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Testing dissipative collapse models with a levitated micromagnet
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We present experimental tests of dissipative extensions of spontaneous wave function collapse models based
on a levitated micromagnet with ultralow dissipation. The spherical micromagnet, with a radius R = 27 μm,
is levitated by the Meissner effect in a lead trap at 4.2 K and its motion is detected by a superconducting
quantum interference device. We perform accurate ringdown measurements on the vertical translational mode
with frequency 57 Hz and infer the residual damping at vanishing pressure γ /2π < 9 μHz. From this upper
limit we derive improved bounds on the dissipative versions of the continuous spontaneous localization (CSL)
and the Diósi-Penrose (DP) models with proper choices of the reference mass. In particular, dissipative models
give rise to an intrinsic damping of an isolated system with the effect parametrized by a temperature constant; the
dissipative CSL model with temperatures below 1 nK is ruled out, while the dissipative DP model is excluded for
temperatures below 10−13 K. Furthermore, we present the bounds on dissipative effects in a more recent model,
which relates the wave function collapse to fluctuations of a generalized complex-valued space-time metric.
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I. INTRODUCTION

Spontaneous wave function collapse models [1–6] are a
well-established approach in the context of quantum founda-
tions. The key idea is that the unitary evolution of standard
quantum mechanics must be modified by additional phe-
nomenological terms in order to explain the emergence of
definite and stochastic outcomes in measurement processes.
These additional terms must be nonlinear and stochastic,
leading to a fundamental breaking of the quantum super-
position principle. Concisely, collapse models postulate the
existence of some kind of classical noise field, the nature of
which is either unknown [1,2] or related to a cosmological
or the gravitational field [3,4]. It has also been suggested
that collapse models could be related to the long-standing
problem of the incompatibility between quantum mechan-
ics and general relativity [7]. In this latter respect, other
related phenomenological models have been investigated
recently [8–11].

Collapse models are usually parametrized by only a few
free parameters: a collapse rate, which sets the strength of the
collapse mechanism, and a localization length, which quan-
tifies the localization precision. The parameters of the model
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can be considered as independent, as in the continuous spon-
taneous localization (CSL) model [2], or fixed by theoretical
considerations, e.g., the collapse rate in the Diósi-Penrose
(DP) model, which is set by gravity.

A well-known issue of collapse models is the energy
divergence problem: The collapse noise feeds continuously
energy into any material system, implying an unbounded
rate of increase of energy in the universe [1]. This problem
is solved by dissipative extensions of collapse models, in
which the noise is associated with a dissipative mechanism
and can thus be thought of as a thermal bath interacting
with ordinary matter [12,13]. In this framework, the en-
ergy can flow in both directions and will not diverge with
time anymore. Dissipative models imply the existence of
a fundamental and universal damping mechanism which in
principle can be probed by mechanical systems with very low
dissipation [14].

In this paper we perform experimental tests of the dis-
sipative versions of the CSL model [12,15] and the DP
model [13,14], also known as the dCSL and dDP models. Our
experiment is based on a magnetically levitated microsphere
with ultralow damping. In particular, our data exclude a dif-
ferent portion of the parameter space compared to previous
experiments [14] substantially excluding collapse tempera-
tures lower than 10−9 K for the dCSL model and 10−13K for
the dDP model, with proper choices of the reference mass.
In addition, we test a more recent model, first proposed by
Adler [8,16], which assumes the collapse noise to arise from
complex fluctuations of the gravitational field or equivalently
of the space-time metric. We refer to this as the complex grav-
ity fluctuation (CGF) model. We show that our data allow us
to probe complex fluctuations of the metric with an imaginary
part down to 10−22.
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II. THEORY

A. The dCSL model

The CSL model, the most studied among collapse models,
is constructed in such a way as to produce a spatial local-
ization of the wave function, i.e., a collapse in position. The
localization rate scales with the mass of the system, imply-
ing a rapid collapse of the center-of-mass position of any
macroscopic system, while giving no measurable effect at the
microscopic level, where conventional quantum mechanics is
recovered. The standard CSL model has two free parameters:
the collapse rate conventionally referred to a single nucleon
λ and a characteristic length rc. Many different experimental
techniques have recently been proposed or implemented to
test the CSL model. While true interferometric tests have
recently achieved impressive sensitivity [17,18], even more
stringent bounds on the CSL collapse rate λ have been estab-
lished by noninterferometric experiments looking at noise and
diffusion in mechanical systems [19–24] or cold atoms [25]
or in spontaneous generation of x-ray photons [26] or high-
frequency phonons [27].

