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Abstract
Threat-conditioned cues are thought to capture overt attention in a bottom-up process. Quantification of this phenomenon typically
relies on cue competition paradigms. Here, we sought to exploit gaze patterns during exclusive presentation of a visual conditioned
stimulus, in order to quantify human threat conditioning. To this end, we capitalized on a summary statistic of visual search during
CS presentation, scanpath length. During a simple delayed threat conditioning paradigm with full-screen monochrome conditioned
stimuli (CS), we observed shorter scanpath length during CS+ compared to CS- presentation. Retrodictive validity, i.e., effect size to
distinguish CS+ and CS-, was maximized by considering a 2-s time window before US onset. Taking into account the shape of the
scan speed response resulted in similar retrodictive validity. The mechanism underlying shorter scanpath length appeared to be
longer fixation duration and more fixation on the screen center during CS+ relative to CS- presentation. These findings were
replicated in a second experiment with similar setup, and further confirmed in a third experiment using full-screen patterns as CS.
This experiment included an extinction session during which scanpath differences appeared to extinguish. In a fourth experiment
with auditory CS and instruction to fixate screen center, no scanpath length differences were observed. In conclusion, our study
suggests scanpath length as a visual search summary statistic, which may be used as complementary measure to quantify threat
conditioning with retrodictive validity similar to that of skin conductance responses.
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Introduction

Pavlovian threat conditioning (also termed fear conditioning) is
widely used across species to investigate associative learning
about aversive events. In this paradigm, initially neutral cues
(conditioned stimuli, CS) are paired with aversive events, usu-
ally electrical shocks or white noise bursts (unconditioned stim-
ulus, US). The creation of an implicit CS-US association is
assessed by observation of the organism’s response during CS
presentation. This includes overt behavior such as freezing
(Bouton & Bolles, 1980; Roelofs, Hagenaars, & Stins, 2010),
autonomic nervous system responses, measured as changes in
skin conductance (Bach, Daunizeau, Friston, & Dolan, 2010;
Staib, Castegnetti, & Bach, 2015), pupil size (Korn, Staib,
Tzovara, Castegnetti, & Bach, 2017), heart period

(Castegnetti et al., 2016) or respiration amplitude (Castegnetti,
Tzovara, Staib, Gerster, & Bach, 2017), and the modulation of
externally elicited behaviors, such as fear-potentiated startle
(Blumenthal, 1988; Blumenthal et al., 2005; Khemka,
Tzovara, Gerster, Quednow, & Bach, 2017) or Pavlovian-to-
instrumental transfer (Xia, Gurkina, & Bach, 2019a). While all
of these measures have specific advantages and disadvantages
(see Ojala & Bach, 2020 for a review), a common limitation is
their modest retrodictive validity. Retrodictive validity is the
effect size to distinguish CS+/CS- trials, and is monotonically
related to the accuracy (combined trueness and precision) of
measuring the US expectation (Bach & Melinscak, 2020;
Bach, Melinscak, Fleming, & Voelkle, 2020). This motivates
the development of complementary measures, which in combi-
nation might serve to increase retrodictive validity, preferably
without increasing measurement complexity. Here, we focused
on gaze patterns which are recorded with the same eyetracking
equipment used to record pupil dilation, an increasingly impor-
tant threat conditioning measure (Korn et al., 2017; Tzovara,
Korn, & Bach, 2018; Bach, Näf, Deutschmann, Tyagarajan, &
Quednow, 2019).

Gaze patterns are influenced by top-down and bottom-up
attention (Schutz, Braun, & Gegenfurtner, 2011; Theeuwes,
2010). The motivation for investigating gaze patterns in threat
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conditioning mainly derives from previous work investigating
bottom-up processes. Various salient stimuli can capture co-
vert (e.g., Mathews & MacLeod, 1985) and overt attention
(see for review Schutz et al., 2011). Increased overt attention
towards threat-conditioned cues has been demonstrated in var-
ious stimulus competition paradigms. CS+ are more often
attended than CS- when presented simultaneously with an
irrelevant neutral cue during conditioning (Austin & Duka,
2010; Koenig, Uengoer, & Lachnit, 2017). In a visual search
task after conditioning with CS as distractor(s), CS+ attracted
more (erroneous) saccades (Mulckhuyse, Crombez, & Van
der Stigchel, 2013; Mulckhuyse & Dalmaijer, 2016; Koenig
et al., 2017), dwell time on CS+ after such saccades was lon-
ger (Koenig et al., 2017), and time to reach (correct) target was
longer during CS+ (Mulckhuyse & Dalmaijer, 2016; Nissens,
Failing, & Theeuwes, 2017). Saccade trajectory deviation to-
wards CS+ depended on saccade initiation latency
(Mulckhuyse et al., 2013; Nissens et al., 2017) while saccade
latency towards CS+ and CS- showed no difference in one
study (Mulckhuyse & Dalmaijer, 2016). In an instructed sac-
cade task after conditioning, saccades were faster towards
CS+ (Schmidt, Belopolsky, & Theeuwes, 2015), and CS+
attracted more (erroneous) saccades (Schmidt et al., 2015;
Hopkins, Helmstetter, & Hannula, 2016). It is currently un-
clear whether overt attention depends on uncertainty of the
upcoming US (Hogarth, Dickinson, Austin, Brown, &
Duka, 2008; Koenig et al., 2017) or on its aversive value
(Wise, Michely, Dayan, & Dolan, 2019).

