Sigma-Aldrich), TiO2 Rutile (204757-25G, Sigma-Aldrich) and MgO (307742-

500G, Sigma-Aldrich). The three powder samples were mounted into separate glass pipettes with 



 

 

an outer diameter of ca. 7.5 mm supported by quartz wool from both ends. Two pipettes were 

prepared using the same MgO powder sample. The four glass pipettes containing the powder 

samples were mounted onto a 3D printed sample holder designed for the parallax experiment. 

Photographs of the experimental setup are provided in Figure S1. 

 

XRD-CT measurements were performed at beamline station P07 (EH2) at PETRA III, DESY, 

using a 103.5 keV (λ = 0.11979 Å) monochromatic X-ray beam focused to a spot size of 20 × 3 μm 

(H × V). 2D powder diffraction patterns were collected using a Pilatus3 X CdTe 2 M hybrid photon 

counting area detector. The 3D printed sample holder was mounted directly on the rotation stage. 

The rotation stage was mounted perpendicularly to a hexapod; the hexapod was used to translate 

the sample across the beam. The XRD-CT scans were measured by performing a series of zigzag 

line scans in the z (vertical) direction using the hexapod and rotation steps. Two XRD-CT scans 

were performed, in both cases the number of translation steps were 300 with a 80 μm step size 

and a 10 ms exposure time per point. The first XRD-CT scan was performed over a 0-180° range 

while the second over a  0-360° range, both using 300 angular steps. The detector calibration 

was performed using a CeO2 standard. Every 2D diffraction image was calibrated and azimuthally 

integrated to a 1D powder diffraction pattern with a 10 % trimmed mean filter using the pyFAI 

software package and in-house developed scripts (Vamvakeros, Jacques, Di Michiel et al., 2015). 

The integrated diffraction patterns were reshaped into sinograms and centered; the air scatter 

signal was subtracted from the data. Due to computational constraints, the data were rebinned to 

form a stack of sinograms with a size of 121 × 121 voxels. For the conventional data analysis 

approach, the final XRD-CT images (i.e. reconstructed data volume) were reconstructed using 

the filtered back projection algorithm. 

 

Rietveld analysis was performed on the reconstructed diffraction patterns with the TOPAS 

software on a voxel by voxel basis. The results from the refinements were imported into MATLAB 

in order to create the various figures presented (i.e. phase distribution maps based on the scale 

factors, lattice parameters and crystallite sizes). Rietveld analysis was first performed using the 

summed diffraction pattern of each XRD-CT dataset (i.e. to provide a good starting model) before 

running the voxel-by-voxel Rietveld analysis to provide the spatially-resolved physico-chemical 

information. A 3XS Data Science Workstation C264X2 with 2x Intel Xeon Silver 4216 and 512 GB 

RAM was used to perform the refinements. 

Results & Discussion 
 

Simulated XRD-CT data without parallax 

 

The TOPAS implementation of the DLSR algorithm was first tested using simulated XRD-CT data. 

Instead of using synthetic images such as the Shepp-Logan phantom, a far more realistic and 

challenging image was used for the simulation tests. This image was derived from the Rietveld 

analysis of previously collected XRD-CT from a Mn-Na-W/SiO2 catalyst, specifically the scale 

factor map of the cristobalite phase which is the catalyst support material which accurately 

describes the catalyst particles (Vamvakeros, Matras, Jacques, di Michiel, Price et al., 2020). For 



 

 

simplicity, a cubic Ni fcc structure (ICSD: 64989 (1953)) was used in the proof-of-concept DLSR 

simulation tests. However, as it will be shown in the experimental data section, there is no 

symmetry or single-phase limitation to the DLSR approach as it can be used for multiphase 

systems. 

 

First, image segmentation was performed using the intensity image to isolate the 36 catalyst 

particles. Each particle was then labelled and a single diffraction pattern assigned. Specifically, 

36 Ni diffraction patterns were simulated using TOPAS by assigning a random value for lattice 

parameter and crystallite size (i.e. in the range of 3.525 - 3.575 Å and 2 - 25 nm respectively) 

using the fundamental parameters (FP) peak shape and the same X-ray energy and Q range as 

in the experimental XRD-CT data presented at a later section in this work. The segmented (binary) 

image was used to create a 3D volume by assigning a Ni diffraction pattern to all pixels describing 

the corresponding particle. This 3D volume was then multiplied by the intensity map leading to 

the simulated Ni XRD-CT dataset. This XRD-CT dataset was then forward projected using the 

AIR tools II (Hansen & Jørgensen, 2018) in MATLAB to create the stack of sinograms using 121 

angles covering a 0-180° angular range (121 × 121 × 2048). These sinograms were used for the 

simulation tests. 

