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Predictive coding potentially provides an explanatory model for understanding the neurocognitive mechanisms
of psychosis. It proposes that cognitive processes, such as perception and inference, are implemented by a hier-
archical system, with the influence of each level being a function of the estimated precision of beliefs at that level.
However, predictive coding models of psychosis are insufficiently constrained—any phenomenon can be ex-
plained in multiple ways by postulating different changes to precision at different levels of processing. One rea-
son for the lack of constraint in these models is that the core processes are thought to be implemented by the
function of specific cortical layers, and the technology to measure layer specific neural activity in humans has
until recently been lacking. As a result, our ability to constrain the models with empirical data has been limited.
In this reviewweprovide a brief overview of predictive processingmodels of psychosis and then describe the po-
tential for newly developed, layer specific neuroimaging techniques to test and thus constrain these models. We
conclude by discussing themost promising avenues for this research aswell as the technical and conceptual chal-
lenges which may limit its application.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Symptoms of psychosis including hallucinations and delusions are
associated with various psychiatric and neurological disorders, includ-
ing schizophrenia, bipolar disorder, Parkinson's and Alzheimer's dis-
ease. However, understanding these symptoms and how they emerge
has been challenging. One line of work, often referred to as the neuro-
psychiatric approach, aims to understand psychiatric symptoms in
terms of alterations in normal cognition (Halligan andDavid, 2001). Ap-
plying this approach to delusions and hallucinations, the question then
becomes how changes in learning and perceptual inference might lead
to these symptoms. This question initially seems to require two separate
answers, one attempting to understand delusions in terms of deficits in
learning and one to understand hallucinations in terms of deficits in
perceptual inference. In contrast, computational theories of brain func-
tion developed in recent decades suggest that belief and perception
draw upon similar computational processes, leading to the proposal
that both hallucinations and delusions may arise from a common set
of processes. A particularly prominent account of psychosis which
takes this view is the hierarchical predictive coding theory of psychosis
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(Fletcher and Frith, 2009). In brief, this theory postulates that the brain
forms a hierarchical model of its environment, where each hierarchical
levelmaintains a belief about themost likely cause of its inputs,which is
updated by discrepancies between the level's prior belief and its inputs
(prediction errors). According to this view, hallucinations and delusions
result fromaberrant neural signalling of prior beliefs, sensory input and/
or prediction errors (Friston, 2005; Stephan et al., 2006; Fletcher and
Frith, 2009; Adams et al., 2013; Sterzer et al., 2018).

However, while predictive codingmodels of psychosis propose a rel-
atively simple unifying mechanism for a range of symptoms of psycho-
sis, this mechanism is thought to be implemented acrossmany layers of
a putative hierarchy that has not yet beenwell characterised. As a result
the models are effectively over parameterised; they are able to explain
the same behaviour inmultiple ways, by postulating different perturba-
tions at different levels of the hierarchy (Bowers and Davis, 2012;
Williams et al., 2018; Litwin and Miłkowski, 2020). To complicate mat-
ters further, a given area of the cortex is thought to simultaneously im-
plement both ascending and descending predictive coding processes
(Fig. 1) in different cortical layers. Most neuroimaging techniques are
unable to discriminate layer specific activity and so have been of limited
use in constraining the various hypotheses generated by predictive cod-
ing accounts of psychosis.

In the present paper we will briefly summarise hierarchical predic-
tive coding models of the brain and how they have been used to
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Four competing hypotheses for hierarchical disruption in psychosis. A simplified schematic representation of communication between lower levels of the cortical hierarchy (labelled
as v1) and higher levels (labelledhigher brain areas).Higher areas communicate their estimate of the cause of sensory events through feedback connections (“priors”, green arrows), lower
areas communicate the unexplained sensory evidence through feedforward connections (red arrows). The relative influence of these connections is governed by their precision
(represented as the thickness of the green/red arrows). Various predictive processing accounts of psychosis have postulated a relatively reduced influence of priors (e.g. to explain the
resistance to illusions of people with psychosis) which may be caused by increased weighting of sensory evidence (panel A) or decreased weighting of priors (panel B). Other
predictive processing accounts of psychosis have postulated relatively greater influence of priors (e.g. to explain increased effect of learned associations on perception in psychosis)
which may be caused by reduced influence of sensory evidence (panel C) or increased influence of priors (panel D). Discrimination of these competing hypotheses requires
assessment of the relative weighting of top down vs bottom up connections (the thickness of the green vs. the red arrows). Practically this requires assessment of functional activity
within separate cortical laminae. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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understand hallucinations and delusions. Whilst describing its applica-
tion to these symptoms, we will highlight how different model variants
have been used to account for the same research findings. We will then
describe a novel neuroimaging technique, laminar fMRI,which is able to
assess layer specific cortical activity. Finally, we will describe how this
technique might help us constrain predictive coding models of psycho-
sis, in particular by its ability to disentangle bottom-up and top-down
signals, as well as describing potential limitations to the utility of this
technique.

