SYSTEMATIC REVIEW: INVESTIGATING THE PROGNOSTIC PERFORMANCE OF FOUR NON-INVASIVE TESTS IN ALCOHOL-RELATED LIVER DISEASE.

Freya A Rhodes¹, Paul Trembling¹, Jasmina Panovska-Griffiths²,³, Sudeep Tanwar¹,⁴, Rachel H Westbrook¹, Alison Rodger³, William M Rosenberg³

¹Institute for Liver and Digestive Health, UCL Division of Medicine, Royal Free Campus, London, UK
²Department of Applied Health Research, University College London, UK
³Institute for Global Health, University College London, UK
⁴Barts Health NHS Trust, London, United Kingdom

ORCID ID https://orcid.org/0000-0002-6884-6235

CORRESPONDENCE:
Professor William M Rosenberg: w.rosenberg@ucl.ac.uk
Address: Institute for Liver and Digestive Health, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2PF, United Kingdom.
ORCID ID: 0000-0002-2732-2304

OTHER AUTHORS:
Dr Freya A Rhodes: f.rhodes@doctors.net.uk ORCID ID 0000-0002-6884-6235
Dr Sudeep Tanwar: sudeep.tanwar@nhs.net
Dr Paul Trembling: p.trembling@ucl.ac.uk
Professor Alison Rodger Alison.rodder@ucl.ac.uk
Dr Jasmina Panovska-Griffiths: j.panovska-griffiths@ucl.ac.uk
Dr Rachel Westbrook: rachel.westbrook@nhs.net

AUTHOR CONTRIBUTIONS
FR designed the study, created the search strategy, conducted the literature search and data extraction, analysed the results and wrote the first draft of the manuscript. PT acted as second reviewer, reviewing the search results and extracting data independently. J PG, ST, RW and AR reviewed and edited the manuscript. WR conceived the study, participated in the design
of the study and edited drafts of the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGEMENTS

This study is being supported by funding from WMR’s National Institute for Health Research Senior Investigator Award (Award number 200249). WMR is an NIHR Senior Investigator and is supported by the NIHR University College London Hospitals Biomedical Research Centre.

ETHICS AND PATIENT CONSENT

Ethical approval was not required for this systematic review, since it used data from previous studies which had their own ethics and patient consent.

Electronic word count (main text): 4,984

Number of tables = 4
Number of figures = 3

ABBREVIATIONS:

FIB 4: Fibrosis 4 test
ELF: Enhanced Liver Fibrosis test
HR: Hazard Ratio
RR: Relative Risk
CI: Confidence Interval
AUROC: Area Under the Receiver Operating Characteristics curve
ArLD: Alcohol related Liver Disease
NIT: Non-Invasive Test
US: Ultrasound
NAFLD: Non-alcoholic Fatty Liver Disease
AFLD: Alcoholic Fatty Liver Disease
APRI: AST to Platelet Ratio Index
CLD: Chronic Liver Disease
LRE: Liver Related Event
AST: Aspartate transaminase
ALT: Alanine aminotransferase
G/day = grams per day
LRM = Liver Related Mortality
ACM = All-cause Mortality
LFTs = liver function tests
PRISMA = Preferred Reporting Items for Systematic reviews and Meta-Analyses
PICO = Participants, interventions, comparators, outcomes and study design
QUIPS = Quality In Prognosis Studies
MeSH = Medical Subject Headings
WOS: Web of Science
ALP: Alkaline phosphatase
IQR: Inter Quartile Range
MELD: Model for End stage Liver Disease
CP: Child Pugh score
SD: Standard deviation
HCC: Hepatocellular Carcinoma
HE: Hepatic Encephalopathy
BMI: Body Mass Index
HTN: Hypertension
SNLRD = Survival or Non-liver related Death
LSM = Liver Stiffness Measurement

COMPETING INTERESTS STATEMENT:
WMR is an inventor of the ELF test but receives no related royalties. WMR has received speakers’ fees from Siemens Healthineers. The other authors declare no competing interests.
ABSTRACT:

Background/Aims:
Mortality of Alcohol-related-Liver-Disease (ArLD) is increasing, and liver fibrosis stage is the best mortality predictor. Non-invasive-tests (NIT) are increasingly used to detect fibrosis, but their value as prognostic tests in chronic liver disease (CLD), and in particular in ArLD is less well recognized. We aimed to describe the prognostic performance of four widely used NITs (FIB4, ELF test, FibroScan and FibroTest) in ArLD.

Methods:
Applying systematic-review methodology, four databases were searched from inception to May 2020. Inclusion/exclusion criteria were applied to search using MeSH terms and keywords. First and second reviewers independently screened results, extracted data and performed risk-of-bias assessment using Quality-In-Prognostic-Studies (QUIPS) tool.

Results:
Searches produced 25,088 articles. After initial screening, 1,020 articles were reviewed independently by both reviewers. Eleven articles remained after screening for eligibility: one on ELF, four on FibroScan, four on FIB4, one on FIB4+FibroScan and one on FibroTest+FIB4. Area-Under-Receiving-Operator-Characteristics-curves (AUROCS) for outcome-prediction ranged from: 0.65-0.76 for FibroScan, 0.64-0.83 for FIB4, 0.69-0.79 for FibroTest and 0.72-0.85 for ELF. Studies scored low-moderate risk of bias for most domains, but high-risk in confounding/statistical reporting domains. The results were heterogeneous for outcomes and reporting, making pooling of data unfeasible.

Conclusions:
This systematic-review returned eleven papers, six of which were conference-abstracts and one unpublished manuscript. Whilst the heterogeneity of studies precluded direct comparisons of NITs, each NIT performed well in individual studies in predicting prognosis in ArLD (AUROCs >0.7 in each NIT category), and may add value to prognostication in clinical practice.