 

The results obtained from the Rietveld analysis of the simulated Ni XRD-CT data using the 

conventional and DLSR approaches are presented in Figure 3. For the conventional approach, 

each sinogram was reconstructed using the filtered back projection (FBP) algorithm and then 

sequential full profile analysis was performed using TOPAS guided by in-house developed 

MATLAB scripts. For the TOPAS implementation of the DLSR approach, a single input file was 

created containing all XRD patterns present in the sinograms (121 × 121 xdds in TOPAS) and 

assigning nT × nT (121 × 121) Ni structure models per pattern (i.e. per xdd). The nT × nT structure 

models correspond to the number of pixels (size) of the reconstructed XRD-CT images. Each Ni 

structure associated with each (projection) pattern was multiplied by a scalar which was 

calculated by the ray tracing using the AIR tools II package (A matrix). To clarify, these nT × nT 

structure models were constrained to be the same for each of the nT × nA diffraction patterns 

present in the sinogram volume (the same nT x nT structures are used in every nT x nA xdd using 

peak_buffer_similar_tag accordingly to speed up the code). The Ni parameters refined were the 

scale factor, lattice parameter and crystallite size. This input file was then executed by TOPAS 

which solved the nT × nA (121 × 121) system of nonlinear equations. Unfortunately, as expected, 

this approach is computationally expensive and requires many 10s to 100s of GBs of RAM 

depending on image size and number of diffraction patterns (see also section S3). However, these 

requirements can be significantly decreased by masking the non-sample voxels (i.e. void) without 

a decrease in quality of the reconstructed images (see sections S3-4). For this reason, this 

approach was used for all DLSR results presented in this work. The impact of the number of 

projections and number of peaks in the diffraction patterns were also investigated (sections S5-

6). For the simulated Ni XRD-CT data, a single diffraction peak was used to reconstruct the 

images (additional reflections are unnecessary due to the high symmetry cubic unit cell). 



 

 

 

Figure 3: Parallax-free XRD-CT simulations. Top row: The ground truth images from the simulated 

Ni XRD-CT data, Middle row: Results obtained from the sequential Rietveld analysis of the 

reconstructed XRD-CT data, Bottom row: Images derived from the Rietveld reconstruction of the 

XRD-CT data using the DLSR approach.  

As shown in Figure 3, the DLSR approach is able to reconstruct correctly the Ni phase distribution 

map (i.e. absolute values for the Ni scale factor), the Ni lattice parameter and Ni crystallite size 

maps. However, it should be noted that there is no real advantage with DLSR over the 

conventional approach in the absence of parallax artefact. As shown in section S3, the DLSR 

approach is computationally expensive and requires significantly more time than the conventional 

approach. Nevertheless, the results presented in Figure 3 serve as a proof of concept; the method 

works and converges to the correct values for the various parameters (DLSR Rwp =  0.59 % after 

23 iterations in 13.1 min using 25 GB of RAM). 

 

Simulated XRD-CT data with parallax 

The DLSR approach however was designed to treat XRD-CT data containing parallax artefact 

and to reconstruct parallax artefact-free physicochemical images. To achieve this, we first 

simulated XRD-CT sinogram data containing parallax artefact. This is important as having a 

parallax forward projector allows for a wide range of minimisation techniques and not just limited 



 

 

to least squares. Assuming that the sample is at tomographic angle 0° and illuminated with a 

pencil beam, then assuming nT voxels along the sample thickness allows us to model the parallax 

phenomenon by assigning nT 2θ axes (i.e. a vector containing nT 2θ axis). The 2θ axis assigned 

at each voxel is related to the ideal 2θ axis with the following relationship (Scarlett et al., 2011): 

sin(tth_new) = - u(y) * sin(tth_middle) / Rs,  

where tth_new is the new 2θ axis, u is the offset from the sample voxel at the middle of the sample, 

tth_middle is the 2θ axis corresponding to the known sample-to-detector distance from the 

detector calibration and Rs is the sample-to-detector distance. 