2. Normative predictive coding models – the theory

Before discussing how predictive coding has been used to under-
stand hallucinations and delusions, we will first introduce the norma-
tive predictive coding model as it is commonly described. The idea
that the brain aims to predict the outside world is not novel. Indeed,
this idea dates back to Helmholtz who provided the crucial insight
that the brain needs to infer the causes of a given sensory input,
which can be achieved through combining new sensory data with
pre-existing knowledge of theworld (Von Helmholtz, 1867). These the-
ories were later developed to suggest that the brain generates hypothe-
ses about the causes of its sensory inputs (see for example Neisser,
1967; Gregory, 1980; Yuille and Kersten, 2006 for a review).

Predictive coding theories offer a set of solutions as to how this
modelling of the world might be achieved, algorithmically and in
terms of neural implementation (Clark, 2013, 2015; Hohwy, 2013). Pre-
dictive coding approaches have been applied to general signal process-
ing problems (Makhoul, 1975), aswell as understanding the function of
2

specific neural structures such as the retina (Srinivasan et al., 1982).
However in the present paper we focus on how predictive coding has
been used to understand cortical processing and its application to psy-
chosis (Rao & Ballard, 1999; Spratling, 2008, 2010; Friston 2009 &
2010).

Although multiple, subtly different implementations of predictive
coding have been proposed (see Spratling, 2017 for an overview), the
common factor across them is that the brain forms a hierarchical gener-
ative model of its environment, where predictions are made about the
causes of sensory information. These predictions are compared to sen-
sory input, which in the case of a discrepancy creates a prediction
error that is used to update the model's predictions, iteratively improv-
ing the model. Both predictions and sensory inputs are conceived of as
probability distributions with a mean and variance. The mean provides
an estimate of the current belief or sensory evidence whereas the vari-
ance estimates how certain this belief or evidence is. This certainty is a
crucial component of predictive processing models, where it is often
called “precision” (simply the inverse of the variance), and is used to
weight the influence of higher level beliefs versus lower level evidence.
To give an example,when sensory input is less precise, as in a rain storm
where the rain drops blurs the visual field, prior predictions will tend to
influence perceptionmore. Thus, if we expect that someone is out in the
rain looking for us, we will be more likely to perceive a figure standing
in the rain, because our sensory inputs are less precise and have a re-
duced impact relative to our belief. Here it is important to point out
that an identical outcome (perceiving a figure in the rain) may also be
produced by increasing the precision of the prior belief rather than re-
ducing the precision of the sensory inputs, illustrating a more general



Box 1
What is the evidence that the brain processes information in theway de-
scribed by hierarchical predictive coding accounts?

Hierarchical predictive coding theories make a number of explicit
predictions about the neural processes we should observe, and
there is varying support for these different predictions (reviewed
in Walsh et al., 2020 in detail). We will briefly review these lines
of evidence as they directly pertain to how predictive coding is ap-
plied in psychosis. First, neural responses to sensory stimuli
should scale inversely with how predictable these stimuli are. This
prediction is supported by reports of increased neural responses to
unexpected stimuli, and even unexpected omissions of predicted
stimuli (Heilbron et al., 2018; Grotheer et al., 2016; de Lange,
2018 for reviews). Second, top-down signals should represent
sensory predictions. There is indeed evidence that expectations
can induce stimulus-specific sensory signals in early sensory re-
gions (Ekman et al., 2017; Kok et al., 2016; Aitken et al.,
2020a). Third, in each level of the cortical hierarchy there are
two neural populations, one signalling error and the other predic-
tions. There is anatomical evidence that feedback and
feedforward connections indeed originate from different cell pop-
ulations (Markov et al., 2013; Berezovskii et al., 2011) and oscil-
late in different frequencies (Bastos et al., 2012; Heilbron et al.,
2018; Arnal et al., 2012). Crucially, some studies report different
cell populations reporting mismatch, omission and prediction sig-
nals in V1 in mice (Keller et al., 2012; Fiser et al., 2016; Attinger
et al., 2017; Leinweber et al., 2017). However, evidence that pre-
diction errors originate from distinct feedforward projecting corti-
cal neurons, as well as evidence that predictions originate from
distinct feedback projecting neurons is lacking (Walsh et al.,
2020). Fourth, prediction error minimization is achieved through
reciprocal exchange of error and prediction signals across hierar-
chical levels. This hypothesis is possibly the most difficult to test.
There is indeed evidence in favour of hierarchical processing in
sensory systems, but the extent towhich this is in linewith predic-
tive coding accounts remains contested (Walsh et al., 2020). In
summary, there is broad support for the existence of the neuroan-
atomical connections and cell populations in the brain required to
support predictive processing and some evidence that these con-
nections and populations propagate the information described by
predictive processing accounts. However, the empirical data
may also be consistent with alternative hierarchical architectures
which pass different messages between layers than those speci-
fied by predictive processing models. More research will be
needed to demonstrate whether or not cortical processing is in-
deed implemented in accordance to predictive coding theories, in
which laminar fMRI is expected to play an important role (Stephan
et al., 2019; Lawrence et al., 2019).
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aspect of predictive processing theories—it can be difficult to discrimi-
nate reduced/increased precision at a lower level from the reciprocal
change in precision at a higher level.

