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Mathematical Internal Realism

Abstract: In “Models and Reality” (1980), Putnam sketched a version of his in-
ternal realism as it might arise in the philosophy of mathematics. Here, I will
develop that sketch. By combining Putnam’s model-theoretic arguments with
Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call)
the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly
precise; however, these perfectly precise mathematical concepts are manifested
and acquired via a formal theory, which is understood in terms of a computable
system of proof, and hence is incomplete. Whilst this might initially seem
strange, I show how internal categoricity results for arithmetic and set theory
allow us to face up to this Antinomy. This also allows us to understand why
“Models are not lost noumenal waifs looking for someone to name them,” but
“constructions within our theory itself,” with “names from birth.”

In “Models and Reality,” Putnam sketched a version of his internal realism as it
might arise in the philosophy of mathematics. The sketch was tantalising, but it
was only a sketch. Mathematics was not the focus of any of his later writings on
internal realism, and Putnam ultimately abandoned internal realism itself. As
such, I have often wondered: What might a developed mathematical internal re-
alism have looked like?

I will try to answer that question here, by reflecting on a discussion between
Putnam, Dummett, Parsons and McGee which spanned nearly five decades. This
paper also builds on work I have co-authored with Walsh. For readability, I have
abandoned many of the historical contours in favour of “rational reconstruction,”
and I have relegated most of my commentary on the origins of various ideas to
footnotes. But I should like to make it perfectly clear that, without the work of
the people just mentioned, this paper could not even have begun.
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I Acquisition and Manifestation

I want to start by considering our natural number concept. For clarity: I am not
interested in specific number concepts, like four or twenty. I am interested in
the general natural number concept, as used within serious mathematics.

We have to acquire our mathematical concepts. Even if we are born with
the capacity to acquire mathematical concepts, we are not born with the con-
cepts themselves. No baby has the general number concept.

Equally, we must be able to manifest our mathematical concepts. Whilst
mathematicians sometimes work alone, mathematical practice is fundamen-
tally communal. Mathematicians present each other with proofs and projects.1

In our early steps towards acquiring the number concept, we learn how to
recite sequences like “1, 2, 3, 4, 5,” and learn how to use such sequences to count
out small collections of objects (fish, fingers, beads, or cows). Later, we master
algorithms for adding and multiplying numbers in decimal notation. And so it
goes. But my interest here is not in numerical cognition, infant or adult. It is in
the number concept itself, as used in serious mathematics. And, whatever devel-
opmental and pedagogical steps we might take towards acquiring that concept,
we qualify as having acquired it fully, only when we have grasped some full-
blown arithmetical theory, such as Peano arithmetic.2 Equally, we fully manifest
our grasp of the concept, only by articulating and using some such theory.

In what follows, then, I will assume that serious mathematical concepts
can be (and only can be) fully acquired and manifested by mastering and artic-
ulating some theory. Much more could be said in defence of this assumption.
But I think the assumption is correct, and this paper is an attempt to work
through its consequences. In §§II–IV, I will explain how this assumption threat-
ens to constrain the precision of our mathematical concepts; then, in §§V–X, I
will explain how we can overcome that threat by developing Putnam’s internal
realism.

1 Here I intend to connect with Dummett’s long-held insistence on the importance of manifes-
tation and acquisition (see e.g., Michael Dummett, “The Philosophical Significance of Gödel’s
Theorem” (1963), reprinted in Truth and Other Enigmas (London: Duckworth, 1978), 188–190).
2 For interesting discussion concerning the stage at which we (implicitly) grasp Peano arith-
metic (or something like it), see Lance J. Rips, Amber Bloomfield and Jennifer Asmuth, “From
Numerical Concepts to the Concept of Number,” Behavioral and Brain Science 31, no. 6 (2008):
623–687 and the subsequent “Open Peer Commentary.”
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II Modelism

Consider this question: How precise is our natural number concept?3 A specific phil-
osophical character, themodelist, answers this question with a slogan. She says:

The natural number concept is precise up to isomorphism.

But, of course, the modelist will need to flesh out this slogan. To this end, she
makes the following speech:

To consider the natural number concept, we can simply consider the class of all natural-
number sequences. After all, that class encodes everything we could ever want to know
about the natural number concept. So, when you ask, “How precise is our natural number
concept?,” I attack this by instead asking, “How refined is the class of arithmetical models?”

Well, on the one hand: suppose we had two sequences that were not isomorphic. In that
case, we would not allow that both were natural-number sequences, since they would dif-
fer in some arithmetically important respect. So: every model in the class must be isomor-
phic to every other.

On the other hand: arithmetic does not really seem to care about the differences between
isomorphic sequences. So: the class should be closed under isomorphism.

Combining these two points: every model in the class must be isomorphic to every other,
and the class must be closed under isomorphism. In short, the class of arithmetical mod-
els is an isomorphism type.4 And that is what I mean, when I say that the number concept
is precise up to isomorphism. I mean that we can (and should) use an isomorphism type
as a surrogate for the number concept.

Note that many mathematical concepts are not so precise. As an example: the linear order
concept is a perfectly decent concept, but plenty of linear orders are not isomorphic, so
that the linear order concept is not precise up to isomorphism. My view is roughly that
our foundational mathematical concepts are (or, aim to be) precise up to isomorphism.
Admittedly, the idea of a “foundational” concept is a little imprecise, but I hope you get a
sense of my ambition.

3 Dummett and Charles Parsons ask roughly this question (see Dummett’s “The Philosophical
Significance of Gödel’s Theorem,” and Parsons’ “The Uniqueness of the Natural Numbers,”
Iyyun 39, no. 1 (1990): 13–44). Hilary Putnam raises very similar issues, but via questions
which focus more on objects than on concepts (“Models and Reality,” The Journal of Philosoph-
ical Logic 45, no. 3 (1980): 464–482). However, objectual and conceptual versions of the ques-
tion are very similar (see Tim Button and Sean Walsh, Philosophy and Model Theory (Oxford:
Oxford University Press, 2018), Chs. 6–8). So, for simplicity, I will focus solely on the concep-
tual version.
4 Our modelist might do better to focus on definitional equivalence instead of isomorphism
(see Button and Walsh, Philosophy and Model Theory, §§5.1–5.2); but this would not change
the dialectic, so I will ignore this complication.
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That is modelism, in a nutshell. Modelism is obviously structuralist, but it is
just one version of structuralism. And its special reliance on model theory gives
rise to its name, modelism.5

Modelism is appealing. Unfortunately, as Putnam taught us, it is dead
wrong. It succumbs to the model-theoretic argument.6

In §I, I insisted that mathematical concepts must be tied to theories, via
manifestation and acquisition. So, if the modelist is right that the number con-
cept is precise up to isomorphism, then our arithmetical theory must pick out
an isomorphism type. But formal theories are offered in formal languages, and
formal languages have certain provable limitations. For example, we have:

The Löwenheim-Skolem Theorem. If a (countable, first-order) arithmetical
theory has any infinite models, then it has models of every infinite cardinality.

A Corollary of Compactness. If a (first-order) arithmetical theory has any
infinite models, then it has models containing non-standard elements.

So – assuming we are limited to (countable) first-order theories – our theory
cannot pick out a unique isomorphism type. In which case, given that the num-
ber concept was supposed to be precise up to isomorphism, no theory will
allow us (fully) to manifest or acquire our number concept. And that contradicts
what I insisted upon in §I.

This is the kernel of the model-theoretic argument against modelism. To
make it stick, though, we must defend the assumption that the modelist is lim-
ited to considering formal, (essentially) first-order, theories.

