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Abstract

We present a novel Bayesian nonparametric model for regression in survival
analysis. Our model builds on the classical neutral to the right model of Doksum
(1974) and on the Cox proportional hazards model of Kim and Lee (2003). The use
of a vector of dependent Bayesian nonparametric priors allows us to efficiently
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model the hazard as a function of covariates whilst allowing nonproportionality.
The model can be seen as having competing latent risks. We characterize the poste-
rior of the underlying dependent vector of completely random measures and study
the asymptotic behavior of the model. We show how an MCMC scheme can pro-
vide Bayesian inference for posterior means and credible intervals. The method is
illustrated using simulated and real data.

Keywords: Bayesian nonparametrics, Survival Analysis, Dependent Completely Ran-
dom Measures.
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1 Introduction

The statistical analysis of the, potentially censored, survival time to an event has a long

history. Often, estimates of the effects of observed covariates on the survival time dis-

tribution are key statistical quantities of interest. For example, information about white

blood cells may be useful for the prediction of the time to death of leukaemia patients.

There are several standard regression models. The accelerated failure time (AFT) model

takes into account the effect of a covariate by accelerating or decelerating over time its

effect on the survival time (Buckley and James, 1979). Alternatively, a parametric effect

for the covariates can be combined with a nonparametric estimate of a baseline distri-

bution of the survival time. The most popular example of this type of model is the

semiparametric Cox (1972) model which has had a substantial impact in statistical and

medical research, being introduced in one of the most cited statistical papers of all time

(Ryan and Woodall, 2005).

The Cox regression model assumes proportional hazards (PH) and can be easily

fitted with partial likelihood methods (Cox, 1975). The combination of this inference

method with the counting process formulation of the model (Andersen and Gill, 1982)

has led to extensions to stratified analysis, proportional intensity models, frailty models,

and so on (Therneau and Grambsch, 2000). The model also leads medical researchers

to focus on differences in instantaneous risk (hazard) rather than mean or median sur-

vival as in common regression models. Under the PH assumption, the survival curves

for any combinations of covariate values must have hazard functions that are propor-

tional over time, i.e. have constant hazard ratios. This is sometimes not realistic. For

example, if a treatment effect is negative at the beginning of a study and positive by the

end. Failing to account for this can lead to poor model fits, particularly in the tails of the
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survival distribution. Such problems can be addressed by including interactions with

time or stratifying according to the treatment (Kalbfleisch and Prentice, 2011). However,

these approaches can lead to difficulties with interpretation of effects. Alternatively, the

structure of the model can be changed. For example, the proportional odds (PO) model

relaxes the PH assumption of a constant hazard ratio by assuming hazard functions such

that this property holds only when the time goes to infinity (Cheng et al., 1995; Murphy

et al., 1997; Yang and Prentice , 1999).

From the Bayesian perspective, the analysis of survival data was one of the first areas

of application of Bayesian nonparametric techniques, see Doksum (1974) and Ferguson

(1974), and Hjort et al. (2010) for a review. Popular priors include the beta process prior

for the cumulative hazard function (Hjort, 1990), the extended gamma process (Dykstra

and Laud, 1981), and the wide-class of neutral to the right (NTR) distributions (Doksum,

1974).

In this paper, we focus on the NTR model which assumes that the survival function

of a survival time of interest Y, which is S(t) = P[Y > t], is given by

S(t) = e−µ(0,t]. (1)

where µ is a completely random measure (CRM) (Kingman, 1967) for which µ(R+)
a.s.
= ∞

to ensure that the distribution of Y is supported in R+. As noted in Doksum (1974), such

distribution is neutral to the right in the sense that if F(t) = 1− S(t) is the associated

cumulative distribution function then

F(t1),
F(t2)− F(t1)

1− F(t1)
, . . . ,

F(tk)− F(tk−1)

1− F(tk−1)
(2)

are independent for every t1 < · · · < tk. The structure is very general and includes the

Dirichlet process (Ferguson, 1973) and Beta-Stacy process (Muliere and Walker, 1997)
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as special cases. The family of NTR distributions has desirable theoretical properties

with survival data such as conjugacy for right-censored data (Ferguson and Phadia,

1979) and posterior consistency at an optimal rate (Kim and Lee, 2004). They are also a

natural Bayesian nonparametric analogue of the widely-used frequentist Kaplan-Meier

estimator. The approach was extended to multiple samples by Epifani and Lijoi (2010)

and Riva-Palacio and Leisen (2018) and to Cox regression modelling by Kim and Lee

(2003). Their model assumes that the survival function, SXXX(t), for covariate value XXX =

(X1, . . . , Xm) ∈ Rm is modeled by

SXXX(t) = P[Y > t |XXX] = e−e〈βββ,XXX〉µ(0,t].

Alternatively, Bayesian nonparametric regression survival models can be built by

modelling the logarithm of the survival time using a dependent nonparametric prior.

These allow for crossing survival and hazard curves and have straightforward inter-

pretations. For example, the linear dependent Dirichlet process mixture (LDDP) (De

Iorio et al., 2009) uses dependent Dirichlet processes (MacEachern, 1999) and the lin-

ear dependent tailfree process (Jara and Hanson, 2011) builds on Pólya tree priors.

These approaches are reviewed by Hanson and Jara (2013). Other approaches to non-

proportional hazards include Nieto-Barajas (2014) who introduces a semiparametric

model based on increasing additive processes, Nipoti et al. (2018) who propose a par-

tially proportional hazards model using cluster-dependent random hazards, and Fernández

et al. (2016) who model the hazard as a logistic transform of a sum of Gaussian processes.