The dCSL model has been explicitly introduced to remove
the energy divergence of the standard CSL model [12]. For-
mally, in dCSL the collapse happens both in position and in
momentum [12]. The evolution of the density matrix of the
center of mass of a rigid body along a fixed direction x is
described, in the limit of small x and p, by the Lindblad-type
master equation [15]

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] − η

2
[x̂, [x̂, ρ̂]] − γ 2

c

8ηh̄2 [p̂, [ p̂, ρ̂]]

− iγc

2h̄
[x̂, { p̂, ρ̂}], (1)

where Ĥ is the standard Hamiltonian, the second and third
terms on the right-hand side describe the position and mo-
mentum decoherence/diffusion due to the dCSL effect, and
the fourth term accounts for dCSL energy dissipation. Un-
der the assumption rc � a,1 with a the interatomic distance,
the diffusion parameter η can be expressed as a function of the
free parameters of the model and the mass distribution of the
rigid body [14,15]

η = (4π )3/2λr3
c

h̄2m2
0(2π h̄)3

∫
dq|�̃(q)|2e−q2r2

c (1+χ )2/h̄3

q2
x , (2)

with m0 the nucleon mass, q = (qx, qy, qz ) the momentum,
�(r) the mass density in the coordinate space, and

�̃(q) =
∫

dr eiq·r/h̄�(r) (3)

its Fourier transform.
The free parameters of the model are the collapse rate λ,

the characteristic length rc, and the dimensionless dissipation

1This assumption is usually valid in the CSL model, because too
small rc would lead to appreciable effects in microscopic systems.
However, for the sake of completeness, we report in the Appendix
the derivation of the parameter η for the case rc � a.

parameter χ . The latter can be rewritten in terms of a param-
eter Tc in the following way [14]:

χ = h̄2

8mar2
c kBTc

. (4)

Here Tc can be interpreted as the temperature of the collapse
field [12]. The energy dissipation rate of the center-of-mass
dynamics can be written as [12,15]

γc = 4ηr2
c χ (1 + χ )

ma

m
, (5)

where m is the total mass and ma is a reference mass for
the elementary entity which constitutes the physical object.
Following Refs. [14,25], we choose ma to be the nuclear
mass. We underline that the reference mass ma for the dCSL
model does not necessarily coincide with the nucleon mass
m0, which is the usual convention for the standard CSL model.
For the latter case, choosing a different value for m0 only
amounts to a redefinition of the collapse rate without affecting
the predictions of the model for, say, a crystal of a mass m.
More physically relevant however is the nuclear mass, which
can be taken as the physical unit reference for the crystal
structure. The nondissipative CSL model takes implicitly into
account the nuclear mass through the amplification mecha-
nism which rescales the reference mass m0 to the nuclear
mass for rc > 1 fm. For the dissipative model the second
reference mass is more physically relevant because it is related
to the temperature Tc through Eq. (4). By setting ma equal
to the nuclear mass, as done in Refs. [14,25], we implicitly
assume that the internal dynamics of the nuclei is irrelevant
for the dissipative features of the dCSL model, similarly as
for the nondissipative features. This assumption is ultimately
justified by the fact that rc is much larger than the nuclear size.

As one may notice, the standard CSL is recovered when
χ = 0, which according to Eq. (4) corresponds to a CSL field
with infinite temperature. Technically, this implies an energy
divergence, as the CSL noise will continuously transfer energy
to the system, causing an unbounded momentum diffusion.
This unpleasant consequence is removed in the dissipative
version. Indeed, an isolated system will eventually thermalize
to Tc [12], meaning that for temperatures higher than Tc the
dCSL noise will effectively act as a refrigerator. The pro-
ponents of the dCSL model further propose that reasonable
values for Tc should be around 1 K, by analogy to other
known cosmological fields such as cosmic microwave photons
or cosmic neutrinos [12]. Concerning the other parameters,
two main proposals are known in the literature for the CSL
model: the initial guess by Ghirardi et al., who proposed
λ ≈ 10−16 Hz at rc = 10−7 m [1], and the one by Adler, who
proposed a much higher value λ ≈ 10−8±2 Hz at rc = 10−7 m,
motivated by making the collapse effective at the mesoscopic
scale [28].