First, then, consider formality. As a practice, arithmetic is not just a list of
axioms, but rather a “MOTLEY of techniques and proofs,” to use Wittgenstein’s

5 Button and Walsh coined the term “modelism”; see Philosophy and Model Theory, Ch. 6 for
more.
6 The remainder of this section presents the central problem I extract from Putnam’s invoca-
tion of the Löwenheim-Skolem Theorem in “Models and Reality.” (Admittedly, Putnam raised
the issue in a more “objectual” than “conceptual” key; but see footnote 3, above.) Dummett
raised a similar problem, focussing on Gödelian incompleteness (see “The Philosophical Sig-
nificance of Gödel’s Theorem,” 192). For more, see Button and Walsh, Philosophy and Model
Theory, Ch. 7.
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imagery.7 A modelist might want to suggest that this informal motley plays
some role in picking out an isomorphism type.8

Now, insofar as model theory (as a branch of pure mathematics) considers
theories, it considers only formal theories. So, if a modelist appeals to informal
mathematics, we cannot just deploy results from model theory to raise problems
for her. And this might seem like a strike in favour of an “informalist”modelism.

However, this point cuts both ways. The very notion of an isomorphism type
is something we define within model theory. So it is hard to see how anyone
could even hope to explain how an informal theory could pin down a unique
isomorphism type. Moreover, leaving this issue unexplained is not a viable op-
tion. After all, to treat the matter as inexplicable would be to say that it is just a
brute feature of the world – a “surd metaphysical fact”9 – that our informal
mathematical practice pins down one particular isomorphism type. And this
would be tantamount to the patently ridiculous claim:

Everyone who wears this particular motley just happens to pick out this very specific
thing; which is really rather fortunate, since (a priori) any of us might have picked out
different things, or indeed have failed to pick out anything at all!

On pain of embarrassment, then, I take it that modelists are restricted to using
formal theories, and will seek to explain how such theories can pin down iso-
morphism types.10

As I presented the model-theoretic argument, though, I did not just assume
that the modelist’s favourite theory must be formal; I also assumed that the the-
ory must be first-order (and countable). To explain why this is a significant as-
sumption, allow me to mention some simple technicalities. When we use the full
semantics for second-order logic, we treat second-order quantifiers as ranging
over the full powerset of the first-order domain. (This allows us to gloss “∀X”

7 Ludwig Wittgenstein, Remarks on the Foundations of Mathematics, translated by G.E.M. Anscombe
(Oxford: Blackwell, 1956), §46.
8 This seems to be Benacerraf’s response to Putnam’s “Models and Reality.” See Paul Benacer-
raf and Crispin Wright, “Skolem and the Skeptic,” Proceedings of the Aristotelian Society 59
(1985): 108–111.
9 To use Putnam’s phrase from Hilary Putnam, Reason, Truth and History (Cambridge: Cam-
bridge University Press, 1981), 48. (The context of the quote is the permutation argument
against metaphysical realism in general; but the same thought applies here.)
10 Admittedly, mathematicians were discussing “the natural numbers” long before they had
any formal theories (in the modern sense). So, to tell the historical story of how we (collec-
tively) acquired the number concept, we would certainly need to consider informal practice.
But this does not affect the general point that, in terms of §1, the concept is manifested with its
full precision by (and only by) use of a formal theory.

Mathematical Internal Realism 161



roughly as “for any subset of the first-order domain.”) Neither the Löwenheim-
Skolem nor the Compactness theorems hold, given this semantics. On the con-
trary, we have this:11

Dedekind’s Categoricity Theorem. Given the full semantics for second-order
logic, second-order Peano arithmetic is categorical (i.e., all models of the theory
are isomorphic).

So, the modelist might reply to the model-theoretic argument by invoking Dede-
kind’s result, and saying:

The theory of second-order Peano arithmetic allows us to acquire and manifest a number
concept that is precise up to isomorphism.

This reply is tempting, but it is fatally flawed.12 The flaw does not concern the
use of second-order Peano arithmetic; there is nothing intrinsically wrong with
allowing quantification into predicate-position. The flaw concerns the appeal to
the full semantics for second-order logic.

Our modelist wants to say that some (formal) theory allows us to acquire and
manifest our number concept. Indeed, she has specified a particular theory:
second-order Peano arithmetic. However, if we approach second-order Peano
arithmetic using the Henkin semantics for second-order logic, then both the
Löwenheim-Skolem and Compactness results return. So, the modelist must in-
sist that we approach second-order Peano arithmetic using her favourite se-
mantics: the full semantics.

At this point, we must ask her to explain how we acquire and manifest the
concepts involved in that semantics. I expect her to reply as follows:13

The key concept, i.e. powerset, is just the concept of all combinatorially possible sub-
collections of a collection.

11 For a modern proof, and references to plenty of other proofs, see e.g. Button and Walsh,
Philosophy and Model Theory, §7.4.
12 What follows is, in effect, one version of Putnam’s famous just-more-theory manoeuvre.
See Hilary Putnam, “Realism and Reason,” Proceedings of the American Philosophical Society
50, no. 6 (1977): 486–487 and “Models and Reality,” 477, 481, as well as references and discus-
sion in Tim Button, The Limits of Realism (Oxford: Oxford University Press, 2013), Chs. 4–7 and
Button and Walsh, Philosophy and Model Theory, §§2.3, 7.7–8.
13 Thanks to Mary Leng for suggesting this way of putting it.
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This is true. But we are no more born with that general mathematical concept,
than we are born with the general number concept; we must acquire it. Equally,
we must be able to manifest it. The rules of §I apply.14

In §I, I noted that counting out small collections of objects is probably an
important step on the road towards acquiring the number concept. In the end,
though, I insisted that we grasp the general concept only when we grasp some
full-blown mathematical theory. Similarly: manipulating small collections of
objects may be an important step on the road towards acquiring the notion of
set, but we grasp the general concept of powerset only when we grasp some
full-blown mathematical theory.

As before: allowing this theory to be informal will leave everything unex-
plained. So the modelist must accept that the theory which gives us the power-
set concept is formal.

Now, though, the modelist has begun on an infinite regress. To make it
explicit:

(1a) To explain how we come to grasp the number concept, the modelist
presents us with a formal theory, T1.

(1b) However, if T1 is to pin down the number concept up to isomorphism, T1
must be understood via some “intended” semantics.

(1c) So, if T1 is to achieve what the modelist wants, we must understand the con-
cepts involved in T1’s “intended” semantics before being introduced to T1.

(2a) To explain how we come to grasp those semantic concepts, the modelist
presents us with a formal theory, T2.

(2b) However, if T2 is to pin down those semantic concepts sufficiently pre-
cisely, T2 must be understood via some “intended” semantics.

(2c) So, if T2 is to achieve what the modelist wants, we must understand the con-
cepts involved in T2’s “intended” semantics before being introduced to T2.
. . .

So it goes. This is clearly a regress.15 Equally clearly, it is vicious. It simply can-
not be a constraint, on acquiring or manifesting the concepts involved in one

14 It is sometimes suggested that our grasp of plural logic will deliver the required combinato-
rial concept. But the same question arises: what allows us to grasp full plural logic, rather than
Henkin plural logic? Salvatore Florio and Øystein Linnebo, “On the Innocence and Determinacy
of Plural Quantification,” Noûs 50, no. 3 (2016): 565–583 develop this criticism elegantly.
15 Note that it is useless to suggest that Tn = Tn+k, for some n and all k, since there are guaran-
teed to be “unintended” Henkin-style interpretations of each Tn, and these will yield unin-
tended interpretations of T1.
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theory, that we must first acquire or manifest the concepts involved in the the-
ory at the next level; if it were, then we would never be able to acquire or mani-
fest our concepts at all.