In this paper we build a tractable Bayesian nonparametric regression model for sur-

vival data based on the class of NTR distributions. The model assumes that

SXXX(t) = P[Y > t |XXX] = e− f1(βββ,XXX)µ1(0,t]−...− fd(βββ,XXX)µd(0,t]
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where f1, . . . , fd are known functions of the covariates XXX, βββ are unknown parameters

and µµµ = (µ1, . . . , µd) is a vector of completely random measures (VCRM). This ex-

tends the proportional hazards Cox regression model of Kim and Lee (2001) to allow

for more general functions of the covariates and can be interpreted in a competing risks

framework. Vectors of completely random measures have proven to be a useful tool

for inducing dependence in Bayesian nonparametric priors; see for example Lijoi et al.

(2014), Camerlenghi et al. (2019a) and Camerlenghi et al. (2019b). We term this model a

generalized additive neutral to the right regression (GANTR) model.

GANTR provides a flexible regression modelling approach within an NTR model.

It allows for non-proportional hazards and leads to clustering of observations into sub-

populations (associated with different causes in the competing risks interpretation) ac-

cording to covariate values. The model can be seen as a generalization of the multiple-

sample model of Riva-Palacio and Leisen (2018) to allow for stratification into unknown

covariate dependent clusters/sub-samples. The structure of the prior allows us to de-

velop a posterior characterization and use it to construct an inference scheme that de-

pends on the VCRM through its Laplace exponent. We concentrate on the class of

compound random measures (Griffin and Leisen, 2017), and develop both an MCMC

method and empirical Bayes method for estimating the hyperparameters. Unlike AFT

models, the NTR approach models the survival function directly which eases the inter-

pretation of the overall model and, particularly, the covariate effects. The tractability of

the GANTR model allows us to derive the likelihood of the regression coefficients and

the hyperparameters of the VCRM and so implement fast maximum a posteriori inference

methods. We also find that the GANTR model leads to better fit of the data than the

LDDP in both simulated and real data.
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The outline of the paper is as follows. In the next section we consider CRMs and

VCRMs in more detail. In Section 3 we formally present the GANTR model. Section 4

develops a posterior characterization of the model and results necessary for the ensu-

ing inference procedures. We present simulation and real data studies for our model in

Section 5. Conclusions for the work are presented in Section 6. Proofs, further proper-

ties regarding asymptotic behavior, details regarding inference and further simulation

studies are included in the supplementary material. Code for our model is available in

https://github.com/alan7riva/GANTR.

2 Preliminaries

VCRMs are a key building block of our proposed Bayesian nonparametric model. This

section will introduce some basic ideas and representations through Laplace functional

transforms. We will focus on the compound random measure (CoRM) class of VCRMs

which were recently introduced by Griffin and Leisen (2017).

Let Y be a complete and separable metric space with corresponding Borel σ-algebra

Y and probability space (Ω,F , P). We denote by MY the space of boundedly finite

measures in the measure space (Y,Y) and the associated Borel σ-algebra byMY.

Definition 1. A random measure µ on (Y,Y) is called a completely random measure

(CRM) if for any collection of disjoint sets {Ai}n
i=1 ⊂ Y the random variables {µ(Ai)}n

i=1

are mutually independent.

In this paper, we restrict attention to CRMs of the form

µ =
∞

∑
i=1

wiδYi
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where {wi}∞
i=1 and {Yi}∞

i=1 are collections of random variables taking values in R+ and

Y respectively. We will refer to wi as jump heights and Yi as jump locations. Such CRMs

can be characterized by their Laplace transform

E
[
e−λµ(A)

]
= e−

∫
R+×A(1−e−λs)ν(ds,dy) (3)

where λ > 0 and ν is a measure on R+ ×Y such that∫
R+×A

min{s, 1}ν(ds, dy) < ∞

for any bounded set A ∈ Y . The measure ν is usually called the Lévy intensity of µ. We

denote the Laplace exponent of a CRM as ψt where for t, λ ∈ R+

ψt(λ) = − log
(

E
[
e−λµ(0,t]

])
.

See Kingman (1967) for a full review of CRMs. We say that a Lévy intensity ν is homo-

geneous if it can be written in the form

ν(ds, dy) = ρ(ds)κ(dy)

where κ is a non-atomic measure on Y referring to the jump locations and ρ is a measure

on R+ referring to the jump heights. For example, we will use the homogeneous CRM

with Lévy intensity

ν(ds, dy) =
γe−αs

s
ds κ(dy), (4)

where γ > 0 and α > 0 which is a particular case of the Gamma process, see Phadia

(2015). We refer to this process as the Gamma CRM which is denoted Gamma(α, γ).

There is a natural generalization of CRMs to the multivariate setting.
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Definition 2. A vector µµµ = (µ1, . . . , µd) of random measures on (Y,Y) is called a vector

of completely random measures (VCRM) if, for any collection of disjoint sets {Ai}n
i=1 ⊂

Y , the random vectors {(µ1(Ai), . . . , µd(Ai))}n
i=1 are mutually independent.

The corresponding multivariate analogue of the Laplace transform (3) is

E
[
e−λ1µ1(A)−...−λdµd(A)

]
= e−

∫
(R+)d×A(1−e−〈λλλ , sss〉)ν(dsss,dy)

where λλλ = (λ1, . . . , λd) ∈ (R+)d and ν is a measure on (R+)d ×Y satisfying∫
(R+)d×A

min{‖sss‖, 1}ν(dsss, dy) < ∞ (5)

for any bounded A ∈ Y . A d-dimensional VCRM with such Laplace transform can be

represented as

µµµ =

(
∞

∑
i=1

w1,iδYi , . . . ,
∞

∑
i=1

wd,iδYi

)
for a random collection of vectors {(w1,i, . . . , wd,i)}∞

i=1 taking values in (R+)d and {Yi}∞
i=1

taking values in Y. The associated Laplace exponent for t ∈ R+ and λλλ = (λ1, · · · , λd) ∈

(R+)
d is now given by

ψt(λλλ) = − log
(

E
[
e−λ1µ1((0,t])−...−λdµd((0,t])

])
.

