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Recovery of skilled movement after stroke is assumed to depend on motor learning. However, the capacity for motor learning and

factors that influence motor learning after stroke have received little attention. In this study, we first compared motor skill acquisi-

tion and retention between well-recovered stroke patients and age- and performance-matched healthy controls. We then tested

whether beta oscillations (15–30 Hz) from sensorimotor cortices contribute to predicting training-related motor performance.

Eighteen well-recovered chronic stroke survivors (mean age 64 6 8 years, range: 50–74 years) and 20 age- and sex-matched healthy

controls were trained on a continuous tracking task and subsequently retested after initial training (45–60 min and 24 h later).

Scalp electroencephalography was recorded during the performance of a simple motor task before each training and retest session.

Stroke patients demonstrated capacity for motor skill learning, but it was diminished compared to age- and performance-matched

healthy controls. Furthermore, although the properties of beta oscillations prior to training were comparable between stroke

patients and healthy controls, stroke patients did show less change in beta measures with motor learning. Lastly, although beta

oscillations did not help to predict motor performance immediately after training, contralateral (ipsilesional) sensorimotor cortex

post-movement beta rebound measured after training helped predict future motor performance, 24 h after training. This finding

suggests that neurophysiological measures such as beta oscillations can help predict response to motor training in chronic stroke

patients and may offer novel targets for therapeutic interventions.

1 Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
2 Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
3 School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff CF24 4HQ, UK
4 Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, Amsterdam

1018 WT, The Netherlands
5 Department of Computer Science, Department of Statistical and Actuarial Sciences, Brain and Mind Institute, University of Western

Ontario, London, Ontario N6A 5B7, Canada

Correspondence to:Svenja Espenhahn, PhD, Department of Radiology, Cumming School of Medicine,

University of Calgary, 2500 University Drive NW, Calgary, Canada AB T2N 4N1

E-mail: svenja.espenhahn@ucalgary.ca

Keywords: stroke; beta oscillations; EEG; motor learning; plasticity

Abbreviations: MRBD ¼ movement-related beta desynchronization; PMBR ¼ post-movement beta rebound; RMSE ¼ root mean

square error.

Received April 2, 2020. Revised July 16, 2020. Accepted August 17, 2020. Advance Access publication October 7, 2020
VC The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

BBRAIN COMMUNICATIONSAIN COMMUNICATIONS
doi:10.1093/braincomms/fcaa161 BRAIN COMMUNICATIONS 2020: Page 1 of 14 | 1

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/2/2/fcaa161/5919069 by U

C
L, London user on 24 N

ovem
ber 2020

http://orcid.org/0000-0002-4460-3853


Introduction
Stroke is a leading cause of adult disability, with lasting

motor impairment being a common post-stroke outcome

(Feigin et al., 2014). Recovery from motor impairment

relies on various forms of rehabilitative training to (re)-

learn new or lost motor skills through repetitive practice

(Krakauer, 2006; Ward et al., 2019). Whilst there is cur-

rently no evidence that stroke survivors lose their cap-

acity for motor skill acquisition (Hardwick et al., 2017),

there are considerable inter-individual differences in re-

sponse to rehabilitative training, making predictions

about recovery challenging (Stinear, 2010). The reasons

for this clinical phenomenon are unclear. A better under-

standing of the underlying neurophysiological processes

could therefore provide novel and important targets for

improving post-stroke upper limb recovery.

The potential for plasticity in the post-stroke brain is

important as it could facilitate or hinder recovery of

function. Beyond the hyperacute stroke period, alterations

in cortical inhibitory and excitatory mechanisms are im-

portant determinants of the potential for plasticity

(Cramer, 2008; Murphy and Corbett, 2009; Carmichael,

2012; Zeiler et al., 2013). Early stroke-induced hyperex-

citability triggered by reduced GABAergic inhibition and

increased glutamatergic excitation (Que et al., 1999) facil-

itates long-term potentiation (Hagemann et al., 1998),

downstream changes in neuronal structure (Chen et al.,

2011) and remapping of sensorimotor functions to intact

cortical areas (Takatsuru et al., 2009). In humans, cor-

roborative evidence that a decrease in GABAergic

inhibitory signalling after stroke is one of the key modu-

lators of plasticity has also been obtained (Swayne et al.,

2008; Kim et al., 2014; Blicher et al., 2015).

Consequently understanding how to take advantage of

post-stroke alterations in cortical inhibition and excitation

to promote recovery is an important clinical and scientific

goal.