Despite overall good evidence in favor of a CS+ induced
attention bias, we note that studies are somewhat heteroge-
neous in their dependent measures and results. Furthermore,
in typical threat conditioning experiments, visual CS are pre-
sented on their own at a central location of the screen. In such
a task, stimulus competition measures may not be ideally suit-
ed to capture overt attention.

Hence, the primary focus of the current study was to
develop a complementary index of overt attention to
distinguish gaze patterns during CS. We based this on
a metric of visual search, namely scanpath length. We
used a previously published experiment as discovery
data set (Table 1 and Fig. 1, Experiment 1), where we
investigated whether and how scanpath length was af-
fected by presentation of full-screen pure colors as CS
(without fixation cross) in a delayed discriminant
Pavlovian threat conditioning paradigm. We replicated
these results in an independent previously published da-
ta set, as well as in a third data set specifically recorded
for this purpose. Finally, we investigated whether
scanpath length also differentiates auditory CS under
instructed fixation.

In doing so, our primary criterion was retrodictive validity,
which jointly assesses the trueness of the measurement (i.e.,
how close the average over many measurements is to the true

score) and its precision (i.e., how much does the measurement
vary when true score is constant) (Bach et al., 2020). We also
report an approximated split-half reliability. Because reliabil-
ity is only meaningful if the measure is valid in the first place
(Cronbach &Meehl, 1955), and strongly depends on the pres-
ence of interindividual variability in learning the CS-US asso-
ciation (Brandmaier et al., 2018), we do not use it as a devel-
opment criterion.

Method

Participants

We recruited four independent groups of healthy participants
with normal or corrected-to-normal vision from general pop-
ulation. The study, including the form of taking written in-
formed consent, was conducted in accordance with the
Declaration of Helsinki and approved by the governmental
research ethics committee (Kantonale Ethikkommission
Zürich: KEK-ZH-2013-0118).

Participants without unconditioned (skin conductance) re-
sponse (UR) to US (electric shock), and those who did not
follow task instructions were excluded. This excluded one
participant (no UR) in Experiment 1, three (two no UR, one
did not follow instructions) in Experiment 2, and three (two no
UR and one did not follow instructions to sit still) in
Experiment 3. We thus report data from 21 participants in
Experiment 1 (12 females, mean age ± standard deviation
26.4 ± 3.6 years), 35 participants in Experiment 2 (21 females,
24.7 ± 3.8 years), 26 participants in Experiment 3 (15 females,
24.6 ± 3.0 years), and 22 participants in Experiment 4 (15
females, 26.4 ± 5.2 years). Experiments 1–2 were primarily
conducted to assess Pavlovian-to-Instrumental transfer after
threat conditioning; behavioral and psychophysiological data
from these experiments are published in a previous report (Xia
et al., 2019a; see for data sets: Xia, Gurkina, & Bach, 2019b,
2019c). Experiment 4 had been conducted during develop-
ment of a model for threat-conditioned pupil size responses
(Korn et al., 2017); psychophysiological results from this ex-
periment are also published (see for data set: Korn, Staib,
Tzovara, Castegnetti, & Bach, 2018).

