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Abstract

Biased regularization and Pne tuning are two recent meta-learning approaches.
They have been shown to be effective to tackle distributions of tasks, in which the
tasksO target vectors are all close to a common meta-parameter vector. However,
these methods may perform poorly on heterogeneous environments of tasks, where
the complexity of the tasksO distribution cannot be captured by a single meta-
parameter vector. We address this limitation by conditional meta-learning, inferring

a conditioning function mapping taskOs side information into a meta-parameter
vector that is appropriate for that task at hand. We characterize properties of the
environment under which the conditional approach brings a substantial advantage
over standard meta-learning and we highlight examples of environments, such as
those with multiple clusters, satisfying these properties. We then propose a convex
meta-algorithm providing a comparable advantage also in practice. Numerical
experiments conbrm our theoretical bPndings.

1 Introduction

Biased regularization and Pne tunirty L3, 14, 16, 17, 19, 23, 24, 28, 31, 33] are two recent
optimization-based meta-learning techniques that transfer knowledge across an environment of tasks
by leveraging a common meta-parameter vector. Their origin and inspiration go back to multi-task
and transfer learning methodK]] 15, 27], designed to address a prescribed set of tasks with low
variance. These techniques can be described as a nested optimization scheme: while at the within-task
level, an inner algorithm performs tasksO specibc optimization with the current meta-parameter vector,
at the meta-level a meta-algorithm updates the aforementioned meta-parameter by leveraging the
experience accumulated from the tasks observed so far. In biased regularization the inner algorithm is
given by the within-task regularized empirical risk minimizer and the meta-parameter vector plays the
role of a bias in the regularizer, while Pne tuning employs online gradient descent as the within-task
algorithm and the meta-parameter vector is the associated starting point.

Despite their success, the above methods may fail to adapt to heterogenous environments of tasks,
in which the complexity of the tasksO distribution cannot be captured by a single meta-parameter
vector. In literature, a variety of methods have tried to address this limitation by clustering the tasks
and, then, leveraging tasksO similarities within each clugtdy 21, 29, 30]. However, such methods

usually lead to non-convex formulatior® B] or provide only partial guarantees on surrogate convex
problems P1, 37]. As alternative, recent approaches in meta-learning literature advocated learning a
conditioning function that maps a taskOs dataset into a meta-parameter vector that is appropriate for
the task at handd] 22, 35, 39P41]. This perspective has been shown to be promising in applications,
however theoretical investigations are still lacking. The authord@ftjave recently made a brst
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step towards this theoretical investigation adopting a structured prediction perspective for conditional
meta-learning. However, their method relies on a non-convex formulation of the problem. This
allows them to provide guarantees only on the generalization properties of their method, but not on

its estimation properties. In this work, we address the limitation above for biased regularization and
Pne tuning by developing a new conditional meta-learning framework. Specibcally, we consider an
environment of tasks provided with additional side information and we learn a conditioning function
mapping taskOs side information into a taskOs specibPc meta-parameter vector. We then provide a
statistical analysis demonstrating the potential advantage of our method over standard meta-learning.

Contributions and organization. Our work offers four contributions. First, iBec. 2 we introduce

a new conditional meta-learning framework with side information for biased regularization and
Pne tuning. Second, iBec. 3 we formally show that, under certain assumptions, this conditional
meta-learning approach results to be signibcantly advantageous w.r.t. the standard unconditional
counterpart. We then describe two common settings in which such conditions are satisbed, supporting
the potential importance of our study for real-world scenarios. Thir8gia 4 we propose a convex
meta-algorithm providing a comparable advantage also in practice, as the number of observed tasks
increases. Fourth, iBec. 5 we present numerical experiments in which we test our theory and the
performance of our method. Our conclusions are drawBeio. 6and technical proofs are postponed

to the appendix.