Bridging the gap between cellular and behavioural

accounts of post-stroke recovery, requires an appropri-

ate biomarker reflecting underlying biological processes

that predict recovery and treatment response in a way

that behaviour alone cannot (Ward, 2017). Since neur-

onal oscillations in the beta frequency range (15–30 Hz)

are fundamental for motor control (Engel and Fries,

2010) and have been linked to GABAergic activity in

humans (Jensen et al., 2005; Hall et al., 2010, 2011;

Muthukumaraswamy et al., 2013), properties of beta

activity may provide insight into the dynamics of dis-

ease, potentially providing a clinically relevant biomark-

er of net inhibitory and excitatory mechanisms in

human cortex. Recent evidence suggests that beta power

in the sensorimotor cortex is altered after stroke, with

beta activity closely tied to the degree of motor impair-

ment (Laaksonen et al., 2012; Rossiter et al., 2014a;

Shiner et al., 2015; Thibaut et al., 2017). Although

relevant for motor control and sensorimotor pathology,

and allegedly instrumental to motor learning (Boonstra

et al., 2007; Houweling et al., 2008; Pollok et al.,

2014; Espenhahn et al., 2019), little is known about

the relationship between beta oscillations and motor

learning after stroke.
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Here, we explored the neurophysiological mechanisms

associated with short-term motor learning after stroke in

well-recovered patients. Specifically, we expected that

beta oscillatory activity relates to a patient’s ability to

learn and/or retain new motor skills. We purposefully

studied well-recovered chronic stroke patients to assess

motor learning ability independent of potentially obscur-

ing influences of motor impairments. Since only few stud-

ies have explored post-stroke motor learning, we further

investigated whether stroke patients demonstrate altered

learning capability compared to healthy adults, and

whether abnormal beta oscillatory activity as reported in

previous studies (Rossiter et al., 2014a; Shiner et al.,

2015) persist in patients with a low level of impairment.

Materials and methods

Patients and controls

Eighteen chronic stroke patients (mean age 64 6 8 years,

range: 50–74 years; see Supplementary Table 1) with a

first-time ischaemic stroke took part in this study over two

consecutive days. Two patients had to be excluded because

of hardware problems during data acquisition. All patients

(N¼ 16) fulfilled the following inclusion criteria: (i) suf-

fered a stroke more than 6 months ago (chronic stage;

mean time since stroke 90 6 50 months); (ii) active range of

motion around the affected wrist greater than 60� in total;

(iii) no reported history of other neurological or psychiatric

disease; (iv) no language or cognitive deficits sufficient to

impair cooperation in the experiment; (v) no use of drugs

affecting the central nervous system or self-reported abuse

of any drugs and (vi) normal or corrected-to-normal vision.

Stroke-related impairment, cognitive functioning, post-

stroke fatigue and sleep were evaluated using standardized

measures (see Supplementary materials). As a control

group, 20 age- and sex-matched healthy subjects (mean age

68 6 5 years, range: 53–77 years) were included. Results

from this healthy cohort have been published separately

(Espenhahn et al., 2019), and here we used the exact same

tasks and experimental design to investigate motor learning

and beta oscillations in stroke patients. All subjects were

tested between 9 am and 2 pm and were instructed to ab-

stain from alcohol and caffeine for 12 h prior to testing.

The study was approved by the National Hospital for

Neurology and Neurosurgery, UCL Hospitals National

Health Service Foundation Trust and the local research eth-

ics committee at University College London where the

study was conducted. All subjects gave written informed

consent in accordance with the Declaration of Helsinki.

Experimental design

The experimental design is illustrated in Fig. 1A. All sub-

jects trained with the wrist of their affected (contrale-

sional; stroke patients) or non-dominant (controls) arm

on a continuous tracking task over a single training ses-

sion (40 blocks) with the aim of improving motor per-

formance beyond pre-training levels. Motor performance

was defined as the accuracy with which subjects’ wrist

movement tracked the target movement (Fig. 1B).

Subjects’ motor performance was retested at two different

time points: 45–60 min (retest1 on day 1; 5 blocks) and

24 h (retest2 on day 2; 10 blocks) after initial training.

EEG recorded during the performance of a simple wrist

flexion/extension task (Fig. 1C) was used to assess

changes in pre-movement (resting) and movement-related

beta activity before (Pre), 15 min after (Post1) and 24 h

after (Post2) the initial training phase.

Apparatus and tasks

All tasks were performed using an instrumented wrist rig

[modified from Turk et al. (2008)], which has been

described in Espenhahn et al. (2019). The wrist’s angular

position was continuously displayed on a computer moni-

tor as a red circle — hereafter referred to as wrist cursor.

The mid-point and maxima of a subject’s maximum ac-

tive range of movement around the wrist joint was meas-

ured and subsequently used as, respectively, start and

target positions in the continuous tracking task and sim-

ple motor task. Stimuli were presented using custom soft-

ware routines written in MATLAB (version R2013b; The

MathWorks, Inc., Natick, MA, USA).

Continuous tracking task

For a detailed description of the continuous tracking

task, refer to Espenhahn et al. (2019). Briefly, patients

were required to continuously track a circular target (in

yellow) that moved back and forth along of a fixed arc

through a predefined sequence of 12 positions (Fig. 1B).

Two types of sequences were randomly presented in each

block, with a 3 s stationary target between both; a ran-

dom sequence which was only encountered once and a

repeated sequence which was identical throughout train-

ing (40 blocks) and retest sessions (5 and 10 blocks).

The same set of 57 difficulty-matched sequences was

used across participants. Subjects were instructed to move

their wrist so as to shift the red wrist cursor to match

the movement of the target as ‘accurately and smoothly

as possible’. Improvement on the random sequence is a

measure of general skill learning, whilst any additional

improvement on the repeated sequence reflects sequence-

specific motor learning of the precise sequence pattern

(Wulf and Schmidt, 1997). To ensure that the task was

of equal difficulty for patients and controls at the begin-

ning of the training and left enough room for improve-

ment in performance, the average velocity with which the

target moved along the arc was individually determined

prior to training (see Supplementary materials). Online

visual feedback was provided during training and retest

sessions and subjects received explicit verbal information
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about the presence of a repeated sequence along with a

random sequence. However, they were not shown the

repeated sequence and the target and wrist cursor trajec-

tories did not leave a residual trail on the screen. Hence,

subjects could not visualize the entire target sequence.