For the case relevant to our work, namely, a homogeneous
sphere of radius R and density �, the Fourier transform of the
mass density is

�̃(q) = 3mh̄

qR
J1

(qR

h̄

)
, (6)
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where Ji represents the ith spherical Bessel function. The
integral in Eq. (2) can be analytically solved [14], providing
the diffusion constant and dissipation rate

η = 3λm2r2
c

(1 + χ )m2
0R4

K

[
R

rc(1 + χ )

]
, (7)

γc = 3λh̄2mmar2
c

2kBTcm2
0R4

K

[
R

rc(1 + χ )

]
, (8)

where we have defined, for convenience,

K (y) = 1 − 2

y2
+ e−y2

(
1 + 2

y2

)
. (9)

The function K (y) can be approximated by 1 and y4/6 for
large and small y, respectively. This determines the behavior
of η and γc as a function of rc. In the limit of small dissipation
χ � 1 both functions are proportional to r2

c if rc � R and
to r−2

c if rc � R, with a shallow maximum at rc ≈ R. This
picture breaks down for very low Tc, such that χ > 1. In
this limit both diffusion and dissipation feature a stronger
dependence on rc for small rc, corresponding to η ∝ r8

c and
γc ∝ r6

c , respectively.

B. The dDP model

The fact that the collapse effect scales with the mass
of the system suggests a natural connection to gravity. The
Diósi-Penrose model [3,4] is an attempt to provide this link.
Although proposed by Diósi [3], the model is known in the
literature as DP because it captures some features of a related
proposal by Penrose [4]. The master equation of the DP model
is almost identical to the one of CSL, only differing from the
latter in the localization operator. However, in the DP model
the collapse strength is set proportional to the gravitational
constant G rather than depending on a free parameter. As
such, the standard DP model features only one free parameter,
a regularization length R0 [9]. Proposed values for R0 range
from 10−15 m [3] to 10−7 m [29].

A dissipative extension of the DP model (the so-
called dDP model) can be developed in a similar way
as the dCSL [13,14]. One defines a dissipation parameter
χDP, which can be rewritten in terms of a collapse field
temperature TDP:

χDP = h̄2

8maR2
0kBTDP

. (10)

In the limit of uniform mass density in which the character-
istic length R′

0 = R0(1 + χDP ) is larger than the interatomic
distance a, the expression for the diffusion constant for a
homogeneous sphere was calculated in [14] as

ηDP = Gm2

√
πR3

I

(
R

R′
0

)
, (11)

where we have defined, for convenience,

I (y) = √
πerf (y) + 1

y
(e−y2 − 3) + 2

y3
(1 − e−y2

). (12)

The dissipation rate γDP is then calculated as

γDP = 4ηR2
0χDP(1 + χDP)

ma

m
. (13)

The function I (y) can be approximated by y3/6 for y � 1
and tends to

√
π for y � 1. Therefore, the collapse/diffusion

parameter ηDP scales with m2 for R < R′
0 and with m for

R > R′
0. This behavior is typical of collapse models and can

be interpreted as a coherent amplification of the collapse rate
within a sphere of radius R′

0 [30].
In the opposite limit, i.e., when R′

0 � a, the assumption
of homogeneity is no longer valid and we need to consider
the granularity of the matter distribution. In this regime the
diffusion parameter ηDP can be calculated by means of a
lattice model and the following expression obtained:

ηDP = G

6h̄
√

π (1 + χDP)3R3
0

mam. (14)

The attentive reader can find detailed calculations in the
Appendix. We note that, in contrast with the CSL model, the
granular limit for the DP model is often suggested because
it allows one to enhance the collapse rate, making it closer
to experimental testability [9]. A regularization length R0 as
small as the nuclear size has been proposed in the literature;
indeed, the DP model is nonrelativistic and the nucleon scale
is a natural limit for the nonrelativistic regime [9].

We note that in the dDP model there are only two free
parameters, the regularization length R0 and the collapse field
temperature TDP. Similarly as in dCSL, a system will eventu-
ally thermalize to the temperature TDP, while for the standard
DP model there is no dissipation, leading to an energy
divergence.

C. The CGF model

The CGF model is based on assuming the existence of
complex fluctuations of the gravitational field or equivalently
of the space-time metric. The idea, first proposed by Adler [8]
and further developed in Refs. [9,16], can be summarized as
follows.