The corresponding homogeneous case arises when

ν(dsss, dy) = ρ(dsss)κ(dy).

Griffin and Leisen (2017) introduced a flexible class of VCRMs called compound random

measures where the dependence structure of the vector is modeled in a constructive

way.
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Definition 3. Given a d-variate probability density function h and an univariate Lévy

intensity ν? we say that a d-variate VCRM µµµ is a compound random measure (CoRM)

with score distribution h and directing Lévy measure ν? if the d-variate Lévy intensity

of µµµ is given by

ν(dsss, dy) =
∫

R+
z−dh

( s1

z
, . . . ,

sd
z

)
ν?(dz, dy)dsss.

In Riva-Palacio and Leisen (2019), the existence of marginal first moments for the

score distribution in a CoRM is shown to be sufficient for the integrability condition

(5) to be satisfied; in this work we only consider CoRMs with such score distributions.

Furthermore Riva-Palacio and Leisen (2019) shows that CoRMs have an elegant inter-

pretation in terms of discrete measures. Indeed, if µ is a homogeneous univariate CRM

with Lévy intensity ν?(ds, dy) and series representation

µ(·) a.s.
=

∞

∑
j=1

wjδuj(·)

for random sequences {wi}∞
i=1 in R+ and {ui}∞

i=1 in Y, and if {vvvj = (v1,j, . . . , vd,j)}∞
j=1

is an independent identically distributed (i.i.d.) sequence with common distribution h;

then the associated CoRM µµµ = (µ1, . . . , µd) is such that

µi(·)
a.s.
=

∞

∑
j=1

vi,jwjδuj(·). (6)

An interesting example of a CoRM is defined by a LogNormal(mmm, ΣΣΣ), score distribution,

with mean vector mmm and covariance matrix ΣΣΣ. Such choice allows us to distribute the

mass of the directing Lévy intensity across the d-dimensional space of the CoRM inten-

sity. The Lévy intensity of a CoRM with such score distribution and Gamma directing

Lévy measure is presented in the supplementary material. In particular we will use the

following construction.
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Definition 4. We say that a d-dimensional random variable Z is given a δ-LogNormal

distribution if its probability density function is

p(z) =
1
d

d

∑
i=1

LogNormal
(

z
∣∣∣(1− δ)eeei + δ111 , σI(d)

)
.

where LogNormal(z|mmm, ΣΣΣ) is the probability density function of a multivariate lognor-

mal distribution using the parameterization discussed at the end of Section 2, δ ∈ (0, 1],

{eeei}d
i=1 is the canonical basis in Rd, 111 = (1, . . . , 1) ∈ Rd, σ > 0 and I(d) is the d-

dimensional identity matrix.

We can use the above as the score distribution in a CoRM with Gamma directing

Lévy measure. Observe that when using a mixture for the score distribution of a CoRM

the Lévy intensity is a sum of the Lévy intensities corresponding to the mixture compo-

nents with the directing Lévy measure fixed.

The δ-LogNormal is a d component mixture model. For small values of σ, the effect

of the parameter δ is twofold. Firstly, when used as the score distribution in a CoRM,

it controls the dependence between dimensions of the VCRM. If δ = 1 the mass of the

distribution is accumulated near the point 111 and the related CoRM has a Lévy intensity

which accumulates mass near the identity axis. This CoRM is close to a completely

dependent VCRM where all dimensions are almost surely equal. On the other hand, if

δ → 0, the δ-LogNormal distribution accumulates mass near the points {eeei}d
i=1 and the

related CoRM Lévy intensity accumulates mass near the axes in (R+)d, which will be

close to an independent entries VCRM. Values of δ ∈ (0, 1) will modulate between these

distributions and VCRMs. Secondly, in the multiple-sample information setting where

the regression functions fi(βββ, XXXk) = 1{XXXk,j=1} for i = 1, . . . , d, then as δ → 0 and σ → 0

the GANTR model is equivalent to an NTR model for each sample. While if δ = 1 and
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σ → 0 the GANTR model is equivalent to a NTR model. The parameter σ serves to

diffuse the mass of the distribution. The modulating effect of δ decreases as σ increases

so we chose a relatively small value of σ.

3 Survival regression model

The neutral to the right process (Doksum, 1974) for the survival function was defined

in (1) as the exponential transform of a CRM µ for which µ(R+)
a.s.
= ∞. We say that

a random variable Y with this survival function has a neutral to the right distribution,

which is denoted Y ∼ NTR (µ) , where µ is a CRM.

Definition 5. Let n, m, d, b ∈ N \ {0}, Ŷ = {Yi}n
i=1 with Yi ∈ R+, and X̂XX = {XXXi}n

i=1 with

XXXi = (Xi,1, . . . , Xi,m) ∈ Rm be a random sample. We say {Ŷ, X̂XX} follow a generalized

additive neutral to the right regression (GANTR) model if, for ttt = (t1, . . . , tn) ∈ (R+)n,

the joint survival function is

SX̂XX(ttt) = P
[
Y1 > t1, . . . , Yn > tn |X̂XX

]
=

n

∏
i=1

e− f1(βββ,XXXi)µ1(0,ti]−...− fd(βββ,XXXi)µd(0,ti] (7)

where βββ = (β1, . . . , βb) ∈ Rb, µµµ = {µ1, . . . , µd} are a VCRM with Lévy intensity

νccc(dsss, dt), where ccc are parameters of the Lévy measure, and fi : Rb ×Rm → R+ for

i ∈ {1, . . . , d}.

