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Abstract

This paper introduces a framework for gesture and action recognition based on the
evolution of temporal gesture primitives, or subgestures. Our work is inspired on the
principle of producing genetic variations within a population of gesture subsequences,
with the goal of obtaining a set of gesture units that enhance the generalization capa-
bility of standard gesture recognition approaches. In our context, gesture primitives are
evolved over time using dynamic programming and generative models in order to recog-
nize complex actions. In few generations, the proposed subgesture-based representation
of actions and gestures outperforms the state of the art results on the MSRDaily3D and
MSRAction3D datasets.

1 Introduction
Gesture and human action recognition are two widely studied topics in computer vision.
Great advances have been reported in the last few years [1], mainly boosted by the release
of the Kinect sensor [27]. Most of existing recognition methods learn gesture/action models
that attempt to capture and recognize whole gestures (i.e., an holistic approach). Classical
approaches under this scheme are those based on dynamic time warping (DTW) [3] and
hidden Markov models (HMM) [28, 34].

Although the previous methods have obtained high performance in several domains, re-
cent research is moving towards approaches that model the problem in terms of gesture
primitives (subgestures) [14, 19, 20, 23, 33]. The underlying assumption of this type of
methods is that whole gestures are composed by primitives (that can be shared or not among
gestures from different categories), and the hypothesis is that learning with primitives leads
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to better recognition performance. Whereas the subgesture-based techniques have proved
to be successful, it remains open the question on how to define/learn subgestures and, more
importantly, how to perform inference using subgesture models.

This paper describes a novel approach for human action and gesture recognition based
on subgesture modeling. Unlike other primitive modeling approaches, our proposal learns
subgestures by searching for temporal patterns that improve recognition performance when
used to represent and classify complex gestures and actions. An evolutionary algorithm is
implemented for this purpose, with adhoc variation operators suitable for learning primi-
tive recognizers of actions/gestures. This algorithm takes as reference two standard methods
for learning from sequential data: DTW and HMMs. Besides learning the primitives from
scratch, it determines the inference procedures for DTW and HMM when using subgestures.
The proposed framework is evaluated in MSRDaily3D and MSRAction3D datasets, outper-
forming state of the art results.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes the evolutionary framework for learning subgestures. Next, Section 4
reports experimental results obtained with the evolved subgesture models. Finally, Section 5
summarizes our findings and outlines future work directions.

2 Related Work
Traditional gesture recognition methods were based on templates (e.g., MHIs [2]), sequence
alignment (e.g., DTW [3]) or statistical sequential-modeling (e.g., HMMs [28, 34]). Because
of its effectiveness, DTW and HMM based methods are still among the most used techniques
nowadays [13, 18, 21]. DTW-based methods align, via dynamic programming, sequences of
different length to reference gesture models. The goal is to find the alignment that minimizes
a cost given by a distance measure between elements of the sequences. HMMs on the other
hand, are generative models, typically applied to sequential decision problems. Observations
sequences are assumed to be generated by a hidden stochastic process.

Despite its effectiveness, traditional gesture recognition methodologies approach the
problem in a holistic way, where gestures are processed as a whole. Results in related fields
with part-based techniques (e.g., in object detection [8] and action recognition [26]) have
inspired researchers to build solutions based on subgesture models. For instance, in [19]
HMMs based on subgestures were proposed. However, subgestures were manually provided
by the users. In [20] a HMM was used to learn subgestures, althought the model was only
applied to the problem of hand gesture recognition. In [29] it was proposed a method for seg-
menting gestures into subgesture units at the frame level. In [23] the authors proposed to use
DTW for subgesture modeling, but no results were reported. In [4] subgesture units (defined
as cuboids) were learned together with their relationships (using Allen’s relations) under a
graph-learning framework. Recently, in [33] a relational model for action recognition using
dynamic-keyposes was proposed.