2 Conditional meta-learning

In this section we describe and contrast the conditional meta-learning setting with side information to
standard meta-learning. We Prst introduce the class of inner algorithms we consider in this work.

Inner algorithms (linear supervised learning). LetZ = X 'Y with X " RYandY " R input
and output spaces, respectively. BZ) be the set of probability distributions (tasks) over
Givenu # P (Z) and a loss functioh : R! R$ R, our goal is to Pnd a weight vectos, # Rd

minimizing theexpected risk "

!
min Ry, (w) Ru(W) = Exyjsp ! %,W8Y , @)

where %, w&denotes the standard inner product betweandw # RY. In practice y is unknown
and only accessible trough a training dataset ( Xi, yi)i, ' W" ofi.i.d. (identically independently
distributed) points sampled fro. The goal of a learning algorithm is to Pnd a candidate weight
vector incurring a small expected risk converging to the ifRga{w, ) asn grows.

In this work we will focus on the family of learnipg algorithms performing biased regularized
empirical risk minimization. Formally, give® = . Z" the space of all datasets (of any
Pnite cardinalityn) on Z and a bias vectot # ! = RY, we will consider learning algorithms
A(",4:D$ RYsuchthat,

. . 1¥ #o L
A(",Z)=argmin Rz, (w) Rzr (W)= — 1%, w&yi)+ S(w) "(5, (2
w" Rd n._ 2

foranyZ = (xi,yi){L; . Here(a( denotes the Euclidean norm &9 and# > 0Qis a regularization
parameter encoggaging the algoriténg”, § to predict weight vectors that are close'toWe denote
byRz(@=1/n i”:l I'(%;,w&Y;) the empirical risk associated o
Remark 1 (Fine tuning) In this work we primarily focus on the fami{f) of batch inner algorithms.
However, following 13, 14], it is possible to extend our analysis to Pne-tuning algorithms performing
online gradient descent dRz, , with starting pointw; = " # RY, namely

vy 1¥ _ oy SiXi) #wi) )

A(lz)_ﬁi:lwll WI+1_WI) #l 1]

si# $1@yi ) (%, wi&. (3)

(Unconditional) meta-learning. Given a meta-distributiofoe# P (M ) (or environmen{7]) over
afamilyM " P (Z) of distributions (tasks, meta-learning aims to learn an inner algorithm in
the family that is well suited to taskssampled frons This goal can be reformulated as Pnding a
meta-parametér # ! whose associated algorith&("-, § minirr|1izes thetransfer risk

min & (") E(")= Eu- Ezgur Ry A(LZ) . 4)



Standard meta-learning methodis 13, 14, 17019, 24] usually address this problem via stochastic
methods. They iteratively sample a task %and a dataset ' W", and, then, they perform a step
of stochastic gradient descent on a surrogate proble@h) @bmputed by using .

Although remarkably effective in many applicatiorts 13, 14, 17019, 24], the framework above
implicitly assumes that a single bias vector is sufpcient for the entire family of tasks samplethfrom
Since this assumption may not hold for more complex meta-distributions (e.g. multi-clusters), recent
works have advocated a conditional perspective to tackle this prolSie?a, [35, 39P41].

Conditional meta-learning. Assume now that when sampling a taskwe are also given additional
side informations # S to help solving the task. Within this setting the environment corresponds
to a distribution%# P (M , S) over the seM of tasks and the s& of possible side information.
The notion of side information is general, and recovers settings vehasetains descriptive features
associated to a task (e.g. attributes in collaborative bltefipgddditional information about the
users in recommendation syster@§][ or s is an additional dataset sampled fren{see AQ] or
Rem. 2below). Intuitively, meta-learning might solve a new task better if it was able to leverage
this additional side information. We formalize this concept by adapting (or conditioning) the meta-
parameter§ # ! on the side informatios # S, by learning a meta-parameter-valued funci#on
minimizing | "

min E (&) E (& = Equeys» Ezspn Ry A(&S),2) (5)

over the spac&@ of measurable function&: S $ ! . Note that the unconditional meta-learning
problem in(4) is retrieved by restrictingg) to TSt = {&| &3 * ", " # ! }, the set of constant
functions associating any side information to a bxed bias vector. We agsétordecompose in
%é&k) % (§ and%alL)% (3§ the conditional and marginal distributions w.r.t. (with respecSa@nd

M . In the following, we will quantify the benebts of adopting the conditional perspective above
and, then, we propose an efbcient algorithm to adds§Ve conclude this section by drawing a
connection between our formulation and previous work on the topic.