KEYWORDS: (Liver cirrhosis), (liver diseases, alcoholic), (non-invasive test), (Alcohol Use Disorder) (FIB4), (FibroTest), (ELF), (FibroScan), (prognosis), (mortality).
KEY POINTS

- Few studies focus on NIT performance in alcohol compared to other aetiologies.
- Overall, we found good performance (AUROC >0.7) for FIB4, FibroScan, FibroTest and ELF in predicting mortality or liver-related-events.
- In the single study on ELF, ELF outperformed histology in predicting prognosis in ArLD, in keeping with its performance in all-cause CLD (1).
- In the single biopsy-paired study on FibroTest, Fibrotest performed at least as well as histology in predicting outcomes.
- FIB4 appears to perform better than MELD in prognosis prediction in ArLD.
- FIB4/FibroScan/FibroTest/ELF can be practical tools to aid prognostication in ArLD.
INTRODUCTION
Mortality rates from cirrhosis have increased by 400% over the last 30 years, largely attributed to alcohol (2). The degree of liver fibrosis is the strongest predictor of mortality in chronic liver disease,(3) and thus it is important for clinicians to have information about fibrosis in order to predict clinical outcomes and guide individualised treatment decisions. Liver biopsy is the traditional modality for detecting and quantifying fibrosis in alcohol-related liver disease (ArLD) and the current reference standard against which other tests for fibrosis are evaluated. However liver biopsy is considered an imperfect test owing to its invasive nature with associated risks to the patient, as well as sampling error and reporting bias (4, 5). Therefore, there has been a drive to develop non-invasive tests (NIT) for liver fibrosis over the last two decades to assess fibrosis severity and to determine prognosis. These NIT largely comprise blood tests that measure direct and indirect markers of liver fibrosis, of which the most widely studied are The Enhanced Liver Fibrosis (ELF) test, FibroTest, HepaScore, Fibrometer, FIB4, Forns’ Index, APRI, AST:ALT ratio, and age-platelet index (6). There are also “physical” techniques assessing liver stiffness, including FibroScan, sheer-wave elastography and MR elastography but these are less generalisable due to operator performance and availability.

A scoping exercise was conducted to identify NIT that had been investigated for both their prognostic and diagnostic performance, and were established enough that they could be readily translated into clinical practice for routine prognostic assessment. The markers selected on these criteria are: FibroScan, FIB4, ELF test and FibroTest. The selection of prognostic markers is of particular importance in the practice of stratified or personalised medicine where they can support clinicians and patients in making decisions about management such as initiating treatments, and initiating enhanced monitoring for complications of cirrhosis.

Whilst there is an increasing number of studies on prognostic markers, few have been externally validated for use in clinical practice (7). Moreover, the majority of validation studies have been performed in patients with either viral hepatitis or unselected chronic liver disease, rather than specifically in ArLD. It has been shown in cholangiopathies and all-cause CLD that NIT can out-perform histology in predicting clinical outcomes (8, 9), and therefore it is of great clinical importance to know if NIT can also reliably predict outcomes in ArLD, the commonest aetiology of cirrhosis.
This systematic review aims to determine the prognostic performance of four commonly used NIT for liver fibrosis in ArLD, specifically in predicting mortality, and liver related events (LRE) resulting in decompensated cirrhosis and death.

PATIENTS AND METHODS
This systematic review was conducted using the guidance described in the Cochrane Handbook of Interventions (10). The aim of this study was to identify the prognostic performance of four non-invasive tests for liver fibrosis in alcohol-related liver disease – FibroScan, ELF test, FibroTest and FIB4. The PICO structure (participants, interventions, comparators, outcomes and study design) was used and PRISMA guidance followed (Preferred Reporting Items for Systematic reviews and Meta-Analyses) (See supplementary table 1). The protocol for this review was registered with PROSPERO (CRD42020175605).

PICO
Participants: All adult humans (age 18+ years) with Alcohol related Liver Disease
Intervention: Studies that included FIB4, FibroTest, FibroScan or ELF test as prognostic markers in ArLD were included.
Comparisons: Each of the above interventions were compared to one another.
Outcomes:
1. The ability of ELF, FibroTest, FibroScan and FIB4 to predict all cause and liver-related mortality
2. The ability of ELF, FibroTest, FibroScan and FIB4 to predict liver-related cirrhotic decompensation events including ascites, variceal bleeding, encephalopathy, need for liver transplantation and development of hepatocellular carcinoma (HCC)

SEARCH STRATEGY
Four databases were searched systematically, using search strategies which can be found in supplementary tables 2, 3 and 4.
Search themes related to the study PICO, including a combination of MeSH terms and keywords. Pilot searches were conducted in order to refine the search strategy.
Firstly, Web of Science, Ovid Medline, Embase and Cochrane Library were systematically searched (see supplementary table 1). Secondly, reference lists of included studies and...
relevant review articles were hand-searched to identify any further potentially relevant publications. Thirdly, where information from abstracts or full texts was not sufficient for us to include the study, we contacted relevant authors by email to request data.

References were imported into EndnoteTM web basic reference manager, and then the selection of articles for both authors to review was imported into Rayyan systematic review manager (11), which enabled independent, blinded review of each article and documentation of reasons for exclusion.

The first reviewer (FR) compiled the search strategy, performed the first search, and conducted the first sift of journal articles by title and abstract. The abstracts of the remaining 1,020 articles were then reviewed by the first and second reviewer (PT) independently using Rayyan systematic review manager (11). Articles were selected using the pre-defined inclusion and exclusion criteria (table 1). Reasons for exclusion were documented, and where there was any discrepancy in decision, this was able to be resolved by discussion between the two reviewers, or by input from third reviewer (WR) when consensus not achieved. The resulting articles were then reviewed by full text independently by the first and second reviewer, and a final list of articles for inclusion was created (See figure 1).
SELECTION CRITERIA

See table 1 for the full list of inclusion and exclusion criteria. All levels of evidence were included apart from descriptive review articles and opinion pieces. Non-human and pre-clinical studies were excluded. No restriction was made on language. Grey literature (conference abstracts and unpublished work) was not excluded, in line with Cochrane guidance (10). Due to the paucity of prognostic biomarker data on ArLD, relevant studies on chronic liver disease in general were included, as long as they incorporated at least 10 patients where the primary aetiology was alcohol, and that these alcohol data could be extracted separately. Studies were required to have reported either relative risk (RR), hazard ratio (HR) or Area Under the Receiver Operating Characteristic curve (AUROC), with corresponding confidence intervals (CI), for data extraction in order to address prognosis.

DATA EXTRACTION STRATEGY

Data extraction was undertaken by both reviewers independently (FR and PT) using a pre-defined data-entry form (see supplementary figure 1). Any disagreements were resolved through discussion between FR and PT, or with WR if persisting uncertainty.

Information collected included journal title, year, type of publication, type of non-invasive test investigated, number of patients in study cohort, number of patients with alcohol as primary aetiology, patient demographics, alcohol consumption data, statistical methods used and test performance characteristics (See tables 2 and 3). Where studies had included a comparison of non-invasive test with histology, this was recorded and evaluated.