The brain's sensory systems are well placed to integrate prior expec-
tations with sensory input as described by predictive processing
models. The neocortex consists of six distinct layers (Felleman and
van Essen, 1991), and feedback and feedforward connections between
levels in the sensory hierarchy have different laminar profiles. Specifi-
cally, feedback connections preferentially originate from deep layers
and terminate in agranular deep and superficial layers, avoiding the
middle layers, whereas feedforward connections preferentially origi-
nate from superficial layers, and terminate in granular middle layers
(see Fig. 1). Predictive coding is thought to be implemented through
these connections, where predictions are conveyed by the feedback
connections, and prediction errors by the feedforward connections
(Felleman and van Essen, 1991; Angelucci et al., 2002; Bastos et al.,
2012). This proposed laminar specificity of top-down and bottom-up
processes in hierarchical predictive coding is – although biologically
plausible – very difficult to test empirically in humans, as conventional
neuroimaging methods cannot differentiate between cortical layers
due to low spatial resolution (see Box 1 for a summary of the non-
clinical evidence that hierarchical predictive coding accurately describes
brain function). Therefore, without the ability to differentiate between
cortical layers, predictive coding theories generally, and those related
to psychosis specifically, are challenging to formally test. We argue
that recent advances in neuroimaging methodology have the potential
to change this (Lawrence et al., 2019a, 2019b; Stephan et al., 2019).

3. Hierarchical predictive coding and how it has been applied to
psychosis

Although the empirical fate of predictive coding in humans is not yet
decided (see Box 1), the theory has inspiredmany researchers to try and
understand the causes of specific psychotic symptoms in predictive cod-
ing terms. This approach has motivated various inventive studies that
have sought to test predictive coding accounts of psychosis (see
below). However, the dearth of direct measures of the physiological
processes believed to implement predictive coding in the human brain
has led to a lack of constraint on the proposed models. The first hierar-
chical predictive coding theories of psychosis emerged 15 years ago
(Friston, 2005; Stephan et al., 2006). In these papers it was suggested
that hallucinations can be conceived as a symptom that might be ex-
plained by overly precise priors, possibly as the result of aberrant cholin-
ergic neurotransmission (Fig. 1d). A hallucination could arise in these
circumstances in the presence of noisy sensory input. This account has
face validity, as complex hallucinations are the presence of a percept
in the absence of sensory input, so therefore seem to rely on strong, pre-
diction error suppressing, top-down signals. Indeed, there is evidence
suggestive of overly strong prior expectations in psychosis, with studies
showing enhanced influence of often explicitly learned prior beliefs in
visual (Schmack et al., 2013; Teufel et al., 2015; Davies et al., 2018)
and auditory inference (Cassidy et al., 2018; Powers et al., 2017;
Haarsma et al., 2020b; although see Valton et al., 2019). It should be
noted that the evidence cited for overly precise priors (Fig. 1c), could
equally be the product of reduced precision of sensory evidence
(Fig. 1d).

Fletcher and Frith (2009) used a hierarchical predictive coding ac-
count to understand both hallucinations and delusions in terms of aber-
rant coding of prediction error. Specifically, these authors propose that
priors are relatively imprecise in psychosis, which renders everything
surprising, or salient, characterising delusional mood (Fig. 1b). In pre-
dictive coding terms, even predictable stimuli evoke large prediction er-
rors, since they are not sufficiently explained away due to imprecise
predictions. These inappropriate prediction errors in turn result in inap-
propriate updates of patients' model of the world, i.e., the formation of
delusional beliefs. Applying this framework to auditory hallucinations,
3