The GANTR model for a single observation can be seen as an NTR distribution con-

ditionally on the covariates XXXi

Yi|XXXi
ind∼ NTR

(
d

∑
j=1

f j(βββ, XXXi)µj

)
(8)
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which allows us to use results about NTR processes with our model. For example, neu-

trality to the right as in equation (2) is satisfied conditionally on the covariates, as in

Proposition 3 of Riva-Palacio and Leisen (2018)

Some previously proposed models arise as special cases of the GANTR model. If

XXXi ∈ {0, 1}m such that XXXi,j = 1 if and only if the i-th observation belongs to the j-th

sample, the multiple-sample NTR model of Riva-Palacio and Leisen (2018) for m sam-

ples can be recovered by choosing f j(βββ, XXXi) = 1{XXXi,j=1}. The Cox NTR model of Kim

and Lee (2003) arises when d = 1 and f1(βββ, XXX) = e〈βββ , XXX〉. Unlike the Cox NTR model,

the GANTR model allows for nonproportional hazards. Indeed, if SXXX1(t) and SXXX2(t)

are the survival functions at time t of GANTR distributed random variables Y1, Y2 with

respective covariates XXX1 = (X1,1, . . . , X1,m), XXX2 = (X2,1, . . . , X2,m), such that XXX1 6= XXX2

then

SXXX1(t)− SXXX2(t) = SXXX1(t)

(
1−

d

∏
i=1

e−riµi(0,t]

)
where ri = fi(βββ, XXX2)− fi(βββ, XXX1), i ∈ {1, . . . , d}, and, clearly, the survival functions for

different covariates values can cross at any point t ∈ R+ if d > 1.

The GANTR model has been motivated as a flexible model of the effects of covariates

on the survival function but it can also be viewed as a competing risks model (Prentice

et al., 1978). We assume d independent latent causes for the event of interest and define

the survival function for the j-th cause with covariates XXX to be

S̃j,XXX(t) = e− f j(βββ,XXX)µj(0,t].

The survival function for all risks across a sample is the GANTR model. The structure

of models means that f j and µj are not separately identified (although, their product

is identified). This is not necessarily a problem for Bayesian inference if we are only
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interested in functions of these products (such as the survival function) and a prior can

be placed on β and µj. Alternatively, we can choose a parameterization which identifies

each product (for example, by fixing the value of f j(βββ, XXX0) for a specific covariate value

XXX0). The survival function for all risks for a covariate XXX be re-expressed as

SXXX(t) = e−∑d
j=1 f j(βββ,XXX)µj(0,t] = e− f ?(βββ,XXX)∑d

j=1 wj(βββ,XXX)µj(0,t], (9)

where wj(βββ, XXX) = f j(βββ, XXX)
/

∑d
k=1 fk(βββ, XXX) and f ?(βββ, XXX) = ∑d

k=1 fk(βββ, XXX). Under the lat-

ter parametrization, the wj’s are weightings on each latent cause (which depends on

covariates) and allow departures from a Cox proportional hazards models which occurs

if wj(βββ, XXX)’s do not depend on XXX. Observations which have similar wj(βββ, XXX) will have

similar survival curves and this allows us to define subpopulations which tend to have

similar survival outcomes. We illustrate this idea in Section 5 using data from melanoma

patients. This parameterization can be identified by fixing the value of f ?(βββ, XXX0) at co-

variate value XXX0. The competing risk interpretation also leads to a simple simulation

scheme for our model. We sample Ỹi as survival times according to the survival func-

tion S̃j,XXX(t) and set Y = min{Ỹ1, . . . , Ỹd}.

The GANTR model with a CoRM chosen as the VCRM µµµ, can be represented as a

conditional NTR model where, by substituting (6) into (8), Y ∼ NTR (µ?) where

µ? =
∞

∑
j=1

(
d

∑
i=1

fi(βββ, XXX)mi,j

)
wjδuj .

The measure µ? is a CoRM with the same directing Lévy measure as µ1, . . . , µd and

scores ∑d
i=1 fi(βββ, XXX)mi,j. In this form, the score distribution of the CoRM is marginally a

random linear combination of the regression functions f1, . . . , fd.
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4 Posterior characterization

The form of the GANTR model allows us to derive an analytic expression for the pos-

terior distribution given right-censored data. This result allows us to construct an infer-

ence scheme for the model as explained in Section 5. We assume that a sample of size

n is observed and that there are (right) censoring times C1, . . . , Cn which are i.i.d. and

independent of the survival times Y1, . . . , Yn. We observe the time Ti = min{Yi, Ci} and

the indicator variable Ji = 1(0,Ci] (Yi) which is 0 if the i-th observation is censored. Let

DDD = {(Ti, Ji, XXXi)}n
i=1 be the survival data available for analysis. The k ≤ n order statis-

tics (without repetition) of T1, . . . , Tn are represented by T(1) < · · · < T(k) and define

T(0) = 0 and T(k+1) = ∞. The number of right-censored observations (for which Ji = 0)

and exact observations (for which Ji = 1) at time T(j) are nc
j and ne

j respectively. The

indices of the right-censored and exact observations at time T(j) are

I(e)j = {l : Tl = T(j) and Jl = 1} and I(c)j = {l : Tl = T(j) and Jl = 0}

respectively. The indices of all exact observations is I(e) = ∪k
j=1 I(e)j . It is useful to define

the pairs of functions, for bbb ∈ Rb and i ∈ {1, . . . , d},

h(e)i,j (bbb, X̂XX) = ∑
l∈I(e)j

fi(bbb, XXXl), h̄(e)i,j (bbb, X̂XX) =
k

∑
r=j

h(e)i,r (bbb, X̂XX)

and

h(c)i,j (bbb, X̂XX) = ∑
l∈I(c)j

fi(bbb, XXXl), h̄(c)i,j (bbb, X̂XX) =
k

∑
r=j

h(c)i,r (bbb, X̂XX)

for j ∈ {1, . . . , k} and h̄(e)i,k+1(bbb, X̂XX) = h̄(c)i,k+1(bbb, X̂XX) = 0. We group these functions in the

vectors h̄hh(e)j (bbb, X̂XX) =
(

h̄(e)1,j (bbb, X̂XX), . . . , h̄(e)d,j (bbb, X̂XX)
)

and h̄hh(c)j (bbb, X̂XX) =
(

h̄(c)1,j (bbb, X̂XX), . . . , h̄(c)d,j (bbb, X̂XX)
)

.
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Initially, we derive the likelihood of right-censored dataDDD in the GANTR model. We as-

sume the following condition on the GANTR model.