Remark 2 (Datasets as side information relevant setting is the case where the side informagion
corresponds to an additional (conditional) dataZe?™ sampled fromu, as proposed in40]. We
note however that our sampling schemd3himplies that side informatios and training seZ
are independent conditioned gn Hence, our framework does not allow havieg zZ" = 7,
namely, to use the same dataset for both conditioning and training the inner algokit&z ), Z),
as done in #Q]. This is a minor issue since one can always spliin two parts and use one part for
training and the other one for conditioning.

3 The advantage of conditional meta-learning

In this section we study the generalization properties of a given conditional furgtibimis will allow
us to characterize the behavior of the ideal solutio(bdfind to illustrate the potential advantage of
conditional meta-learning. Specibcally, we wish to estimate the Er(&) w.r.t. the ideal risk

E = Eps Ryu(wy) Wy :argn;ijn Ry (w). (6)
o

Forany&# T the following quantity will play a central role in our analysis:
Var- (&2 = Equsys gwu) &(s)§?. @)

With some abuse of terminology, we refentar- (&) as thevarianceof wy, w.r.t. & (it corresponds
to the actual variance af, when&is the minimizer, seeemma 2below). Under the following
assumption, we can control the excess risk af terms ofVar- (&).

Assumption 1. Let! be a convex andl-Lipschitz loss function in the brst argument. Additionally,
there exisR > Osuch that(x(+ R foranyx # X .

Theorem 1 (Excess risk with generic conditioning functio%). Let Asm. 1hold. Given
& # T, let A(", 8 be the generic inner algorithm i2) with regularization paramete# =
2LR Var- (&%1n®Y2 Then,

E(&)E! + 72””\{‘,"‘2“ & ®)



Proof. We consider the decompositi&@ (&) ) E : = E(us)#" Bus + Cp,s(, with

*

)
Bus = Ezapn Ru(A(&S),2)) )R z(A(&s),2)) ©)

* ) *

)
Cus = Ezgpun Rz(A(&S),2)) )R p(wy) + Ezspn Wn]igd Rz#i(W))R p(wy) . (10)

B, s is the generalization error of the inner algoriti(&(s), § on the taskt. Hence, applying\ssm. 1
and the stability arguments Prop. 5in App. A, we can writeB,, s + 2R?L2(#n)® 1. Regarding the
termC, s, exploiting the debnition of the algorithm (&), we can writeC,s + % (wy) &(s) (2.
The desired statement follows by combining the two bounds above and optimizingtw.r.t. =

Thm. 1suggests that a conditioning functi@with low variance can potentially incur a small
excess risk. This makes the minimizer of the variance, a potentially good candidate for conditional
meta-learning. We note thaftr- (&) in (6) can be interpreted as a Least-Squares risk associated
to the input-(ideal) output pais, wy). Thanks to this interpretation, we can rely on the following
well-known facts, see e.gl], Lemma A?].

Lemma 2 (Best conditioning function in hindsight)The minimizer o¥ar- (§2 in (6) over the seT
is such tha& (s) = E, 4 (4s) Wy almost everywhere o8. Moreover, for any&# T ,

Var- (&?) Var:(&)? = Esg- §f&(s)) &(s)ﬁz. (12)

CombiningThm. 1with Lemma 2 we can formally analyze when the conditional approach is
signibcantly advantageous w.r.t. the unconditional one.