A gravitational field hμν couples to the stress energy tensor
Tμν of the system. In a linearized fully quantum theory [31]
this implies the existence of a coupling term Hint = 1

2 hμνT μν

in the Hamiltonian, which in the nonrelativistic regime can
be simplified as Hint = 1

2 h00mc2. This ultimately leads to a
master equation of decoherence type such as Eq. (1). How-
ever, if one assumes that the metric remains classical but
involves rapidly fluctuating complex terms, the resulting clas-
sical noise field would feature an anti-Hermitian coupling
to matter [9,16], which is the basic ingredient required to
produce the collapse/localization of the wave function, as
opposed to quantum decoherence. While in general relativity
the metric is rigorously real valued, complex effective metrics
have been actually proposed in some modified gravity theories
with chiral deformations [32].

The noise-matter coupling in the case of classical complex
noise will also lead to the appearance of nonlinear terms in
the master equation. The derivation of the appropriate master
equation for the center of mass of the mechanical oscillator is

043229-3



A. VINANTE et al. PHYSICAL REVIEW RESEARCH 2, 043229 (2020)

reported in Ref. [16]. Here we rewrite Eq. (D5) in Ref. [16] as

∂t ρ̂ = i

h̄
[Ĥ0, ρ̂] − ηCGF[x̂, [x̂, ρ̂]] + γ R

CGF

2h̄
[x̂, [ p̂, ρ̂]]

− i
γ I

CGF

2h̄
[x̂, { p̂, ρ̂}], (15)

with Ĥ0 the Hamiltonian characterizing the harmonic oscilla-
tor free dynamics and

ηCGF = c4ξ 2

6π2h̄7

∫ ∞

0
dq

∫
dτ DR(q, τ )�̃(q)2q4, (16)

γ I/R
CGF = c4ξ 2

3π2h̄6m

∫ ∞

0
dq

∫
dτ τDI/R(q, τ )�̃(q)2q4, (17)

where DI/R(q, τ ) are the real and imaginary parts of the
normalized correlator of the complex metrics fluctuations,
expressed as a function of time τ and momentum q, and ξ is
the dimensionless magnitude of the correlator. The dissipative
term, with energy dissipation rate γ I

CGF, depends only on the
imaginary part of the correlator, while the real part leads to
diffusion. To proceed we assume that the imaginary part of
the correlator can be written as DI(q, τ ) = f (τ )d (q), with

f (τ ) = e−λτ , d (q) = r3
c e−r2

c q2/h̄2

, (18)

so as to have D(r, τ ) dimensionless and characterized by
Gaussian spatial correlation with width rc as in the CSL model
and a time correlation with the single-exponential parameter
λ. By inserting the mass density (6) and carrying out the
integration we obtain∫ ∞

0
dτ τe−λτ = λ−2,

∫ q

0
q4d (q)|�̃(q)|2 = 9r2

c h̄5m2√π

4R4
K

( R

rc

)
(19)

and combining the results together in Eq. (17) we find

γ I
CGF = 6r2

c c2ξ 2

(4π )3/2R4λ2

mc2

h̄
K

( R

rc

)
. (20)

Note that, due to the assumption of Gaussian spatial corre-
lation, Eq. (20) is very similar to the expression of γc in the
dCSL case (8). If we further assume that temporal and spatial
correlations are related to each other by the speed of light and
set λ = c/rc, we obtain

γ I
CGF = 6mc2ξ 2

(4π )3/2h̄

r4
c

R4
K

( R

rc

)
. (21)

This further assumption is suggested by the fact that the grav-
itational field propagates at the speed of light [16].

III. EXPERIMENTAL SETUP

Experimentally, we follow the approach outlined in
Ref. [14]. By preparing and measuring a mechanical resonator
with very low friction it is possible to set an upper bound
on the fundamental dissipation predicted by collapse models.
The advantage of this approach is that measuring very low
dissipation is experimentally less challenging than measuring
noise. In fact, ultralow mechanical dissipation is more easily

FIG. 1. Simplified scheme of the experimental setup. A micro-
magnetic sphere with permanent magnetic moment μ is levitated
by the Meissner effect in a cylindrical well machined in a type-I
superconductor (lead). The motion of the micromagnet is trapped
in all degrees of freedom. For this work we consider specifically
the vertical motion along z, which features a resonance frequency
f0 = 56.8 Hz. The motion is monitored by a commercial SQUID
through the flux δ� ∝ δz induced in a superconducting pickup coil.

achieved at low frequencies, where excess vibrational noise
of seismic or acoustic origin is ubiquitous and very hard to
shield.