Condition 1. the VCRM µµµ has a Lévy intensity ν(sss, dy)dsss such that ηt(sss) = ν (sss, (0, t]) is

differentiable in the sense that the partial derivative η′t0
(sss) = ∂ηt(sss)/∂t

∣∣
t=t0

exists and,

as s → ∞, η′t(s) = O(exp(ks)) with k < minj∈I(e)

{
∑d

i=1

(
h̄(e)j+1,i(βββ, X̂XX) + h̄(c)j,i (βββ, X̂XX)

)}
for

any t0 > 0 .

This is a weak condition and is equivalent to requiring that the derivative of κ(t)

exists in the homogeneous case.

In the following result we provide a convenient expression for the likelihood of βββ, the

regression coefficients, and ccc, the hyperparameters of the Lévy intensity, in the GANTR

model. We want to emphasize the dependence of the Lévy intensity on ccc so in the fol-

lowing proposition we use the particular notation νccc, η′t,ccc and ψt,ccc for the Lévy intensity,

partial derivative as above and Laplace exponent, respectively.

Proposition 1. LetDDD be survival data and assume a GANTR model with Condition 1. Let ψt,ccc

be the Laplace exponent associated to νccc, then the likelihood of βββ and ccc is given by

l(βββ, ccc;DDD) = e
−∑k

j=1

(
ψT(j) ,ccc

(
h̄hhj

(c)
(βββ,X̂XX)+h̄hhj

(e)
(βββ,X̂XX)

)
−ψT(j−1) ,ccc

(
h̄hhj

(c)
(βββ,X̂XX)+h̄hhj

(e)
(βββ,X̂XX)

))

× ∏
j∈I(e)

{ ∫
(R+)d

d

∏
i=1

(
e−
(

h̄(e)j+1,i(βββ,X̂XX)+h̄(c)j,i (βββ,X̂XX)
)

si

)
∏

l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ,XXXl)si

)
η′T(j),ccc(sss)dsss

}

(10)

The next theorem provides the posterior distribution of the model in (7) with a gen-

eral VCRM and possibly right-censored data.
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Theorem 1. Let DDD be survival data and assume a GANTR model with Condition 1. If fi > 0

for at least one i ∈ {1, . . . , d}, the posterior distribution of µµµ is the distribution of the random

measure

(µ◦1 , . . . , µ◦d) + ∑
j∈I(e)

(M1,jδT(j)
, . . . , Md,jδT(j)

)

where

i) µµµ◦ = (µ◦1 , . . . , µ◦d) is a d-variate CRM with Levy intensity

ν◦(dsss, dy) =
k+1

∑
j=1

e−〈 h̄hh(e)j (βββ,X̂XX)+h̄hh(c)j (βββ,X̂XX) , sss 〉
ν(dsss, dy)1{dy∈(T(j−1),T(j))}

ii) The vectors of jumps {(M1,j, . . . , Md,j)}j∈I(e) are mutually independent and the vector of

jumps corresponding to the exact observation T(j) has density

gj(sss) ∝
d

∏
i=1

(
e−
(

h̄(e)i,j+1(βββ,X̂XX)+h̄(c)i,j (βββ,X̂XX)
)

si

)
∏

l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ,XXXl)si

)
η′T(j)

(sss)

iii) The random measure µµµ◦ is independent of {(M1,j, . . . , Md,j)}j∈I(e) .

The above characterization can be seen as a conjugacy property where, similarly

to NTR distributions (see for example in Ferguson and Phadia, 1979), the posterior is

updated to be GANTR model with (µµµ◦), furthermore this can be used to calculate the

posterior mean of the survival function of a new time event Y? with associated new co-

variate XXX?, i.e. Eµµµ|DDD [SXXX?(t)] = Eµµµ|DDD [P[Y? > t |µµµ, βββ, XXX?]]. Such a posterior mean, where

we have integrated out the underlying VCRM µµµ, can be used for estimation purposes;

its calculations is made explicit in the next corollary.
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Corollary 1. In the setting of Theorem 1, we denote

Ĩ(e)(t) = {l : T(l) is an exact observation } ∩ {l : T(l) ≤ t}.

Let SXXX?(t) = P[Y? > t |µµµ, βββ, XXX?] be the survival function of an GANTR distributed r.v. Y?

associated with a covariate vector XXX?. Then

ŜXXX?(t) = E[SXXX?(t)|βββ, XXX?,DDD] = e
−∑k+1

j=1

(
ψ◦t∧T(j)

(VVV?)−ψ◦t∧T(j−1)
(VVV?)

)
1{T(j−1)<t}

∏
j∈ Ĩ(e)(t)

∫
(R+)d e−〈VVV

?+h̄hh(e)j+1(βββ,X̂XX)+h̄hh(c)j (βββ,X̂XX) , sss〉∏l∈I(e)j

(
1−

d
∏
i=1

e− fi(βββ,XXXl)si

)
η′T(j)

(sss)dsss

∫
(R+)d e−〈h̄hh

(e)
j+1(βββ,X̂XX)+h̄hh(c)j (βββ,X̂XX) , sss〉∏l∈I(e)j

(
1−

d
∏
i=1

e− fi(βββ,XXXl)si

)
η′T(j)

(sss)dsss

(11)

where VVV? =
(
V?

1 . . . , V?
d
)
= ( f1(βββ, XXX?), . . . , fd(βββ, XXX?)) and ψ◦ is the Laplace exponent of µ◦

in Theorem 1.

The following lemma gives an analytic expression for integrals of the type that ap-

pear in both the posterior mean of Corollary 1 and likelihood function of Proposition

2.