Conditional vs unconditional meta-learning. As observed in5), unconditional meta-learning
consists in restricting to the class of constant conditioning funcfidA®! . Minimizing Var- (§?

over this class yields the optimal bias vector for standard meta-learning (seé,€.8. 14, 24)]),

given by the expected target tasksO vegtor Eyx-, W,. Applying (11)to the constant function

&* w-, we get the following gap between the best performance of conditional and unconditional
meta-learning:

Var:(w-)2) Var-(&)? = Egs-, (W) &(s) (2. (12)

We note that the gafi2) above is large when the ideal conditioning functsris OfarO from being
the constant functiom- . We report below two examples that can be considered illustrative for many
real-world scenarios in which such a condition is satisped. We refigppo B for the details and

the deduction. In the examples, we parametrize each task with the gripléw,," ., (.), where

w,, is the target weight vector,, is the marginal distribution on the inputg, is a noise model and

y' umak)isy = %, x&+ )withx ' ', and) ' (.. Additionally, we denote b (v,*?1) a
Gaussian distribution with mean# RY and covariance matrix?l , with | thed! d identity matrix.

% , . ,
Example 1(Clusters of tasks)Let%y = + = %,lm) be a uniform mixture of environments

(clusters) of tasks. For each= 1,...,m, a tasku ' %;) is sampled such thatl) w, '

N (w(i),*21) withw(i) # RY a clusterOs mean vector drgll a covariance matrix2) the marginal

"4 = N (x(i),*2) with mean vector (i) # RY and variance* Z , 3) the side information is an i.i.d.
sample from ;, namelys = (x;)iL; * ' . Then, the gap between conditional and unconditional

variance is
+ 7
1 g m $ -3-9%(i)$x(j)%
Var-(w-)2) Var- (&), —— 1) —e '%
(w)) Nar @) oy D e

(w(i)) w@)(>.  (@3)

The inequality above conPrms our natural intuition. It tells us that the larger is the number of clusters
and the more the target weight vectorsO and inputsO centroids are distant (i.e. the more the clusters are
distant and the inputsO side information are discriminative for conditioning), the more the conditional
approach will be advantageous w.r.t. the unconditional one.



Example 2 (Curve of tasks) Let % be a uniform distribution ovelS = [0,1]. Leth :
S $ RY parametrize a circle of radius > 0 centered inc # RY, such ash(s) =
r (cos(2+s),sin(2+s),0,...,0)%. Fors # S, letp ' 9%ak) such thatw, ' N (h(s),*?I) with
* # R. Then,& = h,w- = cand the the gap between conditional and unconditional variance is

Var-(w-)?) Var-(&)? = r?. (14)

Hence, in this case, the advantage in applying the conditional approach w.r.t. the unconditional one is
equivalent to the squared radius of the circle over which the mean of the target weight vgctiers

Conditional meta-learning vs Independent Task Learning (ITL). Solving each task indepen-
dently corresponds to choosing the constant conditioning funégidn 0. Applying Lemma 2to this
function, the gap between the performance of the best conditional approach and ITL reads as

Var. (0)?) Var-(&)? = Es- gw--) & ()& + (w- (2. (15)

The gap in(15) combines the gain of conditional over unconditional meta-learning (vitH{ 2=
Var-(0)2) Var-(w-)? that is the advantage of unconditional meta-learning over ITL (58€lf]).
In the next section, we introduce a convex meta-algorithm mimicking this advantage also in practice.

4 Conditional meta-learning algorithm

To address conditional meta-learning in practice, we introduce the following set of conditioning
functions. For a given feature mdp: S $ RX on the side information space, we debne the
associated space of linear functions

/
T = &:S$ RY-&3J=M"(§+ b, forsomeM # R% ¥ b# RY . (16)
To highlight the dependency of a functié# T- w.r.t. its parameter® andb, we will use the
notation& = &y, . Evidently, T contains the space of all unconditional estimafbfest. We
considerT- equipped with the canonical nortdu, (> = ((M,b)(2 = (M (2 + (b(?, with (& (¢
the Frobenius norm. We now introduce two standard assumptions will allow the design of our method.