Stimuli and apparatus

Psychophysiological recordingAll experiments were conduct-
ed in a dark and soundproof chamber. Participants’ heads
were positioned on a chin rest in front of the monitor (Dell
P2014h, 20” set to an aspect ratio of 4:3 at 60 Hz, and a
resolution of 1152 x 864 in Experiments 1, 2, and 3; Dell
P2012h with same settings in Experiment 4) with a distance
of 700 mm from head to monitor. Gaze direction coordinates
in pixels were collected for both eyes with an EyeLink 1000
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System (SR Research, Ottawa, ON, Canada) at a sampling
rate of 500 Hz, with a horizontal distance of 470 mm between
eyes and eye-tracker. Skin conductance responses (SCR) were
recorded from the thenar/hypothenar of non-dominant hand
by two 8-mm disk Ag/AgCl cup electrodes (EL258, Biopac
Systems Inc., Goleta, CA) and 0.5% NaCl gel (GEL 101,
Biopac Systems Inc., Hygge & Hugdahl, 1985), with an
SCR coupler/amplifier (V71-23, Coulbourn Instruments).
Electrocardiogram (ECG) data was collected with four 45-
mm, pregelled Ag/AgCl adhesive electrodes attaching to the
outsides of wrists and ankles, respectively. The ECG config-
uration yielding the clearest R spikes was identified visually
before every experiment, and recorded. Data time series of
SCR and ECG were digitized at 1000 Hz (DI-149, Datag
Inc., Akron, OH) and collected with Windaq software
(Dataq Inc.).

Unconditioned stimulusUS was a 500-ms train of 250 square
electric pulses with a duty cycle of 10%, and was delivered
through a pin-cathode/ring-anode configuration with a con-
stant current stimulator (Digitimer DS7A, Digitimer,
Welwyn Garden City, UK) on participants’ dominant fore-
arm. The intensity of US was estimated in a two-phase proce-
dure: 1) staircase testing phase to determine the pain threshold
by delivering a series of gradually strengthened shocks from
unperceivable to clearly painful level; 2) random test of 14
stimuli below this value which were rated on a scale from 0%
(no sensation) to 100% (clearly painful). The final intensity
used during experiments corresponded to 85% of the initial
pain threshold and was derived from a linear interpolation of
the ratings.

Experimental setup

Common settings All four experiments were presented with
Cogent 2000 Toolbox (v1.32, www.vislab.ucl.ac.uk) in
MATLAB (2012b, The MathWorks, Natick, MA, USA). All
experiments used a delay threat conditioning procedure with
two CS, one of which co-terminated with US in a 50% rein-
forcement schedule (CS+) and the other never co-terminated
with US. Table 1 summarizes experimental configurations.
We asked participants to press one of two designated keys
for each of CS. Participants were explicitly instructed that
their key press response did not influence US delivery and
US delivery was only related to preceding CS, but they were
not informed about the CS-US contingency or about the num-
ber of CS+/-. Assignment of CS+/- to physical CS properties
was counterbalanced across participants. Response key/CS
association was counterbalanced in Exp 1-2 and randomly
determined in Exp 3–4. Figure 1 shows an example of
experimental procedure together with CS used in each
experiment.

Exploratory Experiment 1 – Simple visual CS (Data set code:
PIT1)CSwere twomonochrome colors (Fig. 1b) presented full-
screen (light purple with RGB values 0.9510, 0.7741, 0.9759,
and light yellow, RGB 0.8970, 0.8576, 0.6874). The experi-
ment consisted of 64 trials in random order: 16 CS+ followed
by US (CS+US+), 16 CS+ not followed by US- (CS+US-), and
32 CS-. No fixation cross was presented during CS. During ITI,
a black fixation cross was presented in the center of a grey
background (RGB 0.85, 0.85, 0.85). Participants were
instructed to keep looking at the screen throughout.

Table 1 Experimental configuration and recordings

Experiment
(Data set code)

CS SOA ITI Experimental settings Fixation
cross

Measures analyzed Reference and
data availability

Exploratory
Exp 1 (PIT1)

visual 3.0 2.5 s threat memory acquisition with 16
CS+US+, 16 CS+US- and
32 CS-US-

only in ITI SCR, Pupil size,
Gaze

Xia et al., 2019a, b, c
Data set DOI: 10.5281/zenodo.2641734

Confirmatory
Exp 2 (PIT2)

visual 3.5 7-11 s threat memory acquisition with 16
CS+US+, 16 CS+US- and
32 CS-US-

only in ITI SCR, ECG,
Pupil size,
Gaze

Xia et al., 2019a, b, c
Data set DOI: 10.5281/zenodo.2641738

Generalizability
Exp 3 (ViS)

visual 3.5 7-11 s threat memory acquisition with 30
CS+US+, 30 CS+US- and 60
CS-US- in 2 blocks

threat memory extinction with 20
CS+US- and 20 CS-US-

only in ITI SCR, ECG,
Gaze

Data set DOI:
10.5281/zenodo.3667715

Generalizability
Exp 4 (PubFe)

auditory 3.5 7, 9, 11 s threat memory acquisition with 40
CS+US+, 40 CS+US- and
80 CS-US-