it is argued that these can arise when inner speech is misinterpreted
as external sounds (Feinberg, 1978). This is thought to be the result of
an aberrant efference copy, which is an internally generated neural sig-
nal that informs the brain that a sensation is internally generated (as in
internal speech). When this efference copy is aberrant, the brains audi-
tory cortex is not informed that internal speech is internally generated,
resulting in an external attribution (Crapse and Sommer, 2008). This
efference copy can be conceived in a predictive coding framework as a
prediction that, in the context of hallucinations, is less precise. Indeed
there is evidence that individuals with schizophrenia fail to attenuate
the sensory consequences of their own actions (Shergill et al., 2005;
Blakemore et al., 2000; Ford and Mathalon, 2004). Further evidence
supporting imprecise priors in psychosis comes from studies using
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illusions, which rely on prior knowledge (Silverstein and Keane, 2011).
For example the hollow-mask illusion, where a concave mask is
perceived as convex due to the brain's strong priors that faces are con-
vex (Gregory and Gombrich, 1973), is reduced in schizophrenia
(Schneider et al., 2002) due to impaired feedback signalling (Dima
et al., 2009, 2010). Another example is the McGurk illusion, which indi-
viduals with schizophrenia are less susceptible to (Pearl et al., 2009;
White et al., 2014). It should be noted here, that the evidence for impre-
cise priors (Fig. 1b) could equally be the product of increased precision
of sensory evidence (Fig. 1a). To further support their case for aberrant
prediction errors in psychosis, Fletcher and Frith (2009) cite evidence
from associative learning. In various associative learning models, pre-
diction errors play an important part in signalling discrepancies be-
tween obtained and expected value (reward or signed prediction
errors; Rescorla et al., 1972; Sutton and Barto, 1998; Schultz et al.,
1997) as well as signalling the absolute difference between obtained
and expected value (surprise or unsigned prediction errors) which
play an important part in learning about the statistics of the environ-
ment (Pearce and Hall, 1980; Den Ouden et al., 2012; Mathys et al.,
2011, 2014). Both forms of prediction errors can be found in the brain
(Fouragnan et al., 2018 for a meta-analysis), and both have been
shown to be perturbed in psychosis (Corlett et al., 2007a; Murray
et al., 2008; Ermakova et al., 2018). However, although these findings
are compatible with hierarchical predictive coding, they do not address
the core elements of predictive coding, i.e. scaling of prediction errors to
precision, and the hierarchical nature of inference (see section above).
More recently there has been some evidence for aberrant precision-
weighting of prediction errors in psychosis (Haarsma et al., 2020a), as
well as evidence for specific perturbations during hierarchical learning
in psychosis (Cole et al., 2020). Although these studies are addressing
hypotheses from predictive coding specifically, they are still limited in
that they cannot discern the layer specific implementation, and there-
fore cannot distinguish whether aberrant prediction errors are due to
impaired top-down or bottom-up signals (conflating Fig. 1a with 1b
and 1c with 1d).

The disagreementwith regards towhether priors are relativelymore
or less precise can be partially resolved by considering that different as-
pects of psychosis are related tomore or less precise prior expectations.
Adams et al. (2013) argues that psychosis can be understood as a disor-
der of precision. Distinguishing between state and trait abnormalities,
they argue that trait abnormalities, including negative symptoms and
soft neurological signs, can be understood as a relative decreased preci-
sion of priors. In contrast state abnormalities such as hallucinations and
delusions can be understood as potential compensatory increase in pre-
cision of priors as previously suggested (Friston, 2005; Stephan et al.,
2006). They demonstrate using simulations that the increased precision
of prediction error can be counteracted by increasing the precision of
the prior (panel 1c) at the cost of dissociating from the sensory environ-
ment, characterising hallucinations and delusions. In terms of the bio-
logical implementation, it is argued that NMDA receptors are well
placed to encode post-synaptic precision in top-down projecting deep
pyramidal cells, whereas dopamine receptors might play a role in
encoding the precision of bottom-up prediction errors in superficial py-
ramidal cells. In short the hypothesis put forward byAdams et al. (2013)
attempts to explain various symptoms of psychosis in terms of aberrant
precision, with different effects occurring at different time points across
the illness, and offers a neurobiological hypothesis about how it might
be implemented in the brain.

The most recent iterations of the hierarchical predictive coding ac-
count of psychosis at time ofwriting argues for amore nuanced perspec-
tive still (Sterzer et al., 2018; Heinz et al., 2019). It is proposed that,
although the brainmight be summarized as performing some kind of hi-
erarchical Bayesian inference, it does not follow that psychosis can be
characterised as a gross overweighting or underweighting priors. Similar
to Adams et al. (2013), it is suggested that different aspects of psychosis
might be associatedwithmore or less precise prior expectations. Sterzer
4

et al., 2018 and Heinz et al., 2019 expand the theory by including differ-
ent sensory modalities, different hierarchies, as well as different disease
stages, which can all be associated with aberrant precision in prior ex-
pectations and/or sensory input in complex interacting ways (panels
1a-d).

In summary, separate, mutually exclusive, hierarchical predictive
coding theories of psychosis have been proposed over the last
15 years. The individual theories are able to account for some aspects
of experimental findings, but there is little strong evidence to favour
one theory over another. Strikingly, most theories pertain to physiology
at the laminar level of the cortex, and with the lack of appropriate neu-
roimaging methods, it is challenging to discriminate between the com-
peting accounts. In the next section we introduce laminar fMRI and
suggest that it may be a useful tool for adjudicating between competing
predictive processing accounts of hallucinations and delusions.

