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Neutrinoless double beta decay (0νββ) is a crucial test for lepton number violation. Observation of this
process would have fundamental implications for neutrino physics, theories beyond the Standard Model
and cosmology. Focusing on so-called short-range operators of 0νββ and their potential interplay with the
standard light Majorana neutrino exchange, we present the first complete calculation of the relevant nuclear
matrix elements, performed within the interacting boson model (IBM-2). Furthermore, we calculate the
relevant phase space factors using exact Dirac electron wave functions, taking into account the finite
nuclear size and screening by the electron cloud. The obtained numerical results are presented together
with up-to-date limits on the standard mass mechanism and effective 0νββ short-range operators in the
interacting boson model framework. Finally, we interpret the limits in the particle physics scenarios
incorporating heavy sterile neutrinos, left-right symmetry and R-parity violating supersymmetry.
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I. INTRODUCTION

The nature of neutrinos and especially the origin of their
masses are a crucial open question. While the Standard
Model (SM) successfully explains the masses of the charged
fermions it must be extended to incorporate neutrino masses.
It would either require the presence of sterile neutrino states
or effective lepton number violating (LNV) interactions. The
first scenario allows the generation of Dirac neutrino masses
analogous to those of the charged fermions. While certainly
feasible, given the stringent upper limitsmν ≲Oð0.1Þ eV on
the absolute neutrino masses from Tritium decay [1,2] and
cosmological observations [3], tiny Higgs Yukawa couplings
are required. Also, total lepton number L will no longer be
an accidental symmetry. Unless L symmetry is imposed,
the sterile neutrinos would acquire an LNVMajorana mass.
The most popular example for such a scenario is the seesaw

mechanism where the sterile neutrinos have such a large
Majorana mass M ≈ 1014 GeV naturally leading to light
neutrino masses mν ≈ 0.1 eV [4–8].
High-scale seesaw mechanisms, or more generally sce-

narios where L is broken at very high scales, are not the
only way to generate light Majorana neutrino masses;
other possibilities include LNV at low scales in secluded
sectors, at a higher loop order, and when allowing higher-
dimensional effective interactions. If L-breaking occurs
close to the electroweak scale, higher-dimensional LNV
operators can be important. From a phenomenological
point of view, searching for processes that violate total
L thus play a crucial role in neutrino and beyond-the-SM
(BSM) physics. We here focus on the search for 0νββ decay
as the most sensitive approach to probe Majorana neutrino
masses. Currently, the most stringent limit on the 0νββ
decay half-life T1=2 is set in the Germanium isotope
76
32Ge [9],

T1=2ð76GeÞ≡ T1=2ð7632Ge → 76
34Seþ e−e−Þ > 1.8 × 1026 yr:

ð1Þ

However, Majorana neutrino masses are not the only
contribution from BSM physics to 0νββ decay. We can
generally consider the 0νββ decay rate by expressing high
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scale new physics contributions in terms of effective low-
energy operators [10–13]. This only assumes that there are
no exotic particles beyond the SM below the 0νββ energy
scale of mF ≈ 100 MeV. In this paper, we concentrate on
so called short-range operators and their interplay with the
standard light Majorana neutrino mass mechanism. As
context, we provide a brief overview of the possible
mechanisms for 0νββ decay which can be categorized in
two main classes:

(i) Long-range transitions via exchange of a light
neutrino. This includes the so-called standard mass
mechanism in Fig. 1(a), which is only possible if
the neutrino is identical to its own antiparticle;
i.e., if it is a Majorana fermion. The 0νββ decay
rate can be estimated as Γ0νββ

mν ∼m2
νG4

Fm
2
FQ

5
ββ ∼

ðmν=0.1 eVÞ2ð1026 yrÞ−1. Here,GF is the SM Fermi
coupling and the phase space scales as Q5

ββ with the
kinetic energy release Qββ ¼ Oð1 MeVÞ for typical
double beta decays. Specifically, the mass mecha-
nism of 0νββ decay is sensitive to the effective
neutrino mass mββ ¼

P
i U

2
eimνi , summing over the

light Majorana neutrino masses mνi weighted by the
square of the charged-current leptonic mixing matrix
elements Uei. The inverse 0νββ decay half-life in a
given isotope is then conventionally expressed as

T−1
1=2 ¼

jmββj2
m2

e
GνjMνj2; ð2Þ

with the phase space factor (PSF)Gν and the nuclear
matrix element (NME) Mν. The normalization with
respect to the electron mass me yields a small
dimensionless parameter jϵνj ¼ jmββj=me. The cur-
rent bound in Eq. (1) sets a limit jmββj ≲
79–180 meV at 90% confidence level (C.L.) for
an unquenched axial coupling gA ¼ 1.27 [9], with
the uncertainty mainly due to the NMEs in different
nuclear models. Future experiments will probe
jmββj ≈ 20 meV [14], corresponding to the minimal
value for inversely ordered neutrinos.
In BSM scenarios, a neutrino mass insertion is not

necessarily required, cf. Fig. 1(b). In such cases, the

decay rate is estimated as Γ0νββ
LR ∼ v2Λ−6

O7
G2

Fm
4
FQ

5
ββ∼

ð105 GeV=ΛO7
Þ6 × ð1026 yrÞ−1, with the SM Higgs

vacuum expectation value (VEV) v ¼ 246 GeV and
the scale ΛO7

of the exotic dim-7 operator. Such
long-range mechanisms via the exchange of light
Majorana neutrinos with interactions beyond the SM
have received considerable attention [15–20], as the
suppression at dim-7 is still fairly low and 0νββ
decay is sensitive to high scales. We note, though,
that due to the neutrino helicity-flip intrinsic in the
operator, typical mechanisms are suppressed by
the light neutrino masses. It is generically difficult
to have a dim-7 operator where the exotic long-range
contribution dominates over the standard mass
mechanism [21], though it can be achieved in
ultraviolet complete theories with a modestly sup-
pressed standard contribution [22–25].

(ii) Short-range contributions where all mediating par-
ticles are heavier than mF ≈ 100 MeV, cf. Fig. 1(c),
are represented as contact interactions with six
external fermions. These are the main focus of
our analysis and they are generated by dim-9 and
higher odd-dimensional operators. For a dim-9
operator, the decay rate can be estimated as Γ0νββ

SR ∼
Λ−10
O9

m6
FQ

5
ββ ∼ ð5 TeV=ΛO9

Þ10ð1026 yrÞ−1, with the
operator scale ΛO9

. The inverse 0νββ decay half-
life triggered by such a mechanism is expressed
similarly to Eq. (2) as T−1

1=2 ¼ jϵIj2GIjMIj2, with
the PSF GI and NME MI, both depending on the
Lorentz structure of the effective operator. The
coupling constant ϵI parametrizes the particle phys-
ics dynamics, i.e., the masses of the heavy states
integrated out and their couplings. While such short-
range contributions do not involve the exchange of
light neutrinos at all, they still require the breaking
of lepton number and the SM neutrinos will be of
Majorana type. The short-range and standard mass
mechanisms are thus expected to compete but the
relative strength is highly dependent on the under-
lying model.

A detailed analytic derivation of the relevant NMEs
for short-range operators was provided in our previous

(a) (b) (c)

FIG. 1. Contributions to 0νββ decay from effective LNVoperators. (a) Standard light neutrino exchange via dim-5 operator; (b) long-
range contribution via dim-7 operator; (c) short-range contribution via dim-9 operator. Adapted from [26].
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paper [27], where we included additional NMEs that
become important when the latest values of the nucleon
form factors are taken into account. Moreover, we calcu-
lated PSFs using the exact radial wave functions and we
presented the single electron energy and angular correlation
distributions for the exotic short-range 0νββ decay mech-
anisms. In the present paper, we numerically evaluate all
relevant NMEs within the interacting boson model (IBM-2)
framework. This will allow us to set upper limits on the
effective couplings ϵI where we will highlight the exchange
of heavy sterile neutrinos as an important example. Within
the same framework, we also provide updated NMEs for
the standard light neutrino exchange and we analyse its
interference with short-range mechanisms. The NMEs
for the 0νββ transitions are generally difficult to calculate
and the limits derived are affected for any contribution.
Detailed treatments using different nuclear structure model
approaches can be found in [28–37]. Despite tremendous
efforts to improve the nuclear theory calculation, the latest
matrix elements obtained using various approaches differ in
many cases by factors of ∼ð2–3Þ.
The paper is organized as follows. We summarize the

effective short-range Lagrangian at the quark level in Sec. II
together with examples of underlying particle physics
scenarios. The calculation of the 0νββ NMEs in the
IBM-2 NME framework is outlined in Sec. III and that
of the PSFs in Sec. IV. We then present our numerical
results in Sec. V where we provide up-to-date limits on the
standard mass mechanism and effective short-range 0νββ
operators. Section VI concludes our discussion with a
summary and an outlook.

II. SHORT-RANGE LNV OPERATORS AND
NEUTRINO MASS MODELS

In general, new physics where lepton number is broken
at a a high scale will induce SM effective operators of
dimension five, seven, nine, and higher [38,39]. After
electroweak symmetry breaking, this will give rise to long-
and short-range contributions to 0νββ decay as outlined in
the introduction, cf. Fig. 1. In this work we focus on short-
range contributions and their potential interplay with the
standard mass mechanism.

A. Effective Lagrangian

The general effective short-range interaction Lagrangian
can be written in terms of five different Lorentz-invariant
classes of fermion current products [11],

LSR ¼ G2
F cos

2 θC
2mp

X
C1;C2;c

�
ϵχ1JC1

JC2
jc þ ϵχ2J

μν
C1
JC2;μνjc

þ ϵχ3J
μ
C1
JC2;μjc þ ϵχ4J

μ
C1
JC2;μνj

ν þ ϵχ5J
μ
C1
JC2

jμ
�

þ H:c:; ð3Þ

where the sum is over all unique combinations χ ¼
fC1; C2ð; cÞg of chiralities C1; C2; c ¼ R, L of the quark
and electron currents involved,

JR;L ¼ ūað1� γ5Þda; JμR;L ¼ ūaγμð1� γ5Þda;
JμνR;L ¼ ūaσμνð1� γ5Þda; ð4Þ

jR;L ¼ ēð1 ∓ γ5Þec; jμ ¼ ēγμγ5ec: ð5Þ

Here, the four-component Dirac spinor operators represent-
ing the up quark, down quark, and electron are denoted by
u, d, and e, respectively. Quark SUð3ÞC color indices are
denoted by a, and each quark current forms a color singlet
in our parametrization. As the lepton current must violate
lepton number by two units, the charge conjugate electron
field ec appears there. Note that the chirality assignment in
jR;L is flipped, i.e., the index L is associated with 1þ γ5.
This is due to the appearance of the charge-conjugated
electron field and, for example, the operator ēð1þ γ5Þec
describes the creation of two left-handed electrons.
Furthermore, the usual definition σμν ¼ i

2
½γμ; γν� is used.

The normalization of the Lagrangian by the factor
G2

F cos
2 θC=ð2mpÞ with the Fermi constant GF, the SM

Cabibbo angle θC and the proton mass mp is conventional
and results in dimensionless couplings ϵχi . In principle, each
unique current combination will be associated with a

separate coupling, ϵχi ¼ ϵC1C2ðcÞ
i . Note that, in Ref. [11],

the Lagrangian is defined without the factor cos2 θC. We
chose to include it as the resulting PSFs can be defined in
the same way as that for standard light neutrino exchange,
cf. Sec. IV C.
Not all possible combinations of chiralities have to be

considered in the Lagrangian Eq. (3), as redundancies and
cancellations occur. First, the identity

½ūσμνð1þ γ5Þd�½ūσμνð1 − γ5Þd�
≡ ½ūσμνð1 − γ5Þd�½ūσμνð1þ γ5Þd� ¼ 0 ð6Þ

implies that terms corresponding to ϵRLL2 , ϵLRL2 , ϵRLR2 , and
ϵLRR2 trivially vanish. Second, the Pauli exclusion principle
dictates that ēγμec ¼ 0 and ēσμνð1� γ5Þec ¼ 0, and thus
any operator containing vector, tensor, or axial-tensor
electron currents can be omitted. Altogether, the short-
range operators in Eq. (3) contain 24 independent nine-
dimensional operators invariant under the broken SM
gauge group SUð3ÞC ×Uð1ÞQ [27].

B. Example new physics scenarios
with short-range contributions

To illustrate the generation of different short-range
contributions, we consider three well-known scenarios
beyond the SM.
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1. Light and heavy neutrinos

As discussed in the introduction, the exchange of light
active Majorana neutrinos is the most prominent mecha-
nism for 0νββ decay. As a long-range contribution, it is not
represented in the Lagrangian Eq. (3) but arises from the
SM charged current

L ¼ GF cos θCffiffiffi
2

p ½ūγμð1 − γ5Þd�
X3
i¼1

Uei½ēγμð1 − γ5Þνi�

þ H:c:: ð7Þ

The sum is over the three SM neutrino mass eigenstates νi,
constructed as the Majorana spinors νi ¼ νi;L þ νci;L from
the SM active left-handed neutrinos νi;L and their charge
conjugates. This gives rise to the mass mechanism of 0νββ
decay sensitive to the effective Majorana neutrino mass

mββ ¼
X3
i¼1

U2
eimνi : ð8Þ

The 0νββ decay half-life in a given isotope is then
conventionally expressed as in Eq. (2).
One of the most attractive extensions of the SM involves

adding fermionic states νi;S (i ¼ 1;…; nN) that are sterile
under the SM gauge interactions. They can thus acquire
(Dirac or Majorana type) masses without spoiling the SM
gauge invariance and eventually mix with the SM neutrinos
after electroweak symmetry breaking. We can again form
Majorana states by constructing Ni ¼ νi;S þ νci;S. The
sterile states participate in the leptonic charged current
due to mixing with the active neutrinos,

L ¼ GF cos θCffiffiffi
2

p ½ūγμð1 − γ5Þd�
XnN
i¼1

VeNi
½ēγμð1 − γ5ÞNi�

þ H:c:; ð9Þ

where VeNi
are the elements of the active-sterile mixing

matrix.
If the sterile neutrinos are much lighter than the nuclear

physics scale pF ≈ 100 MeV, their contributions to 0νββ
decay will be completely analogous to that of the active
neutrinos and they can be included in Eq. (2) by replacing

mββ → mββ þ
XnN
i¼1

V2
eNi

mNi
; ðmNi

≪ 100 MeVÞ: ð10Þ

Note that the Uei, and hence mββ, as well as the VeNi
are in

general complex numbers and cancellations can occur. In
fact, if the Majorana states Ni are solely responsible for the
light neutrinos masses in a Seesaw scenario, the active and
sterile contributions cancel to zero.