Our mechanical resonator is a translational mode of a ferro-
magnetic microsphere levitated and confined by the Meissner
effect in a superconducting trap [33,34]. The experimental
setup has been described in detail in Ref. [34]. The micro-
sphere is made of a neodymium-based alloy with density � =
7.4 × 103 kg/m3 and radius R = (27 ± 1) μm (Fig. 1), fully
magnetized in a 10-T nuclear magnetic resonance magnet
prior to the experiment, with an expected saturated magne-
tization μ0M ≈ 0.7 T. It is levitated by the Meissner effect
inside a cylindrical well machined in a 99.95%-purity Pb
block with 4 mm diameter and 4 mm depth. The Meissner sur-
face currents induced by the magnetic microsphere, combined
with gravity, provide full confinement in all spatial directions.
The motion of the microsphere is detected by a commercial
DC superconducting quantum interference device (SQUID)
connected through a single pickup coil placed above the levi-
tated particle. The pickup coil consists of six loops of NbTi
wire, wound around a cylindrical PVC holder with radius
1.5 mm, coaxial with the trap. The setup is mounted inside
a magnetically shielded copper vacuum chamber filled with
a variable pressure of helium gas, which is dipped in a stan-
dard helium transport dewar at T = 4.2 K. We monitor the
helium pressure in the vacuum chamber with a Pirani-Penning
gauge placed at room temperature. The actual pressure at the
microsphere location is then estimated by applying a correc-
tion which takes into account the thermomolecular pressure
drop [34,35]. In the low-pressure limit, this can be approxi-
mated as P/P0 = (T/T0)1/2, where P and T = 4.2 K are the
pressure and temperature at the microsphere location, respec-
tively, P0 is the helium pressure measured by the gauge at
room temperature, and T0 ≈ 300 K.
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FIG. 2. Typical power spectrum of the z mode over 12 h, ac-
quired at a pressure P = 5.6 × 10−5 mbar. The two small satellites
correspond to a nonlinear mixing with a horizontal mode at 4.3 Hz.

As discussed in Ref. [34], the SQUID is able to detect
five degrees of freedom of the rigid body. Comparison with
a finite element simulation allows us to reliably identify three
translational modes and two librational modes. In this work
we focus on the vertical translational mode, which we refer to
as the z mode. For this mode the resonance frequency can be
also approximately estimated by applying the image method
to a magnetic dipole above an infinite plane [34]

f0 = 1

π

√
g

z0
, (22)

where z0 is the equilibrium height

z0 =
(

3μ0μ
2

64πmg

)1/4

. (23)

Here μ = MV is the total magnetic dipole moment with M
the saturation magnetization and V the volume, m = �V is
the mass, and g is the gravity acceleration. For our micro-
sphere we estimate f0 = 59.0 Hz, not far from the measured
value f0 = 56.8 Hz. A small discrepancy is entirely expected,
because the image method is exact only for a magnet above
an infinite superconducting plane, and cannot account for the
finite size of the trap. However, the substantial agreement
between the experimental frequency, the image method, and
finite element simulations [34] strongly supports the identifi-
cation of the mode at 56.8 Hz as the translational z mode.

IV. EXPERIMENTAL RESULTS

Figure 2 shows an uncalibrated spectrum of the z mode,
expressed in units of magnetic flux at the input of the SQUID,
averaged over 12 h. The resonance frequency is remarkably
stable over time, featuring only small amplitude-dependent
shifts due to anharmonicities in the trapping potential. During
the measurements relevant to this paper these shifts are always
smaller than 1 Hz.

FIG. 3. Ringdown measurement performed at P = 1.35 × 10−5

mbar. The weighted exponential fit provides the amplitude decay
time τ = (1.19 ± 0.01) × 104 s.