If more than one publication included data from the same cohort of patients, the data from the most recent and comprehensive report were included to avoid duplication in line with Cochrane methodology.

Where data were not clear, or where data were reported for chronic liver disease in general but not specifically for those patients with alcohol as the aetiology, authors were contacted by email to request clarification or access to their original data. If the author failed to reply, the study was excluded.

QUALITY ASSESSMENT

The quality of the included prognostic studies was assessed by two authors (FR and PT) independently using the QUIPS (Quality In Prognosis Studies) tool (12).
This allowed grading of each publication for risk of bias as being at low, medium or high based on six domains: study participation, study attrition, prognostic factor measurement, outcome measurement, study confounding and statistical analysis and reporting. Disagreements between the assessors were resolved through discussion. This process identified the need to clarify the prognostic factor measurement. Originally a ‘low’ risk of bias was assigned only to those studies in which the NIT failed in less than 10%. After discussion it was recognised that blood biomarkers have a result reporting success rate of 100% and this failure rate only applied to studies using FibroScan. The QUIPS tool can be found in supplementary table 6.

DATA SYNTHESIS AND ANALYSIS

Prognostic outcomes were reported as HR or AUROC with 95% confidence intervals. Where RR were reported, these were taken to be equivalent to HR. Due to the heterogeneity and small number of final included studies, a descriptive approach was taken to analyse the results.

RESULTS

Study Selection

Searching the four databases returned 25,088 results, of which 8,781 were duplicates (detected and removed using Endnote). An additional 8 results were found by searching reference lists of included papers and relevant review articles. Three of the results (two conference abstracts (13, 14) and one full paper (1)) reported data from patients with ArLD from the same patient cohort. The full paper (1) did not detail the prognostic performance of ELF in the ArLD cohort separately from the mixed-aetiology liver patients, and so was excluded. The senior author of the most recent abstract (13) was contacted, and permission gained to use unpublished data from this abstract that had been written up as a manuscript under review for publication (15). As this was the most recent and comprehensive of the articles, this was included even though it is not yet published, and the older conference abstract (14) reporting the same cohort was excluded.

We found several articles investigating the prognostic performance of non-invasive tests in mixed aetiology chronic liver disease that did not separately specify the performance in...
ArLD patients, and therefore these studies were excluded from this review (16-38). One systematic review (39) was excluded as it was also investigating prognostic performance of FibroScan in mixed aetiology liver disease – and although it referenced studies which included patients with ArLD (38, 40-43), these studies either had unrelated outcomes, the sample size of the alcohol patients was less than n=10, or they did not report data on patients with ArLD separately.

This resulted in 16,316 articles that were screened by title or abstract by the first author, with 15,296 being excluded, leaving 1,020 publications for review of abstract by the first and second reviewer independently. The full texts of the 40 selected articles were assessed for eligibility by the first and second reviewer, and, after resolving discrepancies, 11 articles remained for inclusion in the data analysis. This comprised the unpublished manuscript, 4 full-text published papers and a further 6 conference abstracts (see figure 1). We found no systematic reviews that specifically reported the prognostic performance of any of the desired four non-invasive tests in ArLD.

STUDY CHARACTERISTICS

Of the eleven studies included, four evaluated FIB4 (three full papers, one abstract), four FibroScan (all abstracts), one evaluated both FIB4 and FibroScan (abstract), one study evaluated both FIB4 and FibroTest (full paper), and one study evaluated ELF (full paper, unpublished). The total number of patients with ArLD included in the analyses of these eleven studies was 20,412, with a median number of participants of 218 (range 64 - 17,300). Seven studies were prospective, two were retrospective and two were unspecified. The general characteristics for each study, with references, are detailed in tables 3 and 4. Studies were conducted between 2009 and 2019. The median age of participants was 48.5 (range 41.6-60), and 74% were male (range 62.9-100%). The median background prevalence of cirrhosis or advanced fibrosis was heterogeneous, with one study excluding patients with known cirrhosis from the outset (recruiting patients with fatty liver on imaging and a significant alcohol history), six reporting 100% with cirrhosis, one with 31% cirrhosis (biopsy-proven) and one with 77.8% cirrhosis (biopsy proven), and a further two did not specify.
Outcomes were also heterogeneous, and included liver-related events (LRE), development of HCC, index variceal bleed, liver-related mortality (LRM) and all-cause mortality (ACM).

Eight of the eleven articles exclusively investigated patients with alcohol-related liver disease, and three investigated people with chronic liver disease of mixed aetiology, but included details of sub-group analyses, specifying results for patients with alcohol-related liver disease within their cohorts.

The significant heterogeneity of these studies precluded meta-analysis or pooling of results.
RISK OF BIAS WITHIN STUDIES

On review of the six bias domains in the QUIPS tool, the majority of the eleven included studies were assessed to be at low or moderate risk of bias in study attrition, prognostic factor measurement and outcome measurement. However, there were some studies that were at high risk of bias in the other three domains. In the first domain (study participation), 4/11 studies scored ‘high risk’. Three of these were conference abstracts, and one was the unpublished manuscript which incorporated pooled data from three patient cohorts, but did not clearly specify the time period for each of the studies.

In the study confounding domain, 6/11 (55%) of the studies scored ‘high risk of bias’, due either to not defining the confounding variables, adjusting for fewer than three confounding variables, or reporting an unadjusted analysis. Four out of six of these articles were conference abstracts and so may have omitted this information because of restrictions on word count. The other two (13, 44) had either only adjusted the analysis for two variables or no adjustment was documented, and thus were both graded as being at high risk of bias using the QUIPS tool. In the final domain ‘statistical analysis and reporting’, three of the eleven articles were graded as being at high risk because they either did not report multivariable analysis, or they reported HRs or AUROCs without corresponding confidence intervals. These three were all conference abstracts.

Overall, 78.8% of the six domains across ten studies were rated ‘Low’ or ‘Moderate’ risk of bias (See figure 2 and supplementary table 7). Cohen’s kappa (κ) was measured to determine if there was agreement between the two reviewers on the grading of low, moderate and high risk of bias across six domains over the 11 articles. This showed moderate-to-good agreement (45), with 74.2% of all grades (6 domains x 11 papers) being the same between the two reviewers, and κ = 0.59 (95%CI, 0.426 to 0.75), p = <0.0005.
PROGNOSTIC PERFORMANCE OF EACH OF THE FOUR NON-INVASIVE TESTS
(See table 4, figure 3)

FIB4

Six studies examined the prognostic performance of FIB4 in ArLD, three of which used Liver Related Mortality (LRM) as the outcome. The fourth study used ‘development of HCC at 3 years’ as the outcome, the fifth used index variceal bleed within 6 months, and the sixth used ‘mortality’ – which did not specify if liver-related or all-cause.