Some methods base on key pose/frame extraction [17, 25, 36] in order to learn a subset
of key frames that are highly representative and discriminative for an action class. In [36] an
information-theory criterion is adopted for selecting keyframes, whereas in [17] it is used a
boosted-based criterion. In [25] a max-margin formulation of the problem is proposed. Very
recently, evolutionary algorithms have been also developed for keyframe extraction [5, 6]. In
these works, a bag-of-key-poses representation was adopted and an evolutionary algorithm
was used to select the number of key-poses for the vocabulary (using k−means for cluster-
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ing), the training set, features and parameters of the model (using DTW for recognition).
All of these methods look for a subset of frames, whereas in subgesture modeling we aim
at learning spatio-temporal units (subgestures). On the other hand, the above works assume
and demonstrate that class-specific key poses/subgestures give a good performance. Never-
theless, we include the fact that some classes may contain or share similar subgestures [23].
Under this additional assumption, our method also reaches the state of the art performance
and provides considerable improvements in gesture and action recognition domains.

In this work, a genetic algorithm is used to evolve gesture primitives integrated into an
action recognition framework coupled with either DTW or HMMs. Different from most of
the work reviewed in this section, our approach obtains dynamic subgestures (i.e., sequences
of frames of different lengths) and simultaneously learns the parameters of the recognition
model (either DTW or HMM).

3 Training Dynamic Subgestures
This section describes the methodology to automatically learn gesture primitives (hereinafter
referred to as subgestures). Consider a training data set XT = {xT

1 ,x
T
2 , ...,x

T
n }, where each

xT ∈ XT is a sequence example of a gesture. Similarly, consider a validation data set
XV = {xV

1 ,x
V
2 , ...,x

V
m} of gesture sequence examples. Both XT and XV are subsets of a data

set, whose sequence examples belong to different classes C = {c1,c2, ...,cg}. Our goal is
to find a subgesture set S = {s1,s2, ...,sk} from XT , being si a sequence representation of
the subgesture i, that maximizes the recognition performance of gestures in XV , given a
particular gesture recognition method (see Algorithm1 1).

Data: Population P; Training data XT ; Validation data XV

Result: Models of k subgestures S for each individual and its score
Current generation:
foreach new unique valid I in the population P do

k,segments← decode(I);
XT

seg← getDataPartitions(XT ,segments);
S← k-meansDTW (XT

seg,k); // Section 3.2

if use dynamic programming then
R← getResizedClassModels(XT ,S); D← getDissimilarities(S);1

M← getU pdatedCosts(R,S); DV ← getU pdatedCosts(XV ,S);
1

// Figure 2
ω ← addParamsToStruct(M,D);

else if use generative model then
DT ← getU pdatedCosts(XT ,S); DV ← getU pdatedCosts(XV ,S);

1
// Figure 2

M← learnGM(DT ,ω);
ω ← addParamsToStruct(M);

end
s,ω∗← g(DV ,ω); // Section 3.3

end
Algorithm 1: Pseudocode for learning Subgesture Models at each generation

3.1 Evolutionary Optimization

Let P = {I1, I2, ..., Il} be a population of l individuals, each one composed of 1+2N genes.
The first gene refers to the number k of subgestures and the remainder 2N genes refer to
pairs of start-length segments from XT . Initially, there is a probability Ps of generating

1The lines having more than one instruction in Algorithm 1 can be computed in parallel.
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Figure 1: Representation of an individual I formed by 1+ 2N genes: k for the number of
subgestures, XT

seg the set of k f pair-wise generated segments, and 2N−2k f empty genes.

each pair-wise segment. Those candidate segments are generated via a random selection
over the whole continuous sequence XT (i.e. the concatenation of all training sequences),
ensuring that the length of each possible segment is within [nmin,nmax] frames. Thus, each
individual I has k f ≤ N pair-wise generated segments. Finally, the value of the first gene is
randomly chosen between the range [k0,k f ], so that k0 ≤ k ≤ k f . It means that the number
of k allowed clusters is set depending on the generated segments. The training procedure
ignores the remaining 2N−2k f empty segments in the fitness function. Figure 1 shows the
representation of an individual.