If instead the sterile states are much heavier than the
nuclear physics scale, mNi

≫ 100 MeV, they can be
integrated out, resulting in a contribution of the type
JμLJL;μjL and the associated coupling ϵLLL3 is matched with
the underlying physics parameters as

ϵLLL3 ¼
XnN
i¼1

V2
eNi

mp

mNi

; ðmNi
≫ 100 MeVÞ: ð11Þ

Note that the above considerations apply for sterile
neutrinos that are Majorana fermions. This includes
quasi-Dirac states that can be described by pairs of
Majorana neutrinos (N1, N2) with a small mass splitting
jmN1

−mN2
j ≪ mN1;2

and a relative CP phase of π=2,
VeN2

¼ iVeN1
⇒ V2

eN2
¼ −V2

eN1
. In the limit of Dirac

sterile neutrinos with mN1
¼ mN2

, the contributions to
0νββ decay cancel.

2. Left-right symmetry

The minimal left-right symmetric model (LRSM) is
based on the extended gauge symmetry SUð3ÞC ×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L [40–42]. It has a rich neu-
trino and 0νββ decay phenomenology as it naturally contains
right-handed Majorana neutrinos Ni (i ¼ 1, 2, 3) that are
charged under the SUð2ÞR part of the gauge group, forming
a doublet together with the right-handed leptons. This gives
rise to right-handed charged currents,

L¼g2Rcosθ
R
C

8m2
WR

½ūγμð1þγ5Þd�
X3
i¼1

UR
ei½ēγμð1þγ5ÞNi�þH:c:;

ð12Þ

mediated by a right-handed WR boson with the gauge
coupling strength gR of the SUð2ÞR group. The angle θRC
and the mixing matrix UR are the right-handed equivalents
of the Cabibbo angle and the Pontecorvo–Maki–Nakagawa–
Sakata matrix, respectively. The LRSM gauge group is
understood to be spontaneously broken to that of the SM at a
high scale giving masses to the right-handed WR boson and
neutrinos Ni. In turn, the active SM neutrino acquire masses
via mixing with the heavy neutrinos (seesaw type I) as well
as via the VEVof an electroweak triplet Higgs scalar present
in the model (seesaw type II).
Hence, the standard light neutrino and the sterile heavy

neutrino contribution described above are generally
present. In addition, the equivalent diagram with a heavy
neutrino and two WR bosons contributes, giving rise to
the short-range operator JμRJR;μjR with jR ¼ ēð1 − γ5Þec
associated with ϵRRR3 matched to the underlying physics
parameters as
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ϵRRR3 ¼ g2R
g2

f2LR
X3
i¼1

ðUR
eiÞ2

mp

mNi

; with

fLR ¼ gR
g
cos θRC
cos θC

m2
W

m2
WR

; ð13Þ

where g is the SM SUð2ÞL gauge coupling strength. Note
that the contribution is not suppressed by the small, light-
heavy neutrino mixing but instead by the expectedly high
WR mass mWR

. The right-handed mixing matrix UR is
approximately unitary with elements of order one, although
cancellations due to complex phases can occur.
The SM W and the WR boson are also expected to mix

with an angle as large as sin θWLR ≲ gRm2
W=ðgm2

WR
Þ. This

permits the right-handed lepton current to couple with a
left-handed quark current mediated by the SM W giving
rise to the contributions

ϵLRR3 ¼ ϵRLR3 ¼ sin θWLR
fLR

ϵRRR3 ; ϵLLR3 ¼ sin2θWLR
f2LR

ϵRRR3 :

ð14Þ

With the W mixing taking the generic value sin θWLR ≈
gRm2

W=ðgm2
WR

Þ ≈ fLR, all three effective couplings are of
the same order. As mentioned, the LRSM also has the
standard contribution from mββ and the sterile neutrino
contribution ϵLLL3 in Eq. (11). In addition, the LRSM in
principle also gives rise to the remaining contributions
of type ϵ3, namely ϵLRL3 ¼ ϵRLL3 and ϵRRL3 but these are
suppressed by both the light-heavy neutrino mixing and
the high WR mass. Furthermore, the LRSM gives rise to
additional long-range contributions that are not directly
suppressed by the light neutrino masses.
Finally, the LRSM has contributions from the electro-

weak triplet scalarsΔL;R that acquire VEVs vR, vL ∼ v2=vR
during the spontaneous symmetry breaking, where vR is the
breaking scale of the left-right symmetry. This gives rise to
a diagram to 0νββ decay mediated by two WR bosons and
the doubly charged scalars Δ−−

L;R. Taking into account theW
boson mixing, the contributions are

ϵRRR3 ¼ g2R
g2

f2LR
X3
i¼1

ðUR
eiÞ2

mpmNi

m2
Δþþ

R

;

ϵLRR3 ¼ ϵRLR3 ¼ sin θWLR
fLR

ϵRRR3 ;

ϵLLR3 ¼ sin2θWLR
f2LR

ϵRRR3 ; ð15Þ

analogous to Eqs. (13) and (14). Here, the heavy neutrino
masses mNi

appear because the couplings of the triplet
Higgs to the gauge boson and electrons are proportional to
vR and the heavy neutrino Yukawa coupling, mN ∼ yNvR.

Likewise, there are contributions from the left-handed Δþþ
L

but they are additionally suppressed by the light neutrino
masses (instead of mNi

) and thus negligible.

3. R-parity violating supersymmetry

As the final example of an ultraviolet-complete theory,
we consider the minimal supersymmetric Standard Model
with R-parity violation [43,44]. Without explicitly impos-
ing invariance under the discrete R symmetry where
each field carries the multiplicative quantum number R ¼
ð−1Þ3BþLþ2S, with the baryon number B, total lepton
number L, and spin S, the minimal supersymmetric
Standard Model allows for the R-parity breaking terms,

W ⊃ λijkLiLjĒk þ λ0ijkLiQjD̄k þ λ00ijkŪiD̄jD̄k; ð16Þ

in the superpotential. Here, the indices i, j, k denote flavor
generations of the superfields L, Ē,Q, D̄, and Ū, associated
with the SM weak lepton doublet L, the lepton singlet ec,
the quark doublet Q and the quark singlets dc, uc. Short-
range contributions to 0νββ are induced by the second term
in Eq. (16), namely that associated with λ0111 for the first
lepton and quark generations [45]. They arise from dia-
grams with intermediate, heavy neutralinos, gluinos,
squarks, and sleptons. The corresponding short-range
Lagrangian is [46]

LSR ⊃
G2

F cos
2 θC

2mp
ðϵRRL1 JRJR þ ϵRRL2 JμνR JR;μνÞjL; ð17Þ

i.e., a subset of the general short-range Lagrangian in
Eq. (7) with scalar and tensor quark currents. The effective
couplings ϵRRL1 and ϵRRL2 are generally functions of all
supersymmetric particle masses and couplings involved.
We here follow the assumptions of gluino dominance [46]
where the diagrams involving gluinos and squarks con-
tribute,

ϵRRL1 ¼ 8παsλ
02
111

9cos2θC

G−2
F

m4
q̃

mp

mg̃
; ϵRRL2 ¼ −

1

8
ϵRRL1 : ð18Þ

Here we also assume degeneracy of squark masses mq̃ ¼
mũL ¼ md̃R

in line with Ref. [46]. In addition, mg̃ is the
gluino mass and αs ¼ 0.127 is the strong fine structure
constant atmW . Note that the gluino dominance assumption
is based on the relevant NME values and limits on
supersymmetry particle masses from other sources and
may thus not be appropriate in light of new results. We
nevertheless adopt it for simplicity and to compare
with Ref. [46].
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III. DETERMINATION OF NUCLEAR MATRIX
ELEMENTS

The NMEs for short-range mechanisms have been
analytically derived in [27]. We follow the approach therein
and summarize the basic formalism using nucleon form
factors.

A. Nucleon form factors

The nucleon matrix elements of the colonr-singlet quark
currents in Eq. (3) have the structure [47]

hpjūð1� γ5Þdjni ¼ N̄τþ½FSðq2Þ � FP0 ðq2Þγ5�N0; ð19Þ

hpjūγμð1�γ5Þdjni¼ N̄τþ
�
FVðq2Þγμ− i

FWðq2Þ
2mp

σμνqν

�
N0

� N̄τþ
�
FAðq2Þγμγ5−

FPðq2Þ
2mp

γ5qμ
�
N0;

ð20Þ

hpjūσμνð1� γ5Þdjni ¼ N̄τþ
�
Jμν � i

2
ϵμνρσJρσ

�
N0; ð21Þ

where τþ denotes the isospin-raising operator which con-
verts a neutron into a proton, and the tensor Jμν in Eq. (21)
is defined as

Jμν ¼ FT1
ðq2Þσμν þ i

FT2
ðq2Þ

mp
ðγμqν − γνqμÞ

þ FT3
ðq2Þ

m2
p

ðσμρqρqν − σνρqρqμÞ: ð22Þ

The above matrix elements generally depend on the
neutron and proton momenta pn ¼ pN0 and pp ¼ pN ,
respectively. The nucleon form factors are then functions
of the momentum transfer q ¼ pp − pn. The most general
parametrization of the vector current in Eq. (20) would
include also induced scalar and axial-tensor terms—these
can be, however, safely neglected, since they vanish in the
isospin-symmetric limit and they are not enhanced by any
other effects [48].
The momentum dependence in Eqs. (19)–(21) is

encoded in the nucleon form factors FXðq2Þ with
X ¼ S; P0; V;W; A; P; T1; T2; T3, usually parametrized in
the so-called dipole form, FXðq2Þ ¼ gX=ð1þ q2=m2

XÞ2.
Here, the so called charge gX represents the value of the
form factor at zero momentum transfer, gX ≡ FXð0Þ, and
the scale mX determines the shape of the form factor.
We apply this parametrization to all form factors except
for the pseudoscalar form factors FP0 ðq2Þ and FPðq2Þ,
which are enhanced by the pion resonance. The form
factors with their corresponding parametrizations and
charges are given by

FSðq2Þ ¼
gS

ð1þ q2=m2
VÞ2

; gS ¼ 1.0 ½49�; ð23Þ

FP0 ðq2Þ ¼ gP0

ð1þ q2=m2
VÞ2

1

1þ q2=m2
π
; gP0 ¼ 349 ½49�;

ð24Þ

FVðq2Þ ¼
gV

ð1þ q2=m2
VÞ2

; gV ¼ 1.0; ð25Þ

FWðq2Þ ¼
gW

ð1þ q2=m2
VÞ2

; gW ¼ 3.7; ð26Þ

FAðq2Þ ¼
gA

ð1þ q2=m2
AÞ2

; gA ¼ 1.269; ð27Þ

FPðq2Þ ¼
gP

ð1þ q2=m2
AÞ2

1

1þ q2=m2
π
;

gP ¼ 4gA
m2

p

m2
π

�
1 −

m2
π

m2
A

�
¼ 231 ½50�; ð28Þ

FTi
ðq2Þ ¼ gTi

ð1þ q2=m2
VÞ2

; gT1;2;3
¼ 1.0;−3.3; 1.34 ½47�:

ð29Þ

The shape parameters aremV ¼0.84GeV,mA ¼ 1.09 GeV
[49] and the pion mass is mπ ¼ 0.138 GeV. The form
factors FVðq2Þ, FWðq2Þ, and FAðq2Þ can be determined
experimentally and the parametrizations shown above
provide a good description in the range 0 ≤ jqj ≤
200 MeV of interest in 0νββ decay. On the other hand,
as it is not possible to directly obtain the induced pseu-
doscalar form factor from experiment, we use the para-
metrization suggested in Ref. [50], which is based on the
partially conserved axial-vector current hypothesis. The
corresponding value of the free gP charge agrees with
the recent chiral perturbation theory analysis [51], which
yields the value gP ¼ 233. The value is also consistent
with measurements of muon capture. With the muon mass
mμ¼0.105GeV, the resulting value of FPð−0.88m2

μÞ¼8.0
agrees well with the measured value of FPð−0.88m2

μÞ ¼
8.06� 0.55 [52]. The scalar and pseudoscalar charges, gS
and gP0 , come from recent lattice QCD calculations [53]. As
there is not much information on the q2 dependence of the
corresponding form factors, we use the dipole parametri-
zation, which, in the Breit frame, is the Fourier transform of
the matter distribution. In the case of the pseudoscalar form
factor we also include the monopole factor 1=ð1þ q2=m2

πÞ
used in chiral perturbation theory. As for the tensor
form factors, only FT1

enters our calculations. The value
of the corresponding charge gT1

quoted by Ref. [53]
reads 0.987� 0.055. We emphasize that the charges in
Eqs. (23)–(29) are applicable at the free nucleon level.
When calculating the 0νββ decay NMEs, we will use an
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effective axial-vector charge gA ¼ 1.0 and, consequently,
an induced pseudoscalar charge gPðgA ¼ 1.0Þ ¼ 182 to
approximately account for quenching in the nuclear
medium.