One final point. Earlier, our modelist moved straight from first-order logic
to second-order logic with its full semantics. In fact, she might have attempted to
rebut the model-theoretic argument by invoking any of several alternative logics.
But there is a hard limit on this strategy. As noted above, the Compactness
Theorem is sufficient to yield a model-theoretic argument. But Compactness
holds for any logic with a finitary (sound and complete) proof system.16 So: if the
modelist wants to use a logic which is strong enough to pin down an isomor-
phism type, then the logic cannot be fully articulated proof-theoretically, but
must instead be articulated semantically. And that suffices to set the modelist off
on her vicious regress.

III A Dummettian Approach

Modelism has failed. We need an alternative. The obvious thought is simply to
try approaching matters proof-theoretically, rather than model-theoretically. In-
deed, this was Dummett’s approach. His central idea can be stated as follows:

(a) Mathematical concepts are fully determined by their uses in proofs.

This idea promises to handle the requirements of acquisition and manifestation
better than modelism did. After all, when it comes to teaching and learning
mathematics, rules of proof are rather more tractable than isomorphism types.

Unfortunately, there is an immediate barrier to this proposal. Let P be any
algorithmically-checkable proof-system, by which I mean that there is an algo-
rithm which decides whether any putative P-proof is a genuine P-proof. Now,
suppose for reductio that P-provability exhausts the arithmetical facts, i.e.,
that, for every arithmetical sentence φ:

φ iff there is a P-proof that φ

Since our proof-system is algorithmically-checkable, some computable function cap-
tures the idea that n is (the code of) a P-proof of (the code of) φ. This means that
there will be an arithmetical predicate, Tr, such that, for any arithmetical sentence φ:

16 See Button and Walsh, Philosophy and Model Theory, §7.9.
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there is a P-proof that φ iff Tr(‘φ’)

Combining the biconditionals, for any arithmetical sentence φ:
φ iff Tr(‘φ’)

But this contradicts Tarski’s Indefinability Theorem.17 So P-provability does not
exhaust the arithmetical facts after all. Generalising on P, we obtain:

(b) No algorithmically-checkable proof-system exhausts the arithmetical facts.

Dummett is aware of this sort of reasoning,18 but he does not take it to under-
mine (a). Instead, he ponenses where others might tollens. Since Dummett in-
sists that the number concept is fully determined by its use in proofs, he takes
(b) to show that “no formal system can ever succeed in embodying all the prin-
ciples of proof that we should intuitively accept.”19 That is, combining (a) with
(b), he concludes that that the number concept itself “cannot be fully expressed
by means of any formal system.”20

Unfortunately, this leads to a rather unhappy conclusion. Following Dum-
mett, I have insisted that our number concept must be both acquirable and
manifestable. But machines, I take it, can only manifest and acquire concepts
which can be fully expressed by means of some formal system.21 Given Dum-
mett’s claim that the number concept “cannot be fully expressed by means of
any formal system,” he must accept that machines cannot acquire the number
concept itself, but can only acquire some imprecise approximation to it. In
short, Dummett is committed to a startling disjunction:

(c) Either we are not machines, or we do not possess the number concept.22

17 I have put the problem this way, rather than simply invoking the fact that the class of arith-
metical truths is not computably enumerable, to emphasise that the problem does not depend
a notion of arithmetical truth that is (somehow) “prior” to a notion of proof.
18 Though Dummett, “The Philosophical Significance of Gödel’s Theorem,” focusses on Göde-
lian reasoning, rather than on Tarskian undefinability.
19 Dummett, “The Philosophical Significance of Gödel’s Theorem,” 200.
20 Dummett, “The Philosophical Significance of Gödel’s Theorem,” 186.
21 Setting aside machines with access to oracles.
22 This is obviously similar to Gödel’s Disjunction (Kurt Gödel, “Some Basic Theorems on the
Foundations of Mathematics and Their Implications” (1951), reprinted in Kurt Gödel, Collected
Works, Vol. 3, edited by Solomon Feferman et al. (Oxford: Oxford University Press, 1995), 310).
However, the right disjunct here (“we do not possess the number concept”) should be con-
trasted with Gödel’s (“there exist absolutely unsolvable diophantine problems”).

Mathematical Internal Realism 165



I cannot take seriously the possibility that we do not possess the number con-
cept. Equally, though, I cannot allow that our philosophy of mathematics might
require that we are not machines. I therefore have no option but to part ways
with Dummett.

IV The Skolem-Gödel Antinomy

The previous three sections can be summarised as follows. We (fully) acquire
and manifest our mathematical concepts via formal theories. Modelism treats
such theories model-theoretically. In so doing, it succumbs to Putnam’s model-
theoretic argument. The obvious alternative is to treat formal theories proof-
theoretically. But, to allow for the possibility that we are machines, the relevant
proof-system must be algorithmically-checkable; and the number concept is suffi-
ciently precise that no algorithmically-checkable proof-system exhausts the arith-
metical facts. All told, then, we find ourselves in the following predicament:

The Skolem-Gödel Antinomy. Our mathematical concepts are perfectly pre-
cise. However, these perfectly precise mathematical concepts are (fully) ac-
quired and manifested via a formal theory, which is understood in terms of an
algorithmically-checkable proof-system, and hence is incomplete.

Confronted with this antinomy, one might well worry that something must have
gone wrong: surely any concept which is (fully) articulated in an incomplete the-
ory must be imprecise? I certainly feel the tension; indeed, that is why I call this
predicament an “antinomy.”23 Still, I do not think that anything has gone
wrong. This really is our predicament, and we must face up to it.

With that in mind, the rest of this paper outlines a position, internalism,
which aims to resolve the Skolem-Gödel Antinomy. Moreover, as I will show,
internalism amounts to a detailed development of the mathematical internal re-
alism which Putnam sketched at the end of his “Models and Reality.”24

23 Cf. Putnam’s (“Models and Reality,” 464) use of “antinomy.”
24 The material in the second half of this paper develops joint work with Sean Walsh (Button
and Walsh, Philosophy and Model Theory, Chs. 10–12). In that work, Sean and I did not endorse
internalism; we simply wanted to articulate the best possible version of internalism. In this
paper, I want to stick my neck out slightly further. Here is how.

I am confident that the Skolem-Gödel Antinomy accurately describes our predicament. More-
over, internalism strikes me as the most promising line of response to that Antinomy. Indeed, at
the moment, I see no other way to face up to the Antinomy. Still, there is much more work to be
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V Internalism about Arithmetic

I will start by outlining a formal theory of arithmetic which articulates the natural
number concept incompletely, but still shows that concept to be perfectly precise.

I do not want to assume that everything is a number. So I need a primitive
predicate, “N(x)” which is to be read as “x is a natural number.” I also need a
primitive function symbol, “s(x)” to be read as “the successor of x.” To save
some space in my formalisms, I will also introduce two obvious abbreviations:

(∀x: Ф)Ψ abbreviates ∀x(Ф(x) → Ψ)
(∃x: Ф)Ψ abbreviates ∃x(Ф(x)∧ Ψ)

Using these symbols and abbreviations, I can lay down four axioms:

(1) (∀n: N) N(s(n))
i.e. the successor of any number is a number

(2) (∃z: N)(∀n: N) s(n) ≠ z
i.e. there is a zero-element

(3) (∀m: N)(∀n: N)(s(m) = s(n) → m = n)
i.e. successor is injective on the numbers

(4) ∀F([(∀z: N)((∀n: N) s(n) ≠ z → F(z))∧ (∀n: N)(F(n) → F(s(n)))] → (∀n: N) F(n))
i.e. induction holds for the numbers: for any property F, if every zero-element
has F and F is closed under successor, then every number has F.