AUROCS for mortality were recorded in 3 studies, and Hazard ratio (HR) in the other mortality study. AUROCS were 0.64 (95% CI 0.55-0.71), 0.78 (no CI reported) and 0.825 (95% CI 0.71-0.93). The study which reported HR for LRM at 14 years showed a significant difference in mortality based on FIB4 thresholds, with the higher threshold of >2.67 giving a HR of 32.9 (95% CI 15.04-71.96) compared with a low FIB4 threshold of <1.3 (HR 1.14, 95% CI 0.34-3.85).

Four studies used continuous FIB4 score in their analysis, and two used FIB4 thresholds, which were different in each study. One study identified three categories of FIB4 score: low (1.3), intermediate (1.3-2.67) and high >2.67 and the other used a single threshold categorising results above or below 3.23. The latter study used development of HCC at 3 years as the main outcome, and FIB4 was able to predict this with AUROC of 0.69 (0.63-0.75).

Two studies examined FIB4 along with another non-invasive test (FibroTest in one and FibroScan in the other). Cho et al. (46) found no reported difference between AUROC for FIB4 (AUROC 0.78) and FibroScan (AUROC 0.73) in predicting LRM (although p values were not stated for this comparison). However, when using a multivariable cox proportional hazard model, FIB4 was able to predict LRM (HR 1.11, p= 0.03) but FibroScan was not. FIB4 was also able to independently predict ACM (p = <0.001) whereas FibroScan was not (confidence intervals were not reported).

Naveau et al. (47) compared FIB4 with FibroTest. Although there was a statistically significant difference between the AUROCs for the tests for prediction of liver related death (FibroTest AUROC 0.79 (95% CI 0.68-0.86), FIB4 AUROC 0.65 (95% CI 0.54-0.74); p=0.004) there was no significant difference in AUROCS for predicting overall survival (FibroTest AUROC 0.69 (95% CI 0.61-0.76), FIB4 AUROC 0.64 (0.55-0.71); p = 0.20).
FibroScan

Five studies investigated the prognostic performance of FibroScan. One of them (46) as described above, compared FibroScan (continuous liver stiffness measurement) with FIB4, and found that FIB4 was able to predict mortality in multivariable cox proportional hazard analysis, but FibroScan was not, although AUROCS were not significantly different between FibroScan (0.73) and FIB4 (0.78).

Four other studies (48-51) reported AUROCs for predicting mortality or liver-related events using continuous liver stiffness measurements, with AUROCs of 0.65, 0.675, 0.7 and 0.76. Two of these four studies (48, 51) also reported liver stiffness thresholds, with one using a threshold of 25kPa, finding a significant difference in mean incidence of LRE of 4.5% in the <25kPa cohort compared with 15.5% in the >25kPa cohort (51). The other study (48) reported a liver stiffness threshold of 20kPa, with incidence of death at 3% in patients with liver stiffness measurement (LSM) <20kPa, compared to 15% deaths in those with LSM >20kPa (p = <0.004).

FibroTest

Only one study reported the prognostic performance of FibroTest in ArLD (47). This study of 218 people with ArLD compared FibroTest with liver biopsy, hepascore, fibrometer, FIB4, APRI and Forns’ Index in predicting LRM and ACM. FibroTest performed better than FIB4 (p= 0.004) in predicting LRM (FibroTest AUROC 0.79 (95% CI 0.68-0.86) compared to FIB4 AUROC of 0.65 (95% CI 0.54-0.74) (although there was no difference between FIB4 and FibroTest in predicting ACM). When compared with other markers of fibrosis in this study, the prognostic values of FibroTest (AUROC 0.79 ± 0.04 for survival or non-liver disease related death), Hepascore (0.78 ± 0.04), and fibrometer (0.80 ± 0.04) did not differ from that of liver biopsy fibrosis staging (0.77 ± 0.04). In multivariate analysis, they found that the best performing tests were FibroTest (p = 0.004) and liver biopsy (p = 0.03).

ELF

We found only one study (manuscript under review) (15) that investigated the prognostic performance of the ELF test in ArLD. Data from this study have been published by the same authors as a conference abstract (13).
This study comprised 64 people with ArLD taken from three different study cohorts with a total sample size (of mixed aetiology liver disease) of 786.

ELF was analysed both as a continuous value and using thresholds of 9.8, 10.5 and 11.3. When analysed as a continuous value, ELF predicted LRE at 6, 7 and 8 years with AUROCs of 0.816, 0.844 and 0.847 respectively. Risk ratio for the prediction of LRE at 6 years was 1.82 (1.169-2.83). ELF also predicted All-Cause Mortality (ACM) at 6, 7 and 8 years with AUROCs of 0.733, 0.722 and 0.722 respectively. When analysed using a cox proportional hazard model (adjusted for age and gender), Connoley et al. found that each unit increase in ELF was associated with a 1.44 times increased risk of LRE (95% CI 1.25-1.66, p <0.001). When analysed, the HR for ELF scores between 10.5-11.29 was 3.84 (95% CI 0.90-16.39), HR for ELF ≥11.3 was 10.24 (95% CI 2.97-35.27), compared to a low ELF threshold of <9.8 where HR was 1.49 (95% CI 0.287-7.74).

Performance of NIT compared with histology and other prognostic scores:

Only 2 out of 11 studies were biopsy-paired (15, 47). Whilst Naveau et al found that FibroTest performed equally as well as histology, (47) Connoley et al found that ELF was superior to histology in predicting prognosis in ArLD (ELF AUROC for all-cause mortality 0.733 (95% CI:0.645-0.861), compared to 0.600 (95% CI:0.470-0.730) for liver biopsy, p = <0.05) (15).

Where one of the four NITs of interest were directly compared with other more traditional prognostic scores such as MELD and Child Pugh (CTP), FibroTest outperformed CTP (FibroTest AUROC for survival 0.79 (95%CI 0.68-0.86), CTP AUROC 0.69 (95%CI 0.58-0.77), p=0.02) (47), and FIB4 outperformed MELD in two separate studies: In Chaudhari et al’s study, FIB4 AUROC for mortality was 0.83 (95%CI 0.71-0.93), MELD 0.70 (0.53-0.87) p=0.001 (52), and in Kothari et al’s study, FIB4 AUROC for predicting variceal bleed was 0.74 (95%CI 0.66-0.81), MELD AUROC 0.54 (95%CI 0.46-0.62) (53).