3.1.1 Fitness function

The goal of the proposed genetic algorithm is to maximize the score given by the evalua-
tion function, described in Section 3.3. It consists of obtaining a measure of performance
for the learned models, expressed in terms of subgestures, over validation sequences in the
classification task. Section 3.2 provides details of the aligned temporal clustering method
developed to obtain subgestures. Once subgestures are computed, we provide either dynamic
programming or generative model approaches to learn and evaluate the subgesture models.

Dynamic Programming: As presented in Algorithm 1, we obtain a model for each
class represented in subgestures. Each subgesture within the set S = {s1,s2, ...,sk} is the
centroid sequence obtained from the k−meansDTW algorithm. Therefore, we design each
class model mc ∈M, where M is the set of class models, by 1) computing rc ∈ R as the mean
of all resized training samples of each class, where R is the set of all resized training samples,
and 2) representing rc in subgestures. This procedure is done by means of a backward loop
over the DTW warping paths (see Figure 2). On the other hand, we compute the dissimiliarity
matrix as:

D = W+Wᵀ, s.t. W =
1
γ


w11 w12 ... w1k
w21 w22 ... w2k
. . ... .

wk1 wk2 ... wkk

 , (1)

where W is a squared matrix obtained from aligning all subgestures among them. This is, to
compute each element as the DTW cost by:

wi j = DTW (si,s j) = minΩ{
P

∑
p=1

dp,Ω =< v1,v2, ...,vP >}, (2)

where dp is the euclidean distance between feature vectors sẋ
i and sẏ

j given the coordinates of
the warping path vp = (ẋ, ẏ) in Ω. Then, each element of the matrix W is normalized w.r.t.
the maximum cost value γ of all elements w ∈W. To express both each class representative
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Figure 2: Graphical example of the computation of KM and KT from the backward loop over the
DTW warping paths Ω (best seen in color). Input sequence x is aligned to the subgesture sequences
from S so as to obtain the k updated cost vectors f that construct the matrix K. In the different
modules of our approach we use the common DTW alignment that initializes the first row and column
of the DTW matrix as infinity, which indicates that the warping path goes from the first position until
the last position of the DTW matrix. In this current step, however, to compute each f, we initialize
first DTW row to zeros to compute multiples warping paths and perform backward search, starting
from the last position of last row and stopping when the path reaches the first row. While computing
the backward path, we prioritize the left-steps when the neighbor positions have same cost values, in
order to maximize the length of the paths. Finally, we assign to each position of f the minimum cost
values of the paths found that involves that position. We refer to matrix K as KM and KT when input
sequences are from the training and validation (or test) set, respectively. The vector ~m is the final input
sequence represented in subgestures, i.e. from the arguments obtained in Eq. 3. Figure 4 shows two
real examples of ~m, identifying subgestures in real skeleton-based gesture sequences.

sequence rc and each validation sequence xV in terms of subgestures, we assign to each frame
f the subgesture identifiers that give the minimum costs, respectively, as:

i = argmin( ~km
f
) , j = argmin(~kt

f
); (3)

where ~km
f

and ~kt
f

are vectors of length k subgestures corresponding to the columns of the
cost matrices KM and KT for the current training and validation sequences, respectively
(see description in Figure 2). Therefore, the set of arguments i∗ = argmin( ~km) and j∗ =
argmin(~kt) are the subgesture identifiers that construct the class models mc ∈ M and the
validation sequences dV ∈ DV in terms of subgestures. Then, final evaluation is obtained as:

DTW (mc,dV ) = minΩ{
℘

∑
ρ=1

D(iρ , jρ ),Ω =< v1,v2, ...,v℘ >}. (4)

Note that the expression of Eq. 4 takes the same form as Eq. 2, but instead of using the eu-
clidean distance, each distance D(iρ , jρ) in the DTW warping path considers the similarities
among subgestures.