Let PAint be the conjunction of these four axioms. The name abbreviates Peano
Arithmetic, internalised, since PAint is just second-order Peano arithmetic, with
all the axioms relativised to “N”. This is the theory which I will wield in the
face of the Skolem-Gödel Antinomy.

To appreciate the virtues of PAint, imagine that Solange and Tristan have both
learned PAint.

25 They are now happily babbling away to each other, exploring the

done to clarify internalism. And, although I hope otherwise, such further work may end up expos-
ing deep flaws in internalism. So, the situation is this. If you forced me to declare for some position
in the philosophy of mathematics, then I would declare myself an internalist, and hope that every-
thing works out for the best. But, absent that compulsion, I hesitate to call myself an avowed inter-
nalist. For readability, though, I will keep these reservations buried in this footnote. In the main
text of this paper, I will write as a straightforward advocate of internalism.
25 The idea here is inspired by Parsons’s discussions of Kurt and Michael in “The Uniqueness
of the Natural Numbers.” For more on the similarities and differences between this approach
and Parsons’s, see Button and Walsh, Philosophy and Model Theory, §10.B.
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theory’s consequences. They shared a teacher, and so they use the same word-
types as each other. Still, to keep things clear, I will use “N1” for Solange’s number-
predicate and “s1” for her successor-function, so that Solange advances PAint in
this subscripted vocabulary, and I will call her subscripted theory PA(N1, s1). Simi-
larly, I will have Tristan advancing PA(N2, s2).

In advancing PA(N1, s1) and PA(N2, s2), there is of course no guarantee that
Solange and Tristan are talking about the same objects (if they even think of
themselves as talking about objects at all). To take a trivial example: maybe
“Solange’s zero-element” is Solange herself, and “Tristan’s zero-element” is
Tristan, so that Solange (her tummy rumbling) can rightly say “zero is hungry,”
whilst Tristan (satiated) rightly says “zero is not hungry.” But this is trivial, and
for an obvious reason: mathematicians basically only care about arithmetical
features of the natural numbers, and not about whether the numbers are hun-
gry. We philosophers should probably do the same.

It is, then, unreasonable to ask for a guarantee that Solange and Tristan are
talking about the same objects. It is much more reasonable to ask for a guaran-
tee that Solange’s numbers and Tristan’s numbers share the same arithmetical
structure. And the following result provides just such a guarantee:26

Internal Categoricity of PA
⊢ ∀N1∀s1∀N2∀s2([PA(N1, s1) ∧ PA(N2, s2)] →

∃R [∀v∀y(R(v, y) → [N1(v) ∧ N2(y)]) ∧
(∀v: N1)∃!yR(v, y) ∧
(∀y: N2)∃!vR(v, y) ∧
∀v∀y(R(v, y)↔ R(s1(v), s2(y)))])

Roughly, this says the following: given that Solange’s number-property and
successor-function behave PAint-ishly, and so do Tristan’s number-property
and successor-function, there is some relation, R, which takes us from Sol-
ange’s numbers to Tristan’s, and is bijective, and preserves successor (and
hence also preserves zero-hood). Or, more briefly:

Provably, all of Solange’s arithmetical structure is mirrored in Tristan’s numbers, and vice
versa.

26 See Button and Walsh, Philosophy and Model Theory, §10.B, and Juoko Väänänen and
Tong Wang, “Internal Categoricity in Arithmetic and Set Theory,” Notre Dame Journal of For-
mal Logic 56, no. 1 (2015), Theorem 1. For the sake of exposition, I have moved freely between
treating e.g. “N1” as a predicate and treating it as a relation-variable, leaving it to context to
individuate what treatment is appropriate. For a rigorous treatment, see Button and Walsh,
Philosophy and Model Theory, Chs. 10–12.
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This internal categoricity result evidently resembles Dedekind’s categoricity re-
sult, that all models of second-order Peano arithmetic are isomorphic (see §II).
But it is worth spelling out the deep differences between these results.

Dedekind’s result is model-theoretic. It is stated and proved in a semantic
metalanguage. The internal categoricity result, by contrast, amounts to metamath-
ematics without semantic ascent. It involves no semantic considerations at all. It is
proved within the ordinary deductive system for (impredicative) second-order
logic (as indicated by the use of ‘⊢’ in the statement of the Internal Categoricity
Theorem). The proved sentence is in the same language as PAint itself (indeed, it is
a sentence of the “purely logical” fragment of PAint). So it is an internal categoric-
ity theorem, in precisely the following sense: it neither takes us beyond the object
language, nor outside that language’s proof-system.

Sticking with deduction has a benefit. In §II, our modelist attempted to in-
voke Dedekind’s categoricity result. This forced her to insist that some particu-
lar semantic theory was privileged, and this set her off on a vicious regress.
Since the Internal Categoricity Theorem invokes no semantic notions, no simi-
lar regress can arise.

However, sticking with deduction also has a cost. Inevitably, PAint cannot
prove its own Gödel-sentence. Since we are viewing PAint deductively, we must
therefore see it as incomplete.

Such incompleteness was, of course, promised to us by the Skolem-Gödel
Antinomy. Nonetheless – and to address that Antinomy – I now want to explain
why PAint succeeds in introducing a perfectly precise number concept.

Let us revisit Solange and Tristan, respectively affirming PA(N1, s1) and PA(N2, s2).
Suppose that Solange affirms (an appropriate formalisation of) “every even num-
ber is the sum of two primes,” at which Tristan shakes his head and replies
“some even number is not the sum of two primes.” Now, we already noted that
Solange and Tristan need not agree about what the numbers are. Still, we might
hope that Solange and Tristan are genuinely disagreeing here, rather than merely
talking past each other in their different languages. After all, Goldbach’s Conjec-
ture is purely arithmetical, and all of Solange’s arithmetical structure is mirrored
in Tristan’s numbers, and vice versa, so, surely they are genuinely engaged with
each other?

Indeed they are. This follows from a neat corollary of PAint’s internal
categoricity:27

27 For a full statement and proof, see Button and Walsh, Philosophy and Model Theory, §§10.5,
10.B. Note the schematic character of this result. This might lead us to ask the internalist ques-
tions about the syntactic theory (as we asked the modelist questions about the semantic theory),
but I think these can be addressed (see Button and Walsh, Philosophy and Model Theory, §10.8).
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Intolerance of PA. For each second-order formula φ, whose only free variables
are N and s, and whose quantifiers are all restricted to N:

⊢ ∀N∀s(PA(N, s) → φ) ∨ ∀N∀s(PA(N, s) → ¬φ)

So, when Solange affirms Goldbach’s Conjecture whilst Tristan denies it (in their
respective languages), Solange cannot just shrug and say: “that might hold in
your numbers, but it doesn’t hold in mine!” If they share a logical language, then
they must hold that one of them is wrong; for Goldbach’s Conjecture must hold
of all PAint-ish number concepts (the left disjunct of the Intolerance Theorem) or
fail of all of them (the right disjunct).

More generally, we can gloss the Intolerance Theorem as follows:

On pain of provable inconsistency, no two PAint-ish number concepts can diverge over any
arithmetical claim.