Whilst MELD and CTP are very much still a part of current clinical practice for prognosticating in CLD, these findings suggest that non-invasive fibrosis markers may be a better choice in predicting prognosis in ArLD.
DISCUSSION

Main findings

Whilst there is now good evidence for the use of NIT for prognosticating in chronic liver disease of mixed aetiologies (16, 18-38, 54), this systematic review has found fewer studies on ArLD. This is important, as each aetiology of liver disease behaves differently in terms of pathophysiology, clinical presentation and complications and there is evidence suggesting that the performance of some NIT varies with disease aetiology (55-60). Whilst non-invasive tests are becoming increasingly widely used both for the diagnostic staging of liver fibrosis as well as prognosis, it is imperative that they are evaluated in representative populations with specific aetiologies.

Mortality rates for cirrhosis have increased by 400% in the last thirty years, with alcohol-related liver disease identified as the predominant cause (2). There is thus an international growing recognition of the importance of research in alcohol-related liver disease, and this study has highlighted the gaps in current knowledge of commonly used non-invasive liver fibrosis tests as prognostic markers in this condition.

Nevertheless, all the four NIT investigated in this review show promising prognostic performance, with AUROCS above 0.7 in some studies for each test, and AUROCS above 0.8 for one study of FIB4 (52) and the single ELF study (15). While heterogeneity of the results prevented statistical comparisons of test performance between studies there were two studies which directly compared two NITs. The study which compared FibroTest to FIB4 (47) found a significantly better prognostic performance of FibroTest when compared to FIB4. The other study which directly compared FIB4 with FibroScan (46), found that FIB4 could predict LRD (HR 1.11; p=0.003) while FibroScan could not.

However, it is not possible to identify a single NIT that performs better than the rest based on this systematic review due to the heterogeneity and lack of data.

The ELF test did appear to be superior to histology in predicting outcomes in one study in ArLD (15), and FibroTest performed equally well to histology (47). FibroTest also outperformed CTP (47) and FIB4 outperformed MELD in two studies in ArLD (52, 53). Biopsy is not routinely required in the management of ArLD, and the findings from this review indicate that these commonly available NIT can perform a useful role when predicting prognosis in clinical practice for patients with ArLD, avoiding the need for liver biopsy and may even be superior to more traditional prognostic scores like MELD and CTP.
Strengths

The strengths of this study are based on a comprehensive search, with rigorous screening of texts. The screening of texts, extraction of data, and assessment of risk of bias were all conducted by the first and second reviewers independently, to minimise reporting bias. Where it was not possible to extract data from certain papers, efforts were made to contact authors by email. In addition, reference lists of relevant articles were hand-searched to maximise inclusion for study, and grey literature was included. Where data were found to be using the same patient cohort – only the most recent and comprehensive study was used, to prevent risk of duplication of results.

Limitations

We recognise there are limitations of this study. The heterogeneity and low number of included studies prevented meta-analysis, or pooling of hazard ratios or AUROCS. For example, of the four studies on FIB4 that all reported AUROCs for mortality, one reported LRM, and the three that reported ACM had different end points (between 1 and 5 years), and two out of these three did not report corresponding confidence intervals. This variety in outcomes and reporting made it impossible to pool results, and is in keeping with existing wider literature on prognostic studies in all fields that recognises the variable quality of prognostic studies. The Cochrane methods group has acknowledged the challenges in systematic reviews on prognosis due to “low quality of primary studies, poor reporting, and difficulties in combining results across different research designs, analyses and presentations of results”(61). Other studies have commented on the barriers to synthesis of prognostic study data ranging from poor reporting, lack of consistency in statistical analysis across prognostic studies and often prognostic model studies are based on relatively small sample sizes leading to overfitting and poor generalisability of results (62, 63). A clear finding arising from the conduct of this review is the necessity for larger rigorous studies of NIT in ArLD.

Six out of eleven of these studies were conference abstracts, limiting the data that could be extracted, leading to higher scores on the risk of bias assessment.

As all of the studies reported significant results for the performance of non-invasive tests, it is possible there was publication bias. However, it is difficult to deduce this for certain as the number of publications in this area is so small. The inclusion of grey literature in this systematic review may have reduced publication bias.
Conclusions

This study has demonstrated that all four of the examined NIT can perform well in predicting prognosis in ArLD with AUROCs >0.7. Of the two included studies that were biopsy-paired, they found that FibroTest and ELF performed as well and better than histology in predicting outcomes, respectively. Whilst the heterogeneity of studies precluded pooling of results and direct comparisons, those studies that did include direct comparisons of NIT with other ‘traditional’ prognostic scores showed NIT for liver fibrosis to be superior to MELD and CTP. With easy availability of FIB4/FibroTest/Fibroscan/ELF, it therefore may be preferable to use one of these fibrosis markers when prognosticating in ArLD in situations where biopsy is not necessary. Due to the small number of included studies, further validation studies of these NIT as prognostic scores are warranted.
REFERENCES

41. Kim M, Lim Y, Baik SK, et al. e. MELD score and liver stiffness are predictive for the development of acute decompensation that induce acute-on chronic liver failure. . Hepatology. 2015;62:1222A.

Table 1: Selection criteria

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion Criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All adult humans (age 18+)</td>
<td>Review articles and opinion pieces</td>
</tr>
<tr>
<td>Participants have ArLD</td>
<td>Non-human studies</td>
</tr>
<tr>
<td>Where studies investigate chronic liver disease of mixed aetiology, they are only to be included if they comprise (\geq 10) patients where the primary aetiology is alcohol, and that these alcohol data are able to be extracted separately.</td>
<td>Pre-clinical and biological studies</td>
</tr>
<tr>
<td>Study relates to at least one of the four non-invasive tests of interest (FIB4, ELF, FibroTest, FibroScan)</td>
<td>Aetiology of liver disease other than alcohol</td>
</tr>
<tr>
<td>RR, HR or AUROC with corresponding 95% CI must be able to be extracted from the data</td>
<td>Alcoholic hepatitis</td>
</tr>
</tbody>
</table>

