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Abstract

Biased regularization and Þne tuning are two recent meta-learning approaches.
They have been shown to be effective to tackle distributions of tasks, in which the
tasksÕ target vectors are all close to a common meta-parameter vector. However,
these methods may perform poorly on heterogeneous environments of tasks, where
the complexity of the tasksÕ distribution cannot be captured by a single meta-
parameter vector. We address this limitation by conditional meta-learning, inferring
a conditioning function mapping taskÕs side information into a meta-parameter
vector that is appropriate for that task at hand. We characterize properties of the
environment under which the conditional approach brings a substantial advantage
over standard meta-learning and we highlight examples of environments, such as
those with multiple clusters, satisfying these properties. We then propose a convex
meta-algorithm providing a comparable advantage also in practice. Numerical
experiments conÞrm our theoretical Þndings.

1 Introduction

Biased regularization and Þne tuning [5, 13, 14, 16, 17, 19, 23, 24, 28, 31, 33] are two recent
optimization-based meta-learning techniques that transfer knowledge across an environment of tasks
by leveraging a common meta-parameter vector. Their origin and inspiration go back to multi-task
and transfer learning methods [10, 15, 27], designed to address a prescribed set of tasks with low
variance. These techniques can be described as a nested optimization scheme: while at the within-task
level, an inner algorithm performs tasksÕ speciÞc optimization with the current meta-parameter vector,
at the meta-level a meta-algorithm updates the aforementioned meta-parameter by leveraging the
experience accumulated from the tasks observed so far. In biased regularization the inner algorithm is
given by the within-task regularized empirical risk minimizer and the meta-parameter vector plays the
role of a bias in the regularizer, while Þne tuning employs online gradient descent as the within-task
algorithm and the meta-parameter vector is the associated starting point.

Despite their success, the above methods may fail to adapt to heterogenous environments of tasks,
in which the complexity of the tasksÕ distribution cannot be captured by a single meta-parameter
vector. In literature, a variety of methods have tried to address this limitation by clustering the tasks
and, then, leveraging tasksÕ similarities within each cluster [2, 4, 21, 29, 30]. However, such methods
usually lead to non-convex formulations [2, 4] or provide only partial guarantees on surrogate convex
problems [21, 30]. As alternative, recent approaches in meta-learning literature advocated learning a
conditioning function that maps a taskÕs dataset into a meta-parameter vector that is appropriate for
the task at hand [9, 22, 35, 39Ð41]. This perspective has been shown to be promising in applications,
however theoretical investigations are still lacking. The authors of [40] have recently made a Þrst
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step towards this theoretical investigation adopting a structured prediction perspective for conditional
meta-learning. However, their method relies on a non-convex formulation of the problem. This
allows them to provide guarantees only on the generalization properties of their method, but not on
its estimation properties. In this work, we address the limitation above for biased regularization and
Þne tuning by developing a new conditional meta-learning framework. SpeciÞcally, we consider an
environment of tasks provided with additional side information and we learn a conditioning function
mapping taskÕs side information into a taskÕs speciÞc meta-parameter vector. We then provide a
statistical analysis demonstrating the potential advantage of our method over standard meta-learning.

Contributions and organization. Our work offers four contributions. First, inSec. 2, we introduce
a new conditional meta-learning framework with side information for biased regularization and
Þne tuning. Second, inSec. 3, we formally show that, under certain assumptions, this conditional
meta-learning approach results to be signiÞcantly advantageous w.r.t. the standard unconditional
counterpart. We then describe two common settings in which such conditions are satisÞed, supporting
the potential importance of our study for real-world scenarios. Third, inSec. 4, we propose a convex
meta-algorithm providing a comparable advantage also in practice, as the number of observed tasks
increases. Fourth, inSec. 5, we present numerical experiments in which we test our theory and the
performance of our method. Our conclusions are drawn inSec. 6and technical proofs are postponed
to the appendix.

2 Conditional meta-learning

In this section we describe and contrast the conditional meta-learning setting with side information to
standard meta-learning. We Þrst introduce the class of inner algorithms we consider in this work.