This explains why I call the result an intolerance theorem; it shows that PAint

does not tolerate different ways of pursuing arithmetic.
The Intolerance Theorem underpins my claim that PAint articulates the number

concept precisely. To spell out the last steps towards this conclusion, I propose
that we should think about precision in roughly the way that supervaluationists
think about determinacy, i.e. via this heuristic:

If we can equally well render a claim right or wrong, just by sharpening up the concepts
involved in the claim in different ways, then that claim is indeterminate (prior to any
sharpening of concepts). Otherwise, it is determinate.

Now let φ be any arithmetical claim. If φ holds for every PAint-ish number concept,
then we cannot render φ wrong, just by considering Tristan’s number concept
rather than Solange’s, or whatever. So, by the above heuristic, it is determinate
that φ. More generally, this suggests that we should gloss ∀N∀s(PA(N, s) → φ) as
“it is determinate that φ.” And this allows us to restate the Intolerance Theorem
as follows:

Glossed Intolerance. For each second-order formula φ, whose only free varia-
bles are N and s, and whose quantifiers are all restricted to N:

⊢ ∀N∀s(PA(N, s) → φ) ∨ ∀N∀s(PA(N, s) → ¬φ)

i.e.: either it is determinate that φ or it is determinate that ¬φ
i.e.: it is determinate whether φ

In sum: thanks to its intolerance, PAint articulates our natural number concept
sufficiently precisely, that every arithmetical claim is determinate.
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Allow me to summarise this section. The theory PAint can be stated very
briefly – it has just four conjuncts – so there is no difficulty in acquiring or
manifesting either the theory itself or the concepts it articulates. Plenty of arith-
metical claims are not decided by PAint; it articulates the number concept in-
completely. But PAint articulates our number concept sufficiently precisely, that
(provably) every arithmetical claim is determinate.

In short, PAint gives us a way to respond to the Skolem-Gödel Antinomy of
§IV, in the specific case of the number concept. That is the response I want to
offer. And here is a more general statement of internalism (about arithmetic):

I affirm PAint unrestrictedly and unreservedly. With Dummett, I agree that the number
concept is given to us primarily in terms of proof. Unlike Dummett, though, I rely upon
an algorithmically-checkable proof-system. Then, with the modelist, I aim to prove the
precision of my number concept, by proving the categoricity of my arithmetical theory.
But, unlike the modelist, I am successful; and I succeed because my categoricity result is
internal.

VI Intersubjectivity, Objectivity, and Objects

One moral of §V can be put as follows: intolerance yields intersubjectivity. More
specifically: when a theory is intolerant, people using that theory are not just
deploying private concepts, but are drawn into genuine (dis)agreement with
each other. So, internalism provides an account of mathematical intersubjectiv-
ity. It is worth, though, briefly connecting this with issues about mathematical
objectivity and mathematical objects.

As an internalist, I am committed to PAint. I affirm it without reservation.
And, in affirming it, I affirm that there are numbers: the axioms carry existen-
tial commitment. (I should be frank, and admit that I am not sure exactly how
best to answer the question: How do you know that there are numbers? Still, as
an internalist, I am committed to their existence.)

Moreover, this existential commitment is indispensable to the story I told in
§V. To see why, suppose that there were no PAint-ish number properties, i.e.
that ¬∃N∃sPA(N, s). Then we would vacuously have that both ∀N∀s(PA(N, s) →
φ) and ∀N∀s(PA(N, s) → ¬φ), for each relevant φ. It would follow that that it is
both determinate that φ and determinate that ¬φ. This would be catastrophic.
So, contraposing, the satisfactoriness of my account of determinacy (and hence
intersubjectivity) implicitly requires that ∃N∃sPA(N, s).

To repeat, then: internalists are committed to the existence of numbers. But
I have said very little about their nature. I have said that (my) numbers behave

Mathematical Internal Realism 171



PAint-ishly, but I have been silent about many things: about whether the num-
bers are mind-independent or theory-independent; about whether any number
is a Gallic emperor, or a set (and, if so, which); and, returning to the trivial il-
lustration in §V, even about whether the numbers are hungry.

I believe that I could say whatever I like about such matters. For this reason, I
would really prefer to say nothing at all. It is fortunate, then, that there is a princi-
pled way for an internalist to insist that all such matters are indeterminate.28

In §V, I glossed ∀N∀s(PA(N, s) → φ) ∨ ∀N∀s(PA(N, s) → ¬φ) as “it is determi-
nate whether φ.” At the time, I restricted this gloss to sentences of a particular
form (second-order formulas with only N and s free, and whose quantifiers are
all restricted to N). But if I extend this gloss to cover sentences in richer lan-
guages, then I will get to say that it is indeterminate whether the number 2 is
equal to Julius Caesar, or is hungry, or is (in)tangible. For if there are any PAint-
ish number properties, then there will be a number-property which takes 2 to be
a hungry, tangible, Caesar, and another which takes it to be an abstract singleton
set. More generally, on this approach, all questions about the “metaphysical na-
ture” of numbers will have indeterminate answers. They can simply be ignored.

A “hardcore realist” might complain that this brisk response simply trivial-
ises some very important questions in the metaphysics of mathematics.29 Let
them complain. My point is just that internalists get to say that all the facts
about the numbers can be expressed in the language of arithmetic. And that
strikes me as a nice “bonus point” in favour of internalism.30

VII Internalism about Set Theory

There is much more to say about internalism about arithmetic. I will say some
of it in §X. First, I want to consider internalism about set theory. In brief, I want
to lift the story of §§V–VI over from the number concept to the set concept.

As in §V, I will start by introducing an “internalised” theory of pure sets.
Rather than using a Zermelo-Fraenkel-style theory, though, I prefer to use a set
theory which captures the “minimal core” of the cumulative iterative notion of

28 This line is developed in Button and Walsh, Philosophy and Model Theory, §10.7.
29 The “hardcore realist” is a character from Putnam “Realism and Reason,” 490. Thanks to
Wesley Wrigley for suggesting I address this point.
30 Something similar also sounded good to Putnam; see his comments on “whether the num-
ber 2 is identical with a set, and if so, which set is identical with.” (“Comments and Replies,”
in Reading Putnam, edited by Peter Clark and Bob Hale (Oxford: Blackwell, 1994), 248–251)
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set. This Level Theory has its origins in work by Montague, Scott, Derrick, and
Potter.31

I want to articulate a theory of pure sets. This is not to say that there is no set of
the cows in the field; only that (for present purposes) I will ignore that set if it exists.
To restrict attention to pure sets in this way, I need a predicate, “P(x),” to be read as
“x is a pure set.” Unsurprisingly, I will also need a membership predicate, “∈.” Using
these symbols and the abbreviations of §V, I can then write down some axioms:

(1) ∀x∀y(x∈y → (P(x) ∧ P(y)))
i.e. we restrict our attention to membership facts between pure sets

(2) (∀x: P)(∀y: P)[∀z(z∈x↔ z∈y) → x = y]
i.e. pure sets are extensional entities

(3) ∀F(∀x: P)(∃y: P)∀z(z∈y↔ (F(z) ∧ z∈x))
i.e. pure sets obey separation

(4) (∀x: P)(∃v: Level)x⊆v
i.e. every set is found at some level

As written, principle (4) uses an undefined predicate, “Level”. However – and this
is the neat trick about the approach – we can explicitly define “Level” in terms of
set-membership.32 As such, the only primitives we need are “P” and “∈.” Let LTint
(for Level-Theory, internalised) be the conjunction of these four axioms.