always SCR, ECG,
Pupil size,
Gaze

Korn et al., 2017
Data set DOI: 10.5281/zenodo.1168494

In Exp 1, the visual CS were presented for 3.5 s, whereas in Exp 2 and 3, CS were presented for 4.0 s. Half of CS+ trials were reinforced by US delivery
during 0.5 s before CS offset which co-terminated with CS (CS+US+), and the other half were not (CS+US-). In Exp 4, grey background with a fixation
cross in the center was always presented on the screen. CS were two 50-ms sine tones and the 0.5-s US was delivered 3.5 s after CS delivery in half of
CS+ trials. Trial order in all experiments was randomly balanced over the entire experiment, or per block in Exp 3. Inter-trial interval was 2.5 s in
Experiment 1 and was randomly determined to be an integer between 7 and 11 s in Experiment 2 and 3; in Exp 4, ITI was randomly drawn from {7 s, 9 s,
or 11 s}. CS, conditioned stimulus; US, unconditioned stimulus; SOA, stimuli onset asynchrony; ITI, intertrial interval; SCR, skin conductance
responses; ECG, electrocardiography. Only CS- and CS+US- trials were analyzed.
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Confirmatory Experiment 2 – Simple visual CS (Data set code:
PIT2) Procedure was the same as in Exp 1 but with different
CS colors (light yellow with RGB 0.8970, 0.8576, 0.6874,
and rose pink with RBG 1, 0.0745, 0.5216) to enhance dis-
criminability, and different CS and ITI timing as detailed in
Table 1.

Generalizability Experiment 3 – Simple visual CS (Data set
code: ViS) Experiments 1–2 assessed spontaneous eye
movements in the absence of any visual information on
the monochrome screen, and without any instruction to
fixate or visual cues aiding fixation. Experiments 3 was
designed to investigate the generalizability of these find-
ings to a situation where a regular screen pattern provides
information but also aids fixation. Furthermore, we includ-
ed an extinction phase. CS were two full-screen patterns,
with approximately equal brightness, contrast, and spatial
frequencies. There were two blocks of the acquisition
phase with 15 CS+US+, 15 CS+US-, and 30 CS- in each
block, and an extinction phase with 20 CS- and 20 CS+
trials without US delivery, presented in one single block.
The order of trials in each block was randomized. The three
blocks were separated by brief self-paced breaks. No

fixation cross was presented during CS. During ITI, a
black fixation cross was presented in the center of a grey
background (RGB 0.7, 0.7, 0.7). Participants were
instructed to keep looking at the screen throughout.

Generalizability Experiment 4 – Simple auditory CS (Data set
code: PubFe) Experiment 4 was selected to investigate the
generalizability of our findings to a situation with clear in-
struction to fixate, and non-visual CS. CS were two sine tones
with constant frequency (220 Hz or 440 Hz, 50-ms onset and
offset ramp). Sound stimuli were delivered by headphones at
approximately 60 dB (HD 518, Sennheiser, Wendemark-
Wennebostel, Germany). During the entire task, a white fixa-
tion cross was presented on a grey background. There were 40
CS+US+, 40 CS+US-, and 80 CS- trials in two sessions with a
brief self-paced break in-between.

Data analysis

Eye-tracker data pre-processing All data were analyzed in
MATLAB (2015b, The MathWorks, Natick, MA, USA)
with standard routines in PsPM (4.0, bachlab.github.io/
PsPM/) and custom-written code. Eye-tracker data were
imported into PsPM after excluding blanks (i.e., saccades
and blinks). Gaze coordinates in pixels, of the eye with
fewer missing values, were extracted, linearly interpolat-
ed, and converted into Cartesian coordinates in millime-
ters, with the screen center as origin, and right and up-
ward as positive. Assuming that participants' nasion was
approximately located on a straight line through the
screen center and perpendicular to the screen, we then
projected (x, y)-coordinates into a three-dimensional
Cartesian coordinate system with the participants nasion
as origin such that every gaze point on the screen had a
coordinate of (x, y, z) with z = 700. We then converted
these coordinates into a spherical coordinate system. The
azimuthal angle θ, a counterclockwise angle in the hori-
zontal x-z plane with θ = 0 in the positive x-axis and θ =
π/2 for straightforward gaze, was then calculated with the
following identity:

θ ¼
arctan

z
x

� �
; x≠0; θ ∈ 0;

π
2

h h
∪

π
2
;π

i i
π
2
; x ¼ 0

8<
: ;

and the elevation angle φ from x-z plane, was calculated
as

φ ¼ arctan
yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p

� �
;φ∈ −

π
2
;
π
2

i h
:

As the radial distance contains no further information, it was
discarded. These two angles were calculated with the
MATLAB function cart2sph, which uses the identities above.