Generative models: Still looking at algorithm 1, our generative model deals with 1D
discrete sequences. The first step is thus to obtain discrete representations of training and
validation sequences. Similarly to the DTW approach and the Figure 2, we represent each
training and validation sequence in terms of subgestures using Eq. 3 so as to construct the
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discrete sequences DT and DV . This is, therefore, how we represent the observations of the
HMM from the discrete sequences in DT and DV , given the original sequences in XT and XV ,
respectively. Then, considering DT as the set of training sequences, we train every HMM for
each class so as to learn our generative models.

3.1.2 Genetic operators

We consider standard selection, crossover and mutation operators from [9]. Specifically, we
apply these operators to all genes of each individual (i.e. k clusters and N segments). Before
applying the mutation operator, however, each of the N segments has again a probability Ps
either to add if it is empty, or to delete if it already exists. The offspring also requires to
meet several constraints that might be violated once we apply these standard genetic opera-
tors. To ensure they are met, we apply a repair algorithm to fix the new incorrect segments
immediately after applying the crossover and mutation operators. Basically, it consists of a
brute force criteria that fixes those incorrect segments either by moving them so as to stay
within the length of XT (even though keeping the segment length proportions when they are
correct), or by generating new segments within the range [nmin,nmax] when they are out of
bounds. Moreover, we use Eq. 5 either to increase k f and hence generate new segments, or
to decrease k, the number of clusters:

p(k) =
k− k0

k f − k0
⇒
{

if p(k)≤ 1 increase k f segments
Otherwise decrease k clusters. (5)

This procedure ensures, not only that the offspring that pass throughout the next generations
are evaluable, but also that we respect the new trends of the genes caused by these genetic
operators. The repair function accelerates the convergence of the genetic algorithm.

3.2 Aligned Temporal Clustering
Let XT

seg be the set of k f sequence segments decoded from an individual I and the whole
continuous training sequence XT . Similarly to the classical k−means algorithm, our method
groups the XT

seg examples into k clusters. In our setting, however, each example xs ∈ XT
seg is a

sequence, so that it is a point in the space and time. Therefore, it is convenient to consider an
appropriate measure as DTW so as to treat temporal deformations. Thus, in the expectation
step we obtain the costs of aligning each sequence to all the centroids (initially k random
sequences of XT

seg). Then, we assign each sample to the cluster having the minimum cost of
the DTW warping path. In the maximization step, first we update the centroids by means
of resizing all sequences that belong to the same cluster w.r.t. the median length sequence
of that cluster. Then, we calculate the new centroid as the mean of all resized sequences for
each cluster. The algorithm converges either when the costs of aligning the current centroids
to the ones from the previous iteration are 0, or when it reaches the maximum number of
iterations t. Once the algorithm converges, we assign the set of S subgesture sequences as
the final centroids.

3.3 Evaluation
The evaluation function computes the mean score of classifying each sequence given the
learned model parameters. In training, moreover, we learn the thresholds that provide the
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Figure 3: Sample images from the MSRAction3D (left,depth information is available, image
taken from [15]) and MSRDaily3D [31] (right, skeleton, RGB-D video available) datasets.

maximum score of classifying each class. Then, we use these thresholds in test time as part
of the learned model parameters. We learn and test thresholds as follows:

Dynamic Programming. Once we compute the costs of aligning all validation se-
quences in XV to the class-models M, we learn a set of class-thresholds a= {θ c1 ,θ c2 , ...,θ cg}
as those DTW costs that maximize the score per class, being part of the global set of learned
model parameters ω∗. These thresholds are used to compute classification rate of test sam-
ples represented in subgestures.

Generative models. Once we learn a HMM per class, we compute the probabilities
of generating each discrete sequence in DV , P(dv ∈ DV |mc), and learn the class thresholds
Θ, included in ω∗. These thresholds are used to compute classification rate of test samples
represented in subgestures.