Lemma 1. Let ν be a Lévy intensity associated to a d-variate VCRM, ψt its Laplace exponent,

qqq1, . . . , qqqm ∈ (R+)d \ {0}, qqq ∈ (R+)d and ∅ 6= I = {i1, . . . , i|I|} ⊂ {1, . . . , m}. We define

I \ 1 = {i2, . . . , i|I|}. Then∫
(R+)d×(0,t]

e−〈qqq , sss〉∏
l∈I

(
1− e−〈qqql , sss〉

)
ν(dsss, dx)

= ∑
S⊂I\1

(−1)#(S)

(
ψt

(
qqq1 + ∑

l∈S
qqql + qqq

)
− ψt

(
∑
l∈S

qqql + qqq

))
.
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The above lemma provides a readily available estimator ŜXXX? , in Corollary 1, if the

Laplace exponent associated to the underlying VCRM can be easily computed. Fur-

ther theoretical properties of the GANTR model regarding asymptotic behavior are dis-

cussed in the supplementary material. The results in this section are valid for GANTR

models based on general non-homogeneous VCRMs. In the rest of the paper, however,

we will work with homogeneous VCRMs consisting of CoRMs with LogNormal score

distributions. Epifani and Lijoi (2010) discuss the flexibility of NTR models built using

homogeneous VCRMs which is illustrated by the asymptotic properties of this sub-class

of the GANTR model, see supplementary material.

5 Simulation and real data studies

In this section we analyze a simulation study and two real survival datasets with the

GANTR model and the Linear Dependent Dirichlet Process (LDDP) (De Iorio et al., 2009)

using the implementation in the R library “DPpackage” (Jara et al., 2011). The first

real dataset illustrates the identification of subpopulations with GANTR and the second

dataset illustrates the performance of the GANTR model relative to the Cox regression

model. The GANTR model uses a CoRM as the underlying VCRM with a δ-LogNormal

score distribution with σ = 0.1 and a homogeneous Gamma directing Lévy process

with parameters α and γ, whose intensity is given in (4), and κ(dy) = dy. There are also

analysis of a further simulation study and a real survival dataset in the Supplementary

material.

We consider two hybrid inference approaches. In both approaches, we first set (α, γ).

We have found that an effective approach is to use the MAP estimate ĉccMAP = (α̂MAP, γ̂MAP)
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under the corresponding NTR model using the homogeneous Gamma CRM µ with-

out considering covariates. In such NTR setting, a priori the mean survival is given

by Ŝ(t) = E
[
e−µ(0,t]

]
= exp

(
−γ log

(
1 + 1

α

)
t
)

. So we can assign priors on γ and α

which reflect the rate of survival times in an exponential model. In particular we used

a log-normal prior centered in n/ ∑n
i=1 Ti and variance 0.001 for γ and a log-normal

prior centered at one with variance 0.1 for the bone marrow data and 0.01 for the Kid-

ney transplant data due to the rates in the different data sets. This centers the GANTR

model around the data and captures the overall rate of the survival times while allow-

ing small values of δ to indicate departure from the NTR model that does not consider

covariate effects.

The posterior distribution of δ and βββ, conditional on (α, γ) or (α̂, γ̂), can be calculated

using the likelihood l(βββ, (δ, α̂, γ̂);DDD) in (10). A closed form expression for the Laplace

exponent of the δ-LogNormal CoRM is not available but a Monte Carlo estimate can be

easily calculated using draws from the score distribution and the Laplace exponent of

the directing gamma CRM (this can also be used for the calculation of the posterior mean

survival curve in Corollary 1). The two inference approaches differ in how δ and βββ are

inferred. Firstly, a MCMC scheme (see Supplementary material) can be used to draw

samples from the posterior distribution of δ and βββ allowing Monte Carlo estimates of

the posterior mean survival and credible intervals to be calculated. Alternatively, a max-

imum a posteriori (MAP) estimate of δ and βββ can be found using numerical optimisation

of the posterior distribution. We use the LFBGS routine of the Optim pacakge in Julia

(Mogensen and Riseth, 2018). Details regarding evaluation of the likelihood gradient

are given in the supplementary material. This only involves one evaluation of equation

(11), in contrast to the MCMC approach, but at the expense of ignoring posterior uncer-
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tainty in the parameters. We will denote the MAP estimate of a generic parameter θ by

θ̂MAP.

5.1 Simulated example

We consider a competing risks example. For i = 1, . . . , n, there is a covariate Zi which

normal distribution with mean 1 and variance 0.75 truncated to (0, 2) and there are

three possible risks: Y(0)
i

i.i.d.∼ We
(

2.2, 1.75
l1/2.2

)
, Y(1)

i
i.i.d.∼ We

(
1.2, 2.2

(1−l)1/1.2

)
, Y(2)

i
i.i.d.∼

We
(

5.3, 1.5
(1−l)1/5.3

)
where We(k, λ) represents a Weibull distributions with shape param-

eter k and scale λ and l ∈ (0, 1). If Zi ≤ 1, we observe Yi = min
{

Y(1)
i , Y(0)

i

}
and, oth-

erwise, Yi = min
{

Y(2)
i , Y(0)

i

}
. This defines two sub-populations which are determined

by whether (or not) the covariate is above the threshold value of 1. The parameter l

controls the difference between the distributions for the two groups with the distribu-

tions becoming more similar as moves from 0 to 1. We generate two data sets of 200

observations with l = 0.1 and l = 0.9.

We fit the GANTR model with regression functions f1(z, β) = 1{z≤β} and f2(z, β) =

1{z>β} where β controls the threshold between two sub-populations. For simplicity we

took (α, γ) = (1, 1). We use both the MAP and MCMC methods for inference. We ran

the MCMC algorithm with 10000 iterations, which essentially achieved convergence.