Fig. 1 Experimental procedure and scanpath measure. a Pavlovian threat
conditioning paradigm (details correspond to Exp 2). In each trial, a CS is
presented for 3.5 (Exp 1) or 4 s (Exp. 2–4). Participants are asked to
indicate CS by key press. In 50% of CS+ trials, CS presentation co-
terminated with a 0.5-s electric shock. Response feedback (“correct”,
“incorrect”, “only press RIGHT or LEFT”) is shown for 2 s at the begin-
ning of ITI. A fixation cross is shown during the remaining ITI. b CS in
the 4 experiments. cAfter linear interpolation of missing data points, scan
speed was calculated as the central angle between two adjacent gaze data
points, divided by their difference in time (yellow angle as measured by
the red bi-directed arrow). Integrating this over time yielded scanpath
length. CS conditioned stimulus, US unconditioned stimulus, ITI inter-
trial interval
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The unit of angles was then converted from radians into
angular degrees. The central angle Δλ (identical to the
length of the great circle arc between the two points on a
unit sphere) between each of two adjacent gaze data
points was subsequently computed with the MATLAB
(Mapping toolbox) function distance using Haversine
formula (note that at this stage, missing values due to
saccades are already interpolated):

a ¼ sin2
φ2−φ1

2

� �
þ cos φ1ð Þ � cos φ2ð Þ � sin2 θ2−θ1

2

� �
;

Δλ ¼ 2arctan

ffiffiffi
a

p
ffiffiffiffiffiffiffiffi
1−a

p
� �

; a∈ 0; 1½ ½;

This central angle was regarded as scanpath length be-
tween two adjacent gaze points and then converted to scan
speed (degree/sec). No filtering was applied for statistical
analysis. For visualization and development of the re-
sponse model, the time series of scan speed data (Fig. 2)
was averaged across trials in each condition for each par-
ticipant, then smoothed with MATLAB function smooth
with a span of 501, corresponding to 1002 ms. This
smoothing window provided the clearest visualization of
time series. Using smaller smoothing windows (50 ms, 102
ms) and lowpass filters (5, 10, 20, and 50 Hz) resulted in
very similar response function, which in turn led to almost
identical parameter estimates in general linear convolution
model (GLM) inversion (see below). The smoothed data
were then averaged across participants and plotted. SEMs
of the plots were calculated across participants using the
smoothed data. Notably, due to our method of interpolating
missing values, responses to the US can affect scanpath
speed even before the US occurs. This is why we excluded
data from US+ trials for all statistical analyses.

Total scanpath length in different time windows To compute
total scanpath length we integrated scan speed over different
time windows before anticipated US onset. For Exp. 1–2, we
used time windows in 0.5-s steps. For Exp 3–4, we only ex-
tracted scanpath length for the optimal time window. This
measure was then averaged across all CS-, or CS+US- trials
within participants.

Empirical response function and model inversion A linear
time-invariant system was used to model the difference of
anticipatory scan speed elicited by CS+US- versus CS- as in
previous work (Castegnetti et al., 2016, 2017; Korn et al.,
2017). The difference of grand means of scan speed time
series between CS- and CS+US- from Exp 1 was used to fit
an empirical response function. In a heuristic function search,
a gamma probability density function seemed to provide a
good approximation:

y ¼ A
μkΓ kð Þ t−t0ð Þk−1e−t−t0

μ ;

where y is the input scan speed, t is time, Γ is the gamma
function, and t0 (onset latency), k, μ, and A are free parame-
ters. These parameters were estimated with the MATLAB
function fminsearch using the Nelder–Mead algorithm and
ordinary least squares minimization (Lagarias, Reeds,
Wright, & Wright, 1998).

This function was then used as a response function in a
general linear convolution model (GLM) to estimate the am-
plitudes of observed scan speed responses. The GLM was
written, for each participant as

Fig. 2 Time series of scan speed. Only non-reinforced (US-) trials were
analyzed. a Time series of scan speed in Exp 1.Dashed and solid vertical
lines represent the onset of US and the end of a trial, respectively. b
Difference of scan speed time series between CS+ and CS- in Exp 1. c–
d Time series of scan speed and difference time series in Exp 2. e
Empirical response function. A gamma probability density function (solid
black curve) was fitted to scan speed time series from Exp 1 (solid grey
curve). This model was then moved 0.5 s to the right to account for the
later US in subsequent experiments (dashed black curve). Data shown in
panels a–d are grand means, i.e., responses averaged across first over
trials and then over participants ± SEM (computed over participants after
trial averaging, shaded regions)
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Y ¼ Xβ þ ϵ;

where Y is observed data time series, X is a design matrix
constructed by convolving a stick function for each CS
onset with the response function, β represents the ampli-
tude of the scan speed responses, and ϵ is independent
and identically distributed noise. GLM implementation
was the same as for our previous psychophysiological
models (Bach, Castegnetti, Korn, Gerster, Melinscak,
and Moser, 2018a).