Inner algorithms (linear supervised learning). Let Z = X ! Y with X " Rd andY " R input
and output spaces, respectively. LetP(Z ) be the set of probability distributions (tasks) overZ .
Givenµ # P (Z ) and a loss function! : R ! R $ R, our goal is to Þnd a weight vectorwµ # Rd

minimizing theexpected risk

min
w" Rd

R µ (w) R µ (w) = E(x,y )# µ !
!
%x, w&, y

"
, (1)

where,%x, w&denotes the standard inner product betweenx andw # Rd. In practice,µ is unknown
and only accessible trough a training datasetZ = ( xi , yi )n

i =1 ' µn of i.i.d. (identically independently
distributed) points sampled fromZ . The goal of a learning algorithm is to Þnd a candidate weight
vector incurring a small expected risk converging to the idealR µ (wµ ) asn grows.

In this work we will focus on the family of learning algorithms performing biased regularized
empirical risk minimization. Formally, givenD =

#
n " N Z n the space of all datasets (of any

Þnite cardinalityn) on Z and a bias vector" # ! = Rd, we will consider learning algorithms
A(", á) : D $ Rd such that,

A(", Z ) = argmin
w" Rd

R Z,! (w) R Z,! (w) =
1
n

n$

i =1

! (%xi , w&, yi ) +
#
2

( w ) " ( 2, (2)

for anyZ = ( xi , yi )n
i =1 . Here(á( denotes the Euclidean norm onRd and# > 0 is a regularization

parameter encouraging the algorithmA(", á) to predict weight vectors that are close to" . We denote
by R Z (á) = 1 /n

% n
i =1 ! (%xi , w&, yi ) the empirical risk associated toZ .

Remark 1 (Fine tuning). In this work we primarily focus on the family(2) of batch inner algorithms.
However, following [13, 14], it is possible to extend our analysis to Þne-tuning algorithms performing
online gradient descent onR Z,! , with starting pointw1 = " # Rd, namely

A(", Z ) =
1
n

n$

i =1

wi , wi +1 = wi )
si xi ) #(wi ) " )

#i
, si # $! (á, yi )(%xi , wi &). (3)

(Unconditional) meta-learning. Given a meta-distribution%# P (M ) (or environment[7]) over
a family M " P (Z ) of distributions (tasks)µ, meta-learning aims to learn an inner algorithm in
the family that is well suited to tasksµ sampled from%. This goal can be reformulated as Þnding a
meta-parameter" " # ! whose associated algorithmA(" " , á) minimizes thetransfer risk

min
! " !

E" (" ) E" (" ) = Eµ# " EZ # µ n R µ
!
A(", Z )

"
. (4)
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Standard meta-learning methods [5, 13, 14, 17Ð19, 24] usually address this problem via stochastic
methods. They iteratively sample a taskµ ' %and a datasetZ ' µn , and, then, they perform a step
of stochastic gradient descent on a surrogate problem of(4) computed by usingZ .

Although remarkably effective in many applications [5, 13, 14, 17Ð19, 24], the framework above
implicitly assumes that a single bias vector is sufÞcient for the entire family of tasks sampled from%.
Since this assumption may not hold for more complex meta-distributions (e.g. multi-clusters), recent
works have advocated a conditional perspective to tackle this problem [9, 22, 35, 39Ð41].

Conditional meta-learning. Assume now that when sampling a taskµ, we are also given additional
side informations # S to help solving the task. Within this setting the environment corresponds
to a distribution%# P (M , S) over the setM of tasks and the setS of possible side information.
The notion of side information is general, and recovers settings wheres contains descriptive features
associated to a task (e.g. attributes in collaborative Þltering [1]), additional information about the
users in recommendation systems [20], or s is an additional dataset sampled fromµ (see [40] or
Rem. 2below). Intuitively, meta-learning might solve a new task better if it was able to leverage
this additional side information. We formalize this concept by adapting (or conditioning) the meta-
parameters" # ! on the side informations # S, by learning a meta-parameter-valued function&
minimizing

min
#"T

E" (&) E" (&) = E(µ,s )# " EZ # µ n R µ
!
A(&(s), Z )

"
, (5)

over the spaceT of measurable functions& : S $ ! . Note that the unconditional meta-learning
problem in(4) is retrieved by restricting(5) to T const = { & | &(á) * ", " # ! } , the set of constant
functions associating any side information to a Þxed bias vector. We assume%to decompose in
%(á|s)%S (á) and%(á|µ)%M (á) the conditional and marginal distributions w.r.t. (with respect to)S and
M . In the following, we will quantify the beneÞts of adopting the conditional perspective above
and, then, we propose an efÞcient algorithm to address(5). We conclude this section by drawing a
connection between our formulation and previous work on the topic.