Figure 3 shows a ringdown measurement of the z mode.
The mode is excited by sending an AC of the order of 1 mA
through a single-loop-excitation coil wound on the pickup coil
holder. After excitation, we monitor the ringdown by means
of a lock-in amplifier with reference frequency fr set close
to the actual amplitude-dependent resonance frequency f0.
Before any amplitude measurement we precisely adjust fr to
f0 to better than 1 mHz by nulling the phase drift rate. The
error bar on each point is calculated by adding in quadrature
the mean amplitude of the peak when it is dominated by
noise. The data in Fig. 3 correspond to the lowest damping
effectively measured in the experiment, γ = 2/τ = (1.68 ±
0.02) × 10−4 s−1. Note that it is common in the literature to
report the dissipation in terms of a linewidth in hertz [14],
which in our case is given by γ /2π = (26.7 ± 0.4) μHz.

In Fig. 4 we report the linewidth as a function of the pres-
sure for the z mode. The uncertainty is dominated by the error
in the determination of pressure. We observe approximately a
linear dependence on P, as predicted by standard gas damping
models [36]. We note that the correction for the thermomolec-
ular effect is accurate only in the low-pressure limit but breaks
down at higher pressure [34]. We take into account a possible
deviation from linearity in the data by adding a quadratic term
in the fitting function. The second-order polynomial fit is
shown in Fig. 4 together with the 90% confidence intervals.
The linear term is (2.1 ± 0.1) Hz/mbar and can be directly
compared with the gas damping prediction, given by [36]

γ

2π
= 1

π

(
1 + 8

π

)
P

�Rvth
, (24)

where vth = √
8kBT/πmg is the mean thermal velocity of the

gas and mg is the molecular mass of helium. By inserting the
numerical values we obtain γ /2πP = 1.9 Hz/mbar, in fair
agreement with the experimental value. From the confidence
intervals we infer a linewidth at zero pressure γ0/2π < 9 μHz
at 90% confidence level. We will use this value as an upper
limit on a possible dissipation arising from collapse models.

043229-5



A. VINANTE et al. PHYSICAL REVIEW RESEARCH 2, 043229 (2020)

FIG. 4. Linewidth as a function of the pressure for the z mode.
A second-order polynomial fit is shown together with the 90% con-
fidence bands.

V. DISCUSSION

A. The dCSL model

Our experimental data can be used to exclude the regions of
the dCSL parameter space which predict a dissipation larger
than the one measured in the experiment. Figure 5 shows a
family of curves in the λ-rc plane, each one corresponding to
a fixed temperature Tc. The region above each curve is experi-
mentally excluded by our experiment at 90% confidence level.

FIG. 5. Exclusion plot for the dCSL model in the λ-rc plane. The
solid curves correspond, from top to bottom, to Tc = 1 K (red), Tc =
10−3 K (green), Tc = 10−6 K (orange), and Tc = 10−9 K (blue). Dot-
ted lines are shown as reference to show the bound from the lowest
actually measured dissipation rather than the extrapolated one: From
top to bottom Tc = 1 K (red), Tc = 10−3 K (green), Tc = 10−6 K
(orange), and Tc = 10−9 K (blue). The shaded gray region is con-
ventionally considered unnatural for the CSL model, as it would not
guarantee an effective collapse of macroscopic quantum superposi-
tions [30]. The vertical bar represents the enhanced values for λ at
rc = 10−7 m proposed by Adler [28].

For reference we also show as dotted lines the bounds that
are obtained by considering the actually measured dissipation
rather the extrapolated one at zero pressure. The gray region
of parameter space is conventionally considered unnatural for
the CSL model, as parameters well inside this region would
not guarantee an effective collapse of macroscopic superpo-
sitions [30]. In other words, the CSL model would no longer
accomplish its original scope. For rc = 10−7 m the gray region
is equivalent to the initial value for λ proposed by Ghirardi
et al. [2]. The vertical bar represents the enhanced values for
λ proposed by Adler [28].

Clearly, our approach is particularly sensitive to low values
of Tc, as these imply large values of dissipation. For Tc ≈
10−9 K, the blue curve in Fig. 5, almost the entire natural
parameter space of CSL is excluded. We also note a different
feature on the left-hand side of the Tc ≈ 10−9 K curve, with a
slope which becomes much steeper, from an ∼r−2

c to an ∼r−6
c

dependence. This corresponds to the transition from weak
dissipation χ < 1 to strong dissipation χ > 1. Our results
can be compared with a similar experiment performed with
a nanoparticle in a Paul trap [14]. In particular, our bounds
are more stringent for rc > 2 × 10−7 m. If we compare our
bounds on dCSL, based solely on dissipation, to the bounds
which can be inferred from noise measurements [19–22],
we notice that the latter have only recently been able to
exclude the enhanced values for λ proposed by Adler [21].
Therefore, bounds on dCSL inferred from dissipation for Tc �
10−3 K are already much stronger than bounds inferred from
noise.

