
Pseudo-Analytical Solutions for Stochastic
Options Pricing Using Monte Carlo Simulation
and Breeding PSO-Trained Neural Networks

Sam Palmer and Denise Gorse

University College London - Dept of Computer Science
Gower Street, London, WC1E 6BT - UK

Abstract. We introduce a novel methodology for pricing options which uses
a particle swarm trained neural network to approximate the solution of a stochastic
pricing model. The performance of the network is compared to the analytical
solution for European call options and the errors shown statistically comparable to
Monte Carlo pricing. The work provides a proof of concept that can be extended to
more complex options for which no analytical solutions exist, the pricing method
presented here delivering results several orders of magnitude faster than the Monte
Carlo pricing method used by default in the financial industry.

1 Introduction

Option contracts have been bought and sold for hundreds of years. They originated in
the agricultural sector as a means by which farmers could fix a price for the sale of
commodities such as corn and wheat, in advance of a harvest which might be
unpredictably affected by the weather. Options are nowadays used not only for the
hedging of risk but also as vehicles for speculative investment, and their pricing is an
important problem to which machine learning methods, including neural networks
(see for example [1] and references therein), are being increasingly applied.
 In this work we use neural networks (NNs), trained with a form of particle
swarm optimisation, Breeding PSO (BrPSO), which has shown itself in previous work
[2] to be adept for this purpose, to produce an approximate pseudo-analytical solution
for stochastic options pricing models. Once trained, such a network can be used for all
parameter settings to generate the corresponding option price estimate with O(1)
complexity, compared to the thousands of simulation runs required for a single Monte
Carlo pricing result. Similar techniques have been used in other domains, for example
in [3] neural networks learn the effect of design parameters on simulated bridge
designs.

2 Financial background

An option gives its owner the right, but not obligation, to trade a certain amount of an
underlying asset at some future time. A call option gives its owner the right to buy
that amount of the asset, a put option the right to sell. In the simplest case, referred to
as a European option, the time in question is the date on which the contract matures;
however many more complex financial derivative products have been devised.

 In the case of a European call option there is a well-known analytical solution to
the pricing problem, known as the Black-Scholes (B-S) model [4]. The inputs to this
model are the risk-free interest rate, r; the volatility in the price of the underlying
asset, σ; the strike price (agreed price at maturity), k, and the current asset price, s; the
output of the model is a value for the price of the option at a time t to maturity.
 However, as mentioned in the introduction, for more complex derivative
products such an analytical solution for the stochastic model that describes the pricing
process does not exist. In this case it is necessary to employ Monte Carlo (MC)
simulation [5] or some equivalent stochastic modelling process. Such processes
demand thousands of time-consuming runs in order to get a reliable estimate of a fair
price for the option, which is why we here aim to use PSO-trained neural networks to
replace the use of Monte Carlo simulation.
 Much work has been carried out in the application of machine learning
methodologies to options pricing. However in most cases the training is based on
market data (as for example in [6], [7]) which may not work for illiquid exotic
derivative products where there is not enough data. In addition models trained on
market data are 'black box' solutions with no knowledge of the underlying market
models and dynamics, and as such may be less attractive to financial institutions in
the current regulatory climate. In contrast the approach to be taken here seeks to use a
neural network to approximate the behaviour of a well defined stochastic model, and
to our knowledge is the first deployment of such an approach in the financial domain.

3 Methodology

We first generate the options pricing training and validation data via Monte-Carlo
simulations over a range of parameter values. A PSO-trained neural network then
learns the option pricing model from these data. K=30 independently trained neural
networks are combined to produce an aggregated neural network model; it was found
that using the median output produced the most robust results, and it is from such an
aggregated model that the out-of-sample test prices are generated.

3.1 Data generation

As mentioned earlier the training data for these experiments is generated using Monte
Carlo simulation; this method is very flexible and can be used to price exotic
derivatives, but the methodology presented here is not limited to data generated via
MC and other numerical methods may be used. The MC pricing data is produced
using the Monte-Carlo Longstaff-Schwarz model built into the MatLab Finance
toolbox [8]; for each run 1000 simulations and 500 periods are used. We sample over
the 4D parameter space defined earlier for the B-S model, in the ranges r ∈ [0.01,
0.1]; σ ∈ [0.1, 0.5]; and k, s ∈ [0, 100]. Three independent sets of data are generated:
2000 samples for training, and 1000 samples for each of validation and out-of sample
testing. Latin hypercube sampling (LHS) [9] is used in preference to either grid or
naïve random sampling as LHS scales less badly than the former while giving a better
distributed representation of the parameter space than the latter.