Remark 2 (Datasets as side information). A relevant setting is the case where the side informations
corresponds to an additional (conditional) datasetZ cond sampled fromµ, as proposed in [40]. We
note however that our sampling scheme in(5) implies that side informations and training setZ
are independent conditioned onµ. Hence, our framework does not allow havings = Z cond = Z ,
namely, to use the same dataset for both conditioning and training the inner algorithmA(&(Z ), Z ),
as done in [40]. This is a minor issue since one can always splitZ in two parts and use one part for
training and the other one for conditioning.

3 The advantage of conditional meta-learning

In this section we study the generalization properties of a given conditional function&. This will allow
us to characterize the behavior of the ideal solution of(5) and to illustrate the potential advantage of
conditional meta-learning. SpeciÞcally, we wish to estimate the errorE" (&) w.r.t. the ideal risk

E!
" = Eµ# " R µ (wµ ) wµ = argmin

w" Rd
R µ (w). (6)

For any& # T the following quantity will play a central role in our analysis:

Var" (&)2 = E(µ,s )# "

&
&wµ ) &(s)

&
&2

. (7)

With some abuse of terminology, we refer toVar" (&) as thevarianceof wµ w.r.t. & (it corresponds
to the actual variance ofwµ when& is the minimizer, seeLemma 2below). Under the following
assumption, we can control the excess risk of& in terms ofVar" (&).

Assumption 1. Let ! be a convex andL-Lipschitz loss function in the Þrst argument. Additionally,
there existR > 0 such that( x( + R for anyx # X .

Theorem 1 (Excess risk with generic conditioning function&). Let Asm. 1 hold. Given
& # T , let A(", á) be the generic inner algorithm in(2) with regularization parameter# =
2LR Var" (&)$ 1n$ 1/ 2. Then,

E" (&) ) E !
" +

2RL Var" (&)
n1/ 2

. (8)
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Proof. We consider the decompositionE" (&) ) E !
" = E(µ,s )# "

'
Bµ,s + Cµ,s

(
, with

Bµ,s = EZ # µ n

)
R µ (A(&(s), Z )) ) R Z (A(&(s), Z ))

*
(9)

Cµ,s = EZ # µ n

)
R Z (A(&(s), Z )) ) R µ (wµ )

*
+ EZ # µ n

)
min

w" Rd
R Z,# (s) (w) ) R µ (wµ )

*
. (10)

Bµ,s is the generalization error of the inner algorithmA(&(s), á) on the taskµ. Hence, applyingAsm. 1
and the stability arguments inProp. 5in App. A, we can writeBµ,s + 2R2L 2(#n)$ 1. Regarding the
termCµ,s , exploiting the deÞnition of the algorithm in(2), we can writeCµ,s + $

2 ( wµ ) &(s)( 2.
The desired statement follows by combining the two bounds above and optimizing w.r.t.#.

Thm. 1 suggests that a conditioning function& with low variance can potentially incur a small
excess risk. This makes the minimizer of the variance, a potentially good candidate for conditional
meta-learning. We note thatVar" (&) in (6) can be interpreted as a Least-Squares risk associated
to the input-(ideal) output pair(s, wµ ). Thanks to this interpretation, we can rely on the following
well-known facts, see e.g. [11, Lemma A2].

Lemma 2(Best conditioning function in hindsight). The minimizer ofVar" (á)2 in (6) over the setT
is such that&" (s) = Eµ# " (á|s) wµ almost everywhere onS. Moreover, for any& # T ,

Var" (&)2 ) Var" (&" )2 = Es# " S

&
&&(s) ) &" (s)

&
&2

. (11)

CombiningThm. 1 with Lemma 2, we can formally analyze when the conditional approach is
signiÞcantly advantageous w.r.t. the unconditional one.

