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Abstract

Large, open-source datasets, such as the Human Connectome Project and
the Autism Brain Imaging Data Exchange, have spurred the development of
new and increasingly powerful machine learning approaches for brain con-
nectomics. However, one key question remains: are we capturing biologically
relevant and generalizable information about the brain, or are we simply
overfitting to the data? To answer this, we organized a scientific challenge,
the Connectomics in NeuroImaging Transfer Learning Challenge (CNI-TLC),
held in conjunction with MICCAI 2019. CNI-TLC included two classification
tasks: (1) diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD)
within a pre-adolescent cohort; and (2) transference of the ADHD model
to a related cohort of Autism Spectrum Disorder (ASD) patients with an
ADHD comorbidity. In total, 240 resting-state fMRI (rsfMRI) time series
averaged according to three standard parcellation atlases, along with clinical
diagnosis, were released for training and validation (120 neurotypical controls
and 120 ADHD). We also provided Challenge participants with demographic
information of age, sex, IQ, and handedness. The second set of 100 subjects
(50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity)
was used for testing. Classification methodologies were submitted in a stan-
dardized format as containerized Docker images through ChRIS, an open-
source image analysis platform. Utilizing an inclusive approach, we ranked
the methods based on 16 metrics: accuracy, area under the curve, F1-score,
false discovery rate, false negative rate, false omission rate, false positive
rate, geometric mean, informedness, markedness, Matthews correlation coef-
ficient, negative predictive value, optimized precision, precision, sensitivity,
and specificity. The final rank was calculated using the rank product for
each participant across all measures. Furthermore, we assessed the calibra-
tion curves of each methodology. Five participants submitted their method
for evaluation, with one outperforming all other methods in both ADHD and
ASD classification. However, further improvements are still needed to reach
the clinical translation of functional connectomics. We have kept the CNI-
TLC open as a publicly available resource for developing and validating new
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classification methodologies in the field of connectomics.

Keywords: Functional Connectomics, Disease Classification, ADHD,
Challenge

1. Introduction

Functional connectomics, or the study of whole-brain synchronization
maps, has become of increasing interest to the neuroscientific community
in recent years. For example, functional connectomics has provided valuable
insight into human cognition [1, 2], the system-level organization of the brain
over development and aging [3, 4], and whole-brain functional alterations in
disease or injury [5, 6, 7, 8, 9, 10, 11, 12]. Large, open-source initiatives,
such as the Human Connectome Project [13] and the Autism Brain Imaging
Data Exchange [14], have spurred the development of new and increasingly
powerful machine learning strategies to capitalize on these resources.

One popular goal in connectomics is to classify patients from controls.
However, objective comparisons of these algorithms across studies can be
challenging, due to variations in image acquisition, preprocessing pipeline,
and the specific cohort under consideration [15, 16]. Given these factors, the
question of whether a proposed model is capturing biologically relevant and
generalizable information about the brain, or simply overfitting to the data,
remains to be investigated. In addition to data inconsistencies, performance
is assessed using a restricted and non-standardized subset of evaluation met-
rics, further hindering comparisons across studies [17]. Similar to other fields,
scientific challenges provide a way to control for these issues and have been
conducted in various domains, such as image registration [18], lesion segmen-
tation [19, 20, 21, 22, 23], and estimation of clinical scores [24].

The Connectomics in NeuroImaging Transfer Learning Challenge (CNI-
TLC) described here tackles the issues of generalizability and clinical rel-
evance of functional connectomes by leveraging unique resting-state func-
tional MRI (rsfMRI) datasets of Attention-Deficit/Hyperactivity Disorder
(ADHD), Autism Spectrum Disorder (ASD), and Neurotypical Controls (NC).
ADHD is a chronic neurobehavioral disorder characterized by inattention, hy-
peractivity, and impulsivity that affects more than 6 million children world-
wide [25, 26]. In contrast, ASD patients typically exhibit problems with social
skills, communication, and abnormal behavioral habits [27, 28, 29, 30, 26].
While the hallmark behavioral manifestation of ADHD and ASD cohorts
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differ dramatically, there is a significant comorbidity between the two disor-
ders [31]. Inspired by this finding, we have developed a challenge framework
to investigate whether connetome-based features identified in ADHD patients
can be transferred to an ASD population for a classification task. Partici-
pants were asked to design an ADHD versus NC classification model using
rsfMRI time series and demographic measures from 100 and 20 examples of
each class for training and validation, respectively. In Task I of the Challenge,
we evaluated the classifiers on withheld ADHD and NC data (25 examples of
each class). In Task II of the Challenge, we assessed the classification perfor-
mance of the ADHD model on ASD patients, who have been diagnosed with
an ADHD comorbidity (25 examples of each class). Our unique Challenge
assesses both the ability of the method to extract functional connectivity pat-
terns related to ADHD symptomatology and how much of this information
transfers across clinical domains with an overlapping diagnosis. Evaluation
was performed using 16 different metrics, while applying cross-validation on
the test data, and participants were ranked relative to one another. In this
paper, we describe the Challenge data, organization, and detailed evalua-
tion. We also describe the methodology submitted by each participant and
the corresponding experimental results.

2. Materials and Methods

2.1. Patient Population

The data used for CNI-TLC were amassed retrospectively across multiple
studies conducted by the Center for Neurodevelopmental and Imaging and
Research (CNIR) at the Kennedy Krieger Institute (KKI) in Baltimore, MD
(see Appendix A for the list of study names and Johns Hopkins IRB approval
numbers). The overall cohort includes 145 children diagnosed with ADHD,
25 children with a primary diagnosis of ASD who also meet the diagnostic
criteria for ADHD, and 170 NC. All children are between 8-12 years of age
and are considered high-functioning based on having a full-scale IQ at or
above the normal range; the groups have been matched on age and full-scale
IQ. Detailed cohort characteristics are summarized in Table 1.