Simple wrist flexion and extension
task

For a detailed description of the simple wrist flexion/

extension task, refer to Espenhahn et al. (2017).

Briefly, subjects performed visually cued wrist flexion

Figure 1 Experimental design and tasks. (A) EEG was recorded during the performance of a simple wrist flexion/extension task (C)

before (Pre) and at two time points after the training phase (Post1, Post2). Performance on the motor learning task (B) was retested after a time

delay on the same day (retest1 on day 1, 45–60 min after initial training) and the following day (retest2 on day 2, 24 h after initial training). (B)

Subjects were trained to track a target (yellow circle) moving back and forth along a fixed arc as accurately and smoothly as possible. Online

visual feedback in terms of a colour change of the wrist cursor (red to green) was provided at times when the wrist cursor was located inside

the circular target. Original recordings during the continuous tracking task at the beginning and end of the initial training are shown for the

repeated sequence of an example patient (B, lower panel). The solid black line represents the motion of the target, while the dashed red line

represents the motion of the wrist. (C) For the simple wrist flexion/extension task, subjects were instructed to perform wrist flexion and

extension to move the wrist cursor (red circle) from the initial start position (grey square) to one of two target positions (blue square) upon

target presentation. The task comprised 120 trials. (D) During both tasks, subjects sat in front of a computer monitor with their affected

(patients) or non-dominant (controls) hand rested in a wrist rig that restricted movement to flexion and extension around the wrist joint.

Adapted from Espenhahn et al. (2019).
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and extension movements during EEG recording

(Fig. 2B). The cue to perform wrist movements was the

appearance of a target at the subject’s maximum wrist

flexion or extension position in a random order.

Subjects were instructed to move their wrist upon pres-

entation of the target so as to shift the red wrist cursor

from the central start position to match the position of

the target in a ‘quick and discrete’ movement. The tar-

get position was displayed for 3 s. Once subjects

returned to the initial start position, the next cue was

delivered following a delay of 7 6 1 s. The task com-

prised 120 trials.

EEG recording

Scalp EEG (ANT Neuro, Asalab, the Netherlands) was

continuously recorded at 2084 Hz using 64 electrodes

mounted on an elastic cap (waveguard EEG cap).

The impedance was kept below �5kX and the EEG

signal was referenced to Cz during recording. The tim-

ing of the visual cue (blue target) in the simple motor

task was marked in the simultaneous EEG recording,

with separate markers for each condition (flexion, ex-

tension). Surface EMG using bipolar electrodes in a

belly-tendon montage placed on the wrist extensor (ex-

tensor carpi radialis longus) and flexor (flexor carpi

radialis) muscles monitored movements of the affected

hand.

Data analysis

Motor learning

Motor performance on the continuous tracking task was

parametrized by root mean square error (RMSE), an

established measure implemented by other motor learning

studies (Boyd and Winstein, 2006; Siengsukon and Boyd,

2009; Al-Sharman and Siengsukon, 2014; Espenhahn

et al., 2019). RMSE captures the deviation of the wrist

position at time i from the target position, and serves as

a composite measure of temporal and spatial measure-

ments of time lag and distance. RMSE was averaged

across each block of training and retest sessions, with

smaller RMSE values reflecting better motor performance.

A linear regression model was fitted across the first and

last five blocks of individual training and retest sessions

to provide a performance estimate corrected for tempor-

ary effects such as fatigue or boredom (Adams, 1961) [as

done previously by Waters-Metenier et al. (2014) and

Espenhahn et al. (2019]; see Supplementary Fig. 1).

The analysis then concentrated on six time points to

assess changes in motor performance across time: first

block of training (T0), last block of training (T1),

first block of retest1 (T2), last block of retest1 (T3), first

block of retest2 (T4) and last block of retest2 (T5).

Spectral power

Pre-processing and time-frequency analysis of EEG data

during the performance of the simple motor task were

performed using SPM12 (Wellcome Centre for Human

Figure 2 Movement-related changes in spectral power in chronic stroke patients. Time-frequency spectrograms are averaged across

patients separately for contralateral (upper panel) and ipsilateral (lower panel) sensorimotor cortex for each EEG session (Pre, Post1, Post2).

The right hand panel displays overlaid beta power traces for the three sessions. The black rectangles indicate the time windows of interest of

peak changes in beta activity (MRBD, PMBR). Please note that PMBR occurred at lower beta frequencies (10–25 Hz) compared to MRBD, in line

with known age-related reduction beta peak frequency (Rossiter et al., 2014b). These time-frequency windows were identical for healthy age-

matched controls (see Espenhahn et al., 2019), and tested for significant differences between groups and EEG sessions.
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Neuroimaging, http://fil.ion.ucl.ac.uk/spm) and additional

scripts written in MATLAB (version R2016a; The

MathWorks, Inc., Natick, MA, USA). The raw EEG sig-

nal was offline re-referenced to the average signal across

all electrodes, bandpass filtered between 5 and 100 Hz,

additionally filtered with a 50 Hz notch filter, and down-

sampled to 300 Hz. Data were epoched from �1 to 9 s

relative to visual cue onset (0 s). Poorly performed trials

(e.g. movement initiated before cue signal) or those

containing artifacts (e.g. eye blinks) were excluded.