Conditional vs unconditional meta-learning. As observed in(5), unconditional meta-learning
consists in restricting to the class of constant conditioning functionsT const . Minimizing Var" (á)2

over this class yields the optimal bias vector for standard meta-learning (see e.g. [5, 13, 14, 24]),
given by the expected target tasksÕ vectorw" = Eµ# " M wµ . Applying (11) to the constant function
& * w" , we get the following gap between the best performance of conditional and unconditional
meta-learning:

Var" (w" )2 ) Var" (&" )2 = Es# " S ( w" ) &" (s) ( 2 . (12)

We note that the gap(12)above is large when the ideal conditioning function&" is ÒfarÓ from being
the constant functionw" . We report below two examples that can be considered illustrative for many
real-world scenarios in which such a condition is satisÞed. We refer toApp. B for the details and
the deduction. In the examples, we parametrize each task with the tripletµ = ( wµ , ' µ , (µ ), where
wµ is the target weight vector,' µ is the marginal distribution on the inputs,(µ is a noise model and
y ' µ(á|x) is y = %wµ , x&+ ) with x ' ' µ and) ' (µ . Additionally, we denote byN (v, * 2I ) a
Gaussian distribution with meanv # Rd and covariance matrix* 2I , with I thed ! d identity matrix.

Example 1(Clusters of tasks). Let %M = 1
m

% m
i =1 %(m )

M be a uniform mixture ofm environments

(clusters) of tasks. For eachi = 1 , . . . , m, a taskµ ' %(i )
M is sampled such that:1) wµ '

N (w(i ), * 2
w I ) with w(i ) # Rd a clusterÕs mean vector and* 2

w I a covariance matrix,2) the marginal
' µ = N (x(i ), * 2

X ) with mean vectorx(i ) # Rd and variance* 2
X , 3) the side information is ann i.i.d.

sample from' µ , namelys = ( xi )n
i =1 ' ' n

µ . Then, the gap between conditional and unconditional
variance is

Var" (w" )2 ) Var" (&" )2 ,
1

2m2

m$

i,j =1

+

1 )
m
2

e
$ n

! 2
X

%x ( i )$ x ( j )%2
,

( w(i ) ) w(j )( 2 . (13)

The inequality above conÞrms our natural intuition. It tells us that the larger is the number of clusters
and the more the target weight vectorsÕ and inputsÕ centroids are distant (i.e. the more the clusters are
distant and the inputsÕ side information are discriminative for conditioning), the more the conditional
approach will be advantageous w.r.t. the unconditional one.
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Example 2 (Curve of tasks). Let %S be a uniform distribution overS = [0 , 1]. Let h :
S $ Rd parametrize a circle of radiusr > 0 centered inc # Rd, such ash(s) =
r (cos(2+s), sin(2+s), 0, . . . , 0)& . For s # S, let µ ' %(á|s) such thatwµ ' N (h(s), * 2I ) with
* # R. Then,&" = h, w" = c and the the gap between conditional and unconditional variance is

Var" (w" )2 ) Var" (&" )2 = r 2. (14)

Hence, in this case, the advantage in applying the conditional approach w.r.t. the unconditional one is
equivalent to the squared radius of the circle over which the mean of the target weight vectorswµ lie.

Conditional meta-learning vs Independent Task Learning (ITL). Solving each task indepen-
dently corresponds to choosing the constant conditioning function&0 * 0. Applying Lemma 2to this
function, the gap between the performance of the best conditional approach and ITL reads as

Var" (0)2 ) Var" (&" )2 = Es# " S

&
&w" ) &" (s)

&
&2

+ ( w" ( 2 . (15)

The gap in(15)combines the gain of conditional over unconditional meta-learning with( w" ( 2 =
Var" (0)2 ) Var" (w" )2 that is the advantage of unconditional meta-learning over ITL (see [13, 14]).
In the next section, we introduce a convex meta-algorithm mimicking this advantage also in practice.