2.2. Clinical Assessment

Participants received an ADHD diagnosis if they met criteria for ADHD
using either the Diagnostic Interview for Children and Adolescents (DICA),
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Table 1: Cohort characterization. For each sample (Training, Validation, and Testing),

Controls were matched to patients for all demographics available (p > 0.05). FSIQ:

Wechsler Intelligence Scale for Children Full Scale Intelligence Quotient; EH: Edinburgh

Handedness. SD: Standard Deviation
All

Training Validation Testing

ADHD Control ADHD Control
Task I) ADHD Task II) ASD

Patients Control Patients Control

n 340 100 100 20 20 25 25 25 25

Sex 239 70 69 14 14 18 16 17 21

(Male; %) (70.3) (70.0) (69.0) (70.0) (70.0) (72.0) (64.0) (68.0) (84.0)

Age (years) 10.4 10.4 10.3 10.3 10.2 10.3 10.8 10.6 10.7

(mean (SD)) (1.3) (1.5) (1.2) (1.4) (1.2) (1.3) (0.9) (1.4) (1.4)

FSIQ 111.3 109.2 115.4 104.8 113.7 105.4 111.0 116.2 108.0

(mean (SD)) (12.7) (12.2) (10.4) (13.4) (14.9) (12.3) (11.0) (14.1) (14.9)

EH 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.6 0.7

(mean (SD)) (0.5) (0.5) (0.5) (0.5) (0.4) (0.6) (0.3) (0.7) (0.6)

Fourth Edition [32] or the Kiddie Schedule for Affective Disorders and Schizophre-
nia (K-SADS) for School-Aged Children-Present and Lifetime Version [33],
in addition to either (1) a t-score of 60 on the Inattentive or Hyperactive sub-
scales of the Conners’ Parent or Teacher Rating Scales-Revised Long Version
or the Conners-3 [34, 35], or (2) a score of 2 on at least 6 items on the Inat-
tentive or Hyperactivity/Impulsivity scales of the ADHD Rating Scale-IV,
Home or School Versions [36]. These tests are designed for children at the
age of 6-18 years and were administered by a trained psychologist in CNIR.
No additional instructions were given to either the children or examiners for
the purposes of this challenge.

Diagnostic criteria for ASD was assessed via two standard instruments:
the Autism Diagnostic Observation Schedule Version 2 (ADOS-2) [37] and
the Autism Diagnostic Interview-Revised (ADI-R) [38, 39]. Similar to K-
SADS, the ADOS-2 evaluation consists of both structured questions and un-
structured narratives. ADOS-2 is used to quantify both socio-communication
deficits, as well as repeated/repetitive behaviors. Once again, ADOS-2 was
administered by a trained psychologist in CNIR. In contrast, ADI-R is a
written questionnaire for parents and/or caregivers about the child. ADI-R
provides categorical results for three domains: language and communication,
reciprocal social interactions, and repetitive behaviors. The overall ASD
diagnosis is based on the summed dimensional scores for each battery.

Inclusion in the NC group required not meeting criteria for any diagnosis
on the DICA or K-SADS, having scores below clinical cut-offs on the parent
and teacher (when available) Conners’ and ADHD Rating Scales, as well as
having no immediate family members diagnosed with ADHD or ASD.
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In addition to diagnosis, we provided four demographic variables to chal-
lenge participants. These variables are age, sex, the Wechsler Intelligence
Scale for Children (fourth or fifth editions) Full Scale Intelligence Quotient
(FSIQ) [40], and the Edinburgh Handedness index [41].

2.3. Data Acquisition and Preprocessing

The rsfMRI data used in this challenge was acquired on a Philips 3T
Achieva scanner housed in the F.M. Kirby Research Center for Functional
Brain Imaging at KKI2. The acquisition protocol used a single shot, partially
parallel gradient-recalled EPI sequence with TR/TE 2500/30ms, flip angle
70◦, and voxel resolution 3.05× 3.15× 3mm3. The scan duration was either
128 or 156 time samples. Children were instructed to relax with their eyes
open and focus on a central cross-hair, while remaining still for the duration
of the scan. All participants completed a mock scanning session to habituate
to the MRI environment.

The rsfMRI data was preprocessed using an in-house pipeline developed
by CNIR and implemented in SPM-12 [42]. The pipeline included slice tim-
ing correction, rigid body realignment, and normalization to the EPI version
of the MNI template. The time courses were temporally detrended in or-
der to remove gradual trends in the data. CompCorr [43] was performed
to estimate and remove spatially coherent noise from the white matter and
ventricles, along with the linearly detrended versions of the six rigid body
realignment parameters and their first derivatives. From here, the data was
spatially smoothed with a 6mm FWHM Gaussian kernel and bandpass fil-
tered between 0.01-0.1 Hz. Finally, spike correction was performed using the
AFNI package [44], as an alternative to motion scrubbing.

We released average region-wise time series data for the CNI-TL Chal-
lenge, from which participants could compute both static and dynamic con-
nectivity measures. These average signals were computed based on three
standard parcellations: (1) the AAL atlas [45], which consists of 90 cor-
tical/subcortical regions and 26 cerebellar regions, (2) the Harvard-Oxford
atlas [46], which consists of 110 cerebral and cerebellar regions, and (3) the
Craddock 200 atlas [47], which is a finer parcellation of 200 regions. The
choice of atlases enabled participants to analyze the rsfMRI data at multiple
spatial scales. Fig. 1 illustrates our postprocessing workflow for a single par-

2http://www.kennedykrieger.org/kirby-research-center
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Figure 1: Pipeline of extracting data from a brain parcellation, which was provided for
challenge participants.

cellation. The mean time courses for each parcellation were aggregated into
a single data file for participants to use at their discretion.