Artifact-free EEG time-series were decomposed into their

time-frequency representations in the 5–45 Hz range with

frequency steps of 0.1 Hz. A 7-cycle Morlet wavelet was

used for the continuous wavelet transformation. Power

was averaged across trials and rescaled to show changes

relative to the corresponding pre-movement baseline

period (�1 to 0 s prior to cue onset), expressed as per-

centage of this baseline power.

Spectral power time-series were derived from a pre-se-

lection of electrodes based on prior findings (Espenhahn

et al., 2017) showing that the most prominent move-

ment-related changes in beta activity for this simple

motor task were observed in the following electrodes

overlying the sensorimotor cortices contra- and ipsilateral

to the trained wrist: ‘C4’ ‘CP4’ ‘CP2’ and ‘C3’ ‘CP3’

‘CP1’ during movement-related beta desynchronization

(MRBD); and ‘C2’ ‘C4’ ‘CP4’ and ‘C1’ ‘C3’ ‘CP3’ during

post-movement beta rebound (PMBR). These bilateral

electrodes were combined within hemispheres to derive

resting beta power.

We chose specific time-frequency windows of interest

based on peak changes in beta activity in grand-averaged

(across conditions and subjects) time-frequency maps of

the bilateral sensorimotor regions, which revealed clear

movement-related beta-band (15–30 Hz) activity in two

distinct time windows of interest. This information was

used to optimize the alignment of constant duration (1 s)

and width (15 Hz) time-frequency windows to capture

maximum MRBD (1–2 s relative to cue onset), occurring

between cue onset and movement termination, and

PMBR (6–7 s relative to cue onset), which emerges after

movement cessation (Fig. 2). These time-frequency win-

dows were appropriate for patients as well as controls

[see Fig. 4 in Espenhahn et al. (2019) for movement-

related changes in spectral power in controls], and were

not adjusted individually.

MRBD and PMBR were extracted from the respective

1 s time windows and averaged for each EEG session

(Pre, Post1, Post2) for the pre-selected electrodes over

each hemisphere. The absolute pre-movement (resting)

baseline beta power from �1 to 0 s relative to cue onset

was also obtained.

In total, six different beta parameter estimates were

used for subsequent analyses: pre-movement baseline beta

(absolute power), MRBD (relative power) and PMBR

(relative power) from contra- and ipsilateral sensorimotor

cortices, respectively.

Statistical analysis

First, we examined effects of group, sequence type and

time on motor performance parameters using a mixed-de-

sign ANOVA, with ‘group’ (two levels: patients versus

controls) as between-subject factor and ‘sequence type’

(two levels: repeated versus random) and ‘time’ (five lev-

els: T0 versus T1 versus T2 versus T3 versus T4) as

within-subject factors. Second, we examined effects of

group, hemisphere and time on beta parameters using a

mixed-design ANOVA, with ‘group’ (two levels: patients

versus controls) as between-subject factor and ‘hemi-

sphere’ (two levels: contralateral versus ipsilateral) and

EEG ‘session’ (three levels: Pre versus Post1 versus Post2)

as within-subject factors. Post hoc Bonferroni-adjusted

t-tests were performed whenever main effects and interac-

tions were found. Parametric tests were used as all varia-

bles were normally distributed.

Third, to identify predictors of motor performance at

T2 or T4 in our patient group, accounting for multicolli-

nearity between measures, we used a multiple linear re-

gression approach with stepwise selection (forward and

backward algorithm; inclusion/exclusion probability lev-

els: aEnter< 0.05/aExclude> 0.1). We chose motor per-

formance at T2 rather than T1 as it most likely reflects

fairly stable learning effects unaffected by training-

induced temporary effects such as fatigue or boredom

(Rickard et al., 2008; Brawn et al., 2010), while perform-

ance at T4 indexes retention of the acquired motor skill

overnight, reflecting motor memory consolidation

(Robertson et al., 2005; Walker, 2005; Hotermans et al.,

2006). A combination of spectral power measures, includ-

ing (i) baseline beta power, (ii) MRBD and (iii) PMBR

from both sensorimotor cortices, as well as motor per-

formance measures during the training session, i.e. (iv) at

T0 and (v) at T1, were used to explain performance at

T2, while motor performance measures during retest1,

i.e. (vi) at T2 and (vii) T3, were further included to ex-

plain performance at T4. In addition, demographic infor-

mation such as age, motor function, cognitive function

and sleep characteristics were equally included. See

Supplementary Table 2 for a full list of predictor varia-

bles included. All variables were Z-scored before analysis

to produce regression coefficients (b) of comparable mag-

nitude and a leave-one-out cross-validation approach was

employed (Picard and Cook, 1984; Arlot and Celisse,

2010) to avoid overfitting and evaluate the predictive

strength of each regression model. This cross-validation

method is an established procedure for assessing general-

ization of results to an independent data set, particularly

with smaller sample sizes (Huang et al., 2011; Kang

et al., 2016). The strength of the prediction model was

quantified in terms of the correlation coefficient between

actual and predicted motor performance. A permutation-

test (100 iterations) was used to assess whether the differ-

ence between the actual and predicted performance was

greater than would be expected by chance (P-value below
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0.05). All data in the main text and tables are presented

as mean 6 standard deviation unless stated otherwise.