B. Nuclear matrix elements

The five different types of quark current products
appearing in Eq. (3) are mapped to the nucleon matrix
elements according to Eqs. (19)–(21). By virtue of a
nonrelativistic expansion and the closure approximation,
the resulting product of nucleon matrix elements is then
mapped to the nuclear matrix element between the final
and initial 0þ nuclear states involved in the 0νββ decay.
This procedure is described in Ref. [27], and we here
summarize the definition of NMEs involved. One should
note that in the following expressions the relative sign
between Gamow-Teller (GT) and tensor (T) terms is
different than in our previous papers [28–30,54] and other
available literature taking into account tensor terms using
the formulation in [50]. The confusion about the relative
sign arises from Eqs. (13) and (22) in [50], where in
Eq. (13) a minus sign is used in front of the tensor term,
while in Eq. (22) the plus sign is used. The tensor term
contributes very little to the standard long-range mecha-
nism, but, in the case of short-range mechanisms, it has a
notable effect. Thus we have checked the derivation and
concluded that the following signs should be used.
The NMEs for the five short-range operators will gen-

erally depend on the chiralities of the two quark currents
involved. For the first three operators associated with ϵχ1, ϵ

χ
2,

and ϵχ3, the two quark currents are of the same type.
Consequently, three possible combinations occur corre-
sponding to the chiralities RR, LL, and ðRLþ LRÞ=2. It
turns out that the resulting NMEs only depend on whether
the quark chiralities are equal (RR, LL) or different
ðRLþ LRÞ=2, represented by the upper and lower sign,
respectively, in the expressions

M1 ¼ g2SMF � g2P0

12
ðM0P0P0

GT þM0P0P0
T Þ; ð30Þ

M2 ¼ −2g2T1
MT1T1

GT ; ð31Þ

M3 ¼ g2VMF þ ðgV þ gWÞ2
12

ð−2M0WW
GT þM0WW

T Þ

∓
�
g2AM

AA
GT −

gAgP
6

ðM0AP
GT þM0AP

T Þ

þ g2P
48

ðM00PP
GT þM00PP

T Þ
�
: ð32Þ

For the operators associated with ϵχ4 and ϵχ5, the two quark
currents involved have different Lorentz structures and thus
all four possible combinations of chiralities have to be
considered in principle: RR, LL, RL, andLR. Again, it turns

out that the NMEs only distinguish between the case where
the quark chiralities are the same (RR, LL → upper sign) or
different (RL, LR → lower sign),

M4 ¼∓ i

�
gAgT1

MAT1

GT −
gPgT1

12
ðM0PT1

GT þM0PT1

T Þ
�
; ð33Þ

M5 ¼ gVgSMF �
�
gAgP0

12
ðM̃AP0

GT þ M̃AP0
T Þ

−
gPgP0

24
ðM0q0PP0

GT þM0q0PP0
T Þ

�
: ð34Þ

In the above expressions, we have explicitly factored the
form factor charges gX ¼ FXð0Þ. The q dependence arising
from the product of the reduced form factors FXðq2Þ=gX is
still to be included in the various matrix elements appearing
in Eqs. (30)–(34). The individual Fermi (MF), Gamow-
Teller (MGT), and tensor (MT) NMEs along with the
associated reduced form factor products h̃ðq2Þ are given
in Table I. The numerical values of these NME will be
given in Sec. III C, but we would like to note that the so-
called recoil NMEs, M̃AP

GT and M̃AP
T , and the NMEs

explicitly depending on the temporal momentum transfer
q0, M

0q0PP
GT , M0q0PP

T are difficult to evaluate exactly. We
instead assume that the sum of nucleon spatial momenta is
Q ¼ pa þ pb ≈ q [15–17], approximately applicable in an
average sense considering that the NME is calculated
summing over all nucleons in the nucleus. Similarly, we
take the average value q0 ∼ q2=mp ≈ 10 MeV [17] for the
temporal component of the momentum transfer. This allows
us to reduce the corresponding NMEs as indicated in Table I.
In addition to the product of the reduced nucleon form

factors, the NMEs listed in Table I also contain the so-
called neutrino potential describing the q dependence of the
underlying particle physics mediator of 0νββ decay. Here
we follow the formulation of [29,50] where the two-body
transition operator is constructed in momentum space as the
product of the neutrino potential vðqÞ times the product of
the reduced form factors h̃ðq2Þ. In the case of the short-
range mechanisms we consider here, the neutrino potential
is especially simple; as pointlike operators, they are
described by a Dirac delta function in configuration space,
δðra − rbÞ, hence in momentum space it is a q-independent
constant. Following the usual normalization the short-range
neutrino potential is [29,50]

vðq2Þ ¼ 2

π

1

memp
: ð35Þ

We also consider the standard light neutrino exchange
mechanism with the NME
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Mν ¼ g2VMF − g2AM
AA
GT þ

gAgP
6

ðM0AP
GT þM0AP

T Þ

þ ðgV þ gWÞ2
12

ð−2M0WW
GT þM0WW

T Þ

−
g2P
48

ðM00PP
GT þM00PP

T Þ: ð36Þ

Note that this is fully analogous to M3 in Eq. (32) in the
case where the quark currents have the same chirality,
but the crucial difference is that the NMEs in Eq. (36) are
calculated with the appropriate neutrino potential in
momentum space [29],

vðqÞ ¼ 2

π

1

qðqþ ÃÞ : ð37Þ

Here, the neutrino mass has been neglected in comparison
with the neutrino momentum q ∼ 100 MeV, and Ã is the

closure energy, taken from Ref. [55] or estimated by the
systematics, Ã ¼ 1.12

ffiffiffiffi
A

p
MeV. This describes the long-

range exchange of an essentially massless neutrino medi-
ating 0νββ decay in this case. As noted earlier, the relative
sign between the GT and T terms in Eq. (36) is different
than in our previous papers [28–30,54] and other literature.
Our derivation of the NMEs performed within the

phenomenological framework of the nucleon form factors
can be compared with an alternative way which has been
developed in the literature over recent years. It is based on
chiral effective field theory [56], i.e., the effective theory
describing interactions at low energy in terms of baryons,
mesons, photons, and leptons [20,24,57,58]. In this
approach the process of hadronization is replaced by a
perturbative expansion in terms of q=Λχ reflecting the
approximate chiral symmetry of QCD, where Λχ ≃mp ≈
1 GeV is the chiral symmetry breaking scale. The chiral
Lagrangian on which the corresponding calculation is

TABLE I. Double beta decay Fermi (MF), Gamow-Teller (MGT), and tensor (MT) NMEs appearing in
Eqs. (30)–(34), with the associated reduced form factor product h̃ðq2Þ. The NMEs are calculated using the functions
h∘ðq2Þ ¼ vðq2Þh̃∘ðq2Þ enhanced by the neutrino potential Eq. (35) for short-range mechanisms and standard light
neutrino exchange, Eq. (37). The subscript X stands for X ¼ V;W; T1, for which the same form factor shape
parameter mV applies. The Pauli matrices in the space of the spins of the individual nucleons a, b are represented as
σa;b and the tensor NMEs are calculated over Sab ¼ 3ðσa · qÞðσb · qÞ − ðσa · σbÞ.
NME h̃∘ðq2Þ
MF ¼ hhXXðq2Þi h̃XXðq2Þ ¼ 1

ð1þq2=m2
V Þ4

M0P0P0
GT ¼ hq2m2

p
hPPðq2Þðσa · σbÞi h̃PPðq2Þ ¼ 1

ð1þq2=m2
AÞ4

1
ð1þq2=m2

πÞ2

M0P0P0
T ¼ hq2m2

p
hPPðq2ÞSabi h̃PPðq2Þ

MT1T1

GT ¼ hhXXðq2Þðσa · σbÞi h̃XXðq2Þ

M0WW
GT ¼ hq2m2

p
hXXðq2Þðσa · σbÞi h̃XXðq2Þ

M0WW
T ¼ hq2m2

p
hXXðq2ÞSabi h̃XXðq2Þ

MAA
GT ¼ hhAAðq2Þðσa · σbÞi h̃AAðq2Þ ¼ 1

ð1þq2=m2
AÞ4

M0AP
GT ¼ hq2

m2
p
hAPðq2Þðσa · σbÞi h̃APðq2Þ ¼ 1

ð1þq2=m2
AÞ4

1
1þq2=m2

π

M0AP
T ¼ hq2

m2
p
hAPðq2ÞSabi h̃APðq2Þ

M00PP
GT ¼ hq4m4

p
hPPðq2Þðσa · σbÞi h̃PPðq2Þ

M00PP
T ¼ hq4m4

p
hPPðq2ÞSabi h̃PPðq2Þ

MAT1

GT ¼ hhAXðq2Þðσa · σbÞi h̃AXðq2Þ ¼ 1
ð1þq2=m2

V Þ2
1

ð1þq2=m2
AÞ2

M0PT1

GT ¼ hq2m2
p
hXPðq2Þðσa · σbÞi h̃XPðq2Þ ¼ 1

ð1þq2=m2
V Þ2

1
ð1þq2=m2

AÞ2
1

1þq2=m2
π

M0PT1

T ¼ hq2m2
p
hXPðq2ÞSabi h̃XPðq2Þ

M̃AP0
GT ¼ hQ·q

m2
p
hAPðq2Þðσa · σbÞi ≈M0AP

GT h̃APðq2Þ
M̃AP0

T ¼ hQ·q
m2

p
hAPðq2ÞSabi ≈M0AP

T h̃APðq2Þ
M0q0PP0

GT ¼ hq0q2m3
p
hPPðq2Þðσa · σbÞi ≈ 10−2M0P0P0

GT h̃PPðq2Þ
M0q0PP0

T ¼ hq0q2m3
p
hPPðq2ÞSabi ≈ 10−2M0P0P0

T h̃PPðq2Þ
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based should then incorporate all possible terms invariant
under the chiral symmetry SUð2ÞL × SUð2ÞR in the same
way as the corresponding quark-level operators. Each term
then comes with a so-called low energy constant para-
metrizing the nonperturbative nature of QCD. Thus, the
low energy constants play a role similar to that of the
nuclear form factors arising in hadronization and their
reliable determination, e.g., using lattice QCD input, is
necessary to calculate the 0νββ decay rate in the chiral
effective field theory (EFT) framework. The benefit of this
approach is that one can avoid the factorization of the
nucleon currents, which is a necessary approximation in the
hadronization procedure.

C. Determination of NMEs in the IBM-2

In order to evaluate the NMEs we make use of the
microscopic IBM-2 [59,60] which has the advantage that it
can be used to all nuclei of interest. The interacting boson
model has been one of the most successful models in
reproducing collective features of the low-lying levels of
medium as well as heavy nuclei, and is one of the few
models that can be used consistently to all nuclei of interest.
We have already studied different mechanisms systemati-
cally using the microscopic IBM-2 [28–30,54,61–63] and
this study adds the short-range nonstandard mechanisms of
double beta decay to the list.
The method of evaluation is discussed in detail in

[28,30]. We use the interacting boson model with isospin
restoration [30] in which isospin is restored by enforcing
M2ν

F ¼ 0 as in the quasi-particle random phase approxi-
mation calculations of [32,64]. Here we briefly mention the
logic of the method, which is a mapping of the fermion
operator H onto a boson space and its evaluation with
bosonic wave functions. The mapping [65] can be done to
leading order, next to leading order, etc.. In Ref. [28] it was
shown, by explicit calculations, that next to leading order
terms give, in general, negligible contributions, ≤ 1%. The
matrix elements of the mapped operators are then evaluated
with realistic wave functions, taken either from the liter-
ature, when available, or obtained from a fit to the observed
energies and other properties [BðE2Þ values, quadrupole
moments, BðM1Þ values, magnetic moments, etc.]. The
values of parameters used in the current calculations are
given in the Appendix A.
The single-particle and single-hole energies and strengths

of interaction were evaluated and discussed in detail in
Ref. [66] where the occupancies of the single particle levels
were calculated in order to satisfy a twofold goal: to asses the
goodness of the single particle energies and check the
reliability of the used wave functions. Both tests are
particularly important in the case of nuclei involved in
double beta decay, as they affect the evaluation of the NMEs
and then their reliability [67]. The energies of the single
particle levels constitute a very important input for the
calculation of the occupancies in the method used in

Ref. [66]. In principle those energies can be considered as
input parameters that can be fitted to reproduce the exper-
imental occupancies. Instead of fitting, the single particle
energies were extracted from experimental data on nuclei
with a particle more or one particle less than a shell closure.
These single particle energy sets were then used to calculate
the occupancies of several nuclei of interest in double beta
decay. Finally, the results were compared with other theo-
retical calculations and experimental occupancies, when
available, and good correspondence was obtained. As part
of the calculation single particle energies for several major
shells were updated to values given in Appendix B.
Finally, an additional improvement is the introduction of

short-range correlations in the nuclear structure calculation.
These are of crucial importance for short-range nonstand-
ard mechanisms and they can be taken into account by
multiplying the potential vðrÞ in coordinate space by a
correlation function fðrÞ squared. The most commonly
used correlation function is the Jastrow function,

fJðrÞ ¼ 1 − ce−ar
2ð1 − br2Þ; ð38Þ

with a ¼ 1.1 fm−2, b ¼ 0.68 fm−2, and c ¼ 1 for the
phenomenological Miller-Spencer parametrization [68],
and a ¼ 1.59 fm−2, b ¼ 1.45 fm−2, and c ¼ 0.92 for the
Argonne parametrization [69]. Since our formulation is in
momentum space, we take short-range correlations into
account by using the Fourier-Bessel transform of fJðrÞ.