Assumption 2. The minimize& of Var- (4§ belongs toT- , namely there exis¥l- # RY ¥ and
b # RY suchtha® (§ = M-"(§+ b..

Assumption 3. There exist > Osuchthat("( s)(+ K foranys#S.

Asm. 2enables us to restrict the conditional meta-learning problefB)ito T- , rather than to the
entire spacd of measurable functions. I,emma 7in App. Cwe provide the closed forms ™ -
andb- and we express the gap(b2) by the correlation betweem, and"( s) and the slope of .
Asm. 3will allow us to work with a Lipschitz meta-objective, as explained below.

The convex surrogate problem.Following a similar strategy to the one adopted for the unconditional
setting in [L3, 14], we introduce the following surrogate problem for the conditional on@)n

Lﬂ;ﬂ B (&) B (& = Ews)#" Ez#un Rzs(s)(A(&S),2)), (17)
where we have replaced the inner expectedRigkwith the regularized empirical risRz, in (2).
Exploiting Asm. 2 the problem abpve can be rewyitten more, explicitly as follows
M " R[‘T'-”kn,b" Rd E(},I,S)#" EZ# un L M,b,S,Z L Mabysyz = RZy#M,b (S)(A(&A,b (S)7Z))
! " (18)
The following proposition characterizes useful properties of the meta:lagg s, Z introduced

above (such as convexity and differentiability) and it supports its choice as surrogate meta-loss. We
denote bya the standard transposition operation.

Proposition 3 (Properties of the surrogate meta-lags For anyZ # D ands # S, the function
L 44s,Z isconvex, differentiable and its gradient is given by 5 3
" 0 " 1 .

! ! g
L 44S,Z (MD)=)# A &up(9Z ) &un(®) (19)

foranyM # RY X andb# RY. Moreover, undeAsm. landAsm. 3we have
L 44s,Z (M,b)& + L?R*(K?+1). (20)
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Algorithm 1 Meta-Algorithm, SGD or(18)

Input !> 0 meta-step sizé,> 0 inner regularization parameter
Initializaton M; =0eR¥ * b =0eR?
For t=1toT

Receive (M, S:) ~ #andZ, ~ py

Let $ = % 5 (St) = M I(se) + by

Run the inner algorithm if2) to obtainw; = A($:,Z+)

ComputeVL(:, -, St, Ze)(My, b)) = =" (W — $t)( ' 1st) ) as in(19)
Update (M t+1 ,bt+1 ) = (M t, bt) — 1 Vﬁ(, -,St,Zt)(M t, bt)

1 & 1 &
Return M :?;Mmb:?;bﬁ

The proof ofProp. 3is reported inApp. D.1and it follows a similar reasoning irlfl], by taking into
account also the parametdr in the optimization problem.

The conditional meta-learning estimator. In this work we propose to apply Stochastic Gradient
Descent (SGD) on the surrogate problen{iB). Alg. 1 summarizes the implementation of this
approach: assuming a sequence of i.i.d. péfiss;){-; of training sets and side information,
at each iteration the algorithm updates the conditional iterdkesh ) by performing a step of
constant size > 0 in the direction of)-L  (a3st,Zt)(M¢t, k). The map&; ; is then returned

as conditional estimator, witfM, b) the average across all the iteratds;, by){-; . The following
result characterizes the excess risk of the proposed estimator.

