Long-Term Safety and Efficacy of Adalimumab in Patients With Noninfectious Intermediate Uveitis, Posterior Uveitis, or Panuveitis

Eric B. Suhler, MD, MPH, Glenn J. Jaffe, MD, Eric Fortin, MD, Lyndell L. Lim, MBBS, FRANZCO, Pauline T. Merrill, MD, Andrew D. Dick, MBBS, MD, Antoine P. Brezin, MD, PhD, Quan Dong Nguyen, MD, MSc, Jennifer E. Thorne, MD, PhD, Joachim Van Calster, MD, Luca Cimino, MD, Alfredo Adan, MD, PhD, Hiroshi Goto, MD, Toshikatsu Kaburaki, MD, Michal Kramer, MD, Albert T. Vitale, MD, Martina Kron, PhD, Alexandra P. Song, MD, MPH, Jianzhong Liu, MD, Sophia Pathai, MBBS, PhD, Kevin M. Douglas, MD, Ariel Schlaen, MD, PhD, Cristina Muccioli, MD, MBA, Mirjam E.J. Van Velthoven, MD, PhD, Manfred Zierhut, MD, PhD, James T. Rosenbaum, MD

PII: S0161-6420(20)31038-1

DOI: https://doi.org/10.1016/j.ophtha.2020.10.036

Reference: OPHTHA 11537

To appear in: Ophthalmology

Received Date: 21 November 2019

Revised Date: 7 October 2020

Accepted Date: 29 October 2020

Please cite this article as: Suhler EB, Jaffe GJ, Fortin E, Lim LL, Merrill PT, Dick AD, Brezin AP, Nguyen QD, Thorne JE, Van Calster J, Cimino L, Adan A, Goto H, Kaburaki T, Kramer M, Vitale AT, Kron M, Song AP, Liu J, Pathai S, Douglas KM, Schlaen A, Muccioli C, Van Velthoven MEJ, Zierhut M, Rosenbaum JT, Long-Term Safety and Efficacy of Adalimumab in Patients With Noninfectious Intermediate Uveitis, Posterior Uveitis, or Panuveitis, *Ophthalmology* (2020), doi: https://doi.org/10.1016/j.ophtha.2020.10.036.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc. on behalf of the American Academy of Ophthalmology

Long-Term Safety and Efficacy of Adalimumab in Patients With Noninfectious

Intermediate Uveitis, Posterior Uveitis, or Panuveitis

Suhler et al manuscript

1 2

3 4

5 Authors:

Eric B. Suhler, MD, MPH,¹ Glenn J. Jaffe, MD,² Eric Fortin, MD,³ Lyndell L. Lim, MBBS, 6 FRANZCO,⁴ Pauline T. Merrill, MD,⁵ Andrew D. Dick, MBBS, MD,⁶ Antoine P. Brezin, MD, PhD,⁷ 7

8

9

- 10
- 11
- Quan Dong Nguyen, MD, MSc,⁸ Jennifer E. Thorne, MD, PhD,⁹ Joachim Van Calster, MD,¹⁰ Luca Cimino, MD,¹¹ Alfredo Adan, MD, PhD,¹² Hiroshi Goto, MD,¹³ Toshikatsu Kaburaki, MD,¹⁴ Michal Kramer, MD,¹⁵ Albert T. Vitale, MD,¹⁶ Martina Kron, PhD,¹⁷ Alexandra P. Song, MD, MPH,¹⁸ Jianzhong Liu, MD,¹⁸ Sophia Pathai, MBBS, PhD,¹⁹ Kevin M. Douglas, MD,¹⁸ Ariel Schlaen, MD, PhD,²⁰ Cristina Muccioli, MD, MBA,²¹ Mirjam E. J. Van Velthoven, MD, PhD,²² Manfred Zierhut, MD, 12
- PhD,²³ James T. Rosenbaum. MD²⁴ 13
- 14

Affiliations: 15

¹Oregon Health & Science University, Casey Eye Institute, OHSU-PSU School of Public Health, and 16 VA Portland Health Care System, Portland, OR, USA; ²Duke University, Durham, NC, USA; 17 ³University of Montreal, Montreal, OC, Canada; ⁴Centre for Eve Research Australia, Royal Victorian 18 Eye and Ear Hospital, East Melbourne, VIC, Australia; ⁵Rush University Medical Center, Chicago, IL, 19 USA; ⁶University of Bristol, Bristol Eye Hospital, Bristol, UK, and National Institute for Health 20 Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College 21 London, Institute of Ophthalmology, London, UK; ⁷Université Paris Descartes, Hôpital Cochin, Paris, 22 France; ⁸Byers Eye Institute, Stanford University, Palo Alto, CA, USA; ⁹Department of Ophthalmology, 23 Wilmer Eye Institute, Johns Hopkins University School of Medicine, and Department of Epidemiology, 24 Center for Clinical Trials, Johns Hopkins University Bloomberg School of Public Health, Baltimore, 25 MD, USA; ¹⁰University Hospitals Leuven, Leuven, Belgium; ¹¹Ocular Immunology Unit, Azienda USL 26 IRCCS, Reggio Emilia, Italy; ¹²Hospital Clinic de Barcelona, Barcelona, Spain; ¹³Tokyo Medical University, Tokyo, Japan; ¹⁴University of Tokyo, Tokyo, Japan; ¹⁵Rabin Medical Center, Sackler School 27 28 of Medicine, Tel Aviv University, Tel Aviv, Israel; ¹⁶John A. Moran Eye Center, University of Utah, 29 Salt Lake City, UT, USA; ¹⁷AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany; ¹⁸AbbVie 30 Inc., North Chicago, IL, USA; ¹⁹Johnson & Johnson Vision, Singapore; ²⁰Austral University, Buenos 31 Aires, Argentina; ²¹Federal University of São Paulo, São Paulo, SP, Brazil; ²²Rotterdam Eye Hospital, 32 Rotterdam, Netherlands; ²³University of Tübingen, Tübingen, Germany; ²⁴Departments of 33 Ophthalmology and Medicine, Oregon Health & Science University and Legacy Devers Eye Institute, 34 35 Portland, OR, USA

- 36
- 37
- 38 Article type: Full-length article
- 39 40

Financial support: This study was sponsored by AbbVie Inc. (North Chicago, IL, USA). The sponsor 41 participated in study design and conduct; data management, analysis, and interpretation; and manuscript 42 preparation, review, and approval. 43

- 44
- 45 **Disclosures:**

Suhler et al manuscript

- 46 **EBS** has served on the AbbVie steering committee; as a consultant for AbbVie, Clearside, EyeGate,
- EyePoint, Eyevensys, Gilead, Inotek, Mallinckrodt, Santen, and XOMA; and has received research
 support from AbbVie, Aldeyra, Bristol-Myers Squibb, Clearside, EyeGate, EyePoint, Genentech, and
- 49 Novartis.
- 50 GJJ has served as a consultant for AbbVie, EyePoint Pharmaceuticals, and Eyevensys.
- EF has served on advisory boards and as consultant for AbbVie, Alcon, and Allergan and has received
 grants from AbbVie, Allergan, and Gilead.
- LLL has served on advisory boards and as a consultant for AbbVie, Allergan, and Bayer and has
 received research support from Bayer.
- 55 **PTM** has served on the steering committee for the VISUAL studies; has received research support from
- AbbVie, Clearside, Gilead, and Santen; and has served as a consultant and on advisory boards for
- 57 Alimera, Allergan, EyePoint, and Santen.
- 58 **ADD** has served on advisory boards for AbbVie.
- 59 **APB** has served on advisory boards and as a consultant for AbbVie.
- QDN has served on the scientific advisory boards for AbbVie, Bausch & Lomb, Santen, and XOMA
 and serves as chairman of the steering committee for the VISUAL studies.
- JET has served on scientific advisory boards for AbbVie, Clearside, and Santen; received grant funding
 from Allergan; and has served as a consultant for Gilead and Nightstarx.
- 64 JVC has received research support from Novartis; personal fees from AbbVie, Allergan, Bayer, DORC,
- MSD, Novartis, Santen, and Zeiss; and has received non-financial support from AbbVie, Allergan,
 Bayer, DORC, and Novartis.
- 67 LC has served as consultant for AbbVie and Santen.
- 68 AA has served on advisory boards for AbbVie, Allergan, and Santen.
- 69 HG has served on advisory boards for AbbVie.
- 70 **TK** has served on advisory boards for AbbVie.
- 71 **M Kramer** has served as a consultant for AbbVie.
- 72 **ATV** has served as consultant for AbbVie and Roche.
- 73 **M Kron** is an employee of AbbVie Deutschland GmbH & Co KG.
- 74 **APS, JL, and KMD** are employees of AbbVie.
- 75 **SP** is a former employee of AbbVie.
- 76 **AS** has served on advisory boards for AbbVie.
- 77 **CM** has served as a consultant for AbbVie.

Suhler et al manuscript

- MEJVV has served as a lecturer for AbbVie Netherlands, Bayer Netherlands, and Novartis Netherlands
 and has received travel reimbursements from Allergan Europe.
- 80 MZ has served on scientific advisory boards for AbbVie and Santen.
- **JTR** was a consultant for AbbVie, Celldex, Corvus, Eyevensys, Genentech, Gilead, Horizon, Janssen,
- 82 Novartis, Regeneron, Roche, Santen, Topivert, and UCB; has received financial support from Pfizer;
- 83 and has received royalties from UpToDate.
- 84 **Running head:** Adalimumab in patients with noninfectious uveitis
- 85

86 **Corresponding author information:**

- 87 Name: Eric B. Suhler, MD, MPH
- 88 Affiliation: Oregon Health & Science University, Casey Eye Institute
- 89 Address: 3375 SW Terwilliger Blvd, Portland, OR 97239-4197 USA
- 90 **Telephone:** 503-494-5023
- 91 **Fax:** 503-494-7233
- 92 Email: <u>suhlere@ohsu.edu</u>
- 93
- 94 Tables/figures: 5 tables/5 figures/2 supplementary figures
- 95 This article contains additional online-only material. The following should appear online-only:
- 96 Supplemental Figures 1 and 2.
- 97 Manuscript: 2612 words
- 98 Keywords: adalimumab, uveitis

99 Abbreviations:

- 100 AE=adverse event
- 101 BCVA=best corrected visual acuity
- 102 CNS=central nervous system
- 103 E=event
- 104 ETDRS=Early Treatment Diabetic Retinopathy Study
- 105 ITT=intent to treat
- 106 logMAR=logarithm of the minimum angle of resolution
- 107 MedDRA=Medical Dictionary for Regulatory Activities
- 108 MRI=magnetic resonance imaging
- 109 OCT=optical coherence tomography
- 110 PY=patient-years
- 111 SAE=serious AE
- **112** TEAE=treatment-emergent AE
- 113 TNF=tumor necrosis factor
- 114
- 115
- 116

117 Abstract

- 118 **Purpose:** To evaluate long-term efficacy and safety of extended treatment with adalimumab in patients
- 119 with noninfectious intermediate, posterior, or panuveitis.
- 120 **Design:** Open-label, multicenter, phase 3 extension study (VISUAL III).
- 121 Participants: Adults who had completed a randomized, placebo-controlled phase 3 parent trial
- 122 (VISUAL I or II) without treatment failure (inactive uveitis) or discontinued after meeting treatment
- 123 failure criteria (active uveitis).

124 Methods: Patients received subcutaneous adalimumab 40 mg every other week. Data were collected for

 ≤ 362 weeks. Adverse events (AEs) were recorded until 70 days after the last dose of study drug.

126 Main Outcome Measures: Main outcome measures were long-term safety and quiescence; other

- efficacy variables included inflammatory lesions, anterior chamber cell and vitreous haze grade, macular
 edema, visual acuity, and dose of uveitis-related corticosteroids.
- **Results:** Of 424 patients enrolled, 67% (283/424) had active uveitis and 33% (141/424) had inactive

130 uveitis at study entry; 60 patients subsequently met exclusion criteria, and 364 patients were included in

the intent-to-treat analysis. Efficacy variables were analyzed through week 150 when approximately

132 50% of patients (214/424) remained in the study. The percentage of patients in quiescence increased

- from 34% (122/364) at week 0 to 85% (153/180) at week 150. Corticosteroid-free quiescence was
- achieved by 54% (66/123) and 89% (51/57) of patients with active or inactive uveitis at study entry,
- respectively, by week 150. Mean daily dose of corticosteroids was reduced from 9.4±17.1 mg/day at
- 136 week 0 (n=359) to 1.5 ± 3.9 mg/day at week 150 (n=181). The percentage of patients who achieved other
- 137 efficacy variables increased over time for those with active uveitis at study entry and was maintained for
- those with inactive uveitis. The most frequently reported treatment-emergent AEs of special interest for

- 139 adalimumab were infections (n=275; 78.7 events/100 patient-years); AEs and serious AEs occurred at a
- 140 rate of 396 events/100 patient-years and 15 events/100 patient-years, respectively.
- Conclusions: Long-term treatment with adalimumab led to quiescence and reduced corticosteroid use 141
- for patients who entered VISUAL III with active uveitis and maintenance of quiescence for those with 142
- .ert tri inactive uveitis. AEs were comparable to those reported in the parent trials and consistent with the 143
- known safety profile of adalimumab. 144
- 145
- 146
- 147

148

149 Introduction

150 Noninfectious uveitis is one of the most common causes of vision loss or blindness in many 151 population-based studies.¹ Recurrent inflammation in patients with uveitis leads to potentially sight-152 threatening ocular complications; however, long-term corticosteroid use for treatment of inflammation 153 can also cause potentially serious systemic and ocular toxicity.²⁻⁵ Biologic therapies, such as tumor 154 necrosis factor (TNF)- α antagonists that target immune-mediated pathways, may provide effective 155 steroid-sparing treatment of uveitis.^{7,8}

Adalimumab (Humira[®]; AbbVie Inc., North Chicago, IL, USA) is a human monoclonal antibody 156 to TNF-α that is approved to treat noninfectious uveitis.⁹ VISUAL I and II were phase 3 randomized 157 clinical trials of adalimumab efficacy and safety to treat active or inactive uveitis, respectively.^{10,11} In 158 these studies, treatment with adalimumab was associated with lower risk of uveitis recurrence or visual 159 acuity loss compared with placebo during and after corticosteroid taper.^{10,11} Adverse events (AEs) 160 reported in the VISUAL studies were consistent with the safety profile established across the approved 161 indications of adalimumab, with the exception of events associated with the underlying condition of 162 noninfectious uveitis, such as demyelination and sarcoidosis. 163

VISUAL III was an open-label extension study of VISUAL I and II that evaluated long-term efficacy and safety of extended treatment with adalimumab in patients with noninfectious intermediate, posterior, or panuveitis. Interim results from VISUAL III reported efficacy and safety through 78 weeks of adalimumab treatment.¹² This study reports final efficacy results through 150 weeks and safety results up to 362 weeks of treatment under conditions similar to "real-world" clinical practice.

169

170 Methods

171 Study Design

172	This open-label, multicenter, phase 3 extension study (VISUAL III, registered at
173	clinicaltrials.gov, trial ID NCT01148225, and clinicaltrialsregister.eu, EudraCT number 2009-016196-
174	29) was conducted at 85 study sites in 21 countries in Europe, North and South America, Australia, and
175	Japan. Study visits occurred at weeks 0, 2, 4, 8, 12, and 18, and every 12 weeks thereafter until the final
176	visit. The study was conducted in accordance with the International Council for Harmonisation of
177	Technical Requirements for Pharmaceuticals for Human Use guidelines and complied with the ethical
178	principles of the Declaration of Helsinki. Protocol approval was obtained from appropriate review
179	boards before study initiation, and all patients gave informed consent before study enrollment.
180	
181	Patients
181 182	Patients Full inclusion and exclusion criteria were published previously. ¹² Briefly, eligible adults with
182	Full inclusion and exclusion criteria were published previously. ¹² Briefly, eligible adults with
182 183	Full inclusion and exclusion criteria were published previously. ¹² Briefly, eligible adults with noninfectious intermediate, posterior, or panuveitis could enroll in VISUAL III if they had successfully
182 183 184	Full inclusion and exclusion criteria were published previously. ¹² Briefly, eligible adults with noninfectious intermediate, posterior, or panuveitis could enroll in VISUAL III if they had successfully completed VISUAL I or II without treatment failure (inactive uveitis) or discontinued the parent study
182 183 184 185	Full inclusion and exclusion criteria were published previously. ¹² Briefly, eligible adults with noninfectious intermediate, posterior, or panuveitis could enroll in VISUAL III if they had successfully completed VISUAL I or II without treatment failure (inactive uveitis) or discontinued the parent study having met treatment failure criteria (active uveitis). Patients with active uveitis status determined at the
182 183 184 185 186	Full inclusion and exclusion criteria were published previously. ¹² Briefly, eligible adults with noninfectious intermediate, posterior, or panuveitis could enroll in VISUAL III if they had successfully completed VISUAL I or II without treatment failure (inactive uveitis) or discontinued the parent study having met treatment failure criteria (active uveitis). Patients with active uveitis status determined at the final visit of the parent study could have been in quiescence at VISUAL III study entry because the

190 **Treatment**

All patients received subcutaneous adalimumab 40 mg every other week. Patients with active disease at study entry could receive concomitant corticosteroid and/or immunosuppressive therapy as permitted in the parent study, and all patients were permitted to continue, taper, and/or discontinue

- 194 concomitant corticosteroid and/or immunosuppressive therapy at investigator discretion. Patients were 195 allowed ≤ 2 periocular corticosteroid injections per eye per year.
- 196

197 Outcome Measures

The main outcome measure was quiescence, defined as no new active inflammatory chorioretinal and/or inflammatory retinal vascular lesions, and anterior chamber cell grade and vitreous haze grade $\leq 0.5+$ in both eyes relative to baseline. Efficacy variables were measured as described previously¹² and included inflammatory chorioretinal and/or inflammatory retinal vascular lesions, anterior chamber cell grade $\leq 0.5+$, vitreous haze grade $\leq 0.5+$, evidence of macular edema assessed by changes in central retinal thickness, proportion of patients without worsening of BCVA by ≥ 15 letters on the ETDRS chart, and dose of uveitis-related corticosteroids and immunomodulators.

205

206 Safety Evaluations

All enrolled patients who received ≥1 dose of adalimumab were included in the safety analysis.
Safety was monitored through collection of AEs that were coded using Medical Dictionary for
Regulatory Activities (MedDRA) version 19.0. Treatment-emergent AEs (TEAEs) were defined as
events with an onset or worsening date on or after first study drug administration and until 70 days after
last study drug administration. AEs were rated by severity and relationship to study drug. The AE
described by the MedDRA preferred term of "uveitis" corresponded to worsening of a patient's
underlying uveitis.

Suhler et al manuscript

215 Statistical Analyses

Efficacy data were analyzed through week 150; the sample size of available data after week 150 216 was too small for meaningful analysis. Efficacy analyses were performed with ITT data set and were 217 stratified by patients who entered the study with active versus inactive uveitis. Changes were calculated 218 relative to week 0 or week 8 for patients who entered the study with inactive or active uveitis, 219 respectively. Efficacy was analyzed descriptively as observed to reflect real-world practice conditions. 220 AEs were reported as number of events and as events per 100 patient-years (E/100 PY). A separate 221 222 analysis was performed for AEs of special interest. Uveitis-related events were also analyzed separately and adjudicated by the sponsor (AbbVie) based on a list of preferred terms to be either related or not 223 224 related to uveitis. 225 **Results** 226 Patients 227 A total of 424 patients were enrolled and received ≥ 1 dose of study drug; the ITT set included 228 364 patients (Figure 1). At study entry, 67% of patients (283/424) had active uveitis, and 33% 229 (141/424) had inactive uveitis. Demographics are reported in **Table 1**. During the study, 37 patients 230 (10%; active uveitis, 31/240; inactive uveitis, 6/124) started immunomodulators and 74 (20%; active 231 232 uveitis, 56/240; inactive uveitis, 18/124) started systemic corticosteroids. Six patients received periocular corticosteroid injections. 233

235 **Outcomes**

236 *Quiescence*

237 Consistent with results from the interim analysis,¹² quiescence was maintained beyond week 78 238 in both active and inactive groups; 80% of patients in the active group (98/123) and 96% in the inactive 239 group (55/57) were in quiescence at week 150 (**Figure 2**).

At week 150, 54% (66/123) of patients with active uveitis at study entry and 89% (51/57) of 240 patients with inactive uveitis achieved corticosteroid-free quiescence. For patients with active uveitis at 241 242 study entry who were in quiescence at week 150 and receiving corticosteroids, most were receiving ≤ 7.5 mg/day (Figure 3A); only 3 of the 55 patients in quiescence in the inactive group were receiving 243 corticosteroids (Figure 3B). Of patients receiving corticosteroids to control active uveitis at study entry 244 (n=141), 68 remained in the study at week 150; 44% of those (30/68) were in corticosteroid-free 245 quiescence at week 150. Of the 9 patients with inactive uveitis receiving corticosteroids at study entry, 246 the 2 patients remaining in the study at week 150 were in corticosteroid-free quiescence. 247 Of patients with active uveitis at study entry, 68% (157/232) had \geq 1 uveitis recurrence between 248 week 8 and final visit, and 9% (21/232) discontinued from the study because of recurrence. Of patients 249 with inactive uveitis at study entry, 39% (48/124) experienced ≥ 1 uveitis recurrence between week 0 and 250

252

251

253 Other Efficacy Variables

Overall, the trends observed for quiescence (ie, improvement in patients with active uveitis at study entry and maintenance in those with inactive uveitis) were similar for other efficacy variables, including the proportion of patients with no active inflammatory lesions (**Figure 4A**), anterior chamber cell grade $\leq 0.5+$ (**Figure 4B**), vitreous haze grade $\leq 0.5+$ (**Figure 4C**), central retinal thickness

final visit, and 0.8% (1/124) discontinued because of recurrence.

Suhler et al manuscript

258	(Supplemental Figure 1; available at www.aaojournal.org), and visual acuity. Mean binocular BCVA
259	at baseline versus week 150 was 0.27 versus 0.14 logMAR, respectively, in patients with active uveitis
260	at study entry and 0.05 versus 0.02 logMAR, respectively, in patients with inactive uveitis at study
261	entry; Supplemental Figure 2.
262	
263	Corticosteroid and Immunomodulator Use
264	The mean daily dose of corticosteroids was reduced from 9.4 ± 17.1 mg/day at week 0 (n=359) to
265	1.5±3.9 mg/day at week 150 (n=181) for all patients (Figure 5). Of patients who received
266	immunomodulators at baseline, 64% (23/36) and 85% (17/20) of patients with active and inactive uveitis
267	at study entry, respectively, still received immunomodulators at week 150. However, at week 150, mean
268	changes from baseline of -36% and -29% were observed in the dose of immunomodulators in patients
269	with active and inactive uveitis at study entry, respectively.
270	
271	Safety
272	Adverse events
273	For all patients enrolled in VISUAL III (N=424), the mean total number of doses of adalimumab
274	received was 69.2 (min-max, 1-180 doses), and the mean exposure to adalimumab was 140.4 weeks
075	(

275 (min-max, 2–362 weeks), corresponding to a total exposure of 1141.9 PY. Overall, 398 patients (94%;

276 396 E/100 PY) had ≥1 TEAE (**Tables 2 and 3**). Of these patients, 226 (53%; 80 E/100 PY) experienced

 \geq 1 TEAE that was considered by the investigator to be possibly/probably related to study drug (**Table**

- **3**). Most TEAEs (78%) were mild or moderate in severity. Four patients reported a severe TEAE of
- 279 "blindness" (the MedDRA preferred term for loss of visual acuity): 1 patient with corneal edema in the
- right eye had a 30-letter vision loss and received a cornea transplant; 1 patient with pupillary membrane

Suhler et al manuscript

281	fibrosis experienced vision loss of \geq 30 letters; 1 patient experienced uveitis recurrence with 12- and 21-
282	letter vision loss from best in the right and left eyes, and received 80 mg prednisone; 1 patient
283	experienced angle closure glaucoma with vision loss of 48 letters from baseline in the right eye and
284	received laser peripheral iridotomy. All severe TEAEs of blindness were determined by the investigator
285	to be not related to adalimumab and related to uveitis or long-term complications of uveitis.
286	A total of 101 patients (24%; 15 E/100 PY; Table 2) experienced ≥1 serious AE (SAE); 29
287	patients (7%; 3.4 E/100 PY) experienced \geq 1 SAE that was considered by the investigator to be
288	possibly/probably related to study drug. After adjudication by the sponsor, 51% of patients were
289	reported to have ≥ 1 uveitis-related TEAE, including uveitis (30%) and cystoid macular edema (10%).
290	
291	Adverse events of special interest for treatment with adalimumab
292	The most frequently reported TEAEs of special interest were infections, reported in 275 patients
293	(65%; 79 E/100 PY; Table 4). One patient with cytomegalovirus chorioretinitis and 1 patient with
294	Aspergillus infection discontinued study drug.
295	Injection site reactions were reported in 52 patients (12%; 11 E/100 PY); all were considered by
296	the investigator to be mild or moderate in severity. Allergic reactions were reported in 28 patients (7%;
297	3.0 E/100 PY), were non-serious, and mild to moderate in severity. Two patients discontinued study
298	drug because of allergic reactions (1 event of urticaria; 1 event of drug eruption).
299	Seven patients had ≥ 1 positive tuberculosis test result at baseline. During the study, 20 patients
300	(5%; 1.8 E/100 PY) reported treatment-emergent tuberculosis-related events, including 1 active case and
301	19 latent cases; of these, 6 were patients with ≥ 1 positive tuberculosis test result at baseline. Of the 19
302	patients who discontinued the study drug because of tuberculosis-related events, 4 events were
303	considered serious.

Suhler et al manuscript

304	Thirteen patients (3%; 1.3 E/100 PY) reported treatment-emergent malignancies (Table 4). One
305	patient developed B-cell lymphoma (0.2%; 0.09 E/100 PY) that resulted in death, determined by the
306	investigator to be probably not related to adalimumab. Six patients had 8 events of non-melanoma skin
307	cancer (1.4%; 0.7 E/100 PY); of these, 4 events were considered by the investigator to be possibly
308	related to the study drug and 3 events were SAEs. Six patients developed other malignancies (metastatic
309	pancreatic carcinoma, rectal adenocarcinoma, lymphoproliferative disorder, colon adenocarcinoma,
310	lobular breast carcinoma in situ, and colorectal cancer), all of which were considered not related or
311	probably not related to study drug; of these patients, 5 discontinued study drug.
312	Six patients (1.4%; 0.5 E/100 PY) each reported treatment-emergent demyelinating events,
313	including demyelination (n=2), multiple sclerosis (n=2), and optic neuritis (n=2); 5 of these discontinued
314	adalimumab (Table 5). Four patients (0.9%; 0.4 E/100 PY), all with a medical history of sarcoidosis,
315	reported treatment-emergent sarcoidosis. One of the 2 uveitis-related sarcoidosis events was an SAE
316	occurring in a patient with posterior uveitis. All other sarcoidosis events occurred in patients with
317	panuveitis and were considered non-serious. Each event was judged not related to study drug. Two
318	patients (0.5%; 0.2 E/100 PY) reported lupus-like syndrome. Both events were moderate in severity and
319	considered by the investigator to be probably related to study drug. One event led to discontinuation.
320	Four deaths (0.4 E/100 PY) were reported, caused by B-cell lymphoma, metastatic pancreatic
321	carcinoma, trauma, and brain abscess. Of these, only the brain abscess was considered by the
322	investigator to be possibly related to study drug.
272	

323

324 **Discussion**

In this study, patients with noninfectious intermediate, posterior, or panuveitis who participated in the VISUAL I and II trials were observed for up to 7 years (median, 2.8 years) while receiving open-

Suhler et al manuscript

label adalimumab. Efficacy outcomes were consistent with interim results,¹² suggesting that long-term
adalimumab therapy increased the likelihood of achieving and maintaining disease control and provided
corticosteroid-sparing effects through week 150. Key long-term safety data showed that the majority of
AEs were mild or moderate in severity. The types and incidence rates of AEs were similar to those
reported for adalimumab in the parent trials^{10,11} and in studies of adalimumab for other approved
indications.⁹

AEs of special interest included serious infections in 8% of patients (3.5 E/100 PY), similar to 333 the rate reported in patients with inactive uveitis controlled with corticosteroids (VISUAL II¹¹; 3.2 334 E/100 PY) and lower than the rate reported in patients with active uveitis (VISUAL I¹⁰; 8.0 E/100 PY). 335 Furthermore, the rate of serious infections in VISUAL III was within the range reported for other 336 indications of adalimumab (1.4–6.7 E/100 PY; N=23,458).¹³ Rates of active and latent tuberculosis 337 reported here (1.8 E/100 PY) were similar to rates reported in patients with active uveitis in VISUAL I 338 (1.6 E/100 PY)¹⁰; in contrast, no cases of active tuberculosis were reported in patients with inactive 339 uveitis in VISUAL II,¹¹ but a rate of 3.2 E/100 PY was observed for latent tuberculosis. In the current 340 study, the rate of active tuberculosis (0.1 E/100 PY) was within the range reported for other indications 341 of adalimumab (0–0.3 E/100 PY),¹³ and the rate of latent cases (1.7 E/100 PY) aligned with the rate 342 reported in VISUAL I (1.6 E/100 PY).¹⁰ 343

Other AEs of special interest included malignancy (1.3 E/100 PY), which was lower or comparable to the rate reported in the parent trials.^{10,11} Malignancy rates in VISUAL III were also similar to the rates reported for other indications of adalimumab¹³ (malignancies excluding lymphoma and non-melanoma skin cancer, 0.0–0.9/100 PY; lymphoma, 0.0–0.2/100 PY; non-melanoma skin cancer [serious events only], 0.0–0.3/100 PY).

Suhler et al manuscript

349	Uveitis, particularly intermediate uveitis, is associated with demyelinating disorders such as
350	multiple sclerosis. ¹⁴⁻¹⁸ Over the last few decades, the prevalence of demyelinating diseases has been
351	increasing in many regions of the world. ¹⁹ In this study, demyelinating disorders were observed in 6
352	patients (3 with intermediate uveitis); the observed rate of demyelinating disorders was comparable to
353	that reported for patients with uveitis not receiving adalimumab (data on file; AbbVie Inc., North
354	Chicago, IL, USA). Caution is recommended in the prescribing information for use of adalimumab in
355	patients with preexisting or recent onset of central or peripheral nervous system demyelinating
356	disorders. ⁹
357	Although this study evaluated a relatively large number of patients, a key limitation was the
358	decreasing number of patients with available data after week 78 because of sites closing upon
359	regulatory/reimbursement approval. Other limitations included the lack of a comparator group and the
360	permitted use of other immunosuppressive agents and local corticosteroid therapy, as discussed
361	previously. ¹²
362	In summary, long-term, real-world use of adalimumab led to disease control in patients with
363	active uveitis and maintenance in patients with inactive disease. The long-term safety profile of
364	adalimumab in adults with noninfectious intermediate, posterior, and panuveitis in VISUAL III was
365	consistent with the safety profile established in the parent studies (VISUAL I and II) ^{10,11} and in studies
366	of adalimumab for other indications ¹³ ; no new safety signals were identified.
367	
368	

370 Acknowledgments

Medical writing support was provided by Catherine DeBrosse, PhD, of ICON (North Wales, PA, USA),
and was funded by AbbVie Inc. The authors acknowledge Dr. Ilse De Schryver for her valuable

- 373 contributions as a study site investigator.
- 374
- 375

376 Data Sharing

377 AbbVie is committed to responsible data sharing regarding the clinical trials we sponsor. This includes

access to anonymized, individual and trial-level data (analysis data sets), as well as other information

379 (eg, protocols and Clinical Study Reports), as long as the trials are not part of an ongoing or planned

regulatory submission. This includes requests for clinical trial data for unlicensed products and

- 381 indications.
- 382

383 These clinical trial data can be requested by any qualified researchers who engage in rigorous,

- independent scientific research and will be provided following review and approval of a research
- proposal and Statistical Analysis Plan (SAP) and execution of a Data Sharing Agreement (DSA). Data
- requests can be submitted at any time, and the data will be accessible for 12 months, with possible
- 387 extensions considered. For more information on the process, or to submit a request, visit the following
- 388 link: <u>https://www.abbvie.com/our-science/clinical-trials/clinical-trials-data-and-information-</u>
- 389 <u>sharing/data-and-information-sharing-with-qualified-researchers.html</u>.

390 **References**

- Dick AD, Tundia N, Sorg R, et al. Risk of ocular complications in patients with noninfectious
 intermediate uveitis, posterior uveitis, or panuveitis. *Ophthalmology* 2016;123:655-62.
- Sen HN, Vitale S, Gangaputra SS, et al. Periocular corticosteroid injections in uveitis: effects and
 complications. *Ophthalmology* 2014;121:2275-86.
- Miloslavsky EM, Naden RP, Bijlsma JW, et al. Development of a Glucocorticoid Toxicity Index
 (GTI) using multicriteria decision analysis. *Ann Rheum Dis* 2017;76:543-6.
- Stanbury RM, Graham EM. Systemic corticosteroid therapy--side effects and their management.
 Br J Ophthalmol 1998;82:704-8.
- 399 5. Durrani OM, Tehrani NN, Marr JE, et al. Degree, duration, and causes of visual loss in uveitis.
 400 *Br J Ophthalmol* 2004;88:1159-62.
- 401 6. Dick AD, Rosenbaum JT, Al-Dhibi HA, et al. Guidance on Noncorticosteroid Systemic
- 402 Immunomodulatory Therapy in Noninfectious Uveitis: Fundamentals Of Care for UveitiS
- 403 (FOCUS) Initiative. *Ophthalmology* 2018.
- Suhler EB, Lowder CY, Goldstein DA, et al. Adalimumab therapy for refractory uveitis: results
 of a multicentre, open-label, prospective trial. *Br J Ophthalmol* 2013;97:481-6.
- 406 8. Lindstedt EW, Baarsma GS, Kuijpers RW, van Hagen PM. Anti-TNF-alpha therapy for sight
 407 threatening uveitis. *Br J Ophthalmol* 2005;89:533-6.
- 408 9. HUMIRA[®] (adalimumab). Full Prescribing Information, AbbVie Inc., North Chicago, IL, USA,
 409 2016.
- 410 10. Jaffe GJ, Dick AD, Brezin AP, et al. Adalimumab in patients with active noninfectious uveitis. *N*411 *Engl J Med* 2016;375:932-43.

Suhler et al manuscript

412	11.	Nguyen QD, Merrill PT, Jaffe GJ, et al. Adalimumab for prevention of uveitic flare in patients
413		with inactive non-infectious uveitis controlled by corticosteroids (VISUAL II): a multicentre,
414		double-masked, randomised, placebo-controlled phase 3 trial. Lancet 2016;388:1183-92.
415	12.	Suhler EB, Adan A, Brezin AP, et al. Safety and efficacy of adalimumab in patients with
416		noninfectious uveitis in an ongoing open-label study: VISUAL III. Ophthalmology
417		2018;125:1075-87.
418	13.	Burmester GR, Panaccione R, Gordon KB, et al. Adalimumab: long-term safety in 23 458
419		patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing
420		spondylitis, psoriatic arthritis, psoriasis and Crohn's disease. Ann Rheum Dis 2013;72:517-24.
421	14.	Zein G, Berta A, Foster CS. Multiple sclerosis-associated uveitis. Ocul Immunol Inflamm
422		2004;12:137-42.
423	15.	Le Scanff J, Seve P, Renoux C, et al. Uveitis associated with multiple sclerosis. Mult Scler
424		2008;14:415-7.
425	16.	Boskovich SA, Lowder CY, Meisler DM, Gutman FA. Systemic diseases associated with
426		intermediate uveitis. Cleve Clin J Med 1993;60:460-5.
427	17.	Jakob E, Reuland MS, Mackensen F, et al. Uveitis subtypes in a German interdisciplinary uveitis
428		centeranalysis of 1916 patients. J Rheumatol 2009;36:127-36.
429	18.	Messenger W, Hildebrandt L, Mackensen F, et al. Characterisation of uveitis in association with
430		multiple sclerosis. Br J Ophthalmol 2015;99:205-9.
431	19.	Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for
432		the Global Burden of Disease Study 2016. Lancet Neurol 2019;18:269-85.
433		

434 FIGURE LEGENDS

- Figure 1. Study design. Patients who prematurely discontinued study drug were counted under each 435 reason given for discontinuation; therefore, the sum of the counts given for the reasons may 436 be greater than the overall number of discontinuations. Reasons for discontinuation from the 437 study recorded as "other" included any reason for discontinuation, excluding adverse event 438 (AE), lack of efficacy, withdrawal of consent, and lost to follow-up. *Safety outcomes 439 440 through last drug date plus 70 days of follow-up were assessed in the safety set. [†]Efficacy outcomes were assessed in the intent-to-treat (ITT) set. [‡]Discontinuations were cumulative 441 through last study visit. 442
- Figure 2. Percentage of patients achieving quiescence stratified by disease activity at baseline. Data are
 presented as percentage ± exact 95% Clopper-Pearson CI. *Light bars*, active uveitis; *dark bars*, inactive uveitis. The number of observed patients is indicated within the base of the bar.
- Figure 3. Percentage of patients achieving quiescence according to concomitant dose of corticosteroids
 for patients who entered the study with (A) active uveitis and (B) inactive uveitis. Data are
 presented as observed. Doses of uveitis-related systemic corticosteroids were converted into
 prednisone equivalents; 4 patients in the active uveitis group received corticosteroids that
 could not be transferred into prednisone equivalents and were excluded from analysis.
- 451Figure 4. Percentage of patients with (A) no active inflammatory lesions, (B) anterior chamber cell452grade $\leq 0.5+$, and (C) vitreous haze grade $\leq 0.5+$ in both eyes, stratified by disease activity at453baseline. Data are presented as percentage \pm exact 95% Clopper-Pearson CI. *Light bars*,454active uveitis; *dark bars*, inactive uveitis. The number of observed patients is indicated within455the base of the bar.
- 456 **Figure 5.** Mean daily dose of uveitis-related corticosteroids.

	Active Uveitis N=240	Inactive Uveitis N=124	Total N=364
Age, y	1 1-24 0	11=124	11=304
Mean \pm SD	42.3±14.3	42.3±13.1	42.3±13.9
Range	19.0-80.0	19.0-81.0	19.0-81.0
Sex, n (%)			
Female	134 (56)	76 (61)	210 (58)
Male	106 (44)	48 (39)	154 (42)
Race, n (%)			
White	170 (71)	100 (81)	270 (74)
Asian	37 (15)	8 (6.5)	45 (12)
Black or African American	17 (7.1)	7 (5.6)	24 (6.6)
American Indian or Alaska Native	2 (0.8)	0	2 (0.5)
Multiracial	3 (1.3)	0	3 (0.8)
Other	11 (4.6)	9 (7.3)	20 (5.5)
Type of uveitis, n (%)			
Panuveitis	133 (55)	54 (44)	187 (51)
Posterior	50 (21)	51 (41)	101 (28)
Intermediate	55 (23)	18 (15)	73 (20)
Intermediate/posterior	2 (0.8)	1 (0.8)	3 (0.8)
Diagnosis, n (%) Idiopathic disease	90 (38)	29 (23)	119 (33)
Vogt-Koyanagi-Harada disease	48 (20)	23 (19)	71 (20)
Sarcoidosis	34 (14)	17 (14)	51 (14)
Birdshot chorioretinopathy	23 (10)	26 (21)	49 (13)
Behçet disease	11 (4.6)	16 (13)	27 (7.4)
Multifocal choroiditis and panuveitis	11 (4.6)	3 (2.4)	14 (3.8)
Other	23 (10)	10 (8.1)	33 (9.1)
Duration of uveitis, mo			
Mean \pm SD	62.4±73.3	62.0±52.6	62.3±66.9
Range	2.8-558.4	4.5-260.3	2.8-558.4
Immunomodulator use at baseline, n (%)	66 (28)	50 (40)	116 (32)
Azathioprine	8 (3.3)	8 (6.5)	16 (4.4)
Cyclosporine	11 (4.6)	12 (9.7)	23 (6.3)
Methotrexate	23 (9.6)	17 (14)	40 (11)
Mycophenolate mofetil (or equivalent)	23 (9.6)	13 (10)	36 (9.9)
Uveitis-related corticosteroid use at baseline, n (%)	141 (59)	9 (7.3)	150 (41)
Oral	116 (48)	7 (5.6)	123 (34)
Topical	59 (25)	3 (2.4)	62 (17)
Other	7 (2.9)	0	7 (1.9)

Table 1. Patient Demographics and Baseline Disease Characteristics (ITT Set)

ITT=intent to treat.

	Adali	mumab
Category	N=424 n (%)	PY=1142 E (E/100 PY)
TEAE	398 (94)	4516 (396)
TEAE at least possibly adalimumab related ^a	226 (53)	916 (80)
Severe TEAE ^b	85 (20)	158 (14)
SAE ^c	101 (24)	176 (15)
SAE at least possibly adalimumab related ^a	29 (6.8)	39 (3.4)
TEAE leading to discontinuation of adalimumab ^d	77 (18)	91 (8.0)
TEAE leading to death	4 (0.9)	4 (0.4)
Uveitis-related TEAE by investigator	241 (57)	719 (63)
Uveitis-related TEAE by adjudication	218 (51)	520 (46)
Deaths ^e	4 (0.9)	4 (0.4)

Table 2. Summary of AEs

AE=adverse event; E=event; PY=patient-years; SAE=serious AE; TEAE=treatment-emergent AE. ^aAs assessed by investigator.

^bSevere TEAEs reported in >2 patients included hypertension (n=5; 1.2%); blindness, reduced visual acuity, and urinary tract infection (n=4 each; 0.9%); and uveitis, vitreous hemorrhage, and arthralgia (n=3 each; 0.7%).

^cSAEs reported in \geq 3 patients included cataract in 7 patients (1.7%; 0.96 E/100 PY); uveitis and urinary tract infection in 5 patients each (1.2%; 0.44 E/100 PY); and retinal detachment, vitreous hemorrhage, cholelithiasis, pneumonia, and obesity in 3 patients each (0.7%; 0.26 E/100 PY).

^dTEAEs leading to discontinuation of adalimumab occurring in >5 patients included positive *Mycobacterium tuberculosis* complex test result (n=10; 2.4%), positive tuberculin test result (n=7; 1.7%), and cystoid macular edema (n=6; 1.4%).

^eNon-treatment-emergent deaths.

Adalimumab		
	TEAEs Occuring in ≥5.0% of Patients N=424	TEAEs at Least Possibly Related to Study Drug N=424
MedDRA Preferred Term	n (%)	n (%)
Patients with TEAE	398 (94)	226 (53)
Uveitis	128 (30)	16 (3.8)
Nasopharyngitis	105 (25)	37 (8.7)
Arthralgia	74 (17)	22 (5.2)
Headache	63 (15)	10 (2.4)
Urinary tract infection	52 (12)	24 (5.7)
Upper respiratory tract infection	43 (10)	13 (3.1)
Cystoid macular edema	43 (10)	3 (0.7)
Cough	42 (9.9)	6 (1.4)
Bronchitis	38 (9.0)	15 (3.5)
Cataract	37 (8.7)	1 (0.2)
Fatigue	36 (8.5)	16 (3.8)
Influenza	36 (8.5)	9 (2.1)
Sinusitis	35 (8.3)	35 (8.3)
Nausea	32 (7.5)	8 (1.9)
Oropharyngeal pain	32 (7.5)	6 (1.4)
Visual acuity reduced	32 (7.5)	2 (0.5)
Dry eye	30 (7.1)	N/A
Diarrhea	28 (6.6)	N/A
Hypertension	28 (6.6)	2 (0.5)
Back pain	26 (6.1)	3 (0.7)
Eye pain	25 (5.9)	N/A
Intraocular pressure increased	24 (5.7)	N/A
Macular edema	24 (5.7)	2 (0.5)
Pain in extremity	24 (5.7)	N/A
Pyrexia	24 (5.7)	6 (1.4)
Rash	24 (5.7)	7 (1.7)
Iridocyclitis	22 (5.2)	2 (0.5)
Aspartate aminotransferase increased	21 (5.0)	10 (2.4)
Conjunctivitis allergic	21 (5.0)	N/A
Vitreous floaters	21 (5.0)	1 (0.2)

Table 3. Most Frequently Reported TEAEs in Patients Receiving Adalimumab

MedDRA=Medical Dictionary for Regulatory Activities; TEAE=treatment-emergent adverse event.

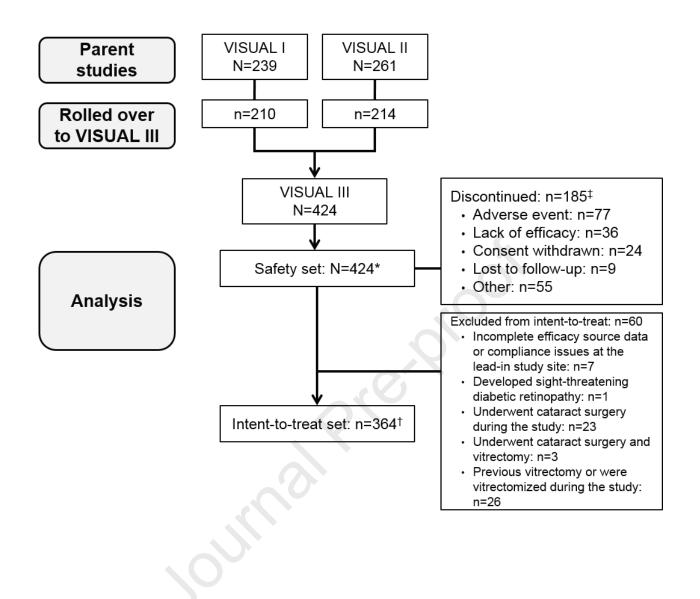
	AE of		Adalimumab		
	Int	ecial erest tegory	N=424 n (%)	PY=1141.9 E (E/100 PY)	
Infection	275 (65)	899 (79)			
Serious infection ^a	33 (7.8)	40 (3.5)			
Tuberculosis	20 (4.7)	20 (1.8)			
Latent tuberculosis	19 (4.5)	19 (1.7)			
Active tuberculosis	1 (0.2)	1 (0.09)			
Injection site reaction	52 (12)	125 (11)			
Allergic reaction, including angioedema, anaphylaxis	28 (6.6)	34 (3.0)			
Hematologic disorders including pancytopenia	15 (3.5)	17 (1.5)			
Malignancy	13 (3.1)	15 (1.3)			
Non-melanoma skin cancer	6 (1.4)	8 (0.70)			
Lymphoma ^b	1 (0.2)	1 (0.09)			
Other malignancy ^c	6 (1.4)	6 (0.53)			
Liver failure and other liver events	9 (2.1)	10 (0.88)			
Vasculitis	6 (1.4)	8 (0.70)			
Non-cutaneous vasculitis	6 (1.4)	8 (0.70)			
Demyelinating disorder	6 (1.4)	6 (0.53)			
Diverticulitis	4 (0.9)	5 (0.44)			
Opportunistic infection ^d	4 (0.9)	5 (0.44)			
Worsening and new onset of psoriasis	5 (1.2)	5 (0.44)			
Parasitic infection/infestation	4 (0.9)	4 (0.35)			
Sarcoidosis	4 (0.9)	4 (0.35)			

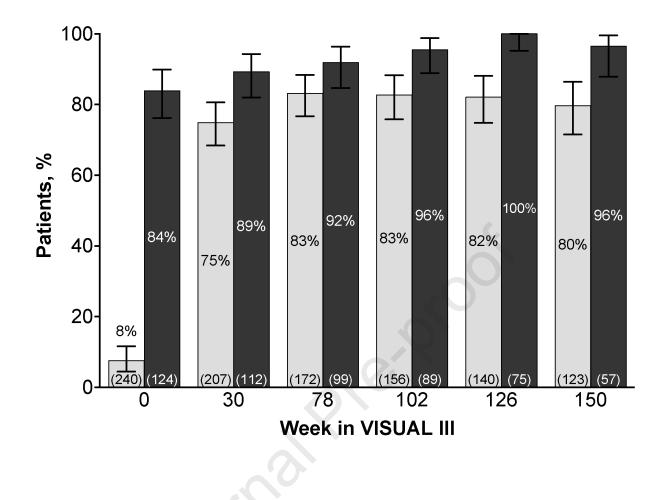
Table 4. Overview of TEAEs of Special Interest (≥2 Patients) and Infections

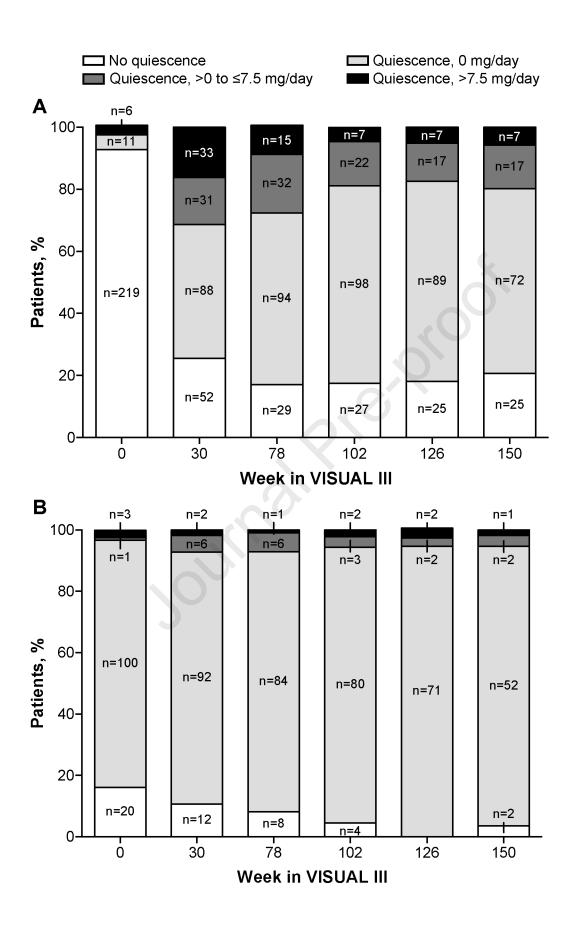
Journal Pre-pro		
Cerebrovascular accident	2 (0.5)	2 (0.18)
Congestive heart failure	2 (0.5)	2 (0.18)
Lupus-like reaction and systemic lupus erythematosus	2 (0.5)	2 (0.18)
Myocardial infarction	2 (0.5)	2 (0.18)
Infections Reported in ≥10.0% of Patients MedDRA preferred terms	-	1=424 h (%)
Patients with a treatment-emergent infection	27	75 (65)
Nasopharyngitis	10	05 (25)
Urinary tract infection	5	2 (12)
Upper respiratory tract infection	4	3 (10)

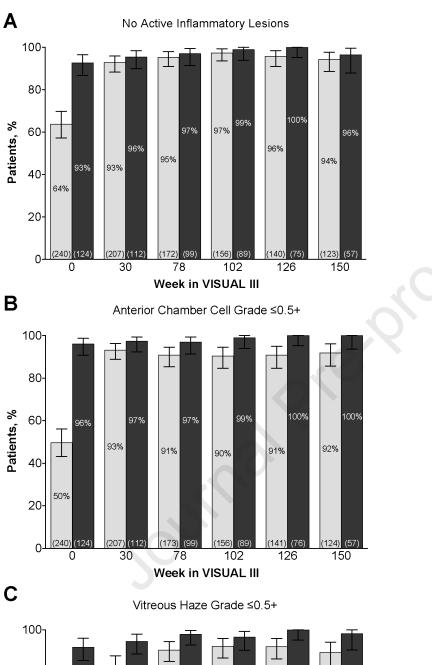
AE=adverse event; E=event; PY=patient-years; TEAE=treatment-emergent AE.

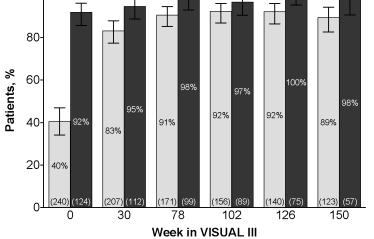
^aSerious infections in >1 patient included urinary tract infection in 5 patients (1%); pneumonia in 3 patients (0.7%); and diverticulitis, sinusitis, and pyelonephritis in 2 patients each (0.5%). ^bThe observed case of lymphoma was B-cell lymphoma.

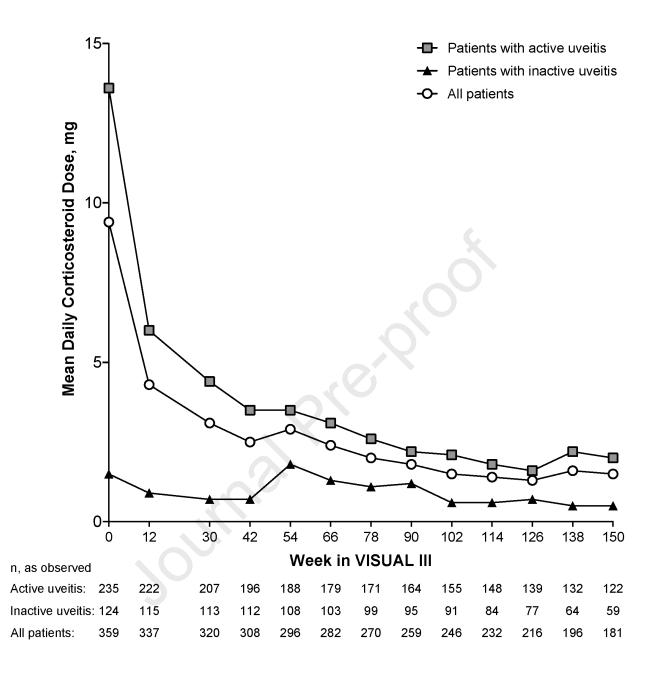

^cExcluding lymphoma, hepatosplenic T-cell lymphoma, leukemia, non-melanoma skin cancer, and melanoma. ^dExcluding oral candidiasis and tuberculosis.


Table 5. Summary of 6	Treatment-Emergent Demyelinating Events


MedDRA- Reported Term	Type of Uveitis	Severity	Serious (Y/N)	Relation to Adalimumab	MRI Finding/Confirmation	Discontinuation of Adalimumab (Y/N)
Demyelination	Panuveitis	Moderate	Y	Possibly related	MRI showed an alternate etiology of periventricular demyelinating brain lesions	Y
Demyelination	Intermediate	Mild	Ν	Possibly related	MRI confirmed demyelinating event	Y
Multiple sclerosis	Intermediate	Mild	Y	Possibly related	Alternate etiology of nervous system inflammation reported	Y
Multiple sclerosis	Intermediate	Moderate	Y	Probably related	Initial MRI did not show cerebral demyelinating lesions; follow-up, confirmed diagnosis of multiple sclerosis approximately 5 months after end of the study	Ν
Optic neuritis ^a	Posterior	Severe	Ν	Not related	No demyelination detected with MRI	Y
Optic neuritis	Posterior	Severe	N	Possibly related	MRI showed multiple white matter lesions that may have been vascular or related to demyelination; subsequent neurology consult confirmed diagnosis of optic neuritis and found no evidence of clinical demyelinating disease	Y


MedDRA=Medical Dictionary for Regulatory Activities; MRI=magnetic resonance imaging; N=no; Y=yes.


^aPatient had a history of Behçet-associated disease at study entry; it was determined that the optic neuritis event may have had an underlying pathogenesis other than demyelinating disease.



Précis:

Patients with noninfectious uveitis responded well to long-term treatment with adalimumab and achieved disease quiescence with lower doses of corticosteroids. Adverse events occurred at the rate expected for treatment with biologics.

Journal Pre-proof