RR: Relative Risk, HR: Hazard Ratio, AUROC: Area Under Receiver Operating Characteristic curve, CI: Confidence Interval
<table>
<thead>
<tr>
<th>Study author, year, location (reference)</th>
<th>Publication type</th>
<th>Aetiology</th>
<th>Time period; Median follow up period (IQR)</th>
<th>Total no pts in study</th>
<th>Total no pts with ArLD included</th>
<th>NIT of interest investigated</th>
<th>Additional prognostic marker assessed</th>
<th>Outcomes assessed (mortality or LRE)</th>
<th>Time point for recorded outcome</th>
<th>Statistical analysis (HR/RR/AUROC + CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al 2019, South Korea(64)</td>
<td>Full paper Retro-to-prospective</td>
<td>mixed</td>
<td>2002-2015 (5.2 years, IQR 2.8-8.8)</td>
<td>437,828</td>
<td>17,300</td>
<td>FIB4</td>
<td>APRI</td>
<td>Liver related mortality</td>
<td>End of study period (14 years)</td>
<td>HR + 95%CI</td>
</tr>
<tr>
<td>Chaudhari et al 2017, India(52)</td>
<td>Abstract Not stated</td>
<td>Alcohol only</td>
<td>From Jan 2015 7.5 months (5-21)</td>
<td>158</td>
<td>158</td>
<td>FIB4</td>
<td>FIBRO-Q, MELD, APRI, AST:ALT ratio</td>
<td>Mortality (unspecified)</td>
<td>unspecified</td>
<td>AUROC + 95% CI</td>
</tr>
<tr>
<td>Raker et al 2016, UK(48)</td>
<td>Abstract Retropective</td>
<td>mixed</td>
<td>2008-2014 26 months (max 83.6)</td>
<td>408</td>
<td>98</td>
<td>FibroScan</td>
<td>-</td>
<td>All-cause mortality</td>
<td>3 years</td>
<td>AUROC, HR + CI</td>
</tr>
<tr>
<td>Bertrais et al 2012, France(49)</td>
<td>Abstract Prospective</td>
<td>Alcohol only</td>
<td>2004-2009 3.4 years (no IQR)</td>
<td>302</td>
<td>302</td>
<td>FibroScan</td>
<td>FibroScan, Fibrometer, Hepascore, CP, Quanti-meter</td>
<td>All-cause mortality and liver-related mortality</td>
<td>1 year</td>
<td>AUROC +95% CI</td>
</tr>
<tr>
<td>Mueller et al 2019, Germany(50)</td>
<td>Abstract Prospective</td>
<td>Alcohol only</td>
<td>2007-2017 3.7 years (mean)</td>
<td>943</td>
<td>675</td>
<td>FibroScan</td>
<td>Albumin, bilirubin, ALP, Hb</td>
<td>All-cause mortality</td>
<td>1,3,5 years</td>
<td>AUROC, HR +95% CI</td>
</tr>
<tr>
<td>Study</td>
<td>Study Type</td>
<td>Intervention</td>
<td>Time (Mean, SD)</td>
<td>Sample Size</td>
<td>Method(s)</td>
<td>Study Outcome</td>
<td>Time of Outcome</td>
<td>Result Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------</td>
<td>---------------------------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomez et al 2018, Spain(51)</td>
<td>Abstract/Prospective</td>
<td>Alcohol only</td>
<td>Not specified 29.2 years (mean, SD 17.3)</td>
<td>276</td>
<td>FibroScan</td>
<td>Child Pugh Score, AST, ALT, platelet count</td>
<td>Liver related event</td>
<td>‘outcomes during mean follow-up of 29.2 months (SD 17.3)’</td>
<td>AUROC, OR +95% CI</td>
<td></td>
</tr>
<tr>
<td>Hyun Kim et al 2018, South Korea(65)</td>
<td>Full paper/Retrospective</td>
<td>Alcohol only</td>
<td>2007-2015 58 months (IQR 31-94)</td>
<td>924</td>
<td>FIB4</td>
<td>Modified FIB4, APRI, eLIFT score</td>
<td>Development of HCC</td>
<td>3 years</td>
<td>AUROC +95% CI</td>
<td></td>
</tr>
<tr>
<td>Cho E et al 2013, South Korea(46)</td>
<td>Abstract/Not specified</td>
<td>Alcohol only</td>
<td>Not specified</td>
<td>195</td>
<td>FIB4, FibroScan</td>
<td>APRI, Child Pugh score</td>
<td>Liver-related death and all-cause death</td>
<td>Not specified</td>
<td>AUROC</td>
<td></td>
</tr>
<tr>
<td>Naveau et al 2009, France(47)</td>
<td>Full paper/Retro-to-prospective</td>
<td>Alcohol only</td>
<td>Not specified 8.2 years (range 5 days to 11.8 years)</td>
<td>218</td>
<td>FibroTest, FIB4</td>
<td>Fibrometer, Hepascore, APRI, Forns’</td>
<td>Liver-related death and all-cause death</td>
<td>Survival at 5 and 10 years</td>
<td>AUROC + 95% CI</td>
<td></td>
</tr>
<tr>
<td>Connoley et al, UK, unpublished (15)</td>
<td>Full paper/Prospective</td>
<td>Mixed</td>
<td>Not specified 6.4 years (IQR 2.8-8.5)</td>
<td>786</td>
<td>ELF</td>
<td>Liver biopsy</td>
<td>LRE and all-cause mortality</td>
<td>6 years</td>
<td>HR +95% CI</td>
<td></td>
</tr>
<tr>
<td>Kothari et al 2019 (44)</td>
<td>Full paper/Prospective</td>
<td>Alcohol only</td>
<td>2016-2017 6 months</td>
<td>202</td>
<td>FIB4</td>
<td>APRI, MELD, Child Pugh</td>
<td>Variceal bleed</td>
<td>6 months</td>
<td>AUROC + 95% CI</td>
<td></td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
Table 3: Baseline participant characteristics