As a guide to future experiments it is useful to discuss
some scaling properties of the exclusion curves for different
values of radius and dissipation. This can be done by a closer
inspection of Eq. (8). We find that the minimum of the ex-
clusion curve is achieved for rc ≈ 0.6R and the value of the
curve at minimum is proportional to R−1. For instance, for a
microsphere with the same density and mechanical dissipation
but with radius R smaller by a factor of 100, the minimum of
the exclusion curve would be shifted to rc ≈ 10−7 m and the
value at minimum would be around 10−10 Hz for Tc = 1 K.
This would allow us to falsify Adler’s interval for the most
plausible value of Tc according to the proponents of dCSL.
To achieve the same result with the micromagnet used in
our experiment we would need to reduce the dissipation by
a factor of 100.

B. The dDP model

For the dDP model, using for ma in Eqs. (10) and (13)
the mean nuclear mass, we find that our experiment does not
provide any exclusion in the uniform matter limit (11). In the
granular matter limit (14), it formally provides an exclusion
region, but this corresponds to unphysical parameters R0 <

10−23 m. In fact, the Diósi-Penrose model is nonrelativistic,
and this assumption breaks down for R0 � 10−15 m. Further-
more, in [13] it was pointed out that already for R0 = 10−15 m
a dissipative extension of the DP model would lead to insta-
bility of nuclear matter.

However, we find a significant exclusion by making a
different choice for the reference mass ma which appears in
the expressions of χDP and γDP. Specifically, we can take
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FIG. 6. Exclusion plot for the dDP model in the TDP-R0 plane, by
assuming ma = 4π/3�R′3

0 . The inner light red region, delimited by a
thick solid line, is excluded by our experiment. The outer regions
(orange, yellow, and green), respectively delimited by thin solid,
dashed, and dotted lines, would be excluded by a reduction of the ex-
perimental dissipation rate by factor 103, 106, and 109, respectively.
The dDP model with TDP = 1 K would predict a dissipation rate 1013

times smaller than the observed one. The cutoff at R0 ≈ 10−5 m is
determined by the size of our particle.

as an elementary entity for the dDP mechanism a sphere
of radius R′

0 = R0(1 + χDP), i.e., ma = 4π
3 �R′3

0 . This choice
is motivated by the fact, apparent from Eq. (11), that the
collapse mechanism is coherent within a sphere of radius R′

0,
that is, ηDP ∝ m2, while it scales linearly with the mass for
R > R′

0. In other words, an object smaller than R′
0 behaves as

a single particle of mass m, meaning that the physics of the DP
collapse mechanism is suppressed below the R′

0 scale. Under
this assumption, the excluded region in the TDP-R0 parameter
space, which is the region where the predicted dissipation is
larger than the observed dissipation, is shown in Fig. 6. We
note that the excluded region extends up to a temperature
T ≈ 10−13 K. A given reduction of the measured dissipation
rate γ would shift the bound up by the same factor. Therefore,
we are roughly 13 orders of magnitude off from excluding the
dDP model with TDP = 1 K. The upper bound on TDP does not
depend on the size of the object R. For larger R and the same γ

we would however observe a shift of the high R0 cutoff, which
is located at R0 ≈ R.

C. The CGF model

Figure 7 shows the exclusion plot for the CGF mode in
the rc-ξ plane, where rc is the spatial correlation length and ξ

is the magnitude of the complex gravity fluctuation. Different
curves are plotted corresponding to different correlation times.
A physical insight is provided by the thick blue curve, which
is obtained by Eq. (21), i.e., by assuming that temporal and
spatial correlations are related by c. This is suggested by the
fact that the gravitational field propagates at the speed of
light [16]. The gray region is then excluded by our experiment.

lo
g

FIG. 7. Exclusion plot for the CGF model in the rc-ξ plane,
where rc is the correlation length and ξ is the magnitude of the
complex fluctuations of the metric. The solid curves correspond,
from top to bottom, to different correlation rates λ = 1016, 1014,
1012, and 1010 Hz. The region above the curve is excluded by the
experiment. The thick dashed gray curve corresponds to the choice
λ = c/rc; under this condition the gray region above the curve is
excluded by the experiment.