2.4. Challenge Design

2.4.1. Data

Submissions to CNI-TLC were evaluated based on two classification tasks:
Task I - Primary Classification of ADHD versus NC; and Task II - Transfer-
ence Classification of ASD versus NC. The cohort was divided into training
(100 ADHD, 100 NC), validation (20 ADHD, 20 NC) and testing datasets
(Task I: 25 ADHD, 25 NC; Task II: 25 ASD, 25 NC). The training and val-
idation datasets only consisted of ADHD and NC subjects, in fulfillment of
Task I, and was made available for participants to download via the chal-
lenge website3. Training data was released in June 2019, and validation data
followed thirty days later. Each dataset was organized into top directories,
one for each subject. The subject directories included four .csv files, one con-
taining the demographic variables, and a separate file for each parcellation.
Testing datasets for both Task I and Task II (composed of NC, ADHD and
ASD patients with ADHD comorbidity) were not released to the public. The
patient and NC cohorts were matched on age, sex, FSIQ, and handedness in
each of the three datasets.

2.4.2. Submission Infrastructure

Participants were instructed to submit their trained models as Docker
images4. Docker is an emerging Platform-As-A-Service (PaaS) product that

3http://www.brainconnectivity.net
4http://www.docker.com
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provides a simple mechanism for bundling applications with all their required
dependencies in easily isolated components called containers. In this manner,
Docker containerized applications can be executed on all the major com-
puting platforms (Linux, Mac, and Windows) with no additional software
requirements besides Docker itself. By using Docker containers as the de-
ployment vector for the trained models, the problem of actually running
these models on a single evaluation system was addressed.

For our Challenge, participants were directed to clone a GitHub repos-
itory5. This repository contained all the basic skeleton components for
building a Docker image solution. In addition to the Docker components,
a dummy stub Python program, pl-cni challenge.py was provided as
a launching point for a solution. Participants could either code directly
into pl-cni challenge.py, import their existing code as a Python mod-
ule, or include a suitably compiled executable that can be called using the
os.system() function in Python.

The repository itself was created by running a cookie-cutter template
code6 that creates plug-ins for ChRIS7. The use of the ChRIS system had no
significant impact on participants other than defining a standard command
line interface contract.

All submissions were required to accept two positional arguments – an
inputDirectory that would contain the data, and an outputDirectory that
would store their model predictions. In addition, submitted solutions were
to expect the input directory to contain test data with the same folder struc-
ture as the released training and validation data, with subject diagnosis in-
formation excluded. Participants were instructed to write two text files into
the output directory: classification.txt containing binary classification
labels for each subject, and score.txt containing the probability score of
each corresponding label in classification.txt. Full instructions on how
to create, compile and execute a compatible Docker image for submission
were provided on the Challenge website. The Docker images were executed
on each test subject, one at a time. For consistency, all submissions were
evaluated on the same machine.

5https://github.com/aichung/pl-cni_challenge
6https://github.com/FNNDSC/cookiecutter-chrisapp
7https://chrisproject.org
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2.5. Participants

Five solutions were submitted before the deadline of the Challenge. A
brief summary of each method is given below. Additional details for each
method can be found in Appendix B.

Submission 1 (S1). MeInternational. The method is based on build-
ing classification pipelines by using permutations of functional connectivity
matrices, anatomical atlases, and classification algorithms [15]. From each
atlas and time series, correlation, covariance, partial correlation, precision,
and tangent embedding for functional connectivity were estimated. Clas-
sification was based on support vector machines (SVMs), linear regression
(l1 or l2 regularization), random forest, k-nearest neighbor, and naive Bayes
classifiers. Each combination was tested on the training data and evaluated
on the validation data set, where the best performing pipeline was chosen
based on its prediction accuracy score.

Submission 2 (S2). HSE. The core principle of this submission was
the utilization of eigenvalues of the normalized Laplacian. In brief, for each
connectome, the normalized Laplacian and its corresponding eigenvalues were
calculated. The full set of eigenvalues were subsequently used as features in
an SVM classification algorithm using a polynomial kernel.

Submission 3 (S3). ShefML. This solution consists of two stages: First,
pairwise region of interest (ROI) features, ROI-to-ROI, were extracted from
the rsfMRI time series by computing Tangent Pearson connectivity [48].
Then, an SVM was trained which is regularized by the statistical indepen-
dence [49] between the classifier decision scores and three types of demo-
graphic information: gender, age, and handedness score [50].

Submission 4 (S4). ShefML. In this approach, five types of features
were extracted from the time series by computing: mean and standard devi-
ation, Pearson correlation, Tangent [51], covariance [52], and Tangent Pear-
son [48] connectivity. Subsequently, five classifiers [50], one per feature, were
trained and classifications were combined by majority voting.

Submission 5 (S5). YaleIPAG. Here, an LSTM-based (long short-
term memory) network was used to learn directly from time-series data [53].
Twenty-two AAL ROIs were first selected based on consistent connectivity
differences between ADHD and controls in bootstrapped samples. The time-
series from these ROIs were input to an LSTM, with the demographic data
used in hidden and cell state initialization [54].
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2.6. Evaluation and Ranking

2.6.1. Challenge Evaluation Metrics

Taking an inclusive approach, we assessed multiple measures commonly
used in classification tasks, such as accuracy and area under the curve (AUC),
along with distributional measures, such as geometric-mean and optimized
precision. This approach provides an intuitive and robust characterization of
each submission. A full list of the utilized measures and their interpretation
is given in Table 2, while a detailed description of these measures can be
found elsewhere in the literature [55].