Theorem 4 (Excess risk bound for the conditioning function returnedityy. 1). Let Asm. land
Asm. 3hold. Let&8y , be a bxed function ifi- and letVar- (& )? be the corresponding variance
introduced in(7). LetM andb be the outputs oflg. 1 applied to a sequend&;, s){-; of i.i.d.
pairs sampled frondawith inner regularization parameter and meta-step size

po W1 = (MO 1 (21)

Var: (&up) < N "R (KZ2+1) T
Then, in expectation w.r.t. the sampling(@f, st)-; ,

2RLVar-(&up) , LR KZ+1 ((M,b)(,
— = .

EE (&) )E " (22)

Proof (Sketch). We consider the following decomposition

EE(& ) )E" = II:E‘E-(&\,—LE)& = (44-'52; Eé (8“”_'5)6)7 e (&M,bz; g (8M,8;) E R (23)
B C D

Applying Asm. 1and the stability arguments Prop. 5in App. A, we can writeB + 2R2L2(#n)% 1.
The term C is the term expressing the convergence raidgofl on the surrogate problem {8) and,
exploiting Asm. 3andProp. 3 it can be controlled as describedRnop. 9in App. D.2 Regarding
the term D, exploiting the debnition of the algorithm(R), we can writeD + % Var: (&b )?.
Combining all the terms and optimizing w.r,t.and#, we get the desired statement. ]

We now comment about the result we got abovéhim. 4

Proposed vs optimal conditioning function. Specializing the bound ifhm. 4to the best condi-
tioning function& in Lemma 2 thanks toAsm. 2 we get the following bound for our estimator:
0 1
EE(&p)E" + O Var-(&)n*Y2+ ((M-,b) (¢ T3V2 . (24)

Hence, our proposed meta-algorithm achieves comparable performance to the best conditioning
function& in hindsight, provided that the number of observed tasks is sufpciently large. The bound



above also highlights the trade-off between statistical and computational complexity of the class
Ty, conditional meta-learning incurs in a cg§M-, b )(¢ inthe T-term that is larger than the

(b-( cost of unconditional meta-learning (sée 13, 24]), which is, however, limited to constant
conditioning functions. This is an acceptable price, since, as we discusSed.i} the performance

of conditional meta-learning is signibcantly better than the standard one in many common scenarios.

Remark 3. When& # T- (i.e. whenAsm. 3does not hold), our method suffers an additional
approximation error due to the factingr, Var-(& > Var-(&). In this case, one might nullify

the gap above by considering a feature nMiap S $ H with H a universal reproducing kernel
Hilbert space of functions. Exploiting standard arguments from online learning with kernels literature
(see e.g. 25, 36, 37]), in Lemma 10n App. D.3we describe the implementationAly. 1 for this

setting using only evaluations of the kernel associated to the feature map. We leave the corresponding
theoretical analysis to future work.

Proposed conditioning function vs unconditional meta-learningSpecializingThm. 4to & p *
w, the bound for our estimator becomes:

EE'(&VT,E))E'! + O!Var,.(w--) N$Y2 4 (wo( TSY2 (25)

which is equivalent to state-of-the-art bounds for unconditional methods5s&g [L4, 24]. Hence,
our conditional approach provides, at least, the same guarantees as its unconditional counterpart.

Proposed conditioning function vs ITL. SpecializingThm. 4to &, * O corresponds to force
, =0 and, consequentl@lg. 1 to not move. In such a case, we get the bound:

EE(&p)E+ + O !Varv- ©)nsv2 6

which corresponds to the standard excess risk bound for ITL548,[14, 24]. In other words, our
method does not generate negative transfer effect.

Remark 4 (Fine tuning) In the case of the online inner family Rem. lused in Pne tuning,
Alg. 1employs an approximation of the meta-subgradierf.B) by replacing the batch regularized
empirical risk minimizeA (& (S), Z) in (2) with the last iterate of the online algorithm {8). As
shown in L3, 14] for the unconditional setting, such an approximation does not affect the behavior
of the bounds above.