1. Numerical values of the NMEs

We present the numerical values all NMEs necessary to
evaluate Eqs. (30)–(34) for the short-range mechanisms and
for all relevant 0νββ decaying isotopes in Table II. They
have been calculated within the IBM-2 as discussed above.
This represents the first complete calculation of the NMEs
needed for the description of short-range mechanisms of
neutrinoless double beta decay. Note that the last four
NMEs in Table I are not listed as they are derived from
other NMEs as indicated therein. Likewise, Table III
contains the NMEs for the standard light neutrino exchange
mechanism, cf. Eq. (36). We remind the reader that in our
convention where we calculate the NMEs using the reduced
nucleon form factors FXðq2Þ=gX, the NMEs in Tables II
and III do not contain the form factor charges. They instead
explicitly appear as coefficients in the expressions for M1

to M5 and for Mν.
By specifically separating the value of gA we allow

for the possibility of a quenching of the axial-vector
coupling. Even though quenching of gA goes beyond the
topic of this study, we would like to remind that it is well
known from single beta decay and electron capture that gA
is renormalized in models of nuclei. Quenching of gA in
2νββ decay, consistent with single-beta decay, has also
been observed [29,30] (for a review see [70]). However,
the question of whether or not gA in 0νββ decay is
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renormalized as much as in 2νββ is of much debate. This
problem is currently being addressed both experimentally
by employing single and double charge exchange reactions
[71,72] and, theoretically, by using effective field theories
to estimate the effect of non-nucleonic degrees of freedom
[73]. Quenching of gA arises from the omission of non-
nucleonic degrees of freedom and from the limited model
space in which the calculations are done. The former effect
is not expected to be present in 0νββ decay since the
average neutrino momentum is ∼100 MeV, while in 2νββ

decay is of the order of 1–2 MeV. The latter effect instead
appears both in 0νββ and 2νββ decays. This consideration
suggests to use an effective value of geffA ¼ 1.0, in between
the free value gA ¼ 1.269 and the value observed in 2νββ
decay, gA ∼ 0.6. We henceforth use this value.

2. Comparison with earlier results

From the NMEs in Tables II and III one can calculate the
NMEs for the standard mass mechanism, Mν and heavy

TABLE III. NMEs for the standard light neutrino exchange 0νββ decay mechanism evaluated in the IBM-2 as
described in the text and to be used in Eq. (36).

Isotope MF MAA
GT M0AP

GT M0AP
T M0WW

GT M0WW
T M00PP

GT M00PP
T

76Ge −0.780 6.062 0.036 −0.010 0.089 −0.035 3.4 × 10−4 −1.4 × 10−4
82Se −0.667 4.928 0.030 −0.010 0.073 −0.034 4.1 × 10−4 −1.3 × 10−4
96Zr −0.361 4.317 0.027 0.009 0.065 0.032 3.1 × 10−4 1.2 × 10−4
100Mo −0.511 5.553 0.038 0.012 0.096 0.041 4.7 × 10−4 1.6 × 10−4
110Pd −0.425 4.432 0.032 0.009 0.080 0.036 3.9 × 10−4 1.4 × 10−4
116Cd −0.335 3.173 0.023 0.005 0.058 0.023 2.9 × 10−4 8.7 × 10−5
124Sn −0.572 3.370 0.021 −0.005 0.053 −0.018 2.5 × 10−4 −7.5 × 10−5
128Te −0.718 4.321 0.027 −0.005 0.067 −0.023 3.1 × 10−4 −9.1 × 10−5
130Te −0.651 3.894 0.024 −0.006 0.061 −0.021 2.8 × 10−4 −8.3 × 10−5
134Xe −0.686 4.211 0.026 −0.005 0.064 −0.023 3.0 × 10−4 −8.3 × 10−5
136Xe −0.522 3.203 0.019 −0.005 0.048 −0.016 2.2 × 10−4 −6.3 × 10−5
148Nd −0.363 2.517 0.020 0.005 0.053 0.014 2.6 × 10−4 5.3 × 10−5
150Nd −0.507 3.753 0.032 0.005 0.083 0.027 4.1 × 10−4 9.7 × 10−5
154Sm −0.340 2.984 0.022 0.005 0.056 0.018 2.7 × 10−4 6.9 × 10−5
160Gd −0.415 4.224 0.030 0.009 0.074 0.027 3.6 × 10−4 1.1 × 10−4
198Pt −0.329 2.270 0.021 0.005 0.054 0.014 2.7 × 10−4 6.1 × 10−5
232Th −0.444 4.169 0.032 0.009 0.079 0.032 3.9 × 10−4 1.2 × 10−4
238U −0.525 4.962 0.038 0.009 0.093 0.036 4.6 × 10−4 1.4 × 10−4

TABLE II. NMEs for short-range 0νββ decay mechanisms evaluated in the IBM-2 as described in the text and to be used in
Eqs. (30)–(34). The values of the last four NMEs in Table I are not listed as they are derived from other NMEs as indicated therein.

Isotope MF MAA
GT MAT1

GT MT1T1

GT M0WW
GT M0WW

T M0AP
GT M0AP

T M0PT1

GT M0PT1

T M0P0P0
GT M0P0P0

T M00PP
GT M00PP

T

76Ge −48.89 170.0 174.3 173.5 −2.945 −6.541 2.110 −1.310 2.255 −1.183 0.798 −0.271 0.028 −0.022
82Se −41.22 140.7 144.3 143.6 −2.456 −6.206 1.758 −1.249 1.878 −1.183 0.660 −0.259 0.024 −0.021
96Zr −35.31 124.3 128.5 128.8 −3.116 5.436 1.523 1.090 1.652 0.984 0.613 0.228 0.020 0.019
100Mo −51.96 181.9 188.1 188.6 −4.590 8.055 2.273 1.590 2.464 1.128 0.910 0.317 0.029 0.027
110Pd −43.52 151.2 156.5 157.0 −3.945 6.816 1.892 1.356 2.055 1.223 0.762 0.271 0.024 0.023
116Cd −32.45 110.5 114.6 115.2 −3.069 4.222 1.374 0.843 1.497 0.760 0.565 0.169 0.017 0.015
124Sn −33.19 104.2 106.7 106.1 −1.701 −3.655 1.321 −0.723 1.407 −0.651 0.489 −0.146 0.018 −0.012
128Te −41.82 131.7 134.9 134.1 −2.439 −4.519 1.667 −0.890 1.776 −1.433 0.617 −0.178 0.023 −0.015
130Te −38.05 119.7 122.6 121.9 −1.951 −4.105 1.514 −0.807 1.613 −0.726 0.561 −0.160 0.021 −0.014
134Xe −39.45 124.7 127.8 127.2 −2.111 −4.191 1.564 −0.823 1.669 −0.741 0.585 −0.163 0.021 −0.014
136Xe −29.83 94.18 96.56 96.09 −1.625 −3.158 1.177 −0.620 1.257 −0.558 0.442 −0.123 0.016 −0.011
148Nd −31.71 103.0 106.0 105.8 −2.145 2.557 1.346 0.510 1.445 0.460 0.508 0.104 0.018 0.009
150Nd −30.18 100.0 103.2 103.1 −2.230 2.955 1.292 0.581 1.392 0.523 0.497 0.116 0.017 0.010
154Sm −31.83 107.1 110.7 110.9 −2.618 3.397 1.356 0.668 1.467 0.601 0.536 0.135 0.018 0.012
160Gd −41.43 142.9 148.0 148.6 −3.808 5.231 1.776 1.023 1.931 0.920 0.722 0.205 0.023 0.018
198Pt −31.87 104.4 108.4 109.0 −2.992 3.172 1.334 0.626 1.454 0.564 0.546 0.119 0.017 0.011
232Th −44.04 154.2 159.7 160.3 −4.116 6.146 1.900 1.185 2.067 1.063 0.783 0.230 0.024 0.021
238U −52.48 183.1 189.7 190.5 −4.981 7.206 2.255 1.393 2.456 1.251 0.932 0.272 0.029 0.024
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neutrino exchange Mνh ¼ MLL
3 to compare with earlier

calculations. To this end, it is convenient to introduce the
quantities

MGT ¼ MAA
GT −

gP
6gA

M0AP
GT þ ðgV þ gWÞ2

6g2A
M0WW

GT

þ g2P
48g2A

M00PP
GT ; ð39Þ

MT ¼ gP
6gA

M0AP
T þ ðgV þ gWÞ2

12g2A
M0WW

T −
g2P
48g2A

M00PP
T ;

ð40Þ

and write Mν as

Mν ¼ g2A

��
gV
gA

�
2

MF −MGT þMT

�
; ð41Þ

and similarly for Mνh.
The values of the NMEs in the present work are

compared with those in [30] in Table IV for light neutrino
exchange and in Table V for heavy neutrino exchange.
Comparing the old and new values of the F, GT, and T
matrix elements one can see that the effect of improved
single particle energies is sizeable in 76Ge, 82Se, 96Zr, 150Nd
and small otherwise. The main difference between the
calculation reported in [30] and the present one is in the
sign of the tensor matrix element in Eq. (41). The present
derivation gives a sign of the MT term relative to that of

MF, which is opposite to the one employed in Ref. [30].
This correction has little effect on the standard mass
mechanism, for which MT is small, but has considerable
effect on the short-range mechanisms. Additionally, one
can see that the matrix elements MF, MGT, MT for both
light and heavy neutrino exchange are of the same order of
magnitude in all elements with GT being the dominant
term. This is due to the fact that the individual contributions
given in Tables IV and V are all of the same order of
magnitude and that the dominant term inM3 is MAA

GT. The
only difference comes from the sign of the tensor terms,
M0AP

T , M0WW
T , M00PP

T , which is different for the p-p and
h-h case from the p-h and h-p case.
In Figs. 2 and 3 we, respectively, compare the compound

NMEs Mν and Mνh in the different calculations: present
work (red circles), Ref. [30] (filled blue squares), and
Ref. [30] with the correct sign for the tensor term (empty
blue squares). This allows us to disentangle the effect of the
new single particle energies from that induced by the sign of
the tensor NME. As already mentioned, for light neutrino
exchange (Fig. 2), the sign of the tensor term has relatively
little impact, whereas the single particle energies lead to a
sizeable increase of Mν in lighter isotopes. On the other
hand, Fig. 3 demonstrates the strong effect of the sign of the
tensor term in essentially all isotopes.
In comparison with calculations other than IBM-2 we

note that our improved results for the standard mass
mechanism are very similar to those in QRPA in all
isotopes [31], but still differ from those of the shell model
[74]. For the short-range mechanisms the obtained numbers
are again similar to the QRPA in the case in which both

TABLE IV. Comparison between the light neutrino exchange NMEs calculated in this work and those calculated
in [30] using the quenched value gA ¼ 1.0 and the convention that Mν < 0. The “old” F, GT, and T NMEs of
Table I in [30] are combined in the NMEs Mold

ν and M̃old
ν using a negative and positive sign of the tensor NME

relative to that of the GT NME, respectively.

Isotope Mold
F Mold

GT Mold
T Mold

ν M̃old
ν MF MGT MT Mν

76Ge −0.68 4.49 −0.23 −4.94 −5.40 −0.78 5.58 −0.28 −6.64
82Se −0.6 3.59 −0.23 −3.96 −4.42 −0.67 4.52 −0.27 −5.46
96Zr −0.33 2.51 0.11 −2.95 −2.73 −0.36 3.95 0.25 −4.07
100Mo −0.48 3.73 0.19 −4.40 −4.02 −0.51 5.08 0.32 −5.27
110Pd −0.40 3.59 0.21 −4.20 −3.78 −0.43 4.03 0.24 −4.21
116Cd −0.33 2.76 0.14 −3.23 −2.95 −0.34 2.89 0.12 −3.11
124Sn −0.57 2.96 −0.12 −3.41 −3.65 −0.57 3.10 −0.12 −3.79
128Te −0.72 3.80 −0.15 −4.37 −4.67 −0.72 3.97 −0.12 −4.80
130Te −0.65 3.43 −0.13 −3.95 −4.21 −0.65 3.59 −0.16 −4.40
134Xe −0.68 3.77 −0.15 −4.30 −4.60 −0.69 3.86 −0.12 −4.67
136Xe −0.52 2.83 −0.10 −3.25 −3.45 −0.52 2.96 −0.12 −3.60
148Nd −0.38 2.00 0.07 −2.45 −2.31 −0.36 2.28 0.12 −2.52
150Nd −0.39 2.33 0.10 −2.82 −2.62 −0.51 3.37 0.12 −3.76
154Sm −0.36 2.49 0.11 −2.96 −2.74 −0.34 2.71 0.12 −2.93
160Gd −0.45 3.64 0.17 −4.26 −3.92 −0.42 3.84 0.25 −4.00
198Pt −0.33 1.90 0.09 −2.32 −2.14 −0.33 2.02 0.12 −2.23
232Th −0.44 3.58 0.18 −4.20 −3.84 −0.44 3.76 0.25 −3.95
238U −0.53 4.27 0.21 −5.01 −4.59 −0.53 4.47 0.24 −4.75
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neutron and proton are particlelike (p-p) or holelike (h-h),
while different in the case in which neutrons are holelike
and protons are particlelike or vice versa (p-h and h-p).
We also note that, although not discussed here, the main
source of uncertainty for the matrix elements Mνh is the
parametrization of the short-range correlations. For exam-
ple, for 76Ge, QRPA reports [75] Mνh ¼ 32.6 for Miller-
Spencer, Mνh ¼ 233 for Argonne, and Mνh ¼ 352 for
CD-Bonn parametrization, a factor of 10 difference. In the
present paper we use the Argonne parametrization and
obtainMνh ¼ −200 (see Table V) in reasonable agreement

with the QRPA result, except for the overall sign in
Eq. (41), which, as indicated above, is opposite to that
of QRPA.

3. Compound NMEs for short-range mechanisms

Concluding our calculation of NMEs, in Table VI we
summarize for clarity the numeric values of the compound
NMEs M1 to M5 relevant for short-range 0νββ contri-
butions, as defined in Eqs. (30)–(34). They are listed for all
distinct combinations of quark chiralities and they are
calculated using the quenched value gA ¼ 1.0. The values
of light neutrino exchange NMEs Mν calculated in our
approach are shown in the last column of Table IV.
We note that the NMEs M1 and M5 are generally

enhanced due to the large pseudoscalar charges gP and gP0 ,

FIG. 2. Comparison between the light neutrino exchange IBM-
2 NMEs Mν calculated in this work (red circles) and the ones
calculated in [30] (solid blue squares), assuming the quenched
value gA ¼ 1.0. We show also the old total NME M̃old

ν incor-
porating the (old) tensor part but with the correct sign (empty blue
squares).

FIG. 3. As Fig. 2, but showing the comparison for the heavy-
neutrino-exchange NME Mνh .

TABLE V. As Table IV, but comparing the heavy neutrino exchange NMEs calculated in this work and those given
in Table IV of [30].