4 Conditional meta-learning algorithm

To address conditional meta-learning in practice, we introduce the following set of conditioning
functions. For a given feature map" : S $ Rk on the side information space, we deÞne the
associated space of linear functions

T" =
-

& : S $ Rd
.
. &(á) = M "( á) + b, for someM # Rd' k , b # Rd

/
. (16)

To highlight the dependency of a function& # T" w.r.t. its parametersM andb, we will use the
notation& = &M,b . Evidently,T" contains the space of all unconditional estimatorsT const . We
considerT" equipped with the canonical norm( &M,b ( 2 = ( (M, b)( 2

F = ( M ( 2
F + ( b( 2, with ( á (F

the Frobenius norm. We now introduce two standard assumptions will allow the design of our method.
Assumption 2. The minimizer&" of Var" (á) belongs toT" , namely there existM " # Rd' k and
b" # Rd, such that&" (á) = M " "( á) + b" .

Assumption 3. There existsK > 0 such that( "( s)( + K for anys # S.

Asm. 2enables us to restrict the conditional meta-learning problem in(5) to T" , rather than to the
entire spaceT of measurable functions. InLemma 7in App. Cwe provide the closed forms ofM "
andb" and we express the gap in(12)by the correlation betweenwµ and"( s) and the slope of&" .
Asm. 3will allow us to work with a Lipschitz meta-objective, as explained below.

The convex surrogate problem.Following a similar strategy to the one adopted for the unconditional
setting in [13, 14], we introduce the following surrogate problem for the conditional one in(5):

min
#"T

öE" (&) öE" (&) = E(µ,s )# " EZ # µ n R Z,# (s) (A(&(s), Z )) , (17)

where we have replaced the inner expected riskR µ with the regularized empirical riskR Z,! in (2).
ExploitingAsm. 2, the problem above can be rewritten more explicitly as follows

min
M " Rd ! k ,b" Rd

E(µ,s )# " EZ # µ n L
!
M, b, s, Z

"
L

!
M, b, s, Z

"
= R Z,# M,b (s) (A(&M,b (s), Z )) .

(18)
The following proposition characterizes useful properties of the meta-lossL

!
á, á, s, Z

"
introduced

above (such as convexity and differentiability) and it supports its choice as surrogate meta-loss. We
denote byá" the standard transposition operation.
Proposition 3 (Properties of the surrogate meta-lossL ). For anyZ # D ands # S, the function
L

!
á, á, s, Z

"
is convex, differentiable and its gradient is given by

-L
!
á, á, s, Z

"
(M, b) = ) #

0
A

!
&M,b (s), Z

"
) &M,b (s)

1 2
"( s)

1

3 "

(19)

for anyM # Rd' k andb # Rd. Moreover, underAsm. 1andAsm. 3, we have
&
&-L

!
á, á, s, Z

"
(M, b)

&
&2

F + L 2R2(K 2 + 1) . (20)
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Algorithm 1 Meta-Algorithm, SGD on(18)

Input ! > 0 meta-step size," > 0 inner regularization parameter
Initialization M 1 = 0 2 Rd" k, b1 = 0 2 Rd

For t = 1 to T
Receive (µt, st) ⇠ # andZt ⇠ µn

t

Let $t = %Mt ,bt (st) = M t!( st) + bt
Run the inner algorithm in(2) to obtainwt = A($t, Z t)

ComputerL(·, ·, st, Z t)(M t, bt) = �" (wt � $t)
⇣ !( st)

1

⌘"

as in(19)

Update (M t+1 , bt+1 ) = (M t, bt) � ! rL(·, ·, st, Z t)(M t, bt)

Return M =
1
T

TX

t=1

M t, b =
1
T

TX

t=1

bt

The proof ofProp. 3is reported inApp. D.1and it follows a similar reasoning in [14], by taking into
account also the parameterM in the optimization problem.

The conditional meta-learning estimator. In this work we propose to apply Stochastic Gradient
Descent (SGD) on the surrogate problem in(18). Alg. 1 summarizes the implementation of this
approach: assuming a sequence of i.i.d. pairs(Zt , st )T

t =1 of training sets and side information,
at each iteration the algorithm updates the conditional iterates(M t , bt ) by performing a step of
constant size, > 0 in the direction of)-L (á, á, st , Zt )(M t , bt ). The map&M, b is then returned
as conditional estimator, with(M, b) the average across all the iterates(M t , bt )T

t =1 . The following
result characterizes the excess risk of the proposed estimator.