<table>
<thead>
<tr>
<th>Study author, year, location (reference)</th>
<th>Recruitment details (where reported)</th>
<th>Alcohol consumption required for inclusion</th>
<th>Age mean (SD)</th>
<th>%male</th>
<th>BMI (SD)</th>
<th>ALT (IQR)</th>
<th>% cirrhosis (advanced fibrosis)</th>
<th>Number of events</th>
<th>Event rate (incidence rate per 1000 person years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al 2019(64)</td>
<td>Pt cohort nested in existing multicentre health study. Included pts: those attending employment-related screening clinics with either NAFLD/AFLD based on US and alcohol history. Excluded pts: with evidence of cirrhosis at start of study.</td>
<td>≥30g/day men ≥ 20g/day women</td>
<td>41.6 (9.3)</td>
<td>94.4</td>
<td>26.5 (2.9)</td>
<td>33 (24-48)</td>
<td>0</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>Chaudhari et al 2017(52)</td>
<td>Inpatients with decompensated alcohol-related cirrhosis</td>
<td>-</td>
<td>43.86 (9.03)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100 % cirrhosis</td>
<td>12†</td>
<td>-</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
<th>Percentage</th>
<th>Median</th>
<th>Range</th>
<th>Follow-up</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raker et al 2016(48)</td>
<td>Inpatients with compensated cirrhosis or advanced fibrosis of mixed aetiology in one UK hospital</td>
<td>53.5‡</td>
<td>63‡</td>
<td>-</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41 (3yrs)</td>
<td>(3%, 6%, 10% at 1, 2, and 3 yrs)‡</td>
<td></td>
</tr>
<tr>
<td>Bertrais et al 2012(49)</td>
<td>Patients with alcohol-related cirrhosis with no history of HCC</td>
<td>60</td>
<td>69.9</td>
<td>50</td>
<td>100%</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>Mueller et al 2019,(50)</td>
<td>Caucasian heavy drinkers that had presented for alcohol detoxification (6 days)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomez et al 2018, Spain (51)</td>
<td>Patients with Child Pugh A/B alcohol-related cirrhosis without HCC or decompensation at time of enrolment</td>
<td>56.5 (8.4)</td>
<td>82</td>
<td>-</td>
<td>100% (of which 80% child A, 20% child B)</td>
<td>13 29 14 17</td>
</tr>
<tr>
<td>Hyun et al 2018(65)</td>
<td>Inpatients and outpatients with alcohol-related cirrhosis, excluding ‘active alcoholism’ and excluding decompensation or HCC at enrolment</td>
<td>59</td>
<td>62.9</td>
<td>19</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>Study Reference</th>
<th>Study Population</th>
<th>Exclusion Criteria</th>
<th>Age (yrs)</th>
<th>BMI</th>
<th>ALT</th>
<th>Alcohol Consumption</th>
<th>Cirrhosis (%)</th>
<th>Mortality Rate</th>
<th>Follow-up</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cho E et al 2013(46)</td>
<td>‘patients with alcohol related liver disease’</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Naveau et al 2009(47)</td>
<td>‘patients with heavy alcohol consumption and available liver biopsy and FibroTest results’</td>
<td>Patients had to have consumed at least 50g of alcohol per day over past year</td>
<td>47 (0.7)</td>
<td>78</td>
<td>65 (SD 5)</td>
<td>31% cirrhosis (biopsy)</td>
<td>42</td>
<td>85</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Connoley et al (unpublished)(15)</td>
<td>Patients aged between 18-75 yrs undergoing a planned liver biopsy</td>
<td>50 (IQR 41.5-57.5)</td>
<td>67.9</td>
<td>-</td>
<td>36 (23-66)</td>
<td>77.8% ≥F3, 66.7% ≥F5 (biopsy)</td>
<td>32 at 6 yrs, 34 at 7 yrs, 35 at 7 yrs, 26 at 8 yrs, 23 at 8 yrs</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Kothari et al 2019 (44)</td>
<td>Male patients aged 18-70 with clinical diagnosis of Alcohol-related cirrhosis, absence of TIPS/previous variceal bleed</td>
<td>‘clinically significant alcohol intake’</td>
<td>43.77 (9.95)</td>
<td>100</td>
<td>29 (21-50)</td>
<td>100% (clinical/imaging-based diagnosis)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Presumed all-cause mortality not liver-related, but not actually specified in study
‡ Of whole study cohort. (Data on this not reported for alcohol cohort separately)
HE: Hepatic Encephalopathy, HCC: Hepatocellular carcinoma, RR: relative risk, HR: Hazard ratio, BMI: body mass index, ALT: alanine aminotransferase, NAFLD: non-alcoholic fatty liver disease, AFLD: alcoholic fatty liver disease
Table 4: Prognostic performance of NIT in each study