Results of fitting the GANTR and LDDP models to data generated with l = 0.1 are

shown in Figure 1. Both models can clearly reconstruct the true survival curves with

both inference methods for the GANTR model providing estimates that are closer to the

true survival curves than the LDDP models. This visual impression is supported by the

L2 distance between a point estimate and the true curves in Table 1. In fact, the fitted

survival curves are very similar for the full posterior inference and MAP estimation.
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Figure 1: Competing risk simulation study (l = 0.1): posterior mean of the survival

function (with 95% credible intervals) from the GANTR and LDDP models and GANTR

MAP fits for z = 0.66 (true - - - - , GANTR , LDDP , GANTR MAP ), and z = 1.44

(true - - - - , GANTR , LDDP , GANTR MAP ).

Simulation study l = 0.1 l = 0.9

L2 distance with true survival z = 0.66 z = 1.44 z = 0.66 z = 1.44

GANTR mean survival 0.278 0.404 0.272 0.258

GANTR MAP survival 0.193 0.551 0.253 0.24

LDDP mean survival 0.33 0.619 0.38 0.824

Table 1: L2 distance between estimated survival functions and true survival functions

for z = 0.66 and z = 1.44 over evaluation meshes at every 1/60 between 0 to 3.5 for

l = 0.1 and at every 1/50 between 0 and 5 for l = 0.9.

Other aspects of inference are also similar, the MAP and posterior mean estimates of the

threshold parameter β are 1.01 and 1.02 respectively (which are very close to the true
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value), and similarly, the corresponding estimates of δ are 0.18 and 0.19 respectively.

The estimated value of δ is close to zero which indicates that the two groups are nearly

independent. Table 1 also shows the L2 distances between point estimates of the sur-

vival curve and its true value for data generated with l = 0.9. Again, both GANTR

estimates have smaller L2 distances than the LDDP model. Fitting the GANTR model

using MCMC took about 2 hours for 200 observations and about 3 hours for 400 obser-

vations. On the other hand, MAP estimation took around 5 minutes for both 200 and 400

observations. The similarity of estimated survival curves and the shorter computation

time leads us to only consider MAP estimation for the real data examples in the rest of

this section. The supplementary material includes results from fitting the GANTR and

LDDP models to simulated data sets with l = 0.1 with 400 observations and l = 0.9 with

both 200 and 400 observations.

5.2 Real data studies

5.2.1 Melanoma survival data

Andersen et al. (2012) includes a study of 205 patients with melanoma who had a tumor

removed by surgery. The thickness of the tumor was a covariate of interest as an increase

in the tumor’s thickness is thought to increase the chances of death. The data were right-

censored for 72% of the patients. Again we use a two-dimensional GANTR model.

The lack of a straightforward way to stratify the patients into subpopulations accord-

ing to tumor thickness motivated us to use a flexible regression model using two regres-

sion functions. There are many possible constructions for these regression functions

such as univariate or multivariate splines (Denison et al., 2002) or Gaussian processes.
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We choose to use a Lagrange interpolator polynomial (see Friedberg et al., 2013). Let

qqq = (q1, q2, q3, q4, q5) be the five number summary of the observed tumor thickness val-

ues and Lqqq,βββ be the Lagrange interpolator polynomial with knots {(qi, βi)}4
i=1 ∪ {(q5, 0)}

where βββ = (β1, . . . , β4) ∈ [0, 1]4 are unknown parameters to define the regression func-

tions: f1(z, βββ) = max
{

min
{

1, Lqqq,βββ(z)
}

, 0
}

and f2(z, βββ) = max
{

1−max
{

Lqqq,βββ(z), 0
}

, 0
}

.

This leads to non-negative regression functions which are constrained so that f1(z, βββ) +

f2(z, βββ) = 1. These functions can be interpreted as weights on two subpopulations, as

in (9), which are determined by whether (or not) f1(z, βββ) > f2(z, βββ). The parameter δ

controls the sharing between these subpopulations (i.e. there is very little sharing if δ is

close to 0). The fixed value of the last knot, (q5, 0), constrains f2(z, βββ) to be close to one

(and f1(z, βββ) to be close to zero) for large values of z and so we can interpret µ2 as the

competing risk of patients with large tumor thicknesses and µ1 as the competing risk of

patients with small tumor thicknesses.

Figure 2: Melanoma study: plots of f1(z, βββ) ( ) and f2(z, βββ) ( ) for the MAP estimate

of βββ with the minimum and maximum (•) and sixtiles (•) of the thickness values.
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The MAP estimates of βββ imply that f1(z, βββ) crosses f2(z, βββ) = 1 at 3.3984 (shown

in Figure 2). and the estimated δ̂MAP = 0.000972 indicates little sharing of informa-

tion. This suggests two subpopulations defined by the threshold tumor thickness of

3.3984 with substantially different survival curves in each subpopulation. This is illus-

Figure 3: Melanoma study: fitted survival curves for thickness 1.5 (GANTR MAP ,

LDDP mean ··············· ), thickness 3.4 (GANTR MAP , LDDP mean ··············· ), and thickness

6.1 (GANTR MAP , LDDP mean ··············· ). The Kaplan-Meier fits of observations with

thicknesses in the windows: (1.255, 1.75) (- - - - ), (2.7, 4.1) (- - - - ) and (4.1, 8.1), (- - - - ).

trated by the estimated survival curves with different tumor thicknesses in Figure 3.

The estimated survival curves for each subpopulation are illustrated by the curves for

thicknesses 1.5 and 6.1 which show clear differences with a better prognosis for smaller

tumor thicknesses. The estimated survival curve for thickness 3.4 (close to the threshold

value) shows the smoothing induced by the model between the subpopulations. The

presence of the two heterogeneous subpopulations detected by the GANTR model are

supported by the plotted Kaplan-Meier curves and the LDDP mean fits for the survival
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curves, which are shown for comparison.