Statistical analyses were performed using SPSS (version

22; IBM) and custom-written MATLAB routines.

Data availability

The data supporting the findings in this study are avail-

able upon reasonable request from the corresponding au-

thor, S.E.

Results
All subjects were able to undergo training on the con-

tinuous tracking task and perform the simple motor task

during EEG recording. The patient group studied here

was well-recovered given their low level of impairment

(Supplementary Table 1) and comparable motor and cog-

nitive function to age-matched healthy controls (Table 1).

Stroke patients only significantly differed from controls

with regard to their sleep quantity for which they on

average reported 1 h of sleep more.

Is motor skill learning altered after

stroke?

Motor performance for both chronic stroke patients and

healthy controls at training and retest sessions is shown

in Fig. 3A. We were able to directly compare perform-

ance on the motor learning task between groups because

no systematic differences in baseline (block 1) perform-

ance between patients and controls [F(1,34)¼0.42,

P¼ 0.523] or repeated and random sequences

[F(1,34)¼0.002, P¼ 0.969] nor an interaction effect

[F(1,34)¼0.051, P¼ 0.823] (Fig. 3B) were present.

The mixed-design ANOVA on motor performance

revealed a significant main effect of ‘time’

[F(4,136)¼32.33, P< 0.001, effect size gp
2¼0.487], ‘se-

quence type’ [F(1,34)¼55.216, P< 0.001, effect size

gp
2¼0.619] and ‘group’ [F(1,34)¼4.80, P¼ 0.035, effect

size gp
2¼0.124]. In addition, we found significant

interactions between ‘time x group’ [F(4,136)¼4.25,

P¼ 0.006, effect size gp
2¼0.111], ‘time � sequence type’

[F(4,136)¼10.98, P< 0.001, effect size gp
2¼0.244] and

‘sequence type � group’ [F(1,34)¼5.58, P¼ 0.024, effect

size gp
2¼0.141], but no significant three-way interaction

was found. Post hoc analyses were performed separately

and described in the following sections.

Performance changes over the course of training

In contrast to the healthy age-matched controls, stroke

patients did not show significant immediate improvements

in motor performance with training (T0 versus T1) [F-

statistics and P-values of ANOVAs are summarized in

Supplementary Table 3], neither for the repeated

[t(15)¼1.62, P¼ 0.127] nor random sequence [t(15)¼
�0.73, P¼ 0.476]. Closer inspection of the tracking per-

formance in Fig. 3A shows a decline in performance to-

wards the end of the training phase for the stroke

patients, suggesting that temporary effects such as fatigue

or boredom might have depressed performance towards

the end of training.

Performance changes after training

During the short time period between the end of the ini-

tial training and retest1 session (T1 versus T2), patients’

motor performance significantly improved by 7%, with-

out further training, but only for the repeated sequence

[t(15)¼3.72, P¼ 0.002]. This indicates a boost in perform-

ance early after the initial training (45–60 min) that did

not significantly differ from healthy controls [t(34)¼0.56,

P¼ 0.582] (Fig. 3C).

In line, patients’ overall performance significantly

improved from T0 to T2 for the repeated sequence only

(11% improvement) [t(15)¼4.53, P< 0.001]. Together,

this suggests that patients actually learned, but that the

learning effects were masked at the end of training (T1),

most likely due to temporary effects of fatigue. However,

learning-related improvements were �50% smaller com-

pared to the healthy control group [t(34)¼�3.55,

P¼ 0.001].

Lastly, changes in motor performance, without practice,

at 24 h (retest2) after initial training were assessed.

Table 1 Group characteristics of stroke patients and healthy controls

Patients Controls Between-group difference

Handedness (Edinburgh) 87 6 24 85 6 21 t(34)¼�0.21, P¼ 0.833

Grip strength [lb] 66 6 26.04 63 6 21.03 t(34)¼0.41, P¼ 0.682

NHPT [pegs/s] 0.57 6 0.13 0.60 6 0.07 t(34)¼�0.93, P¼ 0.362

SART (error score, 0–225) 13 6 8.97 13 6 10.73 t(34)¼0.13, P¼ 0.897

SART (RT in ms) 456 6 114.3 451 6 142.9 t(34)¼0.108, P¼ 0.915

Sleep quantity [h]a 7 6 1.02 6 6 0.94 U 5 93.5, P 5 0.033

Sleep quality (1–8)a 4.7 6 1.57 5.2 6 0.87 U¼ 141.0, P¼ 0.560

Between-group comparisons only revealed a significant difference in sleep quantity. Independent-samples t-tests were used to test for between-group differences. Mann–Whitney

U-tests were applied. Handedness was assessed using the Edinburgh Handedness Inventory (Oldfield, 1971). Motor functions are affected hand/non-dominant hand only and sleep

measures are averaged across both days (both sleep measures were not significantly different between day 1 and day 2, P> 0.1). Significant effects are indicated in bold.
aDiscrete data.