However, in contrast to laboratory arc diffractometers, Rs is not constant in area detectors and is 

instead a function of 2θ. This can be easily modelled with high accuracy (i.e. error of several 

orders of magnitude smaller than the experimental 2θ axis step size) using a 4th degree 

polynomial. One can then construct a 2D grid where each pixel corresponds to a single 2θ axis. 

The real space XRD-CT data are passed in this 2θ grid performing a 3D interpolation and the 

Radon transform of the interpolated XRD-CT volume is calculated. The process is repeated for 

nA tomographic angles by rotating the 2θ grid accordingly. In TOPAS this was modelled by 

assigning a unique th2_offset to each structure model in the real space images according to the 

following equation (Rowles & Buckley, 2017): 

th2_offset = -57.295779 * u * Sin(2*Th) / (a * Xo^4 + b * Xo^3 + c * Xo^2 + d * Xo + e); 

Where u is the distance of the specific voxel from the middle of the sample in μm, Th and Xo are 

the known 2θ axis corresponding to the known sample-to-detector distance from the detector 

calibration in rad and degrees respectively and a, b, c, d, and e are the calculated coefficients 

from the 4th degree polynomial. 

For the Ni XRD-CT parallax simulation test, the sample-to-detector distance was considered to 

be 1000 mm and the sample size equal to 24.2 mm (121 voxels × 0.2 mm step size); this is 

identical to the parameters used for the experimental XRD-CT data presented in the next section. 

The results from the Rietveld analysis of the Ni simulated XRD-CT data containing parallax 

artefact are presented in Figure 4. The conventional approach yields accurate results regarding 

the Ni phase distribution; however, this doesn’t mean that all results are accurate, as the Ni lattice 

parameter and crystallite size maps clearly contain artefacts and the distribution of the respective 

values are wrong (FBP + Rietveld Rwp = 18.4 %). On the other hand, the DLSR approach yields 

the same result as before (Figure 3), retaining the correct physico-chemical information (DLSR 

Rwp =  0.51 % after 25 iterations in 16.4 min). 



 

 

 

Figure 4: Parallax XRD-CT simulations. Top row: The ground truth images from the simulated Ni 

XRD-CT data, Middle row: Results obtained from the sequential Rietveld analysis of the 

reconstructed XRD-CT data containing parallax artefact, Bottom row: Images derived from the 

Rietveld reconstruction of the XRD-CT data containing parallax artefact using the DLSR 

approach. 

Experimental XRD-CT data 

The summed XRD-CT image of the phantom sample is presented in Figure 5a showing the cross 

section of the four glass pipettes containing the powder samples. Phase identification (Figure 

S13) verified the presence of TiO2 rutile (ICSD: 33837 (Kazumasa Sugiyama & Yoshio Takéuchi, 

1991)), MgO (ICSD: 9863(SASAKI et al., 1979)) and SiC (ICSD: 603798 (Li & Bradt, 1986)). 

Figure 5b shows a magnified region of the XRD-CT summed diffraction pattern. It can be seen 

that the MgO peak is split which is a result of the parallax artefact. As previously discussed, this 

phase cannot be modeled using a single MgO structure regardless of the tomographic scan range 

(0-180° or 0-360°). As illustrated in Figure 5b, one has to use at least two copies of the same 

structure to model the MgO diffraction pattern. For the conventional approach using the FBP 

reconstruction algorithm and the sequential Rietveld analysis, two MgO structure models were 



 

 

used to model the MgO diffraction peaks in an attempt to overcome the parallax artefact. The 

peak splitting of the MgO phase and the position of the TiO2 and SiC phases during the 0-360° 

scan is shown in section S8. It should be emphasized that the DLSR approach takes into account 

the parallax artefact and therefore only one MgO structure model is needed. Before proceeding 

with the diffraction analysis and to simplify the refined model, the signal generated from the glass 

pipettes was subtracted from the sinogram XRD-CT data (see section S9). 

 

Figure 5: Left: Normalised summed XRD-CT image showing the four samples (TiO2, SiC and 2× 

MgO) in their sample holders. Right: Magnified region of the XRD-CT summed diffraction pattern 

showing the splitting of a MgO diffraction peak. 