Table 2: Summary of evaluation metrics, including abbreviation (Abbr.) used, a short

description, and condition under which one participant outperforms another (Better if).
Measure Abbr. Description Better if

Accuracy Acc Ratio of correct predictions over the total number of higher

instances evaluated

Area under curve AUC Reflects overall ranking performance of classifier higher

F1-score F1 Harmonic mean between recall (sensitivity) and precision higher

False discovery rate FDR Fraction of misclassified positive samples in relation to the lower

number of the total positive classified samples

False negative rate FNR Also known as miss rate. Fraction of misclassified negative lower

samples in relation to the number of positive samples

False omission rate FOR Fraction of misclassified negative samples in relation to the lower

number of the total negative classified samples

False positive rate FPR Fraction of misclassified positive samples in relation to the lower

number of total negative classified samples

Geometric mean GM Geometric mean of sensitivity and precision higher

Informedness Inf Also known as Youden’s J statistic. It summarizes the true higher

positive and true negative rates of a classifier

Markedness Mark Summarizes the positive (prediction) and negative predictive higher

value of a classifier

Matthews MCC Correlation coefficient between the observed and predicted higher

correlation binary classification with values between -1 (total

coefficient disagreement) and 1 (perfect prediction)

Negative predictive NPV Fraction of correctly classified negative samples in relation higher

value to the number of the total negative classified samples

Optimized precision OP Measure aiming to simultaneously minimize the difference higher

in sensitivity and specificity, while maximizing their sum.

Precision is subsequently ”corrected” by the ratio of this

difference and sum.

Precision Pre Fraction of correctly classified positive samples in relation to higher

the number of the total positive classified samples

Sensitivity Sen Fraction of positive samples that are correctly classified higher

Specificity Spec Fraction of negative samples that are correctly classified higher

2.6.2. Comparison and Ranking Strategy

We first evaluated the model performances on the validation set to assess
the primary classification task of ADHD versus NC. This evaluation provides
a baseline measure of performance for each algorithm on data that has been
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made available to the participants. It also allows us to investigate the drop
in performance when presenting the classifier with unseen test data later on.

We utilized a 5-fold cross-validation scheme for statistical testing of each
submission on the unseen data. Namely, we “randomly” divided our testing
dataset into five equal sized, statistically indistinguishable (in terms of sex,
age, FSIQ, and handedness), disjointed folds8 and calculated the evaluation
metrics (see Table 2), using data from four of the five folds. This process
yields five quantitative values for each evaluation metric. The cross validation
procedure was repeated 100 times (on different random splits of the data),
resulting in a distribution of 500 values for each metric.

Our initial ranking was based on the median of the distributions, where
the ranking between participants was statistically evaluated using a pairwise
Wilcoxon test. Considering the total of 320 tests (ten comparisons between
challengers with 16 measures each for two classification tasks, i.e., ADHD
and ASD), we set the significance level to p ≤ 0.0001 (Bonferroni correction
of 0.05/320). Finally, we calculated the rank product (geometric mean) for
each participant, which gave us the final ranking of submissions.

In addition, we evaluated submissions based on calibration curves. With
calibration curves, we can gain an idea of the model’s behavior and confi-
dence in performing the classification tasks. These curves assess if the model
can reliably estimate the probability of the diagnosis by plotting the mean
predicted probability against the true probability for each user-specified prob-
ability bin. Here, we summarize the results of the cross-validation approach
as a single calibration curve using 10 bins of width 0.1, and fit a linear model
to the predicted probability against the observed probability for comparison.

3. Results

The patient cohort utilized in this challenge was on average 10.42 years
old, 70.3% male, with an average FSIQ of 111.3, and a handedness score
of 0.7. Neurotypical controls in training, validation, and test data were not
significantly different from their corresponding patient population in terms
of sex, age, FSIQ, and handedness (all p > 0.05).

The evaluation of the performance for all participants and datasets is
summarized in Table 3. Using the validation set performance as a baseline

8https://github.com/mdschirmer/MDS; [56]
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for the Primary Classification Task I (ADHD), we observed a large drop in
performance for participants S1, S3, and S4, across all metrics against the
test set. The performance of the methods submitted by participants S2 and
S5, however, remained relatively stable. For the Transference Classification
Task II (ASD with ADHD comorbidity), we see a further decrease in perfor-
mance compared with Task I, across all metrics and for all participants.
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Figures 2 and 3 illustrate the distribution of each evaluation metric for
each participant’s model on Task I and Task II, respectively. Each subplot
indicates which of the submissions performs best with respect to a specific
metric, as described in Table 2. The performance evaluation was based on
the cross-validation setup and significance between ranks are delineated.

Table 4 summarizes the participant rankings based on the results of the
metrics presented in Figure 2 and 3, including the best median for each
metric (minimum or maximum) across participants. The overall ranking for
Task I between ADHD and NC is as follows (participant (rank product)):
S5 (1.1), S2 (2.4), S4 (2.7), S1 (3.1), and S3 (3.6). The overall ranking for
the Transference Classification Task II between ASD and NC is as follows:
S5 (1.3), S2 (1.4), S1 (2.3), S3 (2.6), and S4 (3.6). In both Tasks, S5 and S2
consistently ranked first and second, respectively, in our evaluation.