Isotope Mold
νh;F

Mold
νh;GT

Mold
νh;T

Mold
νh M̃old

νh Mνh;F Mνh;GT Mνh;T Mνh

76Ge −42.8 104 −26.9 −120 −174 −48.9 115 −36.3 −200
82Se −37.1 87.2 −27.3 −97.0 −152 −41.2 94.7 −34.5 −171
96Zr −29.2 67.9 12.7 −110 −84.4 −35.3 80.2 30.2 −85.4
100Mo −46.8 111 24.2 −182 −134 −52.0 116 44.1 −124
110Pd −41.4 100 27.7 −169 −114 −43.5 96.2 37.5 −102
116Cd −31.2 73.9 16.9 −122 −88.2 −32.5 69.6 23.3 −78.8
124Sn −33.1 73.7 −14.9 −91.9 −122 −33.2 70.3 −20.0 −124
128Te −41.7 93.4 −18.3 −117 −153 −41.8 87.9 −24.7 −154
130Te −37.9 84.8 −16.6 −106 −139 −38.1 80.8 −22.4 −141
134Xe −39.3 86.6 −19.8 −106 −146 −39.5 84.1 −22.8 −146
136Xe −29.7 66.8 −12.7 −83.8 −109 −29.8 63.5 −17.2 −111
148Nd −32.7 72.8 9.60 −115 −95.9 −31.7 66.8 14.1 −84.4
150Nd −35.6 81.1 13.2 −130 −104 −30.2 64.5 16.1 −78.6
154Sm −33.7 78.1 13.8 −126 −98.0 −31.8 68.6 18.6 −81.9
160Gd −44.6 106 21.5 −172 −129 −41.4 90.8 28.5 −104
198Pt −31.9 71.4 12.8 −116 −90.5 −31.9 64.7 17.3 −79.3
232Th −44.0 107 24.4 −175 −127 −44.0 98.1 33.0 −109
238U −52.5 127 28.7 −208 −151 −52.5 116 38.8 −130
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though in M5 this is often compensated by the suppressed
component NMEs. The enhancement is especially strong
in isotopes with the same sign forM0P0P0

GT andM0P0P0
T which

arises from particle-particle versus particle-hole configu-
rations of the nucleons. This, along with the large PSFs
discussed below, makes 100Mo an ideal isotope to probe
the corresponding mechanisms from a theoretical point
of view.

IV. LEPTONIC PHASE SPACE
AND DECAY RATE

A. Leptonic matrix elements

Besides the NMEs, the calculation of the 0νββ decay
rate requires the calculation of the so-called leptonic
phase space factors. Here, we follow the numerical
approach of Ref. [76]. Because of Pauli blocking of
the inner states, the nucleons are expected to decay
largely at the surface of the nucleus, which means that
the electron wave function can be approximated by its
value at the nuclear radius r ¼ RA.
Since we are interested only in 0þ → 0þ 0νββ transi-

tions, nucleon operators of a certain parity must be
combined with partial leptonic wave functions of the
same parity. Specifically, the parity-even operators will
be accompanied by S1=2 − S1=2 and P1=2 − P1=2 electron
wave functions, while parity-odd ones will go together with
the S1=2 − P1=2 combination of wave functions. In this
study we restrict ourselves only to the S1=2 − S1=2 approxi-
mation, which allows us to drop the parity-odd nucleon
operators from our calculation. The leptonic squared matrix

elements for S1=2 − S1=2 wave functions, summed over the
electron spins s1 and s2, then read [27]

X
s1;s2

ðē1ð1þ γ5Þec2Þðē1ð1� γ5Þec2Þ†ð1 − Pe1e2Þ=2

¼ fð0Þ11� þ fð1Þ11�p̂1 · p̂2; ð42Þ
X
s1;s2

ðē1γμγ5ec2Þðē1γνγ5ec2Þ†ð1 − Pe1e2Þ=2

¼ 1

16
ðfð0Þ66 þ fð1Þ66 p̂1 · p̂2Þ; ðμ; ν ¼ 0Þ; ð43Þ

X
s1;s2

ðē1γμγ5ec2Þðē1ð1� γ5Þec2Þ†ð1 − Pe1e2Þ=2

¼∓ 1

4
fð0Þ16 ; ðμ ¼ 0Þ; ð44Þ

where the scalar product between the asymptotic electron
momentum vectors is parametrized as p̂1 · p̂2 ¼ cos θ with
the opening angle 0 ≤ θ ≤ π. The term ð1 − Pe1e2Þ indi-
cates that the matrix element is antisymmetrized over the
electrons. The result for Eq. (42) when both currents are left
handed is the same as the one shown when both currents are
right handed. Since we are interested only in 0þ → 0þ
transitions in the S1=2 − S1=2 approximation, we omit phase
space factors corresponding to μ ¼ j or ν ¼ j. Further,

in Eqs. (42)–(44) we have used the quantities fð0;1Þij ≡
fð0;1Þij ðE1; E2Þ defined as

fð0Þ11� ¼ �jf−1−1j2 � jf11j2 þ jf−11j2 þ jf1−1j2;
fð1Þ11� ¼ −2ðf−11f1−1 � f−1−1f11Þ; ð45Þ

fð0Þ66 ¼ 16ðjf−1−1j2 þ jf11j2Þ; fð1Þ66 ¼ 32f−1−1f11;

ð46Þ

fð0Þ16 ¼ 4ðjf11j2 − jf−1−1j2Þ; fð1Þ16 ¼ 0: ð47Þ

Here, the definitions in terms of electron wave functions
g−1ðEÞ and f1ðEÞ evaluated at the nuclear surface apply,
f−1−1 ¼ g−1ðE1Þg−1ðE2Þ, f11 ¼ f1ðE1Þf1ðE2Þ, f−11 ¼
g−1ðE1Þf1ðE2Þ, f1−1 ¼ f1ðE1Þg−1ðE2Þ. When compared
to Refs. [11,17] our results agree but we also introduce

additional factors fð0;1Þ11− , which appear as a result of the
interference between the left- and right-handed scalar
electron currents. In fact, these terms are not independent

of the others as they can be expressed as fð0;1Þ11− ¼
fð0;1Þ11þ − 1

8
fð0;1Þ66� .

In determining the squared leptonic matrix elements, we
numerically calculate the electron wave functions accord-
ing to [76], taking into account the finite nuclear size and
electron cloud screening corrections.

TABLE VI. Compound NMEsM1 toM5 for all distinct quark
current chirality combinations, calculated using the quenched
value gA ¼ 1.0.

Isotope MXX
1 MXY

1 MXX
2 MXX

3 MXY
3 MXX

4 MXX
5 MXY

5

76Ge 5300 −5400 −174 −200 99.8 −158 202 −301
82Se 4030 −4110 −144 −171 83.3 −134 114 −199
96Zr 8500 −8570 −129 −85.4 57.7 −88.6 832 −904
100Mo 12400 −12500 −189 −124 83.9 −134 1230 −1340
110Pd 10400 −10500 −157 −102 69.3 −107 1030 −1120
116Cd 7420 −7480 −115 −78.8 52.0 −80.4 702 −768
124Sn 3450 −3520 −106 −124 56.2 −95.3 157 −224
128Te 4410 −4500 −134 −154 72.0 −130 205 −291
130Te 4030 −4110 −122 −141 64.4 −109 187 −264
134Xe 4240 −4320 −127 −146 67.6 −114 196 −277
136Xe 3210 −3270 −96.1 −111 51.2 −86.0 147 −208
148Nd 6180 −6240 −106 −84.4 46.2 −77.2 583 −648
150Nd 6190 −6250 −103 −78.6 45.5 −74.2 591 −652
154Sm 6780 −6840 −111 −81.9 50.0 −79.4 638 −703
160Gd 9370 −9450 −149 −104 68.2 −105 886 −970
198Pt 6720 −6780 −109 −79.3 49.3 −77.9 616 −681
232Th 10200 −10300 −160 −109 74.0 −112 978 −1070
238U 12200 −12300 −191 −130 88.1 −134 1160 −1260
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B. Differential decay distributions

The NMEs presented in the previous section and the
squared leptonic matrix elements shown in Eqs. (42)–(44)
can now be combined to calculate the rate of 0þ → 0þ 0νββ
decay. The fully differential rate is expressed as [15–17]

d2Γ
dE1d cos θ

¼ CwðE1ÞðaðE1Þ þ bðE1Þ cos θÞ; ð48Þ

with

C ¼ G4
Fcos

4θCm2
e

16π5
; wðE1Þ ¼ E1E2p1p2; ð49Þ

and where E2, p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 −m2

e

p
and p2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 −m2

e

p
are

understood to be functions of E1 due to overall energy
conservation, E2 ¼ Qββ þ 2me − E1. Here, Qββ is the so-
called double beta decay Q value of the given isotope, i.e.,
the kinetic energy release of the electrons.
The coefficients aðE1Þ and bðE1Þ in Eq. (48) are,

respectively, given by

aðE1Þ ¼ fð0Þ11þ

				
X3
I¼1

ϵLI MI þ ϵνMν

				
2

þ fð0Þ11þ

				
X3
I¼1

ϵRI MI

				
2

þ 1

16
fð0Þ66

				
X5
I¼4

ϵIMI

				
2

þ fð0Þ11− × 2Re

��X3
I¼1

ϵLI MI þ ϵνMν

��X3
I¼1

ϵRI MI

���

þ 1

4
fð0Þ16 × 2Re

��X3
I¼1

ϵLI MI −
X3
I¼1

ϵRI MI þ ϵνMν

��X5
I¼4

ϵIMI

���
ð50Þ

and

bðE1Þ ¼ fð1Þ11þ

				
X3
I¼1

ϵLI MI þ ϵνMν

				
2

þ fð1Þ11þ

				
X3
I¼1

ϵRI MI

				
2

þ 1

16
fð1Þ66

				
X5
I¼4

ϵIMI

				
2

: ð51Þ

These expressions are valid under the presence of any
combination of short-range mechanisms, with associated
particle coefficients ϵI, and the standard light neutrino
exchange where the coefficient ϵν is defined by ϵν ¼
mββ=me. Here, mββ is the usual effective 0νββ mass
given in Eq. (8). The NMEs MI and Mν are defined in
Eqs. (30)–(34) and (36), respectively, where the summa-
tions are over the different short-range current types i ¼
1;…; 5 including their different chiralities, I ¼ ði; XYZÞ
with X; Y; Z ∈ fL;Rg. A distinction is made between
short-range mechanisms of type i ¼ 1, 2, 3 for which
the scalar current is left handed or right handed. This is
indicated by ϵLI and ϵRI , respectively, where the sum is only
over the corresponding terms. This distinction represents
the interference behavior between terms of different elec-
tron chiralities. For example, the first term on the right-
hand side of Eq. (50) describes the contributions of and the
interference among the i ¼ 1, 2, 3 short-range mechanisms
ϵXYLi with left-handed electron chiralities (but including
all quark current chiralities) and that of the standard light
neutrino exchange. Likewise the second term describes
the contributions of i ¼ 1, 2, 3 short-range mechanisms
ϵRI with right-handed electron chiralities including their
cross interference, whereas the third term contains the
interference between these two classes, ðϵL1;2;3; ϵνÞ with
ϵR1;2;3. The other terms appearing in Eqs. (50) and (51) can
be understood in a similar way where the electron-energy

dependent factors fð0;1Þij ≡ fð0;1Þij ðE1Þ describe the correctly
associated squared lepton matrix elements as defined in
Eqs. (45)–(47). Note that the interference term between
short-range operators of type i ¼ 1, 2, 3 and i ¼ 4, 5

vanishes in bðE1Þ due to fð1Þ16 ¼ 0 in Eq. (47).
The fully differential decay rate Eq. (48) contains the

complete kinematic information and integrating over the
whole electron phase space will yield the total rate. Of
experimental interest are the distribution over the single
electron energy and the angular correlation. The single
electron energy distribution is simply given by

dΓ
dE1

¼ 2CwðE1ÞaðE1Þ; ð52Þ

and the energy-dependent angular correlation is introduced
as αðE1Þ ¼ bðE1Þ=aðE1Þ. The latter has the property
−1 < αðE1Þ < þ1 and as it appears in front of the cos θ
term, it describes the likelihood for the electrons to be
emitted back to back [αðE1Þ≳ −1], collinearly [αðE1Þ≲
þ1] or isotropically [αðE1Þ ≈ 0]. Defining

A ¼
Z

Qββþme

me

dE1wðE1ÞaðE1Þ;

B ¼
Z

Qββþme

me

dE1wðE1ÞbðE1Þ; ð53Þ
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and their ratio K ¼ B=A, the angular distribution reads

dΓ
d cos θ

¼ Γ
2
ð1þ K cos θÞ: ð54Þ

With the given information we determine the single
electron distribution dΓ=dE1 and the angular correlation
αðE1Þ for the three relevant phase space factors that occur
for short-range operators: fð0;1Þ11þ (for mechanisms i ¼ 1, 2, 3

with a scalar electron current), fð0;1Þ66 (for mechanisms

i ¼ 4, 5 with an axial-vector electron current), fð0Þ16 (for

interference between the two classes), and fð0Þ11− (for
interference between i ¼ 1, 2, 3 of different lepton chiral-

ity). As already noted, fð1Þ16 vanishes, as does fð1Þ11−. The

electron phase space distributions fð0;1Þ11þ also apply for the
standard mass mechanism, calculated in the closure
approximation.
The resulting single energy distribution and angular

correlation were already presented in Ref. [27] for several
isotopes, but in Fig. 4(left) we illustrate the normalized
single energy distributions for 76Ge as functions of the
kinetic energy Ekin

1 ¼ E1 −me of one of the electrons; i.e.,
the range is from zero up to Qββ value. As can be seen, the

term fð0Þ11− produces an energy distribution virtually indis-

tinguishable from that of fð0Þ16 . All mechanisms produce a
hill-like shaped energy distribution and observing the
single energy spectrum is not expected to help distinguish
between the standard mass mechanism (corresponding to

fð0Þ11þ) and any of the short-range mechanisms. The angular
correlation αðEkin

1 Þ, shown in Fig. 4(right), can distinguish
between different mechanisms, namely short-range mech-
anisms of type i ¼ 4, 5 produce electrons that are emitted
collinearly whereas for i ¼ 1, 2, 3 and the standard mass

mechanism, they are dominantly back to back. As men-

tioned, the factors fð1Þ16 and fð1Þ11− vanish. There is therefore
no change of the angular correlation due to interference
and the angular correlation is an incoherent sum over
contributions.