Theorem 4(Excess risk bound for the conditioning function returned byAlg. 1). Let Asm. 1and
Asm. 3hold. Let&M,b be a Þxed function inT" and letVar" (&M,b )2 be the corresponding variance
introduced in(7). Let M andb be the outputs ofAlg. 1 applied to a sequence(Zt , st )T

t =1 of i.i.d.
pairs sampled from%with inner regularization parameter and meta-step size

# =
2RL

Var" (&M,b )
1

.
n

, =
( (M, b)( F

LR
4

(K 2 + 1)

1
.

T
. (21)

Then, in expectation w.r.t. the sampling of(Zt , st )T
t =1 ,

E E" (&M, b) ) E !
" +

2RL Var" (&M,b )
.

n
+

LR
.

K 2 + 1 ( (M, b)( F.
T

. (22)

Proof (Sketch). We consider the following decomposition

E E" (&M, b) ) E !
" = E E" (&M, b) ) öE" (&M, b)

5 67 8
B

+ E öE" (&M, b) ) öE" (&M,b )
5 67 8

C

+ öE" (&M,b ) ) E !
"5 67 8

D

. (23)

Applying Asm. 1and the stability arguments inProp. 5in App. A, we can writeB + 2R2L 2(#n)$ 1.
The term C is the term expressing the convergence rate ofAlg. 1 on the surrogate problem in(18)and,
exploitingAsm. 3andProp. 3, it can be controlled as described inProp. 9in App. D.2. Regarding
the term D, exploiting the deÞnition of the algorithm in(2), we can writeD + $

2 Var" (&M,b )2.
Combining all the terms and optimizing w.r.t., and#, we get the desired statement.

We now comment about the result we got above inThm. 4.

Proposed vs optimal conditioning function.Specializing the bound inThm. 4to the best condi-
tioning function&" in Lemma 2, thanks toAsm. 2, we get the following bound for our estimator:

E E" (&M, b) ) E !
" + O

0
Var" (&" ) n$ 1/ 2 + ( (M " , b" )( F T$ 1/ 2

1
. (24)

Hence, our proposed meta-algorithm achieves comparable performance to the best conditioning
function&" in hindsight, provided that the number of observed tasks is sufÞciently large. The bound
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above also highlights the trade-off between statistical and computational complexity of the class
T%: conditional meta-learning incurs in a cost( (M " , b" )( F in the

.
T-term that is larger than the

( b" ( cost of unconditional meta-learning (see [5, 13, 24]), which is, however, limited to constant
conditioning functions. This is an acceptable price, since, as we discussed inSec. 3, the performance
of conditional meta-learning is signiÞcantly better than the standard one in many common scenarios.

Remark 3. When&" /# T" (i.e. whenAsm. 3does not hold), our method suffers an additional
approximation error due to the factmin#"T ! Var" (&) > Var" (&" ). In this case, one might nullify
the gap above by considering a feature map" : S $ H with H a universal reproducing kernel
Hilbert space of functions. Exploiting standard arguments from online learning with kernels literature
(see e.g. [25, 36, 37]), in Lemma 10in App. D.3we describe the implementation ofAlg. 1 for this
setting using only evaluations of the kernel associated to the feature map. We leave the corresponding
theoretical analysis to future work.

Proposed conditioning function vs unconditional meta-learning.SpecializingThm. 4to &M,b *
w" , the bound for our estimator becomes:

E E" (&M, b) ) E !
" + O

!
Var" (w" ) n$ 1/ 2 + ( w" ( T$ 1/ 2"

, (25)

which is equivalent to state-of-the-art bounds for unconditional methods, see [5, 13, 14, 24]. Hence,
our conditional approach provides, at least, the same guarantees as its unconditional counterpart.