The 0-360° XRD-CT scan was used to extract projected diffraction patterns (i.e. from the sinogram 

XRD-CT data) collected at tomographic angles where the samples were at an orientation which 

minimised the parallax artefact. Specifically, the diffraction patterns were exported from the XRD-

CT sinogram data which originated from the edge of the glass pipettes. This results in diffraction 

patterns that represent well the MgO, TiO2 and SiC samples as the peak position and broadening 

artefacts caused by the parallax phenomenon are minimised (i.e. due to correct sample-to-

detector distance and minimum sample cross section respectively). The initial peak shape profile 

was calculated using a CeO2calibrant (ICSD 72155; Wołcyrz & Kepinski, 1992) and then further 

refined by performing a full-profile analysis of the aforementioned pattern from the phantom 

sample (see Section S10). The peak shape parameters were shared for the four phases while 

the individual crystallite size was refined. This led to excellent peak fit results (Figures S17-18) 

which was then used for both the conventional reconstruction and DLSR approaches. The full 

profile analysis results are summarized in Table S5 and serve as a means to assess the validity 

of the corresponding results obtained with the conventional and DLSR approaches. 

 

As discussed previously, the TOPAS implementation of the DLSR approach can handle multi-

phase systems with varying crystallographic properties as is the case with the three powder 

samples used in this work. To optimize the reconstruction process, a mask was applied to 

decrease the total number of refined parameters and each voxel was assigned a scale factor 



 

 

(TiO2, MgO and SiC), lattice parameters (a and c for TiO2, a for MgO and a for SiC), crystallite 

size (TiO2, MgO and SiC) and four global pseudo-Voigt peak shape parameters (GU, GV, GW 

and LX) which on refinement changed insignificantly from the starting model (i.e. less than 1% 

change). The background in the diffraction patterns was fairly flat after the subtraction of the glass 

signal; a 2nd degree Chebyshev polynomial was enough to model it. In contrast to the single peak 

fitting analysis of the Ni simulated XRD-CT, a full diffraction profile analysis was performed 

requiring computational resources of ca. 95 GB RAM (Rwp = 9.47 % in ca. 150 min for the 0-180° 

scan and Rwp = 8.65 % in 296 min for the 0-360° scan). The results from the Rietveld analysis of 

the XRD-CT data are summarized in Table S6. 

The TiO2 rutile phase analysis from the 0-180° and 0-360° scans using both the conventional (i.e. 

XRD-CT images reconstructed using the FBP algorithm followed by sequential Rietveld analysis) 

and DLSR approaches are presented in Figure 6. It can be seen that the scale factor maps 

obtained with the DLSR approach are noisier than the conventional approach for both the 0-180° 

and 0-360° scans. This is to be expected and is in agreement with the simulation analysis 

presented previously in Figures 3 and 4. From our experience, the scale factor maps obtained 

with the conventional approach invariably describe accurate phase distributions. Taking this into 

account, we have developed TOPAS DLSR scripts where phase dependent scale factor maps, 

obtained from the conventional approach, are a function of a single refined global parameter. This 

has the advantage of stabilising the Rietveld refinements. 

It can also be seen that for the 0-180° XRD-CT scan, the conventional approach leads to 

overestimated values for both TiO2 lattice parameters a and c (mean value of 4.612 and 2.957 Å 

respectively). For the 0-360° XRD-CT scan, the conventional approach leads to results very close 

to the ones obtained with the DLSR method (mean value of 4.593 and 2.956 Å for TiO2 lattice 

parameters a and c respectively). However, this results in larger crystallite size errors for the TiO2 

phase (mean value of 26 nm compared to 53 nm); the 0-360° XRD-CT scan with the conventional 

approach leads to smaller values (i.e. broader peaks). In contrast, the DLSR approach yields 

correct peak positions (mean value of 4.593 and 2.956 Å for TiO2 lattice parameters a and c 

respectively) and sharp peaks (mean value of 116 and 134 nm for TiO2 crystallite sizes for the 0-

180° and the 0-360° XRD-CT scans respectively). It should be noted that the scale factor maps 

obtained with the DLSR approach are less noisy for the 0-180° than the 0-360° XRD-CT scan; 

both scans comprise the same number of angles and this should be taken into account when 

designing future XRD-CT experiments with large samples. 

 



 

 

 

Figure 6: Top row: TiO2 normalised scale factor (SF) maps, Second row: TiO2 lattice parameter a 

(LPA) maps (colorbar axis in Å), Third row: TiO2 lattice parameter c (LPC) maps (colorbar axis in 

Å), Bottom row: TiO2 crystallite (CLS) maps (colorbar axis in nm). 