C. Total decay rate

Finally, we can integrate over the whole electron phase
space to determine the total decay rate Γ and the decay half-
life T1=2,

Γ ¼ ln 2
T1=2

¼ 2C
Z

Qββþme

me

dE1wðE1ÞaðE1Þ: ð55Þ

To facilitate calculation of the total rate under the presence
of one or more mechanisms, we define the integrated
PSFs [76]

Gð0;1Þ
ij ¼ 2C

ln 2

gð0;1Þij

4R2
A

Z
Qββþme

me

dE1wðE1Þ

× fð0;1Þij ðE1; Qββ þ 2me − E1Þ; ð56Þ

with gð0;1Þ11� ¼ 1, gð0;1Þ66 ¼ 1=16, gð0Þ16 ¼ 1=4, gð1Þ16 ¼ 0. The
factor 1=R2

A has been introduced to conform with our
convention where the NMEs are made dimensionless by
multiplying with the nuclear radius RA. The numerical

values of the PSFs Gð0;1Þ
ij are given in Table VII, in units of

10−15 yr−1. As mentioned earlier, both Gð1Þ
16 and Gð1Þ

11−
vanish, corresponding to the absence of interference in
the angular part bðE1Þ.
With the above PSFs, the inverse 0νββ decay half-life

can be written

0.0 0.5 1.0 1.5 2.0

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

FIG. 4. Normalized single electron energy distributions Γ−1dΓ=dEkin
1 (left) and angular correlation αðEkin

1 Þ (right) for 76Ge as a
function of the kinetic energy Ekin

1 ¼ E1 −me. Shown are the phase space factors for Eq. (50) in the former and for Eq. (51) in the latter.
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T−1
1=2 ¼ Gð0Þ

11þ

				
X3
I¼1

ϵLI MI þ ϵνMν

				
2

þ Gð0Þ
11þ

				
X3
I¼1

ϵRI MI

				
2

þ Gð0Þ
66

				
X5
I¼4

ϵIMI

				
2

þ Gð0Þ
11− × 2Re

��X3
I¼1

ϵLI MI þ ϵνMν

��X3
I¼1

ϵRI MI

���

þ Gð0Þ
16 × 2Re

��X3
I¼1

ϵLI MI −
X3
I¼1

ϵRI MI þ ϵνMν

��X5
I¼4

ϵIMI

���
: ð57Þ

Expressed in this way, the inverse half-life now only
depends on the NMEs in Tables VI and IV (last column),
the PSFs in Table VII and the coefficients ϵI , ϵν ¼ mββ=me
encapsulating the particle physics aspects.

V. RESULTS

A. Bounds on the effective neutrino mass

With ϵν ¼ mββ=me and the other short-range ϵI set to
zero, Eq. (57) simplifies to the well know formula for light
neutrino exchange,

T−1
1=2 ¼

jmββj2
m2

e
Gð0Þ

11þjMνj2: ð58Þ

Using the updated NME values for the light neutrino
exchange mechanism shown in Table IV (last column)
we can set new limits on the effective 0νββ mass jmββj. For
isotopes with existing experimental bounds on the 0νββ
decay rate, the resulting limits at 90% C.L. are summarized
in Table VIII. As mentioned, the axial coupling is set to
gA ¼ 1.0. Generally, the limits have improved compared to
the previous analysis [30]. This is a consequence of the
better experimental limits for 76Ge, 82Se, 130Te, and 136Xe as

TABLE VII. PSFs in units of 10−15 yr−1 used in the calculation
of the total decay rate for the standard light neutrino exchange
and short-range mechanisms. The PSFs corresponding to

fð1Þ11− and fð1Þ16 vanish.

Isotope Gð0Þ
11þ Gð0Þ

11− Gð0Þ
66 Gð0Þ

16 Gð1Þ
11 Gð1Þ

66

[10−15 yr−1]
76Ge 2.360 −0.280 1.320 0.870 −1.954 0.977
82Se 10.19 −0.712 5.450 2.925 −9.079 4.539
96Zr 20.58 −1.190 10.88 5.403 −21.62 9.335
100Mo 15.91 −1.053 8.482 4.456 −14.25 7.125
110Pd 4.807 −0.541 2.674 1.730 −4.014 2.007
116Cd 16.69 −1.187 8.938 4.843 −19.37 7.414
124Sn 9.028 −0.843 4.935 2.976 −7.760 3.880
128Te 0.585 −0.156 0.371 0.313 −0.390 0.195
130Te 14.20 −1.142 7.672 4.367 −12.45 6.223
134Xe 0.597 −0.164 0.380 0.323 −0.394 0.197
136Xe 14.56 −1.197 7.876 4.524 −12.72 6.361
148Nd 10.07 −1.084 5.579 3.548 −14.19 4.246
150Nd 62.98 −3.125 33.05 15.44 −57.83 28.91
154Sm 3.005 −0.539 1.772 1.338 −2.291 1.145
160Gd 9.526 −1.129 5.321 3.506 −7.917 3.958
198Pt 7.513 −1.305 4.409 3.278 −5.844 2.922
232Th 13.87 −2.419 8.144 6.019 −10.92 5.457
238U 33.45 −4.176 18.81 12.46 −28.02 14.01

TABLE VIII. Upper limits on the effective 0νββ mass jmββj and the short-range ϵI couplings in units of 10−10 from current
experimental bounds Texp

1=2 at 90% C.L., assuming a single contribution at a time and gA ¼ 1.0. The chiralities of the involved quark
currents are specified: the label XX stands for the case when both chiralities are the same, XX ¼ RR; LL, and XY applies if the chiralities
are different, XY ¼ RL; LR. The limit on ϵ4 applies for all chirality combinations.

Isotope Texp
1=2 [yr] jmββj jϵXX1 j jϵXY1 j jϵXX2 j jϵXX3 j jϵXY3 j jϵ4j jϵXX5 j jϵXY5 j

[meV] ½10−10�
76Ge 1.8 × 1026 [9] 118 2.90 2.84 88.4 77.1 154 130 102 68.1
82Se 2.4 × 1024 [77] 599 15.9 15.5 445 375 768 654 764 440
96Zr 9.2 × 1021 [78] 9130 85.5 84.8 5640 8510 12600 11300 1200 1110
100Mo 1.1 × 1024 [79] 733 6.10 6.04 401 608 901 774 84.1 77.5
116Cd 2.2 × 1023 [80] 2720 22.3 22.1 1430 2090 3170 2800 321 294
128Te 1.1 × 1023 [81] 13300 283 277 9300 8080 17300 12100 7630 5390
130Te 3.2 × 1025 [82] 252 5.38 5.27 178 153 336 270 158 112
136Xe 1.1 × 1026 [83] 114 2.50 2.45 83.4 72.5 157 127 74 52.4
150Nd 2.0 × 1022 [84] 3830 45.5 45.1 2730 3590 6190 5240 659 596
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well as of the updated single particle energies in the NMEs
for 76Ge, 82Se, 96Zr, and 150Nd.
In Fig. 5, we compare the existing limit and future

sensitivities in a plot correlating the 0νββ mass jmββj with
the sum of neutrino masses Σmν ¼ mν1 þmν2 þmν3 for
the standard picture of three active neutrinos. The shaded
regions indicate, as usual, the allowed parameter space for
normally (NO) and inversely (IO) ordered neutrino spectra
by varying over the Majorana CP phases, where we take
the best fit values of the oscillation angles and mass-
squared differences as given in [85]. Using our NMEs, the
currently best limit is set by the KamLAND-Zen collabo-
ration T1=2ð136XeÞ > 1.1 × 1026 yr [83] resulting in
jmββj < 114 meV at 90% C.L. for gA ¼ 1.0. The recent
final result from GERDAwith T1=2ð76GeÞ > 1.8 × 1026 yr
[9] corresponds to an essentially equal limit of jmββj <
118 meV at 90% C.L. In Fig. 5 we also illustrate the
corresponding limit assuming no quenching with gA ¼
1.27, giving jmββj < 76 meV. In addition to the current
limit we also show two examples of prospective sensitiv-
ities T1=2ð100MoÞ ¼ 5 × 1026 yr expected at AMoRE-II
[86] and T1=2ð76GeÞ ¼ 1028 yr for LEGEND-1000 [87].
The latter will probe the full IO regime and a large chunk of
the NO regime.

Neutrino masses are also probed by the cosmological
effect of the relic neutrino background on the cosmic
microwave background and the structure of the universe.
Current observations are compatible with no effect arising
from neutrino masses setting stringent limits on Σmν down
to Σmν < 150 meV at 90% C.L. [88] The limit generally
depends on the neutrino ordering due to different priors in
the statistical analysis and it is affected by the choice of the
astrophysical data. It can also be weakened if an underlying
cosmological model other than the standard minimal
ΛCDM is used. In Fig. 5 we show the most conservative
limits arising from a choice of cosmological models
surveyed in Ref. [88]. Namely, Σmν < 280 meV (NO)
and Σmν < 290 meV (IO) at 95% C.L. arise in the
ΛCDM with nonzero neutrino masses and a free scaling
of the so-called weak lensing amplitude Alens (ΛCDMþ
Σmν þ Alens). These limits correspond to jmββj < 89 meV
(NO) and jmββj < 101 meV.

B. Bounds on effective short-range mechanisms

We can likewise assume that only a single short-range
contribution is present by setting all other coefficients
to zero and specifically assuming that the standard light
neutrino contribution is negligible. Equation (57) then
reduces to

T−1
1=2 ¼ jϵIj2GIjMIj2; ð59Þ

with the PSF GI and NME MI depending on the type of
contribution. From the current nonobservation of 0νββ
decay we can then set upper limits on the effective ϵI
couplings. These are also shown in Table VIII, using our
calculated PSFs and NMEs with gA ¼ 1.0. Different chir-
alities of the quark currents in the operators lead to different
bounds as indicated, where ϵXXi denotes the case where the
chiralities of the two quark currents are equal, XX ¼
LL;RR, whereas ϵXYi indicates that they are different,
XY ¼ RL;LR. For ϵ2, the quark currents are required to
be equal, cf. Eq. (6), and for ϵ4, the bounds do not depend on
the choice of the quark chiralities. Considering that a single
ϵI contributes at a time, the limits do not depend on the
lepton chirality as the corresponding PSFs are independent
of it.
Numerically, the best limits for all ϵI are currently

derived from the KamLAND-Zen constraint T1=2ð136XeÞ >
1.1 × 1026 yr, except for ϵXY3 where the GERDA constraint
is slightly better. In any case, the KamLAND-Zen and
GERDA bounds result in essentially equally stringent
limits in most of the cases, and they are of the order
10−10 to 10−8. For ϵ1 and ϵ5, in addition to the improved
experimental bounds, the limits are the most stringent
due to enhanced values of the nucleon current charges,
specifically the large value of the intrinsic pseudoscalar
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FIG. 5. Relation between the 0νββ mass jmββj and the sum of
neutrino masses Σmν for normally (NO) and inversely ordered
(IO) neutrinos with the oscillation parameters fixed to the current
best fit values. The dark shaded regions denote the parameter
space allowed by the limits on Σmν at 95% C.L. from cosmo-
logical searches. The horizontal bars indicate the current upper
limit on jmββj and future sensitivities of 0νββ decay searches with
an unquenched (gA ¼ 1.27, bottom edge) and quenched
(gA ¼ 1.0, top edge) value of the axial coupling.
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charge gP0 , see Eq. (24). In case of ϵ3 the sign of the tensor
nuclear matrix elements also plays an important role.
The limits in Table VIII on the effective couplings apply

at the QCD scale ΛQCD ≈ 1 GeV. As described in [27]
following [89,90] one can instead define the couplings at
the electroweak scale mW ¼ 80.4 GeV and evolve them to
ΛQCD, where the appropriate bound can be set employing
the experimental limit on the 0νββ decay half-life. Because
different operators mix radiatively, a single contribution at
mW may generally induce several contributions at ΛQCD.
The limits obtained in this way can be compared more
directly with constraints derived from collider experiments.
The resulting bounds on the couplings cI ¼ ϵIðmWÞ at mW ,
including QCD running effects, are displayed in Table IX.
Note that the limit on jϵ4j splits into two different values
jcXX4 j and jcXY4 j, since the different quark current chiralities
affect the running. Numerically, the limits can be weaker or
stronger than those at ΛQCD due to the overlapping effect
of the QCD corrections and the mixing of operators. The
already stringent limits on ϵXX1 and ϵXY1 improve further at
mW and cXY1 is the most strongly constrained coupling by
KamLAND-Zen. On the other hand, the limit on cXX2 is
relatively much weaker than that on ϵXX2 . This is an effect of
the renormalization group mixing with cXX1 and partial
cancellation with this induced term.
The effective short-range operator couplings can be

interpreted in terms of effective New Physics operator
scales ΛI where we simply match

1

Λ5
I

¼ G2
F cos

2 θC
2mp

cI; ð60Þ

using the couplings cI defined at the electroweak scale.
In Fig. 6 we illustrate the current bounds and expected
future sensitivities in 76Ge (blue), 100Mo (orange), and 136Xe
(green). The colored bars indicate the lower bound on the
given operator scale where the darkest shade corresponds to
the current limit and the two increasingly lighter shades

represent expected future sensitivities. For the three iso-
topes, the setups are these: (i) T1=2ð76GeÞ=ð1026 yrÞ ¼ 1.8
(GERDA [9], current), 10 (LEGEND-200 [87]), 100
(LEGEND-1000 [87]); (ii) T1=2ð100MoÞ=ð1026 yrÞ ¼ 0.011
(NEMO-3 [79], current), 5 (AMoRE-II [86]), 10 (CUPID
[91]); (iii) T1=2ð136XeÞ=ð1026 yrÞ ¼ 1.1 (KamLAND-Zen-
400 [83], current), 5 (KamLAND-Zen-800 [92]), 9.2
(nEXO [93]). As before, we assume only one short-range
contribution to be present at mW and we neglect any
contribution from light neutrino exchange. As can be seen,
the strong limits on cXX1 and cXY1 probe operator scales up to
18 TeV. The weakest limits, applying to c2;3;4, still probe
scales of order 4–6 TeV.