5 Experiments

In this section we compare the numerical performanotour conditional method irlg. 1 (cond.)

w.r.t. its unconditional counterpart ilJ] (uncond.). We will also add to the comparison the
methods consisting in applying the inner algorithm on each task&ith0 # RY (i.e. ITL) and

the unconditional oracl&* w- = E,%+,, wy, (mean), when available. We considered regression
problems and we evaluated the errors by the absolute loss. The results refer to the bne tuning variant
of the methods with the online inner algorithm(). In App. E, we describe how we tuned the
hyper-parameter$, , in our experiments.

Synthetic clusters.We considered three variants of the setting describékirl. In all the variants
we sampled,; = 480 tasks from a mixture ofn clusters with the same probability. For each tpsk
we sampled the corresponding target vegtprirom thed = 20-dimensional Gaussian distribution
N (W(ju), 1), wherej, #{1,...,m} denotes the cluster from which the tgskvas sampled. We
then generated the corresponding datésetyi)'s with ny = 20. We sampled the inputs from

N (X(ju), 1) and we generated the labels according to the equgtrds, w, &+ ), with the noise
sampled fronN (0, * 1), with * chosen in order to have signal-to-noise ratio equdl to

We implegented our conditional methodising as side information the traininggliﬂput points
(xi)iy # .y X" and the feature map: . X" $ R?dePnedby( X)= ;= [ xi.

In Fig. 1 (left-top), we generated an environment as above with just one cluster) and we
tookw(1) = 4 # RY (the vector inRY with all componentd) andx(1) = 1 # RY. As we can see,
coherently with previous worklf3], the uncoditional approach outperforms ITL and it converges
to the mean vector- = w(1) as the number of training tasks increases. The conditional approach
returns equivalent performances to the unconditional counterpart.

!Code is available &tttps://github.com/dGiulia/ConditionalMetalearning.git


https://github.com/dGiulia/ConditionalMetaLearning.git

ONE CLUSTER TWO CLUSTERS wp =4

60 60
— ITL — ITL
S mean 550 —— mean
540 —— uncond. 540 —— uncond.
+ | —— cond. + K\\— cond.
Ca0 W\ 2 30
20
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Training Tasks Training Tasks
60 TWO CLUSTERS wp =0 CIRCLE
— ITL 4.5 — ITL
550 —— mean 5 i —— mean
< £4.0 —— uncond.
40 —— uncond. g
- cond o35 —— cond. circle
w0 . n 3.
o 30 (] cond. rnd
F30
20 o S W — =
FE 2.5
100 150 200 250 300 0 50 100 150 200 250 300
Training Tasks Training Tasks

Figure 1: Performance (averaged otérseeds) of different methods w.r.t. an increasing number of
tasks on different environments: with one cluster (left-top), with two clustersvared 4 (right-top),
with two clusters andv = 0 (left-bottom), circle (right-bottom).

In Fig. 1 (right-top), we considered an environment of two clusters € 2) identiped by

w(l) =8 # RY, w(2) =0 # RY (implyingw- = 4), x(1) =1 # RYandx(2) = ) x(1).

As we can see, the conditional approach outperform ITL as in the previous setting, but the conditional
approach yields even better performance.

Finally, in Fig. 1 (left-bottom), we considered an environment of two clusters2) identibed
byw(1) =4 # RY, w(2) = ) w(1) (implyingw- = 0),x(1) =1 # RY andx(2) = ) x(1). As
expected, the uncoditional approach mimics the poor performance of ITL, while, the performance of
the conditional approach is promising.

Summarizing, the conditional approach brings advantage w.r.t. the unconditional one when the hetero-
geneity of the environment is signibcant. When the environment is homogeneous, the performance of
the two are equivalent. This conclusion is exactly inline with our theof2%) and(26).