Table 4: Rankings of each participant for each measure and both classification tasks, in-

cluding the best median for each metric across classifiers for ADHD and ASD test cohorts.
Rankings Best median metric

Task I - ADHD Task II - ASD
ADHD ASD

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5

Acc S5 S2/S4 S3 S1 S2/S5 S3 S1 S4 0.68 0.53

AUC S5 S2 S3 S1 S4 S5 S2 S1 S3 S4 0.66 0.56

F1 S5 S1 S2 S4 S3 S1 S2 S5 S3 S4 0.70 0.55

FDR S5 S4 S2 S3 S1 S2/S5 S1/S3 S4 0.33 0.47

FNR S1 S5 S2 S3/S4 S1 S2 S5 S3/S4 0.25 0.30

FOR S5 S2 S4 S3 S1 S2/S5 S3 S4 S1 0.30 0.47

FPR S5 S4 S2/S3 S1 S5 S2 S3 S4 S1 0.35 0.45

GM S5 S1 S2 S4 S3 S1 S2 S5 S3 S4 0.70 0.56

Inf S5 S2/S4 S3 S1 S2/S5 S3 S1 S4 0.35 0.05

Mark S5 S2/S4 S3 S1 S2/S5 S3 S1/S4 0.36 0.05

MCC S5 S2/S4 S3 S1 S2/S5 S3 S1/S4 0.35 0.05

NPV S5 S2 S4 S3 S1 S2/S5 S3 S4 S1 0.70 0.53

OP S5 S2/S4 S3 S1 S2/S5 S3 S1/S4 26.96 20.86

Pre S5 S4 S2 S3 S1 S2/S5 S1/S3 S4 0.67 0.53

Sen S1 S5 S2 S3/S4 S1 S2 S5 S3/S4 0.75 0.70

Spec S5 S4 S2/S3 S1 S5 S3 S2 S4 S1 0.65 0.55

Figure 4 shows the calibration curve for each submission and classifica-
tion task. A good classification model is represented by a sigmoid or step
function. Generally, we observe an expected positive trend, where subjects
with higher probability scores are more likely to be ADHD patients in Task I
(Figure 4A). For classifying ASD patients with ADHD comorbidity, most
methodologies predominantly assigned higher probabilities to controls (Fig-
ure 4B). Additionally, out of all submissions, three did not use the entire
predicted probability spectrum (S2, S3, S4), with a reversal in their linear
fit between Task I and Task II.
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Figure 2: Primary Classification Task I (ADHD versus NC) evaluation measure distribu-
tions for each participant. Statistical significance was determined based on pair Wilcoxon
test (ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001), with a
Bonferroni-corrected level of significance at p ≤ 0.0001.
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Figure 3: Transference Classification Task II (ASD versus NC) evaluation measure dis-
tributions for each participant. Statistical significance was determined based on pair
Wilcoxon test (ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001),
with a Bonferroni-corrected level of significance at p ≤ 0.0001.

4. Discussion

In this paper, we have described the setup, standardized assessment, and
results of the first Connectomics in Neuroimaging Transfer Learning Chal-
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Figure 4: Calibration curves for classification A) Task I (ADHD) and B) Task II (ASD).
The n indicates the number of subsets that contributed to the distribution within each
bin. Dashed lines represent the resulting linear regression from the data.

lenge, hosted at the 22nd International Conference on Medical Image Com-
putation and Computer Assisted Intervention (MICCAI) 2019 in Shenzhen,
China. The CNI-TL Challenge was designed to probe the generalizability
and clinical relevance of classification methodologies, which are now growing
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in popularity for functional connectivity data.
CNI-TLC combines two developmental disorders, ADHD and ASD, which

individually have complex yet distinct behavioral phenotypes and diagnostic
assessments. At the same time, the co-occurrence of these disorders is high
with many ASD children also exhibiting the stereotypical attention problems
and impulsivity of ADHD. In fact, connectomics studies have combined ASD
and ADHD populations to disentangle their joint clinical presentations, with
findings of both shared and distinct functional network features between
ADHD and ASD [57, 58, 59]. Our unique setup extends the conventional
notion of “transfer learning” to further probe this phenomenon. Rather
than transferring just the model architecture optimized for one cohort and
re-training it on a second cohort, we transfer the learned representations
themselves. In this manner, we test whether a robust symptomatology can
be learned for ADHD, and if so, whether it can also be extracted in a co-
morbid population. Furthermore, our Challenge setup is in line with recent
trends in computational neuroscience to develop methods that learn from
multiple populations, so as to increase their clinical relevance [60].

4.1. Primary Classification Task I - ADHD versus NC

No method performed best nor worst on all metrics as shown in Table 4.
However, in three out of five submissions, we observed a significant drop in
performance between validation and test data, whereas methods S2 and S5
were able to retain their performance. A drop when moving from seen to
unseen data in the evaluated metrics is to be expected, however, considering
the even split between patients and controls, many of the methods general-
ized to near-chance classification accuracy. Furthermore, the validation and
test datasets were matched to the training data on all phenotypic variables.
Hence, Table 4 suggests an overfitting to the released data.

We can further differentiate the methodologies based on the results of
the calibration curves. Three out of five classifiers (S2, S3 and S4) produced
a very narrow range of probabilities for classification (around 0.5 ± 0.1),
whereas the two remaining classifiers utilized (almost) the full probability
spectrum. Not utilizing the full predicted probability spectrum may reflect
the models’ uncertainty in classification and could potentially lead to mis-
classification in case of “noise” in the data. Thus, S5 demonstrated the
overall best performance on unseen data. Furthermore, the calibration curve
for S5 vaguely resembles a sigmoidal shape with an inflection point around
a predicted probability of 0.6.
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4.2. Transference Classification Task II - ASD with ADHD Comorbidity ver-
sus NC

Only one method (S5) exhibited the correct trend of predicted probabil-
ities in classifying ASD patients with ADHD comorbidity (Figure 4B). All
other methodologies predominantly assigned a higher probability of disease
for NC, than for ASD patients. This may highlight the difficulties of achiev-
ing generalizability in these models if other comorbidities are present, and
further agrees with our quantitative ranking of methodologies.