The results regarding the MgO phase are presented in Figure 7; for the conventional analysis, 

two MgO cells were used to model the parallax induced peak splitting. FBP reconstructed XRD-

CT images, using a single MgO phase, even in the absence of peak splitting, often yield 

meaningless results. The results from the conventional approach presented in Figure 7 

correspond to the mean value obtained using the two MgO structure models (i.e. mean value for 

scale factor, lattice parameter and crystallite size). Regardless of this correction, it can be seen 

that the MgO lattice parameter maps contain artefacts for both the 0-180° and 0-360° XRD-CT 

scans (i.e. non-uniform lattice parameter maps). In contrast, the DLSR approach, requiring a 

single MgO structure model, leads to uniform maps for the MgO lattice parameter (mean value of 

4.212 Å) and crystallite size (mean value of 157 nm and 205 nm for the 0-180° and the 0-360° 

XRD-CT scans respectively) for both powder samples. Similar to the TiO2 phase, the values 

obtained for the MgO crystallite size is significantly different for the two approaches; 

demonstrating the artificial broadening caused by the parallax artefact. 



 

 

 

Figure 7: Top two rows: MgO normalised scale factor (SF) maps, Middle two rows: MgO lattice 

parameter a (LPA) maps (colorbar axis in Å),  Bottom two rows: MgO crystallite (CLS) maps 

(colorbar axis in nm). 

Finally, the results regarding the SiC phase are presented in Figure 8. Here, it is seen that for the 

0-180° XRD-CT scan, in contrast to the TiO2 results, the conventional approach leads to 

underestimated values for the SiC lattice parameter (mean value of 4.344 Å). The error for the 

crystallite size values is lower; this can be attributed to the broader peaks compared to the TiO2 

and MgO phases. It should be noted that the conventional approach for the 0-360° XRD-CT scan 

leads to higher errors and lower values for the crystallite size (mean value of 27 nm and 18 nm 

for the 0-180° and the 0-360° XRD-CT scans respectively). In contrast, the DLSR approach yields 

correct and uniform results for the SiC lattice parameter (mean value of 4.358 Å for both 0-180° 

and 0-360° scans) and crystallite size (mean value of ca. 40 nm for both scans) regardless of the 

angular range covered during the tomographic scan. 

 



 

 

 

Figure 8: Top row: SiC normalised scale factor (SF) maps, Middle row: SiC lattice parameter a 

(LPA) maps (colorbar axis in Å), Bottom row: SiC crystallite (CLS) maps (colorbar axis in nm). 

Summary & Conclusions 
 

We have developed a new tomographic reconstruction algorithm which solves the parallax 

artefact problem in XRD-CT. The solution is of consequence for large samples where X-rays, 

scattered along the sample, arrive at a multitude of detector elements. This phenomenon leads 

to loss of physico-chemical information (i.e. information regarding peak position and shape) that 

cannot be retrieved with conventional reconstruction approaches. We have demonstrated that our 

approach works with both simulated and experimental XRD-CT data. It is expected that it will 

open a new path for X-ray scattering-based CT techniques and their application to samples that 

are several cm in diameter. Overcoming the parallax barrier is especially important for functional 

materials and devices, such as catalytic reactors, batteries and fuel cells where the chemistry in 

idealised cells can vary significantly from their industrial-size counterparts (e.g. different 

degradation mechanisms taking place at different length scales). 

 

Our approach is not limited to XRD-CT and can be applied to all chemical tomography techniques. 

For example, the DLSR method can prove invaluable to the future implementation of neutron 

powder diffraction computed tomography of very large samples. However, the drawback of the 

developed approach is that it is computationally expensive. There are options one can explore to 

speed up the reconstruction process, like using binary files which can increase the reading time 

(expected 4x fold increase in speed) or use faster CPUs. Regarding the memory requirements, 

one can perform an iterative reconstruction when one ray or one projection is being processed at 

a time rather than all diffraction patterns present in the XRD-CT sinogram data. This will however 



 

 

increase significantly the time to converge to a useful solution. The stability of the reconstruction 

can also be significantly improved by using the FBP solution for the scale factors and refining 

other properties such as lattice parameters and crystallite sizes. Finally, it should be pointed out 

that future implementations of the current solution could go beyond least-squares minimisation 

such as machine learning approaches which could overcome the current limitations of the DLSR 

method. 
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