3.2 I/O data transformations

It was found that some data transformations were required to make the task of training
the neural network tractable. The asset price and strike price input parameters are
multiplied by 0.01 so they are similar to the magnitudes of the interest rate and
volatility. The training target values have a more complex transform applied that aims
to better separate otherwise overly-close targets. First, to reduce the range, we apply a
minimum resolution by adding a small constant, res, to all the target values, limiting
the network to distinguishing values no smaller than res; we test two values of res,
10-6 and 10-8. Second, we further aid learning by transforming the target values, which
could otherwise differ by many orders of magnitude, to approximately similar
magnitudes via the introduction of a novel transform, Tsp10 x =log10 10

x-1 , x≠0,
dubbed by us a softplus-base10 (sp10) transform due to its similarity to the softplus
function used in the nets' hidden layers. Softplus-base10 is bijective provided x > 0
and hence is applicable in the case of options pricing as this does not involve negative
numbers. The network learns to output the transformed prices; to recover the price the
inverse transform is applied to the network output. It is important to note that without
the sp10 transformation the problem would be intractable; many alternative output
transforms were considered but our sp10 transform was by far the most effective.

3.3 Neural network architecture

The neural network architecture consists of two connected networks, both with two
hidden layers of ten neurons, in which the output of the first network and the original
inputs are passed on as inputs to the second network. This second network then acts
as a corrector for errors generated by the first network; a similar network construction
was used, for example, in the successful PSIPRED protein structure predictor [10],
and provides superior results compared to the use of only a single network. The
hidden layer activation function for both networks is softplus, defined as
fsoftplus(x)=log(1+exp(x)); this function is commonly used in deep learning applications
and was the most effective of the activation functions considered here.

3.4 Training method

The neural networks are trained using Breeding Particle Swarm Optimisation
(BrPSO) [2], a new form of PSO developed by one of us (SP) which displays
enhanced search capabilities via the use of a particle swarm that evolves via natural
selection in a way inspired by the Comprehensive Learning Particle Swarm Optimizer
(CLPSO) [11] and Global-Local Differential Evolution (GLDE) [12] algorithms.
BrPSO was picked here because of its performance in [2] when benchmarked against
competitor neural network training algorithms. The current work uses a swarm of 100
particles, the PSO algorithms being run for 5000 iterations. Social and cognitive
learning contributions are weighted equally at 2.05, with a constriction factor equal to
0.7289. These are default parameter choices in the PSO literature; experimentally it
has been found that their manipulation produces little benefit and introduces an
unnecessary additional risk of overfitting. All BrPSO-specific parameter settings as in
[2], 10 runs being performed under each set of experimental conditions. In any form

of PSO the quality of the position for each particle i must be evaluated to give a
fitness value which is used to guide the progress of the particles toward the optimum
parameter settings (NN weights Wi). Fitness is here given by

 fit Wi =EMAE N Wi, Y0 ,Tsp10 V +EMRE Tsp10

 -1 N(Wi, Y
0),V ,

where Wi is the matrix of neural network weights represented by particle i, Y0 is the
matrix whose rows are the four-dimensional training input parameter vectors, V is the
corresponding vector of target prices for those input parameter sets, N(Wi,Y0) is the
vector of neural network-approximated outputs, and where EMAE(x,y) and EMRE(x,y)
are the mean absolute and mean relative errors, respectively, of the numerical
approximations x compared to targets y, given by

 EMAE x, y = 1

N
|xi-yi|

N
i=1 , EMRE x, y = 1

N
|xi-yi|

N
i=1 /yi .

This sum of mean absolute and mean relative errors encourages the network to output
a wide magnitude range of prices while at the same time minimising the errors that
would otherwise occur during the inverse transform to a final price.

4 Results

The out-of-sample test results for European call options are shown in Table 1. For
such options, as discussed above, there is an analytical solution (the Black-Scholes
model) to which both the Monte Carlo and NN/PSO pricing methodologies can be
compared, for two settings of the input value resolution bound res.

res method MAE±StDev MedAE MRE±StDev MedRE PRE(<10%) PRE(<10%)
 0.185 10-6 MC 0.295±0.446 0.130 0.128±0.616 0.023 0.765 0.370
 NN/PSO 0.160±0.168 0.116 0.204±0.361 0.014 0.740 0.441
 0.717 10-8 MC 0.295±0.446 0.130 0.159±0.717 0.019 0.742 0.348
 NN/PSO 0.165±0.176 0.115 0.228±0.381 0.017 0.716 0.410
Table 1: Mean absolute (MAE), median absolute (MedAE), mean relative (MRE),
and median relative (MedRE) test errors, and the probabilities of the relative error

being less than 10% (PRE(< 10%) and less than 1% PRE(< 1%)). Results are
presented for both the BrPSO-trained aggregated neural network model with K=30

(PSO/NN) and Monte-Carlo (MC) price approximations.