Overall, the large decrease in performances between Task I and Task II
(Table 3), along with differences in the calibration curves (Figure 4) have two
likely explanations. First, the models are overfitting to the released datasets.
Second, the predictive rsfMRI features learned for ADHD do not transfer
onto the ASD cohort with an ADHD co-morbidity, either because the latter
has a unique neural phenotype, or because the commonalities between the
disorders are overwhelmed by other signatures in the rsfMRI data.

4.3. Approaches and Considerations for Future Challengers

While we cannot state unequivocally one submission that performed the
best across all evaluation metrics in both Tasks (see Table 3), we can draw in-
ferences from our submissions that may help to improve future developments
of connectomic classification methodologies.

Connectivity matrix estimation varies across rsfMRI connectome stud-
ies and has been shown to affect classification performance [15]. This lack of
consensus in the field is reflected in our submissions - with each method using
a different type of connectome as input. The same observation can be made
for choice of atlas, which can also influence performance [15]. Interestingly,
none of the CNI-TLC submissions used traditional graph metrics [61], such
as node degree, centrality, and small-worldness, which are ubiquitous in func-
tional connectivity literature. Given that machine-/deep-learning methods
can utilize big data during training, utilizing connectome data ‘as is’ seems
intuitive, and it may be that traditional graph metrics are not favored for
collapsing the number of data points in a time series. Even so, there may
be advantages to including metrics that characterize complex global and
topological properties unique to brain networks which may not be directly
interpreted from raw connectivity matrices or timeseries data.

Despite the growing popularity of deep-learning methods, only one sub-
mission used an end-to-end deep-learning framework. Instead, the most
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common classifier among Challenge submissions was the support vector ma-
chine [62]. Ultimately, the deep-learning approach (S5) had the highest over-
all rank. Part of the reason may be attributed to an initial feature selection
being performed and using only the most discriminative connections as in-
put to the classifier. In addition, they employed a dynamic model that can
capture key temporal information in the rsfMRI signal. The second place
submission on classification Task I, in contrast to others, relied on the nor-
malized graph Laplacian (S2). The graph Laplacian and its eigenspectrum
enable a mapping of discrete data (a network) into vector spaces and mani-
folds, and their advantages have been greatly investigated, e.g., in fields such
as clustering [63]. This form of network representation has also found its way
into connectomes and may have potential to capture further discriminative
information [64, 65, 66, 67]. These data filtering or manipulation techniques
are effective for their robustness to overfitting [68] and may be a reason for S5
and S2 achieving the best generalization performance from Task I to Task II.

We also observed that not all available information was utilized by par-
ticipants. While the winning algorithm pre-selected the most discriminating
features, this approach could be extended to feature selection across multiple
atlases. This observation highlights the importance of including prior knowl-
edge in developing classifiers for clinical tasks. Generally, we observed that
most of the classifiers did not cover the full predicted probability spectrum.
While this calibration may not be directly related to a classifier’s perfor-
mance on the actual task, it can serve as a proxy for assessing whether an
algorithm is extracting meaningful information from the data and can reveal
issues in the classification process.

4.4. Challenge Contributions

The data used for this Challenge represents one of the largest collections
of rsfMRI data acquired at a single site for three different cohorts (ADHD,
ASD, and NC). The data was carefully and consistently collected on a single
scanner model (Philips Achieva) by researchers at KKI. The in-house pre-
processing pipeline is also standard in the field and included intermediate
manual checks for data quality. We note that a subset of the rsfMRI data
has been released through ABIDE [69] and ADHD-2009. However, we were
careful to ensure that the testing set contained only private data that had

9http://fcon 1000.projects.nitrc.org/indi/adhd200/results.html
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never been released. Each of our training, validation, and testing datasets
were matched on demographic variables, in order to remove extraneous con-
founds. Finally, we opted to release the average time series from the rsfMRI
data, rather than static or dynamic connectivity matrices, to provide more
flexibility for participants. Likewise, we used three popular atlases to provide
a range of spatial resolutions.

In order to standardize our evaluation, we implemented a novel frame-
work for participants to submit pre-trained models as Docker images. The
resulting Docker image from our framework also doubles as a plug-in com-
patible with the ChRIS platform10, a pervasively open source framework that
utilizes cloud technologies to democratize medical analytics application de-
velopment. ChRIS allows researchers the ability to simply deploy the same
application they have already developed in a cloud infrastructure with ac-
cess to more data, more computational resources, and more collaboration to
drive medical innovation, while standardizing healthcare application devel-
opment. Subsequently, our approach gives participants the option to share
their pre-trained model with the wider medical imaging research community.

One novel aspect of our Challenge, in comparison to current practices, is
the large array of evaluation metrics used to assess the performance of each
algorithm. This decision was motivated by a lack of consensus in the field
about which metric is the “best” for evaluation, as it can be seen through
the plethora of assessment metrics [55]. Importantly, each metric assesses
different aspects of an algorithm’s performance. Another key strength of
our evaluation procedure is that the test data is kept private. The unseen
test data allows us to probe model overfitting and provides an objective
comparison between algorithms.

With the above contributions, CNI-TLC has maintained and followed
guidelines specifically outlined for challenges advocated by MICCAI with
the intention of upholding transparency and fairness [17].

4.5. Future Work

One of the main takeaways of our CNI-TL Challenge is that significant
improvements are necessary in order to translate functional connectivity into
clinical practice. Considering the performance across all participants sum-
marized in Table 4, the overall scores are relatively low, with even the best

10https://chrisproject.org

21

https://chrisproject.org


results on the ASD cohort closely resembling chance in most metrics.
The CNI-TL Challenge highlights some important recommendations for

future work on classification using functional connectivity. For example, our
Challenge demonstrates the well-known issue of model generalizability to
unseen data. This result supports the general recommendation that the data
should be split into training, validation, and testing sets, with the testing
set evaluated only once at the end of the study. Accordingly, we withheld
the test set from CNI-TLC participants and continue to do so from the
public, allowing the continuation of the Challenge, while methodologies can
be further evaluated through the ChRIS platform.