Fixation distribution For each participant, we extracted gaze
coordinates and fixation duration from CS onset to US
onset in all CS- and CS+US- trials, which we plotted as
heat maps (gaze coordinates) and histograms (fixation
duration).

Psychophysiological data pre-processing and analysis
(Experiment 3) SCR data were visually inspected, and one
participant excluded due to electrode detachment. SCR
data were then filtered with a 1st-order bidirectional
band-pass Butterworth filter (cut-off frequencies:
0.0159–5 Hz), and down-sampled to 10 Hz. Resulting
time series were analyzed by non-linear inversion of a
PsPM that describes the anticipatory and evoked SCR
under a canonical response function (Bach, Flandin,
Friston, & Dolan, 2009; Bach et al., 2010; Staib et al.,
2015 ; Ger s t e r , Namer , E l am, & Bach , 2018 ) .
Specifically, a fixed-latency response at CS onset and a
fixed-latency response at (potential) US onset were esti-
mated for each trial. The inversion algorithm was not
informed about trial type or the presence of an US. We
included only non-reinforced trials into statistical analy-
sis to avoid any contamination by US responses. We
note that in all four experiments, CS-US intervals (stim-
uli onset asynchrony, SOA) were relatively short (3–3.5
s). The inversion algorithm used for SCR analysis was
developed and implemented specifically for such short
(up to 4 s) CS-US intervals and accounts for overlapping
in SCR (Staib et al., 2015). Next, we detected R-spikes
in the ECG using a modified Pan–Tompkins algorithm
implemented in PsPM (Castegnetti et al., 2016; Paulus,
Castegnetti, & Bach, 2016). Inter-beat interval was
mapped onto the time point of the following R spike,
and values outside 600 ms and 1000 ms (corresponding
to a heart rate outside 60–100 bpm) were excluded.
Heart period was then linearly interpolated with 100-Hz
sampling frequency and filtered with a 4th-order bidirec-
tional band-pass Butterworth filter (cut-off frequencies:
0.015–0.5 Hz). To estimate the anticipatory heart period
(bradycardia) response, we used a condition-wise general
l inear convolution model implemented in PsPM
(Castegnetti et al., 2017).

Statistical analysis

Statistical analysis was done in MATLAB (2015b and
2018b, The MathWorks, Natick, MA, USA) and R (v.
3.6.1, www.r-project .org). Due to our data pre-
processing and response estimation procedures, the pres-
ence of a US can influence the estimate of CS-induced
responses. For this reason, we discarded all CS+US+
trials as in previous work. To compare dependent mea-
sures between CS+US- and CS-, we used two-tailed
paired t tests. Effect size was quantified as Hedge’s g
using the following formula (Hedges & Olkin, 2014;
Lakens, 2013):

g ¼ J n−1ð Þ* Xdiff
���

SDdiff
where J að Þ ¼

Γ
a
2

� �
ffiffiffi
a
2

r
Γ

a−1
2

� � :

The corresponding confidence interval was computed using
bootci in MATLAB (bias-corrected and accelerated
bootstrapping). We also computed Akaike Information
Criterion (AIC) as in previous work (Xia et al., 2019a).
Log Bayes factor (LBF) was then calculated from AIC
values by formula LBF = (AIC - AICref)/2. The number
of free parameters in the calculation of AIC is the same
for all methods), such that LBF are equal to those based
on Bayesian Information Criterion. A two-tailed two-
sample Kolmogorov–Smirnov test was used to compare
distributions of fixation duration between CS- and CS+
US- using ks.test in R.

Reliability analysis

We also sought to address internal consistency of the scanpath
metric and its correlation with other metrics of threat condi-
tioning. This assesses whether an individual’s estimated place
in the distribution of CS-US association strength is stable
within the learning session. As a caveat, reliability is only
meaningful if the measure is valid in the first place
(Cronbach & Meehl, 1955). Furthermore, reliability depends
not only on the precision of the measurement, but also stable
variability in (true) learning between participants (Brandmaier
et al., 2018). Typical experimental procedures are designed to
reduce such variability (Hedge, Powell, & Sumner, 2018). In
an ideal case of a threat conditioning experiment in which all
participants learn CS-US association perfectly, but there is
some (even small) measurement noise, any reliability metric
will be zero, independent of the magnitude of measurement
noise (Brandmaier et al., 2018).