4. Laminar fMRI: might it provide a useful test of predictive coding
theories of psychosis?

Layer-specific fMRI was first described a decade ago (Koopmans
et al., 2010). However, it is only recently that ultra-high field MRI scan-
ners, which allow for the acquisition of submillimetre fMRI data, have
become widely available. Various studies have demonstrated that lam-
inar fMRI can disentangle bottom-up and top-down cognitive pro-
cesses. For example, visual bottom-up sensory input has been shown
to preferentially activate the middle layers of V1 (Koopmans et al.,
2010; Lawrence et al., 2019b) in line with neuroanatomical studies
(Felleman and van Essen, 1991; Angelucci et al., 2002). According to
the same neuroanatomical studies, top-down signals should terminate
in deep and superficial layers, avoiding the middle layers. Indeed a
number of laminar fMRI experiments studying different top-down
effects including attention, working memory and prediction have
found corresponding activity dominating in deep and superficial layers
(Lawrence et al., 2018; Lawrence et al., 2019a, 2019b; Klein et al., 2018;
De Martino et al., 2015; Muckli et al., 2015; Gau et al., 2020; Kok et al.,
2016; Aitken et al., 2020a, 2020b). Thus, although the technique of lam-
inar fMRI is still in its infancy, it is encouraging that studies like
Lawrence et al., 2018, find laminar specific profiles of working memory
in superficial and deep-layers but not in the middle layers, perfectly in
line with physiological studies in mammals (Van Kerkoerle et al.,
2017). The ability of laminar fMRI to measure layer specific top-down
and bottom-up effects suggests that it is well suited to study hierarchical
predictive coding theories of psychosis which pertain to the contribu-
tion of different cortical layers in signalling top-down prior expectations
and bottom-up prediction errors. In the following section we provide
specific examples of how laminar fMRI might be used to achieve this
goal. For the sake of argument, we will assume for the remainder of
this paper that prediction errors aremost likely to be detected in the su-
perficial layers of the cortex, in line with neuroanatomical studies
(Felleman and van Essen, 1991, Angelucci), predictive coding theories
(Bastos et al., 2012), as well as evidence demonstrating error signalling
in supragranular layers (Bonaiuto et al., 2018a, 2018b; Sajad et al.,
2019). However, it should be kept in mind that since feedforward con-
nections arising from superficial neurons terminate in themiddle layers
of downstream regions (Felleman and van Essen, 1991; Angelucci et al.,
2002), future studies might demonstrate that BOLD activity in the mid-
dle layers might reflect prediction errors as well, reflecting the post-
synaptic input from these lower-level forward-projecting superficial py-
ramidal cells.

Various paradigms have been used to study how predictions differ-
entially affect perception in psychosis. Although sometimes neuroimag-
ing data have sometimes been collected while participants complete
these paradigms, to date this has not included laminar imaging able to
address the key questions described above. Startingwith visual illusions,
psychosis has been associated with a resistance to specific illusions,
which has been framed as evidence in favour of aberrant precision of



J. Haarsma, P. Kok and M. Browning Schizophrenia Research xxx (xxxx) xxx
prior expectations in psychosis (Notredame et al., 2014; Keane et al.,
2016), although it could in theory also be related to increased precision
of sensory input (see Fig. 1a&b). Laminar fMRI can be used to study vi-
sual illusions, such as the Kanizsa illusion, for which it has been shown
that illusory contours are signalled in the deep layers of V1 (Kok et al.,
2016) in line with subsequent animal studies (Pak et al., 2020). Individ-
uals with schizophrenia tend to be more resistant to various illusions
such as the Kanizsa illusion (Spencer et al., 2003, 2004; but also see
Foxe et al., 2005). It would be possible to use the paradigm used by
Kok et al. (2016), where participants undergo laminar fMRI scanning
whilst viewing the Kanizsa illusion or a control stimulus. Using a
retinotopic mapping procedure the regions in V1 coding for the illusory
contours can be assessed directly to test whether resistance to an illu-
sion is indeed related to aberrant feedback processes in the deep layers
of V1, reflecting reduced precision of a perceptual prior (Fig. 1b). In con-
trast, if there is indeed precision in sensory input, thiswould be reflected
by increased activity in superficial layers in retinotopic regions where
sensory input is presented (Fig. 1a). Similarly, some studies have re-
ported decreased susceptibility to cross-modal illusions in psychosis, in-
cluding theMcGurk effect (Pearl et al., 2009;White et al., 2014;Haarsma
et al., 2020b), which has been interpreted as an example of predictive
coding (Arnal et al., 2011; Blank and Davis, 2016). Laminar neuroimag-
ing could similarly be used to test whether the resistance to certain
cross-modal illusions is indeed due to aberrant processing in specific
layers (Gau et al., 2020).

In contrast to the lower-level expectations proposed to underlie the
illusions mentioned, previous studies have suggested that prior expec-
tations induced by higher order learned associations are stronger in psy-
chosis (e.g. Schmack et al., 2013; Powers et al., 2017; Cassidy et al.,
2018; Haarsma et al., 2020b; however also see Valton et al., 2019). In
order to test this hypothesis directly, laminar fMRI can be used in com-
bination with tasks where the participants learns to predict the most
likely sensory stimulus. Previous experiments in patients have sug-
gested that individuals with a history of hallucinations are prone to hal-
lucinatory experiences under these conditions due to an increased
precision in priors (Powers et al., 2017). Studies in healthy individuals
have demonstrated that the mere expectation of a stimulus induces ac-
tivity in the deep layers of V1 which is specific to the expected stimulus
(Aitken et al., 2020a). If it is indeed the case that conditioned hallucina-
tions as in Powers et al. (2017) are due to more precise priors, this
should be reflected by increased activity in the deep layers of V1 specific
to the hallucinated stimulus (Fig. 1c). Alternatively, the relative increase
in prior expectations might be the result of decreased precision in sen-
sory input. This could be tested by studying the activity induced by sen-
sory stimulation. If psychosis is characterised by a reduction in precision
of sensory input, thiswould be reflected in diminished activity in the su-
perficial layers during sensory stimulation. Furthermore, the increased
precision of prior expectationsmight be secondary to an initial increase
in the precision of bottom-up prediction errors during the learning
stage of the experiment where the association between a cue and a
stimulus is learned. This question remains unexplored as participants
are often assumed to have learned the association between a cue and
a stimulus equally well before the experiment is started. However, if
the learning stage of the experiment were to be included in the imaging
phase of the experiment, we might find that individuals with a history
of hallucinations are characterised by increased signalling of prediction
error in the superficial layers of V1 during learning. This could result
in an overly precise prior during the experimental phase of the experi-
ment, as reflected by increased expectation induced activity in the deep
layers of V1. In this way hallucinations might be the result of increased
precision of prediction error as well as increased precision of prior ex-
pectations at different times in the same experimental paradigm.