5.2.2 Kidney transplant data

We consider the Kidney transplant dataset from the survival analysis book of Klein and

Moeschberger (2006) which is available in the R package ”KMsurv” by Yan (2012). This

dataset consists of 863 observations of which 723 were right-censored. There are two

binary covariates: sex (male or female), and race (white or black), and age is treated

as a continuous covariate. The combinations of race and sex can be used to divide the

patients into four groups: 1) Male-White, 2) Male-Black, 3) Female-White and 4) Female-

Black. We consider a GANTR model with d = 4 and regression functions

fmw(zzz) = eβ0,mw+β1,mwzage1{Male-White}, fmb(zzz) = eβ0,mb+β1,mbzage1{Male-Black},

ffw(zzz) = eβ0,fw+β1,fwzage1{Female-White}, ffb(zzz) = eβ0,fb+β1,fbzage1{Female-Black}.

The intercept coefficients β0,mw, β0,mb, β0,fw, and β0,fb account for the heterogeneity

in the populations. The coefficients of the interactions between group and age β1,mw,

β1,mb, β1,fw, and β1,fb account for differences in the effect of age between the groups.

The White-Male subpopulation consists of 431 observations and the White-Female of

278 observations. The two other groups are much smaller with 92 observations in the

Black-Male group and 59 observations in the Black-Female group; this restricts the ages

for which Kaplan-Meier estimates can be provided. In the GANTR model, the esti-

mated value of δ̂MAP = 0.3731 which is indicative of the borrowing of information in the

model’s fit. The estimated values for the regression functions’ parameters are presented

in Table 2. We find that the Cox regression provides good fits for many ages. However,

we find some discrepancies between the Cox regression model and both nonparametric
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β̂MAP
0,mw β̂MAP

1,mw β̂MAP
0,fw β̂MAP

1,fw β̂MAP
0,mb β̂MAP

1,mb β̂MAP
0,fb β̂MAP

1,fb

−5.2504 0.0521 −3.8825 0.0155 −4.6746 0.0331 −2.6801 0.00002

Table 2: MAP estimators for regression functions’ parameters in kidney transfer real

data study.

Figure 4: Kidney transplant data: Fits for white-male, ages 40 and 65, black-male and

black-female, ages 50, sub-populations; GANTR MAP ( ), Kaplan-Meier (- - - - ), Cox

regression (-·-·-·-) and LDDP mean (··············· ).

models (white, male, age 65) and between the two nonparametric models (black, male,

age 50). In both cases, the GANTR fit is much closer to the Kaplan-Meier than the Cox

regression model or LDDP for black, males aged 50. Further fits are presented in the

supplementary material.
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6 Conclusions

In a Bayesian nonparametric setting, we have introduced the GANTR model for possi-

bly right-censored survival data. Our model generalizes the NTR models in a regression

setting where non-proportional hazards are allowed. Our model can be interpreted in

a competing risks framework. As a particular case of the GANTR, we can recover the

multiple-sample models of Epifani and Lijoi (2010) and Riva-Palacio and Leisen (2018).

The posterior characterization of the model was presented in Theorem 1 and asymptotic

properties of the model are discussed in the supplementary material. We presented two

approaches to draw posterior mean estimators for the survival curve, where the vector

of completely random has been integrated out. The first relies on an MCMC sampler and

the second in a maximum a posteriori procedure. Simulations studies provide evidence

of the accuracy of our methodology and ease of interpretation. We also showed how

these models can be used in in real data studies to allow for non-proportional hazard

effects and crossing survival functions, and to discover subpopulations with different

survival curves.

The GANTR model relies on the random weights of the underlying VCRM to allocate

mass on latent competing risks. A generalized additive model is applied to the compet-

ing risks where interpretable covariate effects, e.g. Cox proportional hazards effects, are

introduced in the regression functions. Thus the model in the NTR setting focuses on the

random weight structure of the underlying CRM. However, time varying effects, such

as accelerated failure times (e.g., Christensen & Johnson, 1988), can be considered in an

interpretable manner by focusing on the location component of the underlying CRM.

Another approach that could be considered in survival analysis is the frailty model.

It generalizes the proportional hazards model by introducing a multiplicative random
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effect. Frailty models are often used to model clustered survival data, for example aris-

ing in multi-center clinical trials. However, such heterogeneities can be modeled directly

with the GANTR model in a multiple-sample framework given by the different clinical

centers. As such, although it is possible to include a frailty term in our model to intro-

duce a mixed effect, we preferred to focus on the multiple-sample interpretation of our

model. Future work will be devoted to explore this research line.

We have not considered inference for left-censored or interval-censored observa-

tions. Previous approaches to this problem in the Bayesian nonparametric setting in-

clude Doss (1994) based on mixtures of Dirichlet processes, Jara and Hanson (2011)

based on a linear dependent Poisson-Dirichlet process and Kim and Lee (2003) focused

on NTR distributions from the focus of cumulative hazards. We believe that our ap-

proach could be extended to using the approach of Kim and Lee (2003) but we leave this

problem to future work.

The GANTR approach leads to an analytic form for the marginal likelihood (inte-

grating over the vector of completely random measures). This is an attractive feature

which allows us to calculate MAP estimates of hyperparameters. This can be seen as an

empirical Bayes approach which approximates the fully Bayesian approach that we also

consider. Petrone et al. (2014) provide a discussion on empirical Bayesian methods, in-

cluding asymptotic results. The use of MAP estimates for hyperparameters is becoming

increasingly popular in Bayesian nonparametrics, see e.g. Masoero et al. (2019) and Di

Benedetto et al. (2017), where the number of hyperparameters is usually small and well-

informed by the data. This contrasts with flexible Bayesian nonparametric regression

approaches which model the logarithm of the survival time using a dependent Dirichlet

process. We believe that this allows the GANTR to be applied more easily to problems

29



with many observations or covariates where MCMC samplers may mix slowly.
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