C. Interference between light neutrino exchange
and short-range mechanisms

So far we have only considered one mechanism (oper-
ator) to be present at a given time, either the light neutrino
exchange or one of the short-range operators. We now
discuss the effect of two or more mechanisms operating
at the same time. A large number of combinations are of
course possible, but at least the standard light neutrino
contribution is expected to be present at some level in any
case. This is because any new physics scenario that
generates a ΔL ¼ 2 short-range operator is also expected
to generate Majorana neutrino masses at a level to explain
neutrino oscillations. Therefore, it is reasonable to look into
the interference of one of the nonstandard short-range
mechanisms with the standard light neutrino exchange.
We here discuss a few illustrative scenarios.
We first consider the interference with the operator

associated with ϵLLL3 . As we have seen in Sec. II B 1, it
is triggered by heavy sterile neutrinos. Under the presence
of ϵν and ϵLLL3 , Eq. (57) simplifies to

T−1
1=2 ¼ Gð0Þ

11þ

				mββ

me
Mν þ ϵLLL3 MLL

3

				
2

: ð61Þ

TABLE IX. As Table VIII, but for the short-range couplings cI ¼ ϵIðmWÞ in units of 10−10, defined at the scale mW ¼ 80.4 GeV and
omitting jmββj. Compared to Table VIII, the limits on c4 depend on whether the quark currents have the same (XX) or opposite (XY)
chirality.

Isotope Texp
1=2 [yr] jcXX1 j jcXY1 j jcXX2 j jcXX3 j jcXY3 j jcXX4 j jcXY4 j jcXX5 j jcXY5 j

½10−10�
76Ge 1.8 × 1026 [9] 1.42 0.948 611 101 177 286 185 50.3 22.9
82Se 2.4 × 1024 [77] 7.74 5.19 2630 494 882 1450 934 361 148
96Zr 9.2 × 1021 [78] 42.9 28.5 26900 11200 14500 17300 16100 616 372
100Mo 1.1 × 1024 [79] 3.06 2.03 1930 800 1040 1200 1110 43.1 26.1
116Cd 2.2 × 1023 [80] 11.2 7.40 7390 2760 3650 4470 4000 165 98.9
128Te 1.1 × 1023 [81] 139 92.6 76800 10600 19900 26400 17300 3820 1810
130Te 3.2 × 1025 [82] 2.64 1.76 1490 202 387 589 386 79.2 37.5
136Xe 1.1 × 1026 [83] 1.23 0.819 717 95.4 180 277 181 37.2 17.6
150Nd 2.0 × 1022 [84] 22.8 15.1 18200 4720 7120 8720 7490 337 201
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Because light neutrino exchange and the operator associ-
ated with ϵLLL3 have the same leptonic structure, the two
contributions add coherently. The same behavior occurs for
all operators of type ϵ1;2;3 with a left-handed leptonic
current. Depending on the complex phases of the NMEs
and the particle physics parameters mββ, ϵLLL3 , the inter-
ference can be constructive or destructive. The NMEs are
conventionally defined to be real with values given in
Sec. III. In the given scenario, both NMEs are negative.
We can choose mββ to be real and positive and the
interference is described by the relative phase of ϵLLL3 .
The largest effect then arises when ϵLLL3 is real and positive
(constructive) or negative (destructive). Specifically, if
ϵLLL3 ¼ −jmββj=meðMν=MLL

3 Þ, both contributions cancel
each other.
The general constraints on the ðjmββj; ϵLLL3 Þ parameter

space are depicted in Fig. 7 (left). As discussed, we take
both mββ and ϵLLL3 to be relatively real with mββ > 0 by
convention. The light shaded areas are allowed given the
current limits from 0νββ decays searches in 76Ge and 136Xe,
whereas the dark shaded area denotes the sensitivity from
future searches at T1=2ð76GeÞ ¼ 1028 yr. The combination
of contributions in Eq. (61) leads to the linear relation
between the variables and no independent limits can be set
on them. From cosmological observations we can infer the
upper limit jmββj < 101 meV, see Fig. 5, and neither jmββj
nor jϵLLL3 j can be arbitrarily large given this additional
constraint. Thus allowing a contribution 0 ≤ jmββj <
101 meV from light neutrino exchange, ϵLLL3 is currently
constrained to the interval −137 × 10−10 < ϵLLL3 <
72.5 × 10−10, compared to jϵLLL3 j < 72.5 × 10−10 in the
case it is the only contribution. In Fig. 7(right), we show the

equivalent plot in the ðjmββj;ΛLLL
3 Þ parameter plane, where

the effective operator scale is defined through 1=ðΛLLL
3 Þ5 ¼

G2
F cos

2 θCϵ
LLL
3 =ð2mpÞ. The current experimental con-

straints give jΛLLL
3 j≳ 4.5 TeV. If mββ is not restricted

further independently, e.g., by inference from an improved
measurement of Σmν, the future constraint T1=2ð76GeÞ ¼
1028 yr will still allow ΛLLL

3 ≈ −4.8 TeV due to destructive
interference.
In the case of the interference between the standard

light neutrino contribution with one operator of the
type ϵ1;2;3 with a right-handed lepton current or of the
type ϵ4;5, the overlap is suppressed by the interference
between the different lepton currents involved. We
here discuss the example ϵRR5 in which case Eq. (57)
simplifies to

T−1
1=2 ¼ Gð0Þ

11þjMνj2
jmββj2
m2

e
þGð0Þ

66 jMRR
5 j2jϵRR5 j2

þ 2Gð0Þ
16 ðMνMRR

5 ÞRe
�
mββ

me
ϵRR�5

�
;

¼ Ajmββj2 þ BjϵRR5 j2 − 2CjmββjjϵRR5 j cosðα − βÞ:
ð62Þ

Here, A¼Gð0Þ
11þjMνj2=m2

e, B¼Gð0Þ
66 jMRR

5 j2, C¼Gð0Þ
16 jMνj

jMRR
5 j=me are positive coefficients (we consider the NMEs

to be real with Mν, MRR
5 having opposite signs,

cf. Table VI), and α, β are the complex phases of mββ,
ϵRR5 , respectively. We again consider that the relative
phase between mββ and ϵRR5 is α − β ¼ 0; π in which case
Eq. (62) is a quadratic function in jmββj and ϵRR5 and for a
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FIG. 6. Lower limits on the effective short-range operator scales ΛI defined at mW and assuming all other contributions are zero. The
limits are from the current bounds (dark shade) and two future sensitivities (lighter shades) in 76Ge at ð1.8; 10; 100Þ × 1026 yr (left, blue),
100Mo at ð0.011; 5; 10Þ × 1026 yr (middle, orange) and 136Xe at ð1.1; 5; 9.2Þ × 1026 yr (right, green).
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given value of T−1
1=2 represent an ellipse. This is shown in

Fig. 8(left) where the tilting is determined by the size of the

PSF Gð0Þ
16 relative to Gð0Þ

11þ and Gð0Þ
66 . The currently most

stringent constraint is set in 136Xe but the limit on ϵRR5 from
100Mo is competitive despite the much weaker half-life
limit. This is a consequence of enhanced NME MRR

5 in
100Mo, see Table VI. Figure 8(right) shows the equivalent
plot for the effective operator scale ΛRR

5 . As can be seen in

Table VII, the PSFs Gð0Þ
16 applicable to all contributions

of type ϵ4;5 are generally quite sizeable resulting in a

comparatively strong interference. On the other hand, the

PSF Gð0Þ
11− regulates the interference with operators of type

ϵR1;2;3 with right-handed lepton currents, see Eq. (57), which
is suppressed by the electron mass compared to the beta
decay Qββ value.

D. Constraints on new physics scenarios

The above constraints on the effective neutrino mass and
short-range operator couplings can be interpreted in terms
of the new physics scenarios introduced in Sec. II B.
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operator scale ΛLLL

3 (right). All other effective couplings are set to zero. The highlighted regions denote the allowed parameter space
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1. Light and heavy sterile neutrinos

In the sterile neutrino case discussed in Sec. II B 1, we
consider the simplified scenario where a single sterile
neutrino of mass mN with mixing VeN to the electron
neutrino contributes to 0νββ decay. The limiting cases
where the sterile neutrino is much lighter and heavier than
100 MeV were discussed in Sec. II B 1. Currently, the most
stringent limit in Table VIII on 0νββ decay contributions of
heavy sterile neutrinos is set in 136Xe,

ϵLLL3 < 72.5 × 10−10 ⇒

�XnN
i¼1

V2
eNi

mNi

�−1
> 1.3 × 108 GeV;

ð63Þ
assuming that the contributions from the light SM neutrinos
are negligible.
To approximately incorporate the intermediate range

mN ≈ 100 MeV as well, we use the interpolation [63,94]

T−1
1=2 ¼ Gð0Þ

11þjMLL
3 j2

�
mpmN

hq2i þm2
N

�
2

jVeN j4; ð64Þ

with the average momentum transfer hq2i ¼ mpmejMLL
3 =

Mνj. In Fig. 9, we show the current limit and future
sensitivity in the ðmN; jVeNj2Þ parameter space. The region
above the 0νββ bottom-most contours indicated are ruled
out by the corresponding observation, assuming that the
sterile neutrino is of a Majorana nature. We compare the
0νββ decay constraints with other searches for sterile
neutrinos which are being pursued in neutrino oscillations,

single beta decays, meson decays, at colliders and in
electroweak precision measurements. The most recent
searches are generally summarized in Ref. [95] and collider
signatures are reviewed in Refs. [96,97]. The shaded area is
excluded by current data and the dashed lines give
examples of sensitivities in future searches. This includes
the Tritium decay experiment KATRIN [98], searches
for long-lived particles (LLP) (the shape is mainly deter-
mined by the planned DUNE [99], SHiP [100], and FCC-ee
collider [101]) and high energy colliders FCC-hh [102],
ILC [103], and CLIC [104,105]. As can be seen, future
0νββ decay searches at a level of T1=2 ≈ 1028 yr will be
able to probe mixing strengths expected for light neutrino
neutrino mass generation via the seesaw mechanism, mν ¼
jVeNj2mN0.01 eV for mN ≲ 100 MeV. Likewise, 0νββ
decay searches probe very heavy Majorana neutrinos with
masses up to mN ≈ 106 GeV where electroweak precision
measurements can otherwise set comparatively weak limits
of order jVeNj2 ≲ 10−3.
We stress that this strong sensitivity of 0νββ decay

searches applies to purely Majorana neutrinos, which are
difficult to reconcile with the lightness of active neutrinos
for mN ≳ 1 GeV. For sterile neutrinos with such masses it
is more natural that they form quasi-Dirac states where
LNV is suppressed by a small mass splitting. In Fig. 9,
we also show the sensitivity towards such a scenario where
two Majorana neutrinos with a relative mass splitting of
ΔmN=mN ¼ 10−4 form a quasi-Dirac pair, partially can-
celling their contributions to 0νββ decay. While the
sensitivity is strongly reduced, 0νββ decay searches are
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FIG. 9. Upper limit on the active-sterile neutrino mixing strength jVeN j2 as a function of the sterile neutrino mass mN from current
0νββ decay searches (solid curves) and at future sensitivities with T1=2 ¼ 1028 yr (dashed curves). The sterile neutrino is assumed to be
of Majorana or quasi-Dirac nature as indicated and contributions from light neutrinos are neglected. The blue shaded area is excluded by
current data from neutrino oscillations, beta decays, meson decays, colliders, and electroweak precision measurements. The dashed
contours indicate the estimated future sensitivity in Tritium decays (KATRIN), long-lived particle (LLP) searches and at colliders (FCC-
hh, ILC, CLIC). The diagonal line gives the seesaw relation of light neutrino mass generation, mν ¼ jVeN j2mN ¼ 0.01 eV.
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still competitive at this level for mN ≈ 1 MeV and
mN ≈ 100 GeV.

2. Left-right symmetry

In Fig. 10, we show the limits from 0νββ decay searches
on the right-handed WR boson mass mWR

and the heavy
neutrino mass mN in the LRSM introduced in Sec. II B 2.
Here, we consider a simplified scenario with one lepton
generation, i.e., a single heavy neutrino N and UR

e1 ¼ 1. We
also choose the so-called manifest left-right symmetric case
with gR ¼ g, cos θRC ¼ cos θC and take mΔ−−

R
¼ mWR

for the
mass of the doubly charged triplet Higgs. The solid and
dashed 0νββ curves give the lower limit on mWR

where we
additionally neglect the W boson mixing, sin θWLR ¼ 0, thus
ϵRRR3 is the only contribution. The rise of the 0νββ curves to
the right ofmN ≈ 103 GeV in Fig. 10 results from the doubly
charged Higgs contribution in Eq. (15) increasing linearly
with mN . Note, though, that too large values of mN ,
compared to mWR

, are not natural as they would require
nonperturbative Yukawa couplings with the triplet Higgs.
The 0νββ decay limits are compared with the direct

limits from the LHC and the future SHiP experiment. The
current LHC limits arise from dijet, eþ Emiss [106] and
eejj signatures [107]. The future LHC limits are estimated

for 300 fb−1 of luminosity and are taken from [106]. The
dijet and eþ Emiss signatures are largely independent of the
heavy neutrino mass in the applicable kinematic regimes
and are sensitive tomWR

≈ 4–7 TeV. On the other hand, the
SHiP experiment would probe heavy neutrinos produced
mainly inDmeson decays and the strong sensitivity around
mN ≈ 1 GeV shown is taken from Ref. [108]. As can be
seen, 0νββ decay searches are especially sensitive for
mN ≲ 20 GeV. Note that we only consider heavy neutrino
masses as light as mN ¼ 100 MeV where the short-range
contribution assumption is reasonable. For mN ≈ 100 MeV
we incorporate the approximation in Eq. (64); masses
around and below this scale can be incorporated using
an analysis of the relevant dim-7 operators [18–20,109]
and by including the mass dependence of the neutrino
potential [63,94,110].
Both the LHC and SHiP limits were derived assuming

negligible W boson mixing; those based on the lifetime
of the heavy neutrino will be affected and need to be
reassessed. We nevertheless also include the sensitivity of
future 0νββ decay searches for sin θWLR ¼ m2

W=m
2
WR

, i.e., the
generically maximal value expected, where all three oper-
ators ϵRRR3 , ϵLLR3 , ϵLRR3 contribute. Future searches are then
expected to be sensitive up to mWR

≈ 26 TeV.