4 Experiments

4.1 Datasets

For the evaluation of the proposed framework we considered two widely used data sets for
human action recognition: MSRDaily3D and MSRAction data sets (see Figure 3). We eval-
uate the performance of our methods and compare its results with state of the art techniques
that have used the same data sets.

The MSRDaily3D data set comprises 16 actions associated to daily activities, where
there are objects in the background and most actions involve human-object interaction. For
comparison with previous work we used this data set under two settings: cross-validation
and half-subject split. The former setting allows us to compare the results of our methods
with recent work that has used the same descriptor [10, 11, 12, 35]. Under this setting we
considered 12 out of the 16 actions and performed 5-fold cross validation (as in [10, 11, 12,
35]). For the other setting we considered the 16 categories and used the sample half-training
/ half-testing subject split (e.g., as in [15, 31, 32]). In either configuration, video sequences
were represented with depth cuboid similarity features (DCSF), the same parameters for the
descriptor as in [11, 12, 35] were used.

The MSRAction3D data set comprises 20 actions, recorded by 10 subjects, where sub-
jects are isolated and no objects in the background are present. Together with the MSRDaily
data set, this is one of the most used data sets for the assessment of human action recognition
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Figure 4: Visual scheme of frame-skeletons grouped into (temporal) subgesture-clusters for
the MSRAction3D dataset (best seen in color).

techniques when using the depth/skeleton information. As before, video sequences were
represented with a bag of DCSF descriptors. For this data set, the standard half-training
(subjects 1,3,5,7,9) / half-testing (rest of subjects) split was adopted (see [22] for a complete
analysis of results on this data set).

4.2 Setting and metrics

All of the methods were implemented in MATLAB/C++2, integrating functionalities from
the GA optimtool [9] and PMTK3 libraries. The parameters of our method were fixed as
follows: Ps = 0.2, nmin = 5 and nmax = 25 (as in [37]). We set our population length to
l = 20, with 2 elitist members that pass throughout the next generations.

The k−meansDTW described in section 3.2 requires both to resize the segments samples
of each cluster in XT

seg and to align them w.r.t. the k centroids so as to obtain the new clusters.
The computational cost of this step is about O(t× k× n2). Hence, we defined N = 500 in
our experiments to generate the pairs of start-length segments, providing a trade-off between
number of segment and computation requirements. Moreover, we defined k0 = 3 to consider
a low value for the minimum number of clusters, so that we allow to set k between a large
enough range [k0,k f ] for the k−meansDTW algorithm. Finally, in the evaluation we use
T = 20 for the range of thresholds to learn Θ, and compute mean accuracy among all test
sequences.

4.3 Results

The DTW baseline consists of using the classical DTW with euclidean distance to classify
the test sequences. Thus, instead of learning subgesture models, our baseline models are
formed by means of direct resizing all sequence samples of each class w.r.t. the median
length sequence from that class. On the other hand, in the HMM baseline we split each
gesture sequence in 3 parts having the same length to construct the set of sequence segments
for learning the subgesture models. The number of clusters k is the half of the total number
of resulting segments. To reduce the computational complexity of the HMM baseline we get
a reduced number of samples as input to the k−meansDTW, so that for each class we choose
10 random gestures rather than considering all the training gesture sequences.

2Library publicly available at https://github.com/vponcelo/Subgesture

Citation
Citation
{Padilla{-}L{ó}pez, Chaaraoui, and Fl{ó}rez{-}Revuelta} 2014

Citation
Citation
{Goldberg} 1989

Citation
Citation
{Zhou, {De la Torre Frade}, and {Hodgins }} 2013



PONCE-LÓPEZ et al.: EVOLVED DYNAMIC SUBGESTURES 9

Figure 5: Example of the evolution of the genetic algorithm for the first fold of the MSR-
Daily3D dataset. The plot (a) shows the number of segments that belong to each individual
and their scores on the last generation. The plot (b) shows the score (accuracy) of the best
individuals at each generation so as to see the evolution of the different settings: baseline
in validation (black) where there is no evolution, and the evaluation of the models from the
best individual of the generation in validation (blue) and test (red). The barplot (c) shows the
distribution of scores of each individual of the population on the last generation.