In deriving a reliability metric, we had to account for the
fact that learning is a dynamic process and change in the
learning metric is expected from one trial, or learning session,
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to the next. Some consistency metrics (such as Cronbach’s
alpha or intra-class correlation coefficients) would re-
quire single-trial measurements, which are not available
for HPR; furthermore, some of these treat all data points
as coming from the same population. To approximate
internal consistency, we used a split-half procedure. We
split the data, for each condition, into pairs of consecu-
tive trials, under the assumption that true CS-US associ-
ation within these pairs of trials was relatively similar.
We randomly selected one of these trials into trial set 1,
and the other into trial set 2, and computed a CS-US
association strength metric for both sets of trials (by
averaging single-trial estimates, and for HPR by comput-
ing a GLM with two regressors per condition). We then
computed the correlation of the two partitions in terms of
CS+ - CS-, for each measurement. We repeated this pro-
cedure 5000 times and computed the average of all corre-
lations for each measurement. We note that this metric is
constrained by the dynamic update of CS-US associations
on every trial, and can reach high values only after learn-
ing asymptotes to stable values, which we did not expect
to be the case in our experiment.

Data and code availability

All data sets are available in anonymized form on www.
zenodo.org (Table 1). Analysis code is available from OSF
(https://doi.org/10.17605/OSF.IO/U4GRC). Preprocessing
methods are implemented in the most recent version of
PsPM (https://github.com/bachlab/PsPM/releases).

Results

We first confirmed that participants learned the CS-US con-
tingencies during the acquisition phase in all four experi-
ments. We note that due to our interpolation, filtering, and
model inversion procedures, apparent CS responses in US+
trials can be influenced by unconditioned responses. This is
why we did not analyze reinforced CS+US+ trials; the abbre-
viation CS+ henceforth refers to CS+US- trials. We contrasted
CS+/CS- in several established threat conditioning measures.
For Experiments 1–2 and 4, SCR, PSR, and (for Experiment
2) HPRwere reported previously. These measures significant-
ly differed between CS+/CS- in all experiments, with the ex-
ception of SCR in Experiment 4 (t(12) = 2.03, p = .065, g =
0.53), which was notably based on a small sample of 13 par-
ticipants due to missing data. Similarly for Experiment 3, SCR
andHPR differed between CS+/CS− (SCRmean ± SEM: 0.27
± 0.04 μS vs. 0.23 ± 0.03 μS; t(24) = 3.28, p = .003; g = 0.64;
and HPR 10.72 ± 3.87 ms vs. – 11.46 ± 3.63 ms; t(25) = 3.76;
p < .001; g = 0.72).

Experiment 1: Scan speed time series and trial
summary statistics

Next, we analyzed the time series of scan speed during CS+
and CS- presentation in experiment 1. As visible in Fig. 2a,
during both CS+ and CS-, scan speed was increased after CS
onset, and decayed after US offset. Scan speed increased more
during CS- than CS+ (Fig. 2a). This difference is depicted in
Fig. 2b.

To derive a single summary statistic of scan speed over the
entire trial, we first integrated fromCS onset to US onset. This
scanpath length measure was significantly different between
CS+ and CS-(t(20) = 2.98; p = .007, paired t test; see LBF and
effect size in Table 2).

Since scan speed appeared to best differentiate between
CS- and CS+ after around 1–2 s into CS presentation until
US onset, we sought to optimize this summary statistic. To
avoid circular inference, we do not interpret inferential statis-
tics for this optimization. Instead, we sought to confirm gen-
eralizability of the results in independent Experiment 2. We
computed scanpath length over different time windows during
CS presentation. Table 2 shows effect sizes. Among the time
windows considered, the optimal time window to distinguish
CS valences was a 2-s time period before US onset, where
effect size to distinguish CS+/CS- was slightly, but according
to model evidence, not decisively higher than for scanpath
length computed over the entire CS-US interval (Fig. 3a,
Table 2).

We sought to further optimize this measure by taking into
account the shape of the scan speed time series during CS
presentation. As in previous work on threat-conditioned PSR
(Korn et al., 2017), HPR (Castegnetti et al., 2016) and respi-
ratory responses (Castegnetti et al., 2017), we fitted a canon-
ical response function to the difference time series of grand
means of scan speed (Fig. 2b). To this end, we used a gamma
probability density function with fitted parameters t0 = –
1.90203, k = 10.09130, and θ = 0.42125 (Fig. 2e). We then
used this response function to estimate the amplitude of scan
speed responses to CS+ and CS- in a general linear convolu-
tion model (Bach et al., 2009). Scan speed response estimates
differentiated between CS+ and CS- with an effect size similar
to that of scan path length computed over the optimized time
window. Results were also very similar when using various
different low-pass filters (see Methods).