Proposed conditioning function vs ITL. SpecializingThm. 4to &M,b * 0 corresponds to force
, = 0 and, consequently,Alg. 1 to not move. In such a case, we get the bound:

E E" (&M, b) ) E !
" + O

!
Var" (0) n$ 1/ 2"

, (26)

which corresponds to the standard excess risk bound for ITL, see [5, 13, 14, 24]. In other words, our
method does not generate negative transfer effect.

Remark 4 (Fine tuning). In the case of the online inner family inRem. 1used in Þne tuning,
Alg. 1employs an approximation of the meta-subgradient in(19)by replacing the batch regularized
empirical risk minimizerA(&M,b (s), Z ) in (2) with the last iterate of the online algorithm in(3). As
shown in [13, 14] for the unconditional setting, such an approximation does not affect the behavior
of the bounds above.

5 Experiments

In this section we compare the numerical performance1 of our conditional method inAlg. 1 (cond.)
w.r.t. its unconditional counterpart in [13] (uncond.). We will also add to the comparison the
methods consisting in applying the inner algorithm on each task with& * 0 # Rd (i.e. ITL) and
the unconditional oracle& * w" = Eµ# " M wµ (mean), when available. We considered regression
problems and we evaluated the errors by the absolute loss. The results refer to the Þne tuning variant
of the methods with the online inner algorithm in(3). In App. E, we describe how we tuned the
hyper-parameters#, , in our experiments.

Synthetic clusters.We considered three variants of the setting described inEx. 1. In all the variants
we sampledTtot = 480 tasks from a mixture ofm clusters with the same probability. For each taskµ,
we sampled the corresponding target vectorwµ from thed = 20-dimensional Gaussian distribution
N (w(j µ ), I ), where,j µ # { 1, . . . , m} denotes the cluster from which the taskµ was sampled. We
then generated the corresponding dataset(xi , yi )

n tot
i =1 with ntot = 20. We sampled the inputs from

N (x(j µ ), I ) and we generated the labels according to the equationy = %x, wµ &+ ), with the noise)
sampled fromN (0, * 2I ), with * chosen in order to have signal-to-noise ratio equal to1.
We implemented our conditional method using as side information the training input pointsX =
(xi )

n tr
i =1 #

#
n " N X n and the feature map" :

#
n " N X n $ Rd deÞned by"( X ) = 1

n tr

% n tr
i =1 xi .

In Fig. 1 (left-top), we generated an environment as above with just one cluster (m = 1 ) and we
took w(1) = 4 # Rd (the vector inRd with all components4) andx(1) = 1 # Rd. As we can see,
coherently with previous work [13], the uncoditional approach outperforms ITL and it converges
to the mean vectorw" = w(1) as the number of training tasks increases. The conditional approach
returns equivalent performances to the unconditional counterpart.

1Code is available athttps://github.com/dGiulia/ConditionalMetaLearning.git
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Figure 1: Performance (averaged over10seeds) of different methods w.r.t. an increasing number of
tasks on different environments: with one cluster (left-top), with two clusters andw" = 4 (right-top),
with two clusters andw" = 0 (left-bottom), circle (right-bottom).

In Fig. 1 (right-top), we considered an environment of two clusters (m = 2) identiÞed by
w(1) = 8 # Rd, w(2) = 0 # Rd (implying w" = 4 ), x(1) = 1 # Rd and x(2) = ) x(1).
As we can see, the conditional approach outperform ITL as in the previous setting, but the conditional
approach yields even better performance.
Finally, in Fig. 1 (left-bottom), we considered an environment of two clusters (m = 2) identiÞed
by w(1) = 4 # Rd, w(2) = ) w(1) (implying w" = 0 ), x(1) = 1 # Rd andx(2) = ) x(1). As
expected, the uncoditional approach mimics the poor performance of ITL, while, the performance of
the conditional approach is promising.
Summarizing, the conditional approach brings advantage w.r.t. the unconditional one when the hetero-
geneity of the environment is signiÞcant. When the environment is homogeneous, the performance of
the two are equivalent. This conclusion is exactly inline with our theory in(25)and(26).