As can be seen above in all cases the MAE for the NN/PSO model is significantly
better than the Monte-Carlo result, being up to two times smaller. On the other hand
the MREs are slightly larger than could be obtained from an MC simulation; from
this, combined with the lower MAEs, it can be inferred that the NN/PSO method is
less accurate for estimating the price of options which have a larger magnitude, i.e.
are out-of-the-money options (in the case of call options, ones for which the strike
price is above the market price). The reason MREs in such cases are higher is
connected to the necessary transform applied to target values during training; the

output range compression means that small training errors can result in larger errors
when the inverse transform is applied during use. Though precautions were taken to
minimise this effect by using a two component fitness function (Eq. 2) the effect is
still observable and further improvements to the methodology will be sought.
 In addition we have looked at the probability of the relative test error being less
than 10%, PRE (< 10%), and less than1%, PRE(<1%). We can see that compared to MC
the NN/PSO PRE (<10%) is only slightly lower, but that our method displays a
sizeably higher PRE (<1%). This can also be observed in Figure 1 which shows the
distribution of the magnitudes of the relative test errors. It can be seen in this figure
that in addition to offering a speed-up, in online post-training use, of at least three
orders of magnitude in comparison to running Monte Carlo simulations, the NN/PSO
method also compares well in terms of accuracy, displaying considerably fewer errors
than MC with magnitudes in the range from 10-3 to 10-2 (this range corresponding to a
percentage error of around 1%). It should also be noted that while the Monte Carlo
model occasionally generates relative errors greater than 100%, the NN/PSO results
include no instances of such unacceptable performance. We note finally that the
results here use an aggregation of only K=30 independent neural networks; it is hoped
that results can be further improved by using more networks in the committee.

Fig. 1: Histogram showing magnitude distribution of the mean relative errors for
European call options with res=10-8 (dark: Monte Carlo; light: NN/PSO).

5 Discussion

This work has presented a novel hybrid methodology that uses both traditional
numerical methods and neural networks to produce a pseudo-analytical solution for
stochastic options pricing models. This work provides a proof of concept, in a case for
which an analytical solution (the Black-Scholes equation) is available, and to which
both the NN/PSO and Monte Carlo results can be compared, that an NN/PSO method
could be used as a faster alternative method for the pricing of derivative products for
which no closed form solutions are available and for which the only recourse would
otherwise be to the use of time consuming Monte Carlo simulations.
 More detailed analysis of the results shows that for deep-in-the-money options
(in the case of call options, ones for which the strike price is significantly below the

market price) the NN/PSO results are more accurate than the MC prices; in fact for all
such deep-in-the-money instances in the test set the mean relative error is always less
than 1%, which is not the case observed for the MC prices. There are some limitations
to the current method, mainly the less accurate pricing of out-of-the-money options.
The underlying problem was resolved in part by a combination of the softplus-base10
transform (Eq. 1) and two-component fitness function (Eq. 2); however more work
will be needed to improve performance for out-of-the-money options.
 Overall we consider this work a successful exploratory study, producing results
with good accuracy and with the advantage of extremely efficient price evaluation
when compared to more traditional numerical methods. We intend to carry out work
to further increase the accuracy and efficiency of this methodology before applying it
to the pricing of more complex financial derivative products.

References

[1] J.T. Hahn, Option pricing using artificial neural networks: An Australian perspective. Ph.D. Thesis,
Faculty of Business, Bond University, Robina, Queensland 4226, Australia, November 2013.

[2] S. Palmer, D. Gorse and E. Muk-Pavic, Neural networks and particle swarm optimization for
function approximation in Tri-SWACH hull design. In L. Iliadis and C. Jayne, editors, proceedings
of the 16th International Conference on Engineering Applications of Neural Networks (EANN
2015), Article No. 8, Springer International Publishing, 2015.

[3] D. Lehký and M. Šomodíková, Reliability analysis of post-tensioned bridge using artificial neural
network-based surrogate model, Communications in Computer and Information Science, 517: 35-44,
Springer International Publishing, 2015.

[4] F. Black and M.S. Scholes, The pricing of options and corporate liabilities, Journal of Political
Economy, 81(3):637-654, Univ. of Chicago Press, 1973.

[5] P. Glasserman, Monte Carlo Methods in Financial Engineering, vol. 53, Springer Science &
Business Media, New York, 2003.

[6] C. Von Spreckelsen, H.-J. Von Mettenheim and M.H. Breitner, Real-time pricing and hedging of
options on currency futures with artificial neural networks, Journal of Forecasting, 33:419–432,
Wiley, 2014.

[7] Y. Lin and J. Yang, Option pricing model based on Newton-Raphson iteration and RBF neural
network using implied volatility, Canadian Social Science, 12(8):25-29, Canadian Academy of
Oriental and Occidental Culture, 2016.

[8] Matlab Finance Toolbox release 2014b. The Mathworks, Inc., Natick, MA, USA.

[9] M.D. McKay, R.J. Beckman and W.J. Conover, A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code, Technometrics, 42(1):55–61,
American Statistical Association, 2000.

[10] L.J. McGuffin, K. Bryson and D.T. Jones, The PSIPRED protein structure prediction server,
Bioinformatics, 16(4):404–405, Oxford Univ. Press, 2000.

[11] J.J. Liang, A.K. Qin and S. Baskar, Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions, IEEE Trans. Evolutionary Computation, 10(3):281-295,
IEEE, 2006.

[12] S. Das, A. Abraham, U.K. Chakraborty and A. Konar, Differential evolution using a neighborhood-
based mutation operator, IEEE Trans. Evolutionary Computation, 13(3):526-553, IEEE, 2009.