By pooling submissions to solve the same problem, our Challenge has
demonstrated the diversity and creativity of methods developed to use func-
tional connectomes for classification. With specifics to model- and neural
network-based methods, CNI-TLC further highlighted the need for a consen-
sus on a series of experimental design tests to understand the influence of
data representation (i.e. matrix estimation type, atlas, thresholding) in rela-
tion to an approach, disease, or dataset. Given the huge effort in recent years
to amass and coalesce data from multiple sites, perhaps a similar ethos of
combining and sharing efforts and approaches is equally necessary to tackle
the neuroimaging challenges of today.

In recognition of the above points and of the role that challenges play in
the field, we will keep the CNI-TL Challenge available and online for scientists
to continually test their approaches. Specifically, we provide a website11 on
which participants can upload new solutions as ChRIS plug-ins, with an
automated evaluation infrastructure “behind the scenes” offering dynamic
feedback on the performance of the model on the test set. Importantly, the
test data used is not exposed, thus providing a fair baseline from which to
measure comparative performance.

5. Conclusion

The CNI-TL Challenge is an important step in the field of connectomics.
First, it demonstrates the necessity of objective evaluation to assess general-
izability to unseen data. Second, it goes beyond a single task-optimization
setting to address the key question of whether we are capturing biologically

11https://fnndsc.childrens.harvard.edu/cnichallenge
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meaningful phenomena. Here, we showed that the classification performance
of all methods dropped nearly to chance on a patient population with the
target disease as a comorbidity. This result underscores the need for fur-
ther work to reach clinical translation of functional connectomics for dis-
ease identification. With the training and validation data remaining publicly
available, and the test data accessible through an online evaluation platform,
CNI-TLC facilitates continual development of new classification methods for
connectomics.
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Appendix A.

Data used in this challenge were drawn from retrospective data acquired
at the Kennedy Krieger Institute. The associated study names and IRB
approval numbers are as follows:

1. Neurologic Basis of Inhibitory Deficits in ADHD (IRB 02-11-25-01)

2. Anomalous Motor Physiology in ADHD (IRB NA 00000292)

3. Deficient Response Control in ADHD (IRB NA 00027428)

4. Edden MRS (IRB NA 00088856)

5. Rosch Delay Discounting in ADHD (IRB 00032351)

6. Seymour Neurobehavioral Correlates of Frustration in ADHD (IRB
00063119)

7. Motor Skill Learning in Autism (IRB 03-05-27-10)

8. Motor Skill Learning in Autism: Assessment and Treatment of Altered
Patterns of Learning (IRB NA 00027073)

9. Tactile Adaptation in Tourette’s Syndrome (IRB NA 00090977)

Appendix B.

Detailed description of the methodology used by each submission.

Submission (S1) - MeInternational - Linear Support Vector Machine Frame-
work to Predict Abnormal Functional Connectivity

Team: H. Irzan, M. Htel, S. Ourselin, N. Marlow, A. Melbourne
The team evaluated different pipelines to select the best combination of

functional connectivity metrics, atlases and classification algorithms based on
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prediction accuracy. The nodes of the functional connectome are the individ-
ual atlas defined ROIs. The authors utilized the three different anatomical
brain atlases (Craddock200 with 200 ROIs, Harvard Oxford with 110 ROIs,
and AAL with 116 ROIs) and examined correlation, covariance, partial corre-
lation, precision, and tangent embedding as metrics for functional connectiv-
ity. The team investigated l1 and l2 norm SVMs, linear regression with either
l1 or l2 regularization, random forest, k-nearest neighbor, and naive Bayes
classifiers as classification algorithms. Pipelines were built by using permuta-
tions of functional connectivity matrices, anatomical atlas, and classification
algorithms as in [15]. The performance of each pipeline was evaluated based
on its prediction accuracy score on the validation set. Figure B.5 shows the
main steps of the methodology. The best performance was achieved using the
AAL atlas, correlation metric, and SVM with l2 regularization and penalty
parameter of the error term C = 3−5, as highlighted in red in Figure B.5.

Figure B.5: Classification pipeline. In step 1, time series are produced by extracting
the mean time courses of the preprocessed rs-fMRI using three anatomical atlases (Crad-
dock200, Harvard Oxford, and AAL). These were provided as part of the challenge. In
step 2, the time series are transformed into functional connectomes by using five matrix
estimation methods. The functional connectomes are employed to perform supervised
learning task with seven classifiers in step 3 and perform class prediction in step 4. The
pipeline highlighted in red demonstrated the best classification accuracy on the test set.
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Submission 2 (S2) - HSE - Classification of ADHD disorder Against Healthy
Based on the Spectra of Normalized Laplacians

Team: E. Levchenko
The resting state time-varying signals of the rsfMRI data can be con-

sidered as a graph (connectome) [70]. Here, for each subject, a correlation
matrix Wij was calculated between each pair of ROIs i and j, using the Pear-
son correlation coefficient. First, the main diagonal in W and all negative
values Wij < 0 were set to zero, i.e. the graph was reduced to its positive
weight subgraph (see e.g. [71]).

Graph theoretical studies have widely utilized the normalized Laplacian
to characterize networks (see e.g. [72, 65]). The normalized Laplacian matrix
L is defined as

L = D−1/2(D −W )D−1/2, (B.1)

where each node in diagonal matrix D is given as di =
∑

j Aij. The nor-
malized Laplacian has several useful properties - one of them being that the
eigenvalues are between 0 to 2 [72].