NHPT, Nine Hole Peg Test; SART, Sustained Attention to Response Test.
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Overnight (T3 versus T4), stroke patients suffered a sig-

nificant 10% performance decrease (i.e. forgetting) specif-

ic to the repeated sequence [t(15)¼ �3.51, P¼ 0.003],

which was similar to the 12% performance decrement

observed in healthy controls [t(34)¼0.01, P¼ 0.992]

(Fig. 3C). Overall, stroke patients demonstrated signifi-

cantly improved performance on the repeated sequence at

T4 compared to T0 (9% improvement) [t(15)¼2.91,

P¼ 0.011], but nevertheless their overall sequence-specific

performance improvements were significantly smaller

compared to healthy controls [t(34)¼ �3.67, P¼ 0.001].

In summary, whilst capacity to learn a motor skill is

preserved in our stroke patients, the rate of learning is

diminished in comparison to healthy controls.

Do beta oscillations change with

training after stroke?

Average spectral changes in contralateral and ipsilateral

sensorimotor cortices in response to wrist movement are

shown in Fig. 2 before (Pre) and at the two time points

(Post1, Post2—Fig. 1A) after initial training. General fea-

tures of the spectral changes in beta activity induced by

the simple motor task have been detailed in a previous

study (Espenhahn et al., 2017) and replicated in the eld-

erly (Espenhahn et al., 2019).

Resting beta power

Absolute pre-movement (resting) beta power in either

contralateral or ipsilateral sensorimotor cortices was not

different between stroke patients and age-matched healthy

controls as evidenced by a lack of significant Group and

Hemisphere effects (Fig. 4A, F-statistics and P-values of

all ANOVAs are summarized in Supplementary Table 4),

consistent with previous observations (Rossiter et al.,

2014a). However, absolute pre-movement (resting) beta

power did change significantly across sessions. Post hoc

analyses revealed a significant but transient increase in

beta power immediately after training (Post1) in both

contra- [F(2,19)¼5.93, P¼ 0.006, effect size gp
2¼0.238]

and ipsilateral cortices [F(2,19)¼7.67, P¼ 0.002, effect

size gp
2¼0.287] in controls, which returned back to pre-

training levels on day 2. This effect was not seen in

stroke patients [F(2,30)¼1.45, P¼ 0.250].

Movement-related beta power changes

MRBD and PMBR in both sensorimotor cortices and

topographic maps are shown in Fig. 4C and D.

Interestingly, although the magnitude of MRBD was on

Figure 3 Motor skill learning of chronic stroke patients and healthy controls. (A) Average motor performance (RMSE) for repeated

and random sequences (solid and dashed lines respectively) across training (day 1), retest1 (day 1) and retest2 (day 2) sessions suggest reduced

performance improvements of stroke patients (wine red). Vertical dashed lines represent breaks between each session. (B) Corrected

performance estimates at the beginning and end of training (T0, T1) and retest (retest1: T2, T3; retest2: T4, T5) sessions. (C) Performance

differences (D) between time points, focusing on online learning (T0, T1) and offline learning across a shorter (retest1: T1, T2) or longer

(retest2: T3, T4) time delay as well as overall performance changes from baseline (T0–T2; T0–T4). Solid bars represent D performance on the

repeated sequence and striped bars on the random sequence. Positive and negative values, respectively, signify performance improvement and

decrement. Shaded area (A) and error bars (B, C) indicate between-subject standard error of the mean. Statistical difference from zero:

*P< 0.05, **P< 0.01, ***P< 0.001, grey *P< 0.1 (trend).
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Figure 4 Alterations in beta power and corresponding topographic maps. (A) Average pre-movement (resting; �1 to 0 s) beta power

was comparable between patients (dark and light purple) and healthy controls (dark and light blue) for both sensorimotor cortices before (Pre),

immediately after (Post1) and 24 h after (Post2) training. (B) Topographical plots of grand-averaged beta power showing the pre-selected

electrodes (black diamonds) which were pooled as contralateral and ipsilateral regions of interest. (C, D), Power in the movement (1–2 s;

MRBD) and post-movement time window (6–7 s; PMBR) before (Pre), immediately after (Post1) and 24 h after (Post2) training derived from

contralateral and ipsilateral sensorimotor cortices of stroke patients (dark and light purple) and controls (dark and light blue) indicated no

differential effect of stroke upon these beta dynamics. Error bars indicate between-subject standard error of the mean. Significant between-group

differences are indicated with a ‘þ’. Topographical distributions (right panels) of movement-related beta activity show differential contralateral

and ipsilateral modulation patterns for MRBD and PMBR.
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average �10% smaller in stroke patients compared to

controls, overall no significant group differences for either

the contra- or ipsilateral sensorimotor cortex were found

(except for the contralateral side at time point post1)

(Fig. 4C). Similarly, estimates of PMBR were comparable

between stroke patients and age-matched healthy controls

(Fig. 4D). In addition, both MRBD and PMBR signifi-

cantly changed across sessions. Post hoc analyses revealed

a significant reduction across sessions in contralateral sen-

sorimotor cortex for MRBD [F(2,19)¼4.38, P¼ 0.019, ef-

fect size gp
2¼0.187] and ipsilateral sensorimotor cortex

for PMBR [F(2,19)¼5.85, P¼ 0.006, effect size

gp
2¼0.235] in the healthy controls. Crucially, this train-

ing-related modulation of MRBD and PMBR was not

evident in the stroke patients.