Experiment 2: Confirmation

Scan speed for Experiment 2 is shown in Fig. 2c, d. We con-
firmed that summary statistics derived from Experiment 1 dif-
fered between CS+ and CS-. In what follows, we report uncor-
rected p values; all were significant at p < .05 after Holm–
Bonferroni correction for three tests. Scanpath length, comput-
ed over the entire CS-US interval, differed between CS+ and
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CS- (t(34) = 2.82; p = .008; see Table 2 for effect size). Also,
scanpath length computed over the optimized time interval dif-
fered between CS+ and CS- (t(34) = 4.09; p < .001; Fig. 3b).
Table 2 shows that the optimal time interval to compute
scanpath length was the same as in Experiment 1, such that
no further optimization was required. Finally, we computed
scan speed responses in a GLM approach, where we shifted
the response function by 0.5 s to account for the later US de-
livery (Fig. 2e) in keeping with the way of computing scanpath
length. Estimated responses differed between CS+ and CS-
(t(34) = 3.84; p < .001). In previous work, we leveraged differ-
ent CS-US intervals to investigate whether psychophysiologi-
cal responses were time-locked to CS or US (Castegnetti et al.,
2016); given the small (0.5 s) difference in CS presentation
time between Experiments 1 and 2 we did not attempt such
differentiation here. Overall, it appears that the GLM-based
approach did not improve on the effect size to distinguish
CS+/CS- in either of Experiments 1–2. This is why we focus
on scanpath length computed over the optimized time window
as primary measure in the rest of this study.

Experiment 1–2: Distribution of gaze coordinates and
fixation duration

Next, we sought to explore what causes the difference in
scanpath length between CS+ and CS-. We assessed two
possible underlying mechanisms: participants scan a wider
screen area in CS- trials, and participants saccade more but
possibly within the same screen area. Figure 4a, b shows
the distribution of gaze coordinates on the screen, where it
appears that in both experiments, participants fixated more
on the screen center in CS+ than in CS- trials. We comput-
ed the distance of fixation points from screen center. An
exploratory two-sample Kolmogorov–Smirnov (KS) test
showed a significant difference between CS+ and CS- tri-
als in this distance (Exp 1, D = 0.047, p < .001; Exp 2, D =

0.016, p < .001; Fig. 4cd). At the same time, it also appears
that participants fixate longer in CS+ than in CS- trials, for

Fig. 3 Total scanpath length in a 2-s period before US onset in a Exp 1, b
Exp 2, c Exp 3 acquisition phase, d Exp 3 extinction phase, and e Exp 4.
Only non-reinforced (US-) trials were analyzed. Inference statistics for
Experiment 1 are presented for illustration only as the time window was
optimized on data from this experiment.Grey lines: individual participant
data. Horizontal black lines: mean. Vertical black lines: standard error of
the CS+/CS- difference (Cousineau, 2005). * p < .05, ** p < .01, *** p <
.001

Table 2 Comparison of different scan path length time windows, and GLM-derived response estimate for Exp 1 and 2

Exploratory Exp 1

3.0 s 2.5 s 2.0 s 1.5 s 1.0 s 0.5 s GLM

df 20 20 20 20 20 20 20

LBF 0.00 0.18 – 0.17 2.32 3.81 5.71 – 0.48

|g| 0.63 0.62 0.63 0.51 0.43 0.30 0.65

Confirmatory Exp 2

3.5 s 3.0 s 2.5 s 2.0 s 1.5 s 1.0 s 0.5 s GLM

df 34 34 34 34 34 34 34 34

LBF 0.00 – 1.53 – 4.85 – 6.69 – 4.86 – 0.91 1.42 – 5.27

|g| 0.47 0.52 0.62 0.68 0.62 0.50 0.41 0.63

Timewindows are defined as period before US onset. CS-US intervals were 3.0 s and 3.5 s in Exp 1 and 2, respectively. Log Bayes factors (LBF, smaller
is better) is calculated using the entire CS-US interval as reference model. Effect size is stated as Hedge’s g. GLM, general linear model
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both experiments, with significant difference in dwell time
distribution between conditions (two-sample KS test: Exp
1, D = 0.054, p = .004; Exp 2, D = 0.053, p < .001; Fig.
4e, f). Overall, this may imply that the longer scan path in
CS- trials results from shorter fixation duration (more scan-
ning) as well as from a wider scanning area.

Experiment 3: Generalizability to other CS

Experiments 1