Figure 4 shows an example of representing two sequences of different actions into sub-
gestures on the MSRAction3D dataset, applying the procedure described in Figure 2. The
two sequence actions are ’high-arm-wave’ and ’side-kick’, and the subgestures are those
from the last generation that gave the best performance in the evolved DTW version. At the
frame level, one can observe that the skeletons that fall into the same cluster are quite simi-
lar, though there are some skeletons that are visually similar to those belonging to a different
cluster (e.g. frame-skeleton 5 in comparison to the frame-skeletons that belong to the cluster
1). At the temporal level, we can observe that the cluster 1, formed by similar segments of
different length, is shared among the two different action sequences. The same phenomena
happens for the clusters 2, 3 and 5, though these are shared clusters along the same action
sequence. This shows the qualitative performance of the k−meansDTW algorithm, which
provide effective clusters by computing temporal deformations over the input segments of
different lengths.

In Table 1, we report the mean results of running our genetic algorithm 5 times both to the
half-subject split of the MSRAction3D and MSRDaily3D datasets, and to the 5-fold cross-
validation of the MSRDaily3D dataset. In all cases, the evolution of the subgesture models
learned with the HMM outperforms the state of the art in these datasets, achieving results
above the 91% from the initial generations. Specially for the MSRAction3D data set, the
improvement of evolving subgesture models with the HMM is the greatest w.r.t. the HMM
baseline, achieving the best result of the 95%. The evolved DTW version also provides a
considerable improvement w.r.t. the DTW baselines, outperforming the state of the art on the
MSRDaily3D dataset, and achieving comparable performances on the MSRAction3D.

To illustrate the evolution of the genetic algorithm. In the left plot (a) of figure 5 one
can see a clear trend of the individuals to go towards the number of segments that give the
best performance (111). The middle plot (b) shows that from the starting generations the
performance both in validation and test are above the baseline. Their performance improve
along the generations and keep very similar on the last generations. From the distribution of
scores on the right barplot (c), one can observe that all individuals have positive scores and
some of them achieve similar values, showing that the repair algorithm using Eq. 5 forces
the individuals to become valid, speeding up convergence.
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MSRAction3D-HS MSRDaily3D-CV MSRDaily3D-HS
Method Accuracy Method Accuracy Method Accuracy
[32] (LOP+J.) 88.2% [11] (SOSVM) 68.3% [31] (LOP) 42.5%
[35] (DCSF) 89.3% [12] (SMMED) 73.20% [21] (DTW) 54%
[24] (HOPC) 91.64% [35] (DCSF) 83.60% [32] (MKL) 80.0%
[7] (PBR) 92.3% [35] (DCSF+Skl.) 88.2 [16] (GP) 85.6%
[30] (MMTW) 92.7% - - [32] (LOP+J.) 85.75%

Dynamic Time Warping
Baseline 85.76% Baseline 77.36% Baseline 70.20%
Evolved 90.89% Evolved 89.51% Evolved 88.16%

Hidden Markov Model
Baseline 70.85% Baseline 74.62% Baseline 69.29%
Evolved 95% Evolved 91.39% Evolved 92.30%

Table 1: Recognition results in the MSRAction3D and MSRDaily3D datasets for half-split (HS) and
cross-validation (CV), for the latter setting we report the 4 results available in published literature.

5 Conclusion
We introduced a novel approach for learning dynamic gesture primitives for gesture and ac-
tion recognition. An evolutionary computing framework was presented incorporating two
most notable gesture recognition methodologies, namely DTW and HMMs. Experimental
results show the competitiveness of our methods, outperforming state of the art results in
benchmark data sets after few generations. Our results suggest that the proposed subges-
ture learning methodology enhances the recognition performance of traditional techniques.
Future work includes extending the framework for related tasks (e.g. gesture spotting, event
detection) and an extensive evaluation under different parameter settings.
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