31 I present a simple version of the theory in Tim Button, “Level Theory, Part 1: Axiomatiz-
ing the Bare Idea of a Cumulative Hierarchy of Sets,” in Bulletin of Symbolic Logic 27, no. 4
(2021): 436–460. For the origins of Level Theory, see: Richard Montague, “Set Theory and
Higher-Order Logic,” in Formal Systems and Recursive Functions. Proceedings of the Eight
Logic Colloquium, July 1963, edited by John Crossley and Michael Dummett, 131–148 (Amster-
dam: North-Holland, 1965); Richard Montague, Dana Scott, and Alfred Tarski, “An Axiomatic
Approach to Set Theory” (BANC MSS 84/69c, carton 4, folder 29–30, Bancroft Library, Uni-
versity of California, Berkeley); Dana Scott, “The Notion of Rank in Set-Theory,” in Summa-
ries of Talks Presented at the Summer Institute for Symbolic Logic, Cornell University, 1957,
267–269 (Princeton: Institute for Defence Analysis, 1960); Dana Scott, “Axiomatizing Set
Theory,” in Axiomatic Set Theory II. Proceedings of the Symposium in Pure Mathematics of the
American Mathematical Society, July-August 1967, 207–214 (Providence: American Mathemat-
ical Society, 1974) and Michael Potter, Set Theory and Its Philosophy (Oxford: Oxford Univer-
sity Press, 2004), especially Ch. 3. Thanks to Charles Parsons for making me aware of
Montague’s work. For a brief presentation of all that is required for the purposes of this
paper, see Button and Walsh, Philosophy and Model Theory, §§8.B–C, 11.C–D.
32 For the definition, see Button, “Level Theory, Part 1,” Definition 2.2. This simplifies a defi-
nition due to Potter, Set Theory and Its Philosophy, 24, 41, which is also used in Button and
Walsh, Philosophy and Model Theory, §§8.5, 8.C.
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Crucially, LTint proves that the levels are well-founded by membership. This
is why LTint provides the “minimal core” of the cumulative iterative conception
of sets. It is the “core,” since it tells us that sets are stratified into well-ordered
levels. It is “minimal,” because it makes no comment at all about how far the
sequence of levels runs. (There is no powerset axiom; no axiom of infinity; no
axiom of replacement.) Indeed, thinking model-theoretically for a moment, (the
pure parts of) the full second-order models of LTint are, up to isomorphism, ex-
actly the arbitrary stages of the (pure) cumulative hierarchy of sets, as axioma-
tised by second-order ZF.33 But I mention this fact, only to make LTint feel a bit
more familiar. I will treat LTint deductively, just as I treated PAint in §V.

Working deductively, then, we can recover an “internal” counterpart of Zer-
melo’s quasi-categoricity theorem. Roughly, this says: if both Solange’s and Tri-
stan’s pure sets behave LTint-ishly, then their sets are isomorphic, as far as they
go, but Solange’s might go further than Tristan’s (or vice versa). However, to
keep this paper short, I will leave the details of internal quasi-categoricity for
elsewhere,34 and skip straight to a theory which is internally (totally) categori-
cal. I call this theory CLTint, for Categorical Level-Theory. We obtain it by add-
ing a fifth conjunct to LTint (where “f” is a second-order function-variable):

(5) ∃f (∀xP(f(x)) ∧ ∀y(P(y) → ∃!x f(x) = y))
i.e. there are exactly as many pure sets as there are objects simpliciter
(i.e. objects which are either pure sets or not).

In the deductive system for impredicative second-order logic, we can then
prove internal categoricity for CLTint. Informally, this says that there is a mem-
bership-preserving bijection from Solange’s pure sets to Tristan’s. Formally:35

Internal Categoricity of CLT.
⊢ ∀P1∀∈1∀P2∀∈2([CLT(P1, ∈1) ∧ CLT(P2,∈2)] →

∃R [∀v∀y(R(v, y) → [P1(v) ∧ P2(y)]) ∧
(∀v:P1)∃!yR(v, y)∧
(∀y:P2)∃!vR(v, y)∧
∀v∀x∀y∀z([R(v, y) ∧ R(x, z)] → [v∈1x ↔ y∈2z])])

33 See Button and Walsh, Philosophy and Model Theory, §8.C.
34 Interested readers should look to Button and Walsh, Philosophy and Model Theory, §§11.2,
11.C and Button, “Level Theory, Part 1”, §6.
35 See Button and Walsh, Philosophy and Model Theory, §§11.4, 11.D.
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From internal categoricity, we can also obtain intolerance. Informally, this says
that no two CLTint-ish set concepts can diverge over any pure set-theoretic
claim. Formally:36

Intolerance of CLT. For each second-order formula φ, whose only free varia-
bles are P and ∈, and whose quantifiers are all restricted to P:

⊢ ∀P∀∈(CLT(P, ∈) → φ) ∨ ∀P∀∈(CLT(P,∈) → ¬φ)

The situation, then, is as with PAint. The theory CLTint gives internalists about
set theory a concrete response to the Skolem-Gödel Antinomy of §IV, in the spe-
cific case of the set concept. It explains how, using an incomplete theory, we
can acquire and manifest a set concept which is so precise, that any purely set-
theoretic claim is determinate.37

VIII Internalism about Model Theory

I will say more about set theory in §X. First, I want to say a bit about model
theory. I dismissed modelism in §II. But my complaint against modelism is not
a complaint against model theory itself. Rather, it is a complaint against a phil-
osophical misuse of model theory. Allow me to explain.

Modelists insist on using model theory to explicate mathematical concepts.
This is a mistake, as the model-theoretic arguments show. From this, Putnam
correctly concluded that we must (sometimes)38 “foreswear reference to models
in [our] account of understanding” mathematical theories and concepts. But
the modelist’s mistake is no part of the branch of pure mathematics known as
model theory. So, as Putnam also emphasised, we do not “have to foreswear for-
ever the notion of a model.”39 We just need to treat the pure-mathematical
model concept in a suitably internalist fashion.

This is quite straightforward. In common with almost every branch of mathe-
matics, model theory is largely carried out informally: the proofs are discursive,

36 See Button and Walsh, Philosophy and Model Theory, §11.5.
37 The approach, and invocation of a technical result, is greatly indebted to Vann McGee,
“How We Learn Mathematical Language,” Philosophical Review 106, no. 1 (1997): 35–68. For
more on the similarities and differences, see Button and Walsh, Philosophy and Model Theory,
§11.A.
38 Why only sometimes? See §IX.
39 Putnam “Models and Reality,” 179. See also Dummett “The Philosophical Significance of
Gödel’s Theorem,” 191, 193.
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they omit tedious steps, and so forth. But we can easily grasp the idea that, “offi-
cially,” model theory is implemented within set theory. After all, model-theorists
freely use set-theoretic vocabulary and set-theoretic axioms to describe and con-
struct models, and, in principle, all of the definitions of ordinary model theory
could be rewritten in austerely set-theoretic terms.

So, in what follows, let MTint (for Model Theory, internalised) be a suitable
set theory to be used for model-theoretic purposes. There is no need to go into
great detail about MTint; I only need to explain how it relates to CLTint. There
are three crucial points:40

(1) MTint deals with a pure set property, P, and a membership relation,∈.
It might have other predicates too, but it has at least those.

(2) MTint proves CLTint.
This means that MTint is internally categorical with respect to pure sets.

(3) MTint proves that there are infinitely many pure sets.
This gives MTint the resources to carry out basic reasoning concerning arith-
metic and hence (arithmetised) syntax.

These points ensure that MTint has all the basic vocabulary and conceptual re-
sources for developing model theory as a branch of pure mathematics. Working
model-theorists will certainly want to add more axioms to the underlying set
theory – I will return to this in the next section – but we need nothing more at
present.

Internalists about model theory affirm MTint, and insist that model theory is
“officially” carried out deductively within MTint. The internal categoricity and
intolerance of CLTint then transfers across to MTint, so that any purely model-
theoretic claims are determinate. As per the earlier pattern, this provides an ac-
count of how we can acquire and manifest a perfectly precise model concept,
via a deductively-understood theory.

(At some point, of course, we might want to consider impure model-theoretic
claims. For example, we might want to consider a model whose domain encom-
passes the cows in the field. But the internalist about model theory can deal with this
straightforwardly: the specifically model-theoretic features of an impure model will
be determinate, provided that there is some isomorphic model with a pure domain.)

40 If we want to develop an account of truth for MTint itself, then we should also insist that
MTint is a single formula, so that we can continue to use it in the course of internal categoricity
results, in the form of conditionals like ∀P∀∈(MT(P, ∈) → φ). For details, see Button and
Walsh, Philosophy and Model Theory, §§12.4, 12.A.
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IX Revisiting Putnam’s Mathematical Internal
Realism

I have outlined internalist approaches to arithmetic, set theory, and model the-
ory. I now want to consider the interactions between internalism about these
three branches of mathematics, with an aim to illuminating Putnam’s mathe-
matical internal realism.

Suppose that Charlie has mastered arithmetic, in the form of PAint, but that
he knows no model theory. Nevertheless, we – who know some model theory –
can pose a question: Are any particular models of arithmetic “intended,” from
Charlie’s perspective?

The short answer is: Yes: Charlie’s use of PAint makes certain models “in-
tended.” But, to unpack this short answer, I will work within MTint, and I will
also augment the assumptions of §VIII, by assuming that MTint proves second-
order ZF.41

For any number-property, N, and any successor-function, s, let ||N, s|| be
the model (as the notion is defined in MTint, of course) whose domain is the set
whose members are exactly the instances of N, i.e. {n: N(n)}, and whose inter-
pretation of the successor-symbol is the set whose members are similarly deter-
mined by s, i.e. {(m, n) : s(m) = n}. Now, the internal categoricity of PAint almost
immediately yields the following:

MTint ⊢ ∀N1∀s1∀N2∀s2 ([PA(N1, s1)∧ PA(N2, s2)] →
||N1, s1|| is isomorphic to ||N2, s2||)

And we can gloss this formal result as follows:

MTint proves that all PAint-ish number concepts determine isomorphic models.

Since internalists about model theory affirm MTint, they can affirm that PAint pins
down a unique model (up to isomorphism). Admittedly, if our model concept
were somehow imprecise – that is, if the model concept could be sharpened in
different ways – then although the previous result would show that each sharp-
ening would yield only one “model of arithmetic,” different possible sharpenings

41 I could get away with much less than second-order ZF, but I certainly need more than just
(1)–(3) of §VIII. Without some extra assumptions, I cannot prove that {n: N(n)} exists for each
property N with countably many instances, nor that {(m, n): s(m) = n} exists for each succes-
sor-ish function s on N. So, without some augmentation, I would only be able to prove a result
which we might gloss as follows: all PAint-ish number concepts which determine a model at all
determine the same model (up to isomorphism).
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might allow for different “models of arithmetic.” Fortunately, MTint’s intolerance
precludes this situation from arising: given rival sharpenings of the model con-
cept, only one of them can be right.

The situation, then, is simple. Working within MTint, internalists get to
say that Charlie’s deductive “use [of PAint] already fixes the [model-theoretic]
‘interpretation’.”42

All of this has a potentially surprising consequence: internalists can (and
should) agree with modelists, that the natural number concept is precise up to
isomorphism. In a sense, then, one might say that internalism employs “a simi-
lar picture” to modelism, only “within a theory.”43 But this does not vindicate
modelism itself. For, to show that the number concept is precise up to isomor-
phism, internalists work within some model theory. And they claim to under-
stand that model theory deductively, rather than semantically.

This observation is the key which unlocks the cryptic but beautiful closing
line of Putnam’s “Models and Reality.” Since modelists always insist on working
semantically, they embark on a futile regress, and end up treating models as
“lost noumenal waifs looking for someone to name them”; this is just a poetic
restatement of the lessons we learned in §II. However, by working deductively,
internalists treat models as “constructions within our theory itself, [with] names
from birth.”44 Saying this does not, though, involve any constructivist metaphys-
ics; it is simply a way to summarise the central observations of this section.45 In
detail, the point is as follows: we understand our model theory deductively;46 we
define the expression “model” within that deductively-understood theory; we
“construct models” by working deductively within that model theory; and we
work within MTint when we prove that all models of PAint are isomorphic, to draw
the conclusion that Charlie’s deductive use of PAint picks out a unique isomor-
phism type.

I expect the modelist to raise one last complaint against the internalist’s in-
sistence that we should understand MTint deductively:

42 Putnam, “Models and Reality,” 482.
43 Putnam, “Realism and Reason,” 484, commenting on how to regard the relationship be-
tween internal realism (in general) and metaphysical realism (in general).
44 Putnam, “Models and Reality,” 482. Cf. also Dummett, “The Philosophical Significance of
Gödel’s Theorem,” 191.
45 Cf. Button, The Limits of Realism, 217.
46 Following Putnam, “Models and Reality,” 482, I might say that “the metalanguage [i.e. the
model theory itself] is completely understood.” But there is a slight risk that the word
“completely” might be misunderstood; treated deductively, the model theory is of course in-
complete (on Gödelian grounds).
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Working semantically, I can show that MTint itself has many models if it has any. And if
you insist on only ever working deductively, then you will be unable to rule out the worry
that we are “trapped” in some non-standard model of MTin itself. But, if you want to say
that Charlie pins down the standard model by using PAint, then you must rule out this
worry. After all: if we are all trapped in a non-standard model of MTint, then we will be
right (speaking from within our non-standard model of MTint) to say “all PAint-ish number
properties determine the same model (if they determine one at all),” but what we happen
to call “the intended model of arithmetic” will be grotesque (as viewed from the
outside).47

I can dismiss this complaint quite briskly. Suppose, for reductio, that we are
“trapped” in some non-standard model, M, of MTint. Working in MTint, I can
trivially prove: every model’s domain omits some element. So now – if I can un-
derstand the modelist’s worry that I am “trapped” in M at all – then I know,
specifically, that M’s domain omits some elements.48 And if I can grasp that
point, then I know that I am not “trapped” in M, since I just managed to quan-
tify over the supposedly omitted elements. So: we are not “trapped” in a non-
standard model of MTint.

We should not infer from this, though, that we “inhabit the standard model”
of MTint. The same line of thought which shows that we are not “trapped” in M
generalises to show that we do not “inhabit” any particular model of MTint. Or, to
drop the homely metaphors, it shows that no model of MTint is “intended.”49 And
if that initially sounds shocking, it really should not. Once we have abandoned
modelism, there is no reason to think that a theory needs an “intended”model.

The overarching moral is encapsulated in a single quote from Putnam: for
any theory, “either the use already fixes the ‘interpretation’, or nothing can.”50

But I read this as a genuine disjunction, rather than a rhetorical flourish.
In the case of PAint, the use already fixes the interpretation. That is what we

saw when we considered Charlie.
In the case of MTint, by contrast, nothing can fix the interpretation, for

there is no intended interpretation (in the model-theoretic sense of “intended

47 Cf. Toby Meadows, “What Can a Categoricity Theorem Tell Us?” The Review of Symbolic
Logic 6, no. 3 (2013): 539–540.
48 The modelist might object: maybe we don’t even understand (at all) the worry that we are
“trapped” in M! At that point, their sceptical challenge has become ineffable, and I feel we
have earned the right to walk away from it. But for more on this, see Button and Walsh, Philos-
ophy and Model Theory, Ch. 9, §11.6.
49 Cf. Button and Walsh, Philosophy and Model Theory, §11.6 on “indefinite extensibility” in
this context.
50 Putnam, “Models and Reality,” 482.
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interpretation”). Nevertheless, our model theory is not “uninterpreted syn-
tax.” We know how to use it – deductively – and our usage manifests perfectly
precise concepts. What more understanding could we want or need?51

X Coda: On Intolerance and Conceptual
Relativity

In this paper, I have explained how internalism develops Putnam’s internal re-
alism, to provide an account of mathematical concepts which faces up to the
Skolem-Gödel Antinomy. In this coda, I want to draw some speculative connec-
tions between internalism and conceptual relativism; but I relegate these re-
marks to a coda, precisely because they are so speculative.

In §V, I glossed the significance of PAint’s intolerance result as follows: If Sol-
ange and Tristan share a logical language, then they just have to say “one of us
is wrong,” when one affirms Goldbach’s Conjecture and the other affirms its ne-
gation. Thereafter, though, I basically acted as if the antecedent is guaranteed to
hold, without further comment. So I should come clean: I cannot prove that Sol-
ange and Tristan share a logical language. Moreover, if Solange and Tristan do
not share a logical language, then in principle Solange might affirm φ, and Tris-
tan might affirm ¬φ, and each could be right in their own languages.52

Having raised this abstract possibility, though, I should immediately point
out that it is hard to see how it could actually come about. Indeed, it is not ob-
vious that this abstract possibility is even intelligible to internalists. After all,
the logical language in question is to be understood deductively rather than se-
mantically, and we can take it for granted that Solange and Tristan accept ex-
actly the same rules of inference. But, given this, it is hard to see what it could
even mean, to say that they do not share a logical language.

Still, I might just be able to illustrate the possibility, by drawing an analogy
with Putnam’s discussions of mereology.53 (To repeat: this is extremely specula-
tive, and I am genuinely unsure what to make of it.)

Imagine two characters, Stan and Rudy. Stan is a mereological universalist,
and thinks that any things compose a fusion. Rudy is a nihilist, and thinks that

51 Cf. Putnam’s “Internal realism is all the realism we want or need.” Putnam, “Realism and
Reason,” 489.
52 Thanks to Sharon Berry, Cian Dorr, Hartry Field, and Luca Incurvati for discussion here.
53 See in particular Hilary Putnam, “Truth and Convention,” Dialectica 40, no. 1–2 (1987):
69–77; for commentary, see Button, The Limits of Realism, Chs. 18–19.

180 Tim Button



there are no fusions. Stan and Rudy might argue vociferously about which of
them is right. But at least one reasonable response to their dispute is to see
them not as disagreeing, but as operating with different conceptual schemes
(or frameworks, or languages, or whatever). This response is reinforced by the
idea – which Putnam affirmed – that we can translate back and forth between
Stan and Rudy’s ways of talking. Roughly: Stan is to interpret all of Rudy’s
quantifiers as restricted to what Stan calls “simples”; Rudy is to interpret Stan’s
talk of “fusions, composed of simples” as talk of “plurals, among which there
are simples.” The devil, here, will be in the details. But the specific details
about mereology are not relevant here. At a high level of description, the
thought is just this: Rudy and Stan can offer deviant interpretations of each
other’s “logical concepts,” and thereby dissolve their apparent disagreement.

Returning from mereology to arithmetic: in principle, a similar thing might
happen with Solange and Tristan. If they apparently disagree, then we might (for
all I know) be able to give them a suitable translation manual which smooths over
the difference. And, in principle, perhaps, that might be the right thing to do.

But I emphasise: in principle. Rudy and Stan are equally successful in navi-
gating their way around the world. Confronted with the same situation, they
systematically give different – but wholly predictable – answers to the question
“how many things are there?” So it is deeply reasonable to think that they are
simply speaking different languages; that they are just using different words in
the same situations. It is vastly harder to see what would prompt a similar
thought in the arithmetical case. (I cannot think of anything, but maybe this is
just lack of imagination on my part.)

It is also worth emphasising that the in-principle-possibility of reinterpreting
logical vocabulary is compatible with everything I said in §VI about objects and
objectivity. Tolerance concerning reinterpretation “is not a facile relativism that
says ‘Anything goes’.”54 It simply makes room for the in-principle-possibility that
we might be free to choose between different languages, such that φ is the right
thing to say in one language and ¬φ is the right thing to say in the other. Still, if
Solange has fixed a language and affirms φ, and if Tristan now affirms ¬φ, then
Solange must regard Tristan either as speaking falsely or as speaking a different
language. Embracing this disjunction yields no sacrifice of objectivity, for it is en-
tirely commonplace. If Tristan says “I have a pet dragon,” I have the same two
options – regard him either as speaking falsely or as speaking a different lan-
guage – but this does not make it “up to me” whether dragons exist.

54 Cf. Putnam, Reason, Truth and History, 54.
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To summarise, then, here is the more cautious statement of the significance of
an intolerance theorem. For now, I am (just about, in principle) open to tolerance,
when it comes to choosing a logical language. But, within a logical language, and
in the presence of an intolerance theorem, divergence cannot be tolerated. More-
over, given what I just said about pet dragons, this latter kind of intolerance suffi-
ces to secure all of the objectivity – and hence all the realism – that we could ever
want or need.55

I now want to turn from arithmetic to set theory. Internalism about arithme-
tic delivers the verdict that every arithmetical claim is determinate. That is one
of its main virtues. However, internalism about set theory also delivers the ver-
dict that every pure-set-theoretical claim is determinate. It is less clear that this
is a virtue. After all, can it really be that easy to arrive at the conclusion that the
continuum hypothesis (for example) is determinate?

I fully feel the force of this concern. But I will close by saying a few things,
to try to diminish its force a little.

First: I am only claiming that the continuum hypothesis is determinate. I am
not suggesting that we will ever be able to know whether it holds. (The existence
of unknowable mathematical truths is perfectly compatible with internalism.)

Second: to prove the intolerance of CLT, we need to use an impredicative
principle of second-order comprehension.56 So: maybe those who think that the
continuum hypothesis is indeterminate should reject impredicativity.

Third: a few paragraphs ago, considerations about conceptual relativity led
me to offer a slightly more cautious statement of the significance of an intoler-
ance theorem. In the case of the intolerance of CLT, the more cautious state-
ment would be as follows: once you have fixed a logical language, the claim
“there is no cardinal between the cardinality of the naturals and the cardinality
of the reals” becomes determinate (if not decided by the theory); but, in princi-
ple, different logical languages may settle it differently. So, perhaps the in-
principle-possibility of tolerance in choosing a logical language is all that is
needed, for those who want to explore set-theoretic indeterminacy.

55 To echo Putnam, “Realism and Reason,” 489 again.
56 For a proof that impredicativity is necessary, see Button and Walsh, Philosophy and Model
Theory, §11.C.
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