In summary, just as with motor performance, there

were no significant differences in the properties of beta

oscillations prior to training between stroke patients and

healthy controls. However, less change in estimates of

beta activity was observed across training (days 1 and 2)

in our patients in comparison to controls.

Do beta oscillations predict

post-training performance in

stroke patients?

To determine whether there were significant predictors of

skill learning at T2 or skill retention at T4 in our patient

group, we employed a stepwise linear regression ap-

proach within a leave-one-out cross-validation.

First, none of the factors listed in Supplementary Table

2 significantly predicted motor performance shortly after

training (T2). However, attempts to predict motor per-

formance at T4 yielded a model with five significant pre-

dictive factors that accounted for 82% of the variance in

motor performance 24 h after initial training (T4)

(Fig. 5A). As expected, earlier motor behaviours (at T2

and T3) were the best predictors [T2: b¼ 0.41,

t(15)¼6.43, P< 0.001; T3: b¼ 0.62, t(15)¼9.67,

P< 0.001]. However, lower contralateral (ipsilesional)

PMBR immediately after training (Post1) was associated

with better future motor performance [b¼ 0.21,

t(15)¼4.79, P< 0.001]. In addition, dominance of the

affected hand [b¼ 0.13, t(15)¼3.07, P¼ 0.01] and sleep

[b¼ � 0.16, t(37)¼ � 3.96, P< 0.01] were additional ex-

planatory factors. Similarly, post hoc pairwise correla-

tions revealed a non-significant correlation between post-

training contralateral (ipsilesional) sensorimotor cortex

PMBR and performance at T4 [r¼ 0.10, P¼ 0.711],

which becomes significant after regressing out prior per-

formance, hand dominance, and sleep as confounding

covariates [squared semi-partial correlation: r2¼0.62,

P< 0.001].

Discussion
In this study, we were able to confirm that the capacity

for motor skill learning is preserved in chronic stroke

patients, but the rate of learning was diminished com-

pared to healthy controls even when the task is of equal

difficulty for everyone. Furthermore, we were able to

show that one aspect of cortical oscillatory behaviour in

stroke patients, specifically immediate post-training

PMBR from contralateral (ipsilesional) sensorimotor cor-

tex, contributed significantly to predicting motor perform-

ance 24 h after training.

Making the comparison between stroke patients and

healthy control subjects is fraught with difficulty because

of differences in pre-training performance between the

two groups. In this study, we avoided these performance

confounds by individually determining the velocity with

which the target moved (in contrast to studies that use a

fixed speed), thus ensuring that task difficulty was equal

across groups and left enough room for improvement in

performance. Our patients therefore had no discernible

differences in motor performance to the age-matched

healthy controls at the beginning of training. Consistent

with other studies (Platz et al., 1994; Winstein et al.,

1999; Boyd and Winstein, 2001, 2004, 2006; Pohl et al.,

2006; Vidoni and Boyd, 2009; Hardwick et al., 2017),

we found that stroke patients were able to improve their

motor performance with training, suggesting preserved

motor learning ability after stroke. Despite abnormal pat-

terns of brain activity that occur after stroke (Chollet

et al., 1991; Weiller et al., 1993; Marshall et al., 2000;

Johansen-Berg et al., 2002; Ward et al., 2003), preserved

ability to learn in stroke patients may likely be due to

the distributed nature of the neural network supporting

motor learning (Karni et al., 1995; Sanes and Donoghue,

2000; Doyon and Ungerleider, 2002). However, we

found that the overall level of performance achieved by

stroke patients with short-term training (T0–T2 and T0–

T4) was significantly reduced compared to age-matched

healthy controls. Although it is not possible to say

whether prolonged training (i.e. weeks) by our stroke

patients would have resulted in equivalent levels of per-

formance to healthy controls or whether patients reach a

performance plateau that remains categorically different

to healthy adults, our results show that some aspect of

learning was affected.

In this study, we have measured cortical beta oscilla-

tions as biomarkers of the potential for learning through

plasticity mechanisms. Despite evidence for aberrant beta

activity after stroke (Rossiter et al., 2014a; Shiner et al.,
2015), we rather unexpectedly did not find significant

stroke-related alterations in beta oscillations before train-

ing started. Given that effective recovery of motor func-

tion is associated with a normalization of brain activity

back towards a pattern seen in healthy controls

(Johansen-Berg et al., 2002; Ward et al., 2003), it

appears likely that the lack of post-stoke alteration in
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beta dynamics is due to restitution of nearly ‘normal’

beta activity in our well-recovered patient cohort.

However, we did see differences in beta oscillations be-

tween the two groups as motor training progressed.