In this challenge, rsfMRI time series data were provided based on multiple
atlases with different sizes for each subject. Here, the normalized Laplacian
L was calculated for each subject and atlas independently. The distributions
of eigenvalues of matrix L for each atlas were concatenated into one feature
vector of length 426 for each subject. This feature vector serves as input for
the classification problem, which was addressed using an SVM algorithm with
a polynomial kernel. The hyperparameters were optimized on the provided
training set and the classification accuracy was obtained on the validation
set using 10-fold cross-validation.

Submission 3 (S3) - ShefML - Domain Independent SVM for CNI Challenge

Team: S. Zhou, M. Kunda, H. Lu
This solution learns a model via a two-stage pipeline: feature extraction

and classifier training. For the feature extraction stage, Tangent Pearson
(TP) [48] is applied to extract features from resting-state time-series of the
AAL atlas. Specifically, as illustrated in Fig. B.6, Pearson correlation of the
ROI-to-ROI relationship for each subject is computed first. Then tangent
correlation analysis [51] is performed to learn the group-level features of the
brain network correlations, i.e. the connectivity of connectives. Additionally,
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Figure B.6: Extracting Tangent Pearson connectivity features from resting-state fMRI
time-series.

the mean and standard deviation of each time series are concatenated to the
TP features.

For classification, it is assumed that the decisions (patient or control)
made by a classifier should be independent to subjects’ information, such as
gender and age, and therefore Side Information Dependence Regularization
(SIDeR) learning framework [50] is used to leverage the subjects’ phenotype
information for model training. The learning framework is given by

min
f
L(f(Xl),Y)︸ ︷︷ ︸

Empirical risk

+ σ‖f‖2K︸ ︷︷ ︸
Model complexity

+ λρ(f(X),D)︸ ︷︷ ︸
Side information dependence

,

(B.2)
where ρ(·, ·) denotes a statistical independence metric, σ and λ are hyper-
parameters, Xl, Y, X, D denote the labelled instances, training labels, all
available instances, and side (phenotypic) information, respectively. Three
kinds of subject side information (gender, age, and handiness score) are se-
lected and encoded as the matrix D, where gender is encoded as 1 (male) and
−1 (female), and the age and handedness scores are normalised to zero mean
and unit variance. Empirically, Hinge (SVM) loss, `2 norm, and Hilbert-
Schmidt Independence Criterion (HSIC) [49] are employed for L(·, ·), ‖f‖2K ,
and ρ(·, ·), respectively. Therefore, the classification algorithm is a semi-
supervised SVM trained on the labelled data, with the coefficients regularised
by the HSIC between the classifier decision scores and subject phenotypic in-
formation.

Submission 4 (S4) - ShefML - Ensemble Model for CNI Challenge

Team: S. Zhou, M. Kunda, H. Lu
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This approach contains three steps of analysis: feature extraction, classi-
fier training, and ensemble. In the first step, five different type of features
are extracted via computing the mean and standard deviation, Pearson cor-
relation, tangent [51], covariance [52], and tangent Pearson correlation [48]
from the fMRI time-series data of the AAL atlas. In the second step, five
classifiers are trained on each type of feature extracted in step one respec-
tively. The technical details here are exactly the same as in the classification
method of S3 (see section Appendix B - Submission 3), which can be viewed
as an alternative approach of this solution. In the last ensemble step, the
final predictions are made by summarising the predictions given by the five
classifiers from step two via majority voting. The pipeline is summarized in
Figure B.7.

Figure B.7: The learning pipeline of Submission 4. Multiple features based on varying
definitions of connectome creation were utilized in individual classifiers. Individual pre-
dictions were merged using majority voting.

Submission 5 (S5) - YaleIPAG - Learning Generalizable Recurrent Neural
Networks from Small Task-fMRI Datasets

Team: N.C. Dvornek, J. Zhuang
The method (Fig. B.8) is based on Dvornek et al. [54], which aims

to learn generalizeable recurrent neural networks from small fMRI datasets.
An LSTM-based network learns directly from the ROI time-series data, while
the demographic data is incorporated through subject-specific initialization
of the LSTM hidden and cell states.

28



Using the AAL atlas, ROI selection was first performed by keeping ROIs
whose connectivity (i.e., correlation) was consistently significantly different
between ADHD and controls groups (two-sample t-test, p < 0.05) in 500
random subsamples of the data, using 90% of the training subjects in each
subsample. Connectivity was considered consistently different if the p-value
was in the top 2% of smallest p-values in each of the 500 subsamples. This
process resulted in 22 ROIs.

The network architecture consisted of an LSTM layer withM = 32 hidden
units and T = 24 timesteps (60s window), whose outputs were sent to a
shared (across time) fully-connected layer with 1 node, followed by mean
pooling and a sigmoid activation function to give the probability of ADHD.
Time-series data from the 22 ROIs was used as input to the LSTM [53], while
demographic data was used for LSTM state initialization [54]. Specifically,
demographic data was input to two fully-connected layers with M nodes
each, representing the initial hidden and cell state of the LSTM.

To improve robustness, 10 models were trained using 10-fold cross-validation
splits of the training dataset, with the validation dataset used to determine
when to stop training. To predict on a new subject, all possible 60s windows
of the time-series were input to the models to get a binary ADHD/control
prediction for each window. The subject-level probability of ADHD for a sin-
gle model was the proportion of windows labeled as ADHD for that model.
Finally, the probability of ADHD for a given subject was computed as the
mean of the 10 models’ predictions.

Figure B.8: Pipeline overview. A. Top AAL ROIs with pairwise correlations were selected
which consistently differed between ADHD/NC using t-tests and repeated subject sub-
sampling (90%). B. Ten LSTM models were trained using 10-fold split with top ROIs as
input. C. Prediction of each subject using all 60s windows and model ensembles.
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