So far, we have described how laminar fMRI can directly test the
hypotheses that psychosis is associated with increased/decreased sig-
nalling of prior expectations or whether alternative mechanisms are re-
sponsible (e.g., lowered precision of sensory input). However, in order
5

to establish whether psychosis is the result of specifically hierarchical
predictive coding effects, a further four hypotheses need to be tested.
Here we refer back to the four specific hypotheses that follow from nor-
mative hierarchical predictive coding theory (see Box 1 & Walsh et al.,
2020). The first hypothesis is that psychosis is characterised specifically
by aberrancies in the coding of precision, in particular the scaling of pre-
diction errors in proportion to their precision (Adams et al., 2013).
There is some evidence for alterations in the role of precision in percep-
tual inference in psychosis (Cassidy et al., 2018), as well as precision-
weighting of prediction error (Haarsma et al., 2020a). In order to test
this hypothesis directly, paradigms will be needed which vary the pre-
cision of sensory input (for example by introducing noise in sensory
stimuli) as well as the precision of prior expectations (for example by
varying the predictability of cue-outcome relationships in sensory con-
ditioning). Using these paradigms it is possible to explore whether pre-
diction errors are indeed scaled to precision in the superficial layers, and
whether this is indeed aberrant in psychosis. Crucially, in order to disen-
tangle prediction errors from sensory input, paradigms must be used
where the predictability of sensory input is varied. If superficial layers
indeed reflect prediction error, activity must be observed to reduce as
the predictability of the stimulus increases. Indeed, when sensory
input is unpredicted, prediction errors will be identical to sensory
input, and are therefore inseparable from each other, and thus varying
predictability is key. In other words, prediction errors are supposed to
reflect sensory input with predictions subtracted out. Second, the hier-
archical predictive coding theory of psychosis makes the prediction
that feedback connections convey predictions. If enhanced activity in
deep layers is demonstrated in psychosis, potentially reflecting stronger
prior expectations, it will need to be demonstrated that this feedback
activity reflects stimulus-specific predictions by decoding the content
of these signals, as has been done using laminar fMRI in humans
(Aitken et al., 2020a). This will provide support for the view that feed-
back activity reflects predictions. Third, hierarchical predictive coding
postulates different cell populations conveying predictions and error
signals. With respect to its application to psychosis, because the theory
proposes that psychosis is associated with aberrant signalling of predic-
tion errors, it will be important to demonstrate that possible aberrant
activity in the superficial layers of sensory cortices indeed reflects aber-
rant coding of prediction errors, rather than simply reflecting sensory
input. Findingmerely aberrant coding of sensory input in the superficial
layerswill not be sufficient support for a predictive coding deficit in psy-
chosis. Fourth, in order to specifically support the hierarchical predictive
coding account of psychosis, it will need to be demonstrated that the al-
terations related to psychosis are indeed hierarchical in nature. Various
studies have argued that low-level sensory context independent predic-
tions and high-level learned context dependent predictions might be
differently affected in psychosis (Sterzer et al., 2018; Heinz et al.,
2019; Haarsma et al., 2020b), which might explain why some studies
find stronger and others weaker priors. Laminar fMRI may be used to
study whether different forms of predictions originate from different
levels of the hierarchy as well as demonstrating they are differently af-
fected in psychosis. For example, the visual system is biased towards
previously presented stimuli, an effect known as serial dependence.
This is believed to be a low-level perceptual effect (Fischer and
Whitney, 2014; St. John-Saaltink et al., 2016), which could be driven
by top-down activity. As lower-level priors have been suggested to be
weaker in psychosis (Schmack et al., 2013; Sterzer et al., 2018; Heinz
et al., 2019; Haarsma et al., 2020b), this might reflect a weakened effect
of prior expectations in the deep layers of V1, or in contrastmight reflect
enhanced activity in the superficial layers of V1. In contrast, similar per-
ceptual biases can be induced through higher-level associative learning
(Aitken et al., 2020b),whichmight reflect expectations originating from
high-level areas like the hippocampus (Hindy et al., 2016, Schapiro
et al., 2012, Kok and Turk-Browne, 2018, Kok et al., 2020). Experimental
paradigms that manipulate whether expectations are low-level, like se-
rial dependence, or high-level, as when perceptual biases are induced