While healthy controls demonstrated a transient post-

training increase in pre-movement (resting) beta activity

and reductions in both contralateral MRBD and ipsilat-

eral PMBR with training, stroke patients did not show

comparable patterns, suggesting less flexible modulation

of cortical beta power accompanying learning in stroke

patients. The transient training-related modulation of beta

power might be related to an increase of cortical inhib-

ition that is akin to temporary suppression of cortical

plasticity with motor learning (Rioult-Pedotti et al., 1998,

2000, 2007; Ziemann et al., 2004; Stefan et al., 2006;

Rosenkranz et al., 2007; Cantarero et al., 2013). We

might speculate that this physiological response is neces-

sary for practice-dependent plasticity processes to occur,

and if absent or reduced as observed in the stroke

patients, corresponds to reduced motor learning ability.

To date, several studies have investigated the relation-

ship between properties of cortical beta oscillations and

post-stroke motor impairment (Hall et al., 2010b;

Laaksonen et al., 2012; Rossiter et al., 2014a; Shiner

et al., 2015; Thibaut et al., 2017), but to the best of our

knowledge, no study has explored whether cortical beta

oscillations are associated with motor learning capacity

after stroke. By employing a regression approach with

leave-one-out cross-validation, we were able to show that

movement-related beta dynamics were associated with

future motor performance in chronic stroke patients.

Specifically, post-training contralateral (ipsilesional)

PMBR contributed significantly to a model that predicted

motor performance levels 24 h after training. More specif-

ically, patients who exhibited lower PMBR after training

performed better on the repeated sequence 24 h after

training. Given the link between beta oscillations and cor-

tical gamma-aminobutyric acid tone (Jensen et al., 2005;

Roopun et al., 2006; Yamawaki et al., 2008; Hall et al.,

2011, 2010a; Muthukumaraswamy et al., 2013), smaller

post-training PMBR likely reflects lower GABAergic in-

hibition (Laaksonen, 2012), and therefore higher potential

for training-dependent plasticity. This general interpret-

ation is in line with magnetic resonance spectroscopy and

positron emission tomography studies reporting decreases

in gamma-aminobutyric acid levels being associated with

better motor recovery after stroke (Kim et al., 2014;

Blicher et al., 2015). While the functional role of PMBR

is still under debate, it has been proposed to have a role

in promoting the status quo of the motor system

(Gilbertson et al., 2005; Engel and Fries, 2010), in assist-

ing sensory processing (Cassim et al., 2001; Alegre et al.,

2002), and more recently in feedforward model updating

(Tan et al., 2014, 2016; Alayrangues et al., 2019; Palmer

et al., 2019). Thus, we might speculate that lower post-

training PMBR leads to a necessary change in motor

plans, allowing for improved performance. In line with

our previous work (Espenhahn et al., 2019), this finding

generally supports the idea that neurophysiological meas-

ures can detect individual differences in a ‘brain state’

Figure 5 Prediction of motor performance at T4. Regression analysis provided statistically significant performance prediction (A) as

quantified by the correlation between actual and predicted motor performance in stroke patients (inset figure), with significance determined by

permutation-testing. The model consisted of five significant predictors accounting for 82% of variance in performance 24 h after training (T4).

Patients’ performance during training, post-training movement-related beta activity, affected hand and sleep quantity were related to

performance at T4. Z-scored regression coefficients (b) quantify the influence of each significant predictor upon performance level at T4. Error

bars represent standard error of the mean. (B) Importantly, post hoc squared semi-partial correlation confirmed that movement-related beta

activity immediately after training was positively related to performance at T4, indicating that smaller magnitude of contralateral (ipsilesional)

PMBR is associated with better future performance.
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that influence the effects of behavioural training, and

might be used in future modelling approaches to help

stratify patients in restorative trials and predict response

to treatment (Reinkensmeyer et al., 2016).

Here, we focused on well-recovered patients in the

chronic phase which limits generalizability of findings to

more impaired and acute patients. However, we argue

that the strength of this approach lies in the investigation

of motor learning independent of potentially obscuring

influences of motor impairments. Furthermore, it clearly

showed that well-recovered patients with ‘normal’ motor

control remain different to healthy adults in terms of

their ability to learn, most likely due to lesion-induced

structural and functional changes in the neural networks

supporting motor learning. Nevertheless, given the rela-

tively small sample size with variable lesion location and

the notion of increased potential for plasticity and height-

ened responsiveness to motor training during the early

post-stroke phase (Cramer, 2008; Murphy and Corbett,

2009; Krakauer et al., 2012; Zeiler and Krakauer, 2013;

Ward, 2017), further work in a larger patient population

including acute stroke patients is required to enhance our

understanding of the relationship between beta oscilla-

tions and motor learning ability post-stroke.

In conclusion, the current results extend previous find-

ings on the contribution of accessible beta oscillatory

measures in explaining how motor skills are acquired on

an individual level, beyond information provided by be-

havioural scores. While cortical oscillations may be only

one of several factors important for motor learning, they

may have value as markers of cortical function and plas-

ticity after stroke and may offer novel targets for thera-

peutic interventions aimed at modifying plasticity, such as

pharmacological and non-invasive brain stimulation

approaches (Kim et al., 2006; Chollet et al., 2011;

Zimerman et al., 2012).

Supplementary material
Supplementary material is available at Brain

Communications online.
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