<table>
<thead>
<tr>
<th>Study</th>
<th>Cut off or continuous NIT value</th>
<th>outcome</th>
<th>AUROC</th>
<th>95% CI</th>
<th>HR</th>
<th>95% CI</th>
<th>Other analysis</th>
<th>Adjustment for confounding factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al (64)</td>
<td>Low FIB4 = <1.3</td>
<td>LRM (14 years)</td>
<td>-</td>
<td>-</td>
<td>1.14</td>
<td>0.34</td>
<td>3.85</td>
<td>Yes (sex, yr of screening exam, center, BMI, smoking status, regular exercise, educational level, diabetes, HTN)</td>
</tr>
<tr>
<td></td>
<td>Intermediate FIB4 = 1.3 to <2.67</td>
<td></td>
<td>-</td>
<td>-</td>
<td>4.48</td>
<td>1.91</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High FIB4 = ≥ 2.67</td>
<td></td>
<td>-</td>
<td>-</td>
<td>32.9</td>
<td>15.04</td>
<td>71.96</td>
<td></td>
</tr>
<tr>
<td>Chaudhary et al (52)</td>
<td>Not stated</td>
<td>Mortality (unspecified if LRM, unspecified time point)</td>
<td>0.825</td>
<td>0.71</td>
<td>0.93</td>
<td>-</td>
<td>-</td>
<td>Not stated</td>
</tr>
<tr>
<td>Hyun et al 2018 (65)</td>
<td>Continuous FIB4 and cut offs – low FIB4 ≤3.25, high FIB4 >3.25</td>
<td>HCC (3 years)</td>
<td>0.69</td>
<td>0.63</td>
<td>0.75</td>
<td>-</td>
<td>-</td>
<td>Fib4 high versus low HR 1.71 (95% CI 1.08-2.71)</td>
</tr>
<tr>
<td>Cho E et al 2013 (46)</td>
<td>Continuous FIB4</td>
<td>LRM (unspecified time point)</td>
<td>0.78</td>
<td>-</td>
<td>1.11</td>
<td>-</td>
<td>-</td>
<td>Yes (age)</td>
</tr>
<tr>
<td>Naveau et al (47)</td>
<td>Continuous FIB4</td>
<td>ACM (unspecified time point)</td>
<td>0.64</td>
<td>0.55</td>
<td>0.71</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Study</td>
<td>Measure</td>
<td>Description</td>
<td>0.74</td>
<td>0.66</td>
<td>0.81</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>(44)</td>
<td>Continuous FIB4</td>
<td>Index variceal bleed (6 months)</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(46)</td>
<td>Continuous liver stiffness (kPa)</td>
<td>LRM (unspecified time point)</td>
<td>0.73</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(48)</td>
<td>Continuous LSM + Threshold of <20kpa vs >20kpa</td>
<td>ACM (3 yrs)</td>
<td>0.74</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(49)</td>
<td>Continuous LSM</td>
<td>ACM (1-yr)</td>
<td>0.65</td>
<td>0.51</td>
<td>0.79</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(49)</td>
<td>Continuous LSM</td>
<td>LRM (1yr)</td>
<td>0.73</td>
<td>0.64</td>
<td>0.83</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(50)</td>
<td>Continuous LSM</td>
<td>ACM (1-yr)</td>
<td>0.76</td>
<td>-</td>
<td>-</td>
<td>1.013</td>
<td>1.003</td>
<td>1.023</td>
</tr>
<tr>
<td>(50)</td>
<td>Continuous LSM</td>
<td>ACM (3-yr)</td>
<td>0.74</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(50)</td>
<td>Continuous LSM</td>
<td>ACM (5-yr)</td>
<td>0.73</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(51)</td>
<td>Continuous LSM +threshold of <25kpa vs >25kpa</td>
<td>LRE (during follow up period) (unspecified time point)</td>
<td>0.675</td>
<td>0.607</td>
<td>0.743</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(47)</td>
<td>Continuous FibroTest value</td>
<td>LRM (unspecified time point)</td>
<td>0.79</td>
<td>0.68</td>
<td>0.86</td>
<td>23.2‡</td>
<td>3.2</td>
<td>167.3</td>
</tr>
<tr>
<td>FibroTest cut offs:</td>
<td>ACM (unspecified time point)</td>
<td>5-yr SNLRD</td>
<td>abstinence vs non-abstinence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0-0.31 (no or minimal fibrosis)</td>
<td>SNLRD (5-yr)</td>
<td>98.7% (96-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.21-0.58 (moderate fibrosis)</td>
<td>SNLRD (5-yr)</td>
<td>92.1% (83.5-100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.59-1 (severe fibrosis)</td>
<td>SNLRD (5-yr)</td>
<td>68.3% (79.5-89.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FibroTest cut offs:	ACM (10-yr)	10-yr SNLRD	
-------------------	-------------	-------------	
0.0-0.31 (no or minimal fibrosis)	SNLRD (10-yr)	92% (84.9-99)	
0.21-0.58 (moderate fibrosis)	SNLRD (10-yr)	87.5% (75.5-99.5)	
0.59-1 (severe fibrosis)	SNLRD (10-yr)	78.5% (72.4-84.6)	

<table>
<thead>
<tr>
<th>ELF</th>
<th>ELF as continuous</th>
<th>LRE (6-yr)</th>
<th>LRE (7-yr)</th>
<th>LRE (8-yr)</th>
<th>ACM (6-yr)</th>
<th>ACM (7-yr)</th>
<th>ACM (8-yr)</th>
<th>Yes (age and sex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELF as continuous</td>
<td>LRE (6-yr)</td>
<td>0.816</td>
<td>0.713</td>
<td>0.920</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ELF as continuous</td>
<td>LRE (7-yr)</td>
<td>0.844</td>
<td>0.750</td>
<td>0.938</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ELF as continuous</td>
<td>LRE (8-yr)</td>
<td>0.847</td>
<td>0.754</td>
<td>0.940</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ELF as continuous</td>
<td>ACM (6-yr)</td>
<td>0.733</td>
<td>0.645</td>
<td>0.861</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ELF as continuous</td>
<td>ACM (7-yr)</td>
<td>0.722</td>
<td>0.591</td>
<td>0.852</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ELF as continuous</td>
<td>ACM (8-yr)</td>
<td>0.722</td>
<td>0.591</td>
<td>0.852</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ELF cut offs in 4 categories (compared to <9.8)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes (age and sex)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.8-10.49 LRE (6-yr)</td>
<td>1.49</td>
<td>0.287</td>
<td>7.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5-11.29 LRE (6-yr)</td>
<td>3.84</td>
<td>0.9</td>
<td>16.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥11.3 LRE (6-yr)</td>
<td>10.24</td>
<td>2.97</td>
<td>35.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELF cut offs in two categories <10.5 and ≥10.5</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>Yes (age and sex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRE (6-yr)</td>
<td>6.42</td>
<td>2.63</td>
<td>15.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Study reported HR with corresponding 95% CI for LSM cut offs above and below 20kPa, and for ArLD versus non-ArLD, but not specifically for LSM in the ArLD cohort.
‡ RR (risk ratio) not HR
§ OR (odds ratio)
Records identified through database searching (n = 25,688)
(of which, WOS= 9,653, Medline and EMBASE = 15,424, Cochrane = 11 (3 Cochrane reviews, 8 Cochrane trials)
8781 duplicates)

Additional records identified through other sources
(reference list search from included papers, n = 8)
(contacting author for unpublished paper n = 1)

Records after duplicates removed (n = 16,307 + 9 from other sources)

Records screened by 1st reviewer by title/abstract (n = 16,316)

Records excluded (n = 15,296)

Abstracts screened by 2 reviewers (n = 1020) (1011 +8+1)

Records excluded (n = 982)

Full-text articles excluded, with reasons (n = 29)
1. Data on CLD, with alcohol data not reported separately (n=14)
2. Wrong outcome (n=1)
3. Aetiology of CLD undefined or unclear if includes alcohol (n= 8)
4. Inappropriate/insufficient outcome reporting (n=2)
5. Insufficient number of patients with AlcLD (n=10) (n=1)
6. Wrong study design (n=1)
7. Pt cohort represented in another more recent and comprehensive included study (n=2)

Studies included in qualitative synthesis (n = 11)

FIGURE 1: PRISMA FLOW DIAGRAM.
Figure 2: QUIPs tool results: Quality assessment of included studies using the quality in prognosis studies tool.
Figure 3: Forest plot of AUROCs + 95% CI for outcome prediction*

* Chang et al 2019 study on FIB4 not represented in this forest plot as study did not report AUROCs, however, this study had largest sample size of 17,300. HR for liver-related mortality at 14 years = Low FIB4 threshold ≤1.3: HR 1.14 (95% CI 0.34-3.85), Intermediate FIB4 1.3-2.67: HR 4.48 (95% CI 1.91-10.5), High FIB4 ≥ 2.67: HR 32.9 (95% CI 15.04-71.96).