3. R-parity violating supersymmetry

Assuming gluino dominance, R-parity violating super-
symmetry will induce the contributions in Eq. (18).
Neglecting any other contributions, including those from
light neutrinos, Eq. (57) simplifies to

T−1
1=2 ¼ Gð0Þ

11þð1.95MRR
1 − 2.88MRR

2 Þ2

×

�
8παsλ

02
111

9 cos2 θC

G−2
F

m4
q̃

mp

mg̃

�
2

; ð65Þ

where the numerical factors in front of the NMEs take into
account the effect of QCD running; i.e., we here interpret
the coupling strength λ0111 at mW . Using the current
KamLAND-Zen bound T1=2ð136XeÞ > 1.1 × 1026 yr, this
can be translated into an upper limit on λ0111,

λ0111 < 7.0 × 10−3
�

mq̃

1 TeV

�
2
�

mg̃

1 TeV

�
1=2

: ð66Þ

This compares to the limit λ0111 < 7.2 × 10−3 in [111]1 for
the same squark and gluino masses and the above
KamLAND-Zen bound. Somewhat surprisingly, the limits
are thus of a very similar size; whereas, in our case, the
strong sensitivity is predominantly due to the enhanced
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FIG. 10. Lower limit on the right-handed WR boson mass mWR

as a function of the right-handed neutrino mass mN from current
0νββ decay searches (solid curve) and the corresponding future
sensitivities with T1=2ð76GeÞ ¼ 1028 yr (dashed curve) in the
LRSM with negligible W boson mixing. The dotted curve
indicates the future sensitivity on the scenario where the W boson
mixing is sin θWLR ¼ m2

W=m
2
WR

. The blue shaded area is excluded
by current data from the LHC and the dashed contours indicate the
estimated future sensitivity at the LHC with 300 fb−1 and at SHiP.

1Reference [111] contains updated experimental constraints
and includes the effects of QCD running to the scale 1 TeV
compared to [46].
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value of the NME MRR
1 resulting from the large pseudo-

scalar form factor in Eq. (24), in Ref. [111] it is an effect of
the QCD running and operator mixing.
If 0νββ decay is not observed in future experiments with

a sensitivity approaching T1=2ð100MoÞ ¼ 1027 yr, the limit
will improve to

λ0111 < 2.0 × 10−3
�

mq̃

1 TeV

�
2
�

mg̃

1 TeV

�
1=2

: ð67Þ

This is mainly a result of the strong sensitivity to ϵRR1
especially in 100Mo, see Sec. V B. As mentioned, the
derived limit is based on the assumption of gluino domi-
nance. It will be important to reevaluate the impact of 0νββ
decay searches on the R-parity violating supersymmetry in
light of the new results and the current constraints from
direct searches for supersymmetric particles.

VI. SUMMARY AND CONCLUSION

Signatures of total lepton number violation are crucial if
we want to understand the origin of neutrino masses, which
constitute a key open issue in particle physics. Neutrinoless
double beta decay has so far been the only practical means
to probe light Majorana neutrino masses at scales indicated
by neutrino oscillations. In addition it is sensitive to new
physics contributions from exotic particles and interactions
coupling to first-generation quarks and electrons. Within an
EFT framework, 0νββ decay searches strongly constrain
contributions of that form. In this work we have concen-
trated on short-range contributions which result from
integrating out exotic particles much heavier than the
energy scale mF ≈ 100 MeV of double beta decay, leading
to effective dimension-nine operators of the form
Λ−5ū ū ddē ē. In addition, we update calculations for the
standard light neutrino exchange mechanism to analyze the
interplay with short-range contributions.
We have presented a first complete numerical evaluation

of the NMEs needed for the description of short-range
nonstandard mechanisms of 0νββ decay. The calculation is
performed within the framework of IBM-2 with restoration
of the isospin properties of the Fermi transition operator.
We also use updated single particle energies extracted from
experimental data on nuclei with one nucleon removed or
added from shell closure. We include additional NMEs that
become important when the latest values of the nucleon form
factors are taken into account. However, the main difference
to previous calculations is in the sign of the tensor NMEs;
the present derivation gives a sign of the tensor term MT ,
which is opposite to that in, e.g., [30]. This change has little
effect on the standard mechanism, for which MT is small
≈1%, but it is sizeable for short-range mechanisms.
As noted, we have performed our calculation in the

phenomenological framework of the interacting boson
model, using nucleon currents in the impulse approximation

including higher-order terms in the nucleon momentum
transfer determined in [27]. We model pion-mediated modes
via enhanced pseudoscalar nucleon form factors informed
by partially conserved axial-vector current and lattice
QCD calculations. In our numerical results we consider a
possible quenching of the axial-vector coupling by choosing
gA ¼ 1.0 compared to the unquenched value gA ¼ 1.27. We
follow this classical approach in contrast to ab initiomethods
based on chiral EFT interactions [56]. Such formulations
promise the determination of NMEs with controllable errors,
e.g., may address part of the quenching problem [112].
Calculations of the standard light neutrino exchange NME
Mν following this approach have become possible for the
lightest double beta decay isotopes 48Ca [113–115], 76Ge,
and 82Se [114], indicating noticeably smaller values than
those from phenomenological models such as IBM-2, see
[116] for a recent review. If confirmed, this will require an
understanding for such a deviation as well further studies to
apply ab initio methods to heavier nuclei. NMEs should
ideally be verified experimentally by employing single and
double charge exchange reactions [71,72]. Chiral EFT
techniques have been used to reveal a potentially sizeable
short-range contribution in standard light neutrino exchange
[57] and to calculate exotic contributions [20,24].
In addition to the NMEs calculated in our approach we

also present the full set of leptonic PSFs for all relevant
isotopes, determined numerically including effects from the
finite nuclear size and electron cloud screening corrections.
This allows us to set updated limits on the effective
couplings of all possible short-range operators contributing
to 0νββ decay. Considering one operator at a time, the
current limits correspond to operator scales ranging
between 3 to 10 TeV, where the strongest sensitivity is
achieved for operators enhanced by pion-mediated correc-
tions, in agreement with previous analyses [24,117–119],
in our case arising from enhanced pseudoscalar form
factors. We further illustrate the interplay between different
contributions by considering the interference between the
standard light neutrino exchange with one short-range
contribution ϵI thus setting constraints on the combined
parameter space ðmββ; ϵIÞ. Finally, we apply the effective
operator framework to three example new physics scenar-
ios, namely the SM with sterile neutrinos, left-right
symmetry, and R-parity violating supersymmetry. Here,
we set updated constraints on simplified parameter spaces
and compare them with limits coming from other searches.
Searches for lepton number violating signatures, with

0νββ decay as the most prominent example, are crucial for
our understanding of neutrinos and physics beyond the SM
in general. Given that no clear sign of new physics has been
seen so far, short-range operators as those considered in this
work provide a model-agnostic means to probe the pres-
ence of lepton number violating physics. Due to the strong
suppression—the 0νββ decay rate scales as ∝ Λ−10—future
experimental advances increasing the sensitivity by up to
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two orders of magnitude to half-lives T0νββ
1=2 ≈ 1027−28 yr

will only result in modest improvements in constraining Λ,
see Fig. 6. Detailed analyses such as our work and [24] are
still important as these operator scalesΛ ≈ 4–18 TeV are in
a regime relevant for the LHC and potential future colliders.
If an exotic short-range contribution were to be observed, it
would indicate that light neutrino masses have their origin
around the TeV scale. It would also have profound
consequences on possible explanations of the matter-
antimatter asymmetry of the Universe, with the observation
of nonstandard 0νββ decay contributions disfavoring bar-
yogenesis mechanisms operating above the electroweak
scale [26,120].
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APPENDIX A: PARAMETERS OF THE IBM-2
HAMILTONIAN

A detailed description of the IBM-2 Hamiltonian is
given in [60,121]. For most nuclei, the Hamiltonian
parameters are taken from the literature [122–135]. The
new calculations are done using the program NPBOS [121].

TABLE X. Hamiltonian parameters employed in the IBM-2 calculation of the wave functions along with their references.

Nucleus ϵdν ϵdπ κ χν χπ ξ1 ξ2 ξ3 cð0Þν cð2Þν cð4Þν cð0Þπ cð2Þπ cð4Þπ ωνν ωππ ωνπ wν yν
76Ge [122] 1.20 1.20 −0.21 1.00 −1.20 −0.05 0.10 −0.05
76Se [123] 0.96 0.96 −0.16 0.50 −0.90 −0.10
82Se [123] 1.00 1.00 −0.28 1.14 −0.90 −0.10
82Kr [124] 1.15 1.15 −0.19 0.93 −1.13 −0.10 −0.10
96Zra 1.00 1.00 −0.20 −2.20 0.65 0.17 0.17 0.33
96Mo [125] 0.73 1.10 −0.09 −1.20 0.40 −0.10 0.10 −0.10 −0.50 0.10
100Mo [125] 0.55 1.00 −0.06 −1.20 0.40 −0.10 0.10 −0.10 −0.60 0.20 0.10
100Ru [126] 0.89 0.89 −0.18 −1.00 0.40 0.60 0.09 −0.13
110Pd [127] 0.78 0.60 −0.13 0.00 −0.30 0.20 0.04 0.00 −0.26 −0.29 −0.30 −0.26 −0.29 −0.03
110Cd [128] 0.92 0.92 −0.15 −1.10 −0.80 1.10 0.109 1.10 0.07 −0.17 0.16
116Cd [129] 0.85 0.85 −0.27 −0.58 0.00 −0.18 0.24 −0.18 −0.15 −0.06
116Sn [130] 1.32 −0.50 −0.22 −0.07 −0.06 0.04
124Snb 1.10 −0.30 −0.16 −0.20 0.30 0.02
124Te [129] 0.82 0.82 −0.15 0.00 −1.20 −0.18 0.24 −0.18 0.10
128Te [129] 0.93 0.93 −0.17 0.50 −1.20 −0.18 0.24 −0.18 0.30 0.22
128Xe [131] 0.70 0.70 −0.17 0.33 −0.80 −0.18 0.24 −0.18 0.30
130Te [129] 1.05 1.05 −0.20 0.90 −1.20 −0.18 0.24 −0.18 0.30 0.22
130Xe [131] 0.76 0.76 −0.19 0.50 −0.80 −0.18 0.24 −0.18 0.30 0.22
136Xeb 1.31 −0.04 0.01 −0.02
136Ba [131] 1.03 1.03 −0.23 1.00 −0.90 −0.18 0.24 −0.18 0.30 0.10
148Nd [132] 0.70 0.70 −0.10 −0.80 −1.20 −0.12 0.24 0.90 0.40 0.20
148Sm [132] 0.95 0.95 −0.12 0.00 −1.30 −0.12 0.24 0.90 0.05
150Nd [132] 0.47 0.47 −0.07 −1.00 −1.20 −0.12 0.24 0.90 0.40 0.20
150Sm [132] 0.70 0.70 −0.08 −0.80 −1.30 −0.12 0.24 0.90 0.05
154Sm [132] 0.43 0.43 −0.08 −1.10 −1.30 −0.12 0.24 0.90 0.05
154Gd [132] 0.55 0.55 −0.08 −1.00 −1.00 −0.12 0.24 0.90 −0.20 −0.10
160Gd [135] 0.42 0.42 −0.05 −0.80 −1.00 0.08 0.08 0.08 −0.20 −0.10
160Dy [135] 0.44 0.44 −0.06 −0.80 −0.90 0.08 0.08 0.08 −0.05 −0.15
198Pt [133] 0.58 0.58 −0.18 1.05 −0.80 −0.10 0.08 −0.10 0.00 0.02 0.00
198Hg [134] 0.55 0.55 −0.21 1.00 −0.40 0.08 0.37 0.25 0.16
232Tha 0.26 0.26 −0.05 −0.80 −1.45 0.20 0.20 0.20
232Ua 0.28 0.28 −0.05 −1.00 −1.30 0.12 0.12 0.12 0.20 0.10
238Ua 0.22 0.22 −0.05 −0.40 −1.30 0.12 0.12 0.12 0.20 0.10
238Pua 0.24 0.24 −0.05 −0.60 −0.05 0.12 0.12 0.12 0.02 0.05 −0.09

aParameters fitted to reproduce the spectroscopic data of the low lying energy states.
bGS parameters fitted to reproduce the spectroscopic data of the low lying energy states.
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They include energies, B(E2) values, quadrupole moments,
B(M1) values, magnetic moments, etc.. For the semimagic
nuclei 124Sn and 136Xe, we have obtained the parameters by
a fit to the energy of the low lying states using the same
procedure as in Ref. [130] for 116Sn. A compilation of the
used parameters is given in Table X.

APPENDIX B: SURFACE DELTA INTERACTION
STRENGTH VALUES A1 AND SINGLE-

PARTICLE AND HOLE ENERGIES

The reliability of single-particle and -hole energies as
well as the interaction strengths in connection with IBM-2
wave functions was studied in [66] by comparing recently

measured occupation probabilities of initial and final states
of interest in double beta decay. The pair structure constants
were generated as usual by diagonalizing the surface delta
interaction (SDI) in the two identical particle states, pp, nn,
where the strength of the (isovector) interaction, A1, is
obtained by fitting the 2þ − 0þ energy difference in nuclei
with either two protons (proton holes) or two neutrons
(neutron holes). The used single particle energies and A1

values are given in Tables XI–XIV.
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