Interestingly, the order of magnitude of the probed region,
down to 10−22, is comparable to the typical amplitude of
the metric represented by astrophysical gravitational waves.
It should be stressed that the fluctuations of the metric probed
by our experiment have a nature quite different from gravi-
tational waves: They are complex and the correlation time is
very short.

VI. CONCLUSION

We have set improved bounds on dissipative collapse
models, based on measuring ultralow dissipation in a low-
frequency levitated micromagnet. Our data are essentially
ruling out the dCSL model for collapse field temperatures of
10−9 K or lower. For the dDP model the exclusion is much
weaker. By setting ma as the mass of a sphere of radius R′

0, we
exclude the field temperature TDP < 10−13 K. We have also
tested the magnitude of complex metric fluctuations suggested
by the CGF model and in particular we have set a bound
on the imaginary part of the correlator of such fluctuations,
directly related to dissipation. We have probed fluctuations of
the metric with amplitude down to 10−22.

All data supporting this study are openly available from the
University of Southampton repository in Ref. [37].
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APPENDIX: CALCULATIONAL DETAILS FOR THE
GRANULAR LIMIT (LATTICE MODEL)

The amplification factor for spherical particles in the
regime of tiny motional displacements, for both the CSL and
DP models, has been discussed in detail in Ref. [38]. The
dCSL and dDP models in the regime of tiny displacements
have been discussed in Refs. [14,15].

The amplification factor can be well understood in terms of
Adler’s formula or within the homogeneous-body approxima-
tion, but the most refined modeling is based on a lattice model
(for a comparison see [30]). Here we discuss the extension
of the latter [38] to the dissipative CSL and DP models; we
will see that most of the analysis carries over to the dissi-
pative variants. In particular, we focus on the regime where
the effective localization lengths r′

c = rc(1 + χ ) and R′
0 =

R0(1 + χDP) are smaller than the lattice constant a; we expect
a linear scaling of the amplification parameter η or ηDP with
the mass of the system, as expected from Adler’s formula.
The other interesting regimes of the dissipative models for
spherical particles have been reported in [14].

We consider the mass density of a spherical body

�(r) = ma

∑
δ(x − anx )δ(y − any)δ(z − anz ),

where a is the lattice number, the sum is over the values n2
x +

n2
y + n2

z � n2
max, anmax is the radius of the body, and ma is the

mass of a unit cell. The Fourier transform of the mass density
is given by

�̃(q) =
∫

dr�(r)ei(q·r/h̄). (A1)

For later convenience we evaluate

|�̃(q)|2 = m2
a

∑ ∑
ei(aqx�nx/h̄)ei(aqy�ny/h̄)ei(aqz�nz/h̄), (A2)

where �n j = n j − l j and the double sum is over the values
n2

x + n2
y + n2

z � n2
max and l2

x + l2
y + l2

z � n2
max.

1. The dCSL case

We start from

η =
[

ν2

(2π h̄)3

1

h̄2

] ∫
dq|�̃(q)|2e−r2

c (1+χ )2q2/h̄2

q2
x , (A3)

where

ν2 = λr3
c (4π )3/2

m2
0

. (A4)

Using Eq. (A2), we readily find

η = ν2

(2π )3

π3/2m2
a

4r′7
c

×
∑ ∑

(2r′2
c − a2�n2

x )e−a2(�n2
x+�n2

y+�n2
z )/4r′2

c (A5)

We now assume a � 4r′
c such that only the terms satisfying

�n2
x = �n2

y = �n2
z = 0 contribute; the contribution from a

single sum is m/ma. This immediately gives

η = ν2mam

16π3/2r′5
c

. (A6)

We now use Eq. (A4) to find

η = λ

2(1 + χ )5r2
c

mam

m2
0

. (A7)

2. The dDP case

We start from

ηDP =
[

G

2π2h̄2

1

h̄2

] ∫
dq|�̃(q)|2e−R2

0 (1+χDP )2q2/h̄2 q2
x

q2
. (A8)

We insert Eq. (A2) and, similarly as for dCSL, assume
a � 4(1 + χDP)R0 such that only the terms satisfying �n2

x =
�n2

y = �n2
z = 0 contribute. We then find

ηDP = G

6h̄
√

π (1 + χDP)3R3
0

mam. (A9)

We obtain the same result from [38] with the formal replace-
ment R0 → R′

0 = (1 + χDP)R0.
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