Synthetic circle. We sampled,; = 480 tasks according to the setting describedtin 2. Specib-

cally, for each taski, we brst sampled the corresponding side informadi#n[0, 1] according to the
uniform distribution. We then generated the vedi(s) = r (cos(2+s), sin(2+s),0,...,0)% # RY,

with d = 20, on the zero-centered circle of radius 8. After this, we sampled the corresponding
target weight vectow, from N (h(s),|). We then generated the associated dataseof= 20

points as for the experiments above. We applied our conditional approach with the true underlying
feature map( s) = (cos(2+s), sin(2+s)) (cond. circle) and the feature map mimicking a Gaussian
distribution by Fourier random feature®4] described below (at the end of this section) with parame-
tersk = 50 and* = 10 (cond. rnd).

From Fig. 1 (right-bottom) we see that the performance of unconditional meta-learning mimics
the poor performance of ITL (in fact, we hawe = 0). On the other hand, both the conditional
approaches bring a substantial advantage and the random featuresO variant approaches the variant
knowing the true underlying feature map.

Lenk dataset. We considered the computer survey data fr@® BQ], in which Ty, = 180 people
(tasks) rated the likelihood of purchasing onangf = 20 different personal computers. The input
represents = 13 different computersO characteristics, while the output is an integer rating from
to 10. In this case, we used as side mfongpatlon the training datapbirig z; )i and the feature
map": D$ R2debnedby(Z)= 1" -(z), with-(z) = vec xi(yi,1) , where, for

any matrixA = [ag, ap] # RY 2 with columnsal,az # RY, vec(A) = (ay,a) # R?. Fig. 2
(left) shows that, coherently to previous literatuté][ the unconditional approach signibcantly
outperforms ITL, but the performance of its conditional counterpart is even better.
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Figure 2: Performance (averaged ot@rseeds) of different methods w.r.t. an increasing number of
tasks. Lenk dataset (left), Schools dataset (right).

Schools datasetWe considered the Schools datas}t €onsisting of examination records from

Tt = 139 schools. Each school is associated to a task, individual students are represented by a
featuresO vectaxs# RY, with d = 26, and their exam scores to the outputs. The samplengize

varies across the tasks from a minim@dto a maximum251 We used as side information the
training inputsX = (x;){, and the feature map mimicking a Gaussian distribution by Fourier
random features described below (at the end of this section) with pararketet®00 and* =

100 Fig. 2 (right) shows that, also in this case, the unconditional approach brings a meaningful
improvement w.r.t. ITL, but the gain provided by its conditional counterpart is even more evident.

Feature map by Fourier random features.We now describe the feature map mimicking a Gaussian
distribution by Fourier random feature34] we used in our synthetic circle experiment and Schools
dataset experiment. We recall that, in these cases, we consideigd as side information the inputs
X = (xi){L; . The feature map above was then debPneq a6) = % i”:l - (Xi), where,- was

built as follows. We Prst introduced an intede# N and a constarit # R. We then sampled a
vectorv # R* from the uniform distribution ovel0, 2+]% and a matrixJ # R ¢ is sampled from

the Gaussian distributioN (0, *I ). We then debPned

9 _
| "
- (xi) = %costi+v # RX, (27)

wherecos(@ is applied component-wise to the vector.

6 Conclusion

We proposed a new conditional meta-learning framework for biased regularization and bne tuning
based on side information and we provided a theoretical analysis demonstrating its potential advantage
over standard meta-learning, when the environment of tasks is heterogeneous. In the future, taking
inspiration from L2, 32], it would be interesting to develop a variant of our method in which the
hyper-parameters are automatically tuned in efbcient way. In addition, it would valuable to extend our
conditional approach and the corresponding analysis to other meta-learning paradigms considering
different families of inner algorithms, such &4 38].

Broader impact

Meta-learning is a very important Peld for machine learning with potential societal implications
related to applications such as recommender systems. In this work we focused mostly on theoretical
and modeling aspects, however in the future the topic will need to take into consideration contributions
from other belds related to ethical and societal aspects, such as privacy and fairness.
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