J. Haarsma, P. Kok and M. Browning Schizophrenia Research xxx (xxxx) xxx
by learned cues, in combination with laminar fMRI to investigate
whether the observed effects should be attributed to altered feedback
or feedforward signalling, will provide important evidence that predic-
tive coding deficits in psychosis are indeed hierarchical in nature. Of
course, it is possible that laminar fMRI itself will provide important in-
formation on foundational questions, such as the representational con-
tent of the different levels of the informational processing hierarchy. For
example, by combining computational models (as inWeber et al., 2020)
with laminar fMRI we could start to explore whether lower-level and
higher-level prediction errors indeedmaponto different levels of the su-
perficial layers of cortical hierarchy and explore how they are perturbed
in psychosis. Furthermore, by using connectivity analysis it would be
possible to establish the anatomical network of lower level regions
that pass prediction errors to a higher region, allowing for the character-
isation of the informational nature of the prediction and prediction error
represented by different levels in the cortical hierarchy.

Lastly, it should be noted that psychosis is likely to be a heteroge-
neous phenomenon,where similar experiencesmight result from stron-
ger prior expectations at a particular level of the hierarchy in one group
of individuals andweaker prior expectations at another level in other in-
dividuals. Indeed, the methods outlined above could in principle help
differentiate these putative populations of patients on the basis of their
neurological profiles.

5.What laminarneuroimaging can tell us about theneuromodulatory
systems involved in encoding precision

Hierarchical predictive coding theories of psychosis suggest that dif-
ferent neurotransmitters are involved in signalling precision of prior ex-
pectations and prediction error. Indeed, they suggest that perturbations
of these neurotransmitter systems play an important role in the emer-
gence of psychotic symptoms (Adams et al., 2013; Sterzer et al., 2018;
Heinz et al., 2019). In order to understand the neuromodulatory sys-
tems involved in encoding the precision of prior expectations and sen-
sory evidence on the laminar level, pharmacological manipulations
may be used to selectively target specific modulatory neurotransmitter
systems. For example, NMDA-receptors are present in feedback pyrami-
dal cells (Fox et al., 1989; Rosier et al., 1993) and are therefore ideally
located for encoding the precision of prior beliefs. Disturbing the func-
tion of the NMDA-receptors using ketamine induces some symptoms
of psychosis, in particular delusions and dissociative experiences,
more so than hallucinations (Corlett et al., 2007b; Corlett et al., 2016).
Because ketamine predominantly effects delusions rather than halluci-
nations, this might suggest that ketamine is more effective in disturbing
precision in higher levels of the cortical hierarchy. Indeed, there is evi-
dence from EEG that prediction errors about higher-level statistical reg-
ularities are particularly suppressed by ketamine (Weber et al., 2020).
Laminar fMRI could be used to test whether these perturbances are
due to directly affecting the coding of prediction errors in the superficial
layers or whether this is secondary to altered feedback signalling in the
deep layers, as would be predicted by the prevalence of NMDA-
receptors on feedback neurons (Fox et al., 1989; Rosier et al., 1993). In
contrast, acetylcholine has been related to stronger signalling of
bottom-up information in auditory mismatch paradigms (Baldeweg
et al., 2006; Moran et al., 2013. This could potentially reflect increased
precision of prediction errors in lower levels of the cortical hierarchy,
or weakened feedback from higher levels. In order to test this hypothe-
sis, laminar fMRI can be used in combinationwith amismatch paradigm
to demonstrate that acethylcholine indeed increases signalling of
bottom-up prediction errors in sensory superficial layers, or whether
this is secondary due to diminished feedback activity in sensory deep
layers. Inversely, scopolamine, an acetylcholine antagonist, is known
to induce hallucinations by sensory conditioning (Warburton et al.,
1985). This might be achieved by reducing the precision of sensory
prediction errors in the superficial layers of sensory cortices, thereby
decoupling the sensorium from sensory input, allowing hallucinations
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to manifest, rather than affecting feedback activity in the deep layers
per se. Thus NMDA-receptors and the cholinergic system have been
suggested to affect precision in different ways, where ketamine dimin-
ishes high-level prediction errors and acetylcholine increases low-
level prediction errors. A first stage in assessing these mechanisms
would involve characterising the effects of these agents on layer specific
activity using laminar imaging.

6. Challenges to laminar fMRI

There are a number of technical challenges that need to be overcome
for laminar fMRI to be used widely in psychiatric research. For example,
large draining veins in the cortical surface cause a spatial bias towards
the surface (Uludağ and Blinder, 2018). This complicates the interpreta-
tion of individual layer activity when using conventional bold methods
(Kay et al., 2019). Alternative non-BOLD fMRI sequences (reviewed in
Huber et al., 2019), such as the CBV-weighted VASO (Lu et al., 2003)
method, have been shown to be locally more specific and have contrast
that is more evenly weighted across the cortical depths, but with re-
duced sensitivity compared to Gradient Echo (GE) EPI (Huber et al.,
2015). Further issues relate to the low sensitivity and restricted brain
coverage, as well as motion artefacts that restrict laminar analyses
that use high field strengths. However, recent developments have dem-
onstrated that these limitationsmay be overcome,making laminar fMRI
more suitable for widespread use (Huber et al., 2020). For example, SS-
SI-VASO or MAGEC-VASO sequences provide superior brain-coverage
over conventional methods, whilst not relying on the BOLD effect,
thereby side-stepping the issues regarding large draining veins. With
regards tomotion-distortion, prospectivemotion-correction can reduce
the amount of correction that needs to be performed post-data acquisi-
tion (Bause et al., 2020). Thus, although laminar fMRI comes withmany
technical challenges, the field is moving quickly to overcome these
limitations.

Currently it is commonpractice for laminar fMRI to have a resolution
of around 0.8 mm isotropic. This resolution is sufficiently high for stud-
ies of the visual cortex (which is 2.5 mm thick on average) to separate
superficial (I to III) from middle (IV) and deep (V and VI) layers, as
these occupy approximately one third each of the volume of human
V1 and V2 (de Sousa et al., 2010). However, higher resolutions of
0.2mm seemobtainable in future, possibly allowing the study of the in-
dividual cortical layers (Morgan et al., 2020).

By its nature, laminar fMRI seeks to measure precisely anatomically
localised activity within cortical layers. This specificity can be bought by
either increasing the scan time and/or reducing the regions of the brain
covered by the scan. However, imaging the full cortical hierarchy impli-
cated in psychosis is likely to require brain coverage from the visual to
prefrontal cortices, and there are clearly limits on acceptable scan
lengths, particularly in clinical populations. It will therefore be challeng-
ing, using currently available sequences, to provide complete assess-
ment across this hierarchy in patient groups, and more targeted
assessments, perhaps in analogue populations may well be required.
However, recent studies have showed promising results demonstrating
whole brain coverage of laminar fMRI sequences, which suggest these
methods might be deployed in the future to study whole brain laminar
interactions between high-level and low-level regions (Sharoh et al.,
2019).

fMRI methodology will also likely remain limited by relatively poor
temporal resolution. This is a serious limitation to consider with regards
to its ability to test predictive coding theories, as these theories make
specific predictions regarding the timing of specific neural effects. That
is, if psychosis is associated with aberrant predictions, these should be
found in pre-stimulus effects (as in for example: Alilović et al., 2019;
Jabar et al., 2017; Aru et al., 2016; Kok et al., 2017), rather than post-
stimulus effects which might reflect effects related to the decision
stage instead (as in for example: Rungratsameetaweemana et al., 2018;
Bang and Rahnev, 2017). However, recent methodological advances
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havemade it possible to useMEG tomake inferences about the contribu-
tion of different cortical layers in perceptual inference (Bonaiuto et al.,
2018a, 2018b; Liuzzi et al., 2017, Meyer et al., 2017; Troebinger et al.,
2014a, 2014b). Laminar MEG might therefore be an exciting tool to
test hierarchical predictive coding theories of psychosis, as theMEG sig-
nal has millisecond temporal resolution, represents a direct measure of
neural activity, and is therefore only limited by data quality and the
models used to explain the data (Bonaiuto et al., 2018a, 2018b).

A second set of challenges to the utility of laminar fMRI in testing
predictive coding models of psychosis arises from ambiguity about the
neuroanatomy and functional organisation of the putative hierarchical
levels of processing, particularly those outside the sensory cortices
(Williams, 2018). While visual and auditory cortices are arranged in a
relatively well described hierarchy which lends itself to predictive pro-
cessing accounts (Felleman and van Essen, 1991), outside of sensory
cortex it is less clear what levels of hierarchy exist, where and how
they are instantiated and what type of beliefs they maintain. This issue
would seem to be particularly pertinent to delusions; for example,
how does the brain represent the belief that it is being persecuted?
What counts as lower level evidence for or against this and how is
that evidence represented? In the absence of a robust account of this
higher level processing laminar fMRI may bemore able to speak to per-
ceptual symptoms such as hallucinations than delusions.

7. Conclusion

In summary, hierarchical predictive coding has provided researchers
with a framework to try to understand psychotic symptoms. This frame-
work has been helpful in understanding past experiments and driving
novel research. However, predictive processing theories of psychosis
have become increasingly flexible, describing various levels of prior ex-
pectationswhich can be separately affected in differentmodalities, hier-
archical levels, and disease stages (Adams et al., 2013; Sterzer et al.,
2018; Heinz et al., 2019). This flexibility makes the models challenging
to falsify (Williams et al., 2018; Litwin and Miłkowski, 2020). We have
argued here that since hierarchical predictive coding models speak to
the roles that different cortical layers play, particularly in perceptual in-
ference, neuroimaging methods that can disentangle the cortical layers
are essential in testing and constraining these models. We believe that
layer-specific fMRI has the potential to bring a new level of scrutiny to
the field, allowing us to increase our understanding of the mechanisms
underlying psychotic illness.
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