Synthetic circle. We sampledTtot = 480 tasks according to the setting described inEx. 2. SpeciÞ-
cally, for each taskµ, we Þrst sampled the corresponding side informations # [0, 1] according to the
uniform distribution. We then generated the vectorh(s) = r (cos(2+s), sin(2+s), 0, . . . , 0)& # Rd,
with d = 20, on the zero-centered circle of radiusr = 8 . After this, we sampled the corresponding
target weight vectorwµ from N (h(s), I ). We then generated the associated dataset ofntot = 20
points as for the experiments above. We applied our conditional approach with the true underlying
feature map"( s) = (cos(2+s), sin(2+s)) (cond. circle) and the feature map mimicking a Gaussian
distribution by Fourier random features [34] described below (at the end of this section) with parame-
tersk = 50 and* = 10 (cond. rnd).
From Fig. 1 (right-bottom) we see that the performance of unconditional meta-learning mimics
the poor performance of ITL (in fact, we havew" = 0 ). On the other hand, both the conditional
approaches bring a substantial advantage and the random featuresÕ variant approaches the variant
knowing the true underlying feature map.

Lenk dataset.We considered the computer survey data from [26, 30], in which Ttot = 180 people
(tasks) rated the likelihood of purchasing one ofntot = 20 different personal computers. The input
representsd = 13 different computersÕ characteristics, while the output is an integer rating from0
to 10. In this case, we used as side information the training datapointsZ = ( zi )

n tr
i =1 and the feature

map" : D $ R2d deÞned by"( Z ) = 1
n tr

% n tr
i =1 - (zi ), with - (zi ) = vec

!
xi (yi , 1)"

"
, where, for

any matrixA = [ a1, a2] # Rd' 2 with columnsa1, a2 # Rd, vec(A) = ( a1, a2)" # R2d. Fig. 2
(left) shows that, coherently to previous literature [13], the unconditional approach signiÞcantly
outperforms ITL, but the performance of its conditional counterpart is even better.
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Figure 2: Performance (averaged over10seeds) of different methods w.r.t. an increasing number of
tasks. Lenk dataset (left), Schools dataset (right).

Schools dataset.We considered the Schools dataset [3], consisting of examination records from
Ttot = 139 schools. Each school is associated to a task, individual students are represented by a
featuresÕ vectorsx # Rd, with d = 26, and their exam scores to the outputs. The sample sizentot
varies across the tasks from a minimum24 to a maximum251. We used as side information the
training inputsX = ( xi )

n tr
i =1 and the feature map mimicking a Gaussian distribution by Fourier

random features described below (at the end of this section) with parametersk = 1000 and* =
100. Fig. 2 (right) shows that, also in this case, the unconditional approach brings a meaningful
improvement w.r.t. ITL, but the gain provided by its conditional counterpart is even more evident.

Feature map by Fourier random features.We now describe the feature map mimicking a Gaussian
distribution by Fourier random features [34] we used in our synthetic circle experiment and Schools
dataset experiment. We recall that, in these cases, we considered as side information the inputs
X = ( xi )n

i =1 . The feature map above was then deÞned as"( X ) = 1
n

% n
i =1 - (xi ), where,- was

built as follows. We Þrst introduced an integerk # N and a constant* # R. We then sampled a
vectorv # Rk from the uniform distribution over[0, 2+]k and a matrixU # Rk' d is sampled from
the Gaussian distributionN (0, *I ). We then deÞned

- (xi ) =

9
2
k

cos
!
Uxi + v

"
# Rk , (27)

wherecos(á) is applied component-wise to the vector.

6 Conclusion

We proposed a new conditional meta-learning framework for biased regularization and Þne tuning
based on side information and we provided a theoretical analysis demonstrating its potential advantage
over standard meta-learning, when the environment of tasks is heterogeneous. In the future, taking
inspiration from [12, 32], it would be interesting to develop a variant of our method in which the
hyper-parameters are automatically tuned in efÞcient way. In addition, it would valuable to extend our
conditional approach and the corresponding analysis to other meta-learning paradigms considering
different families of inner algorithms, such as [14, 38].

Broader impact

Meta-learning is a very important Þeld for machine learning with potential societal implications
related to applications such as recommender systems. In this work we focused mostly on theoretical
and modeling aspects, however in the future the topic will need to take into consideration contributions
from other Þelds related to ethical and societal aspects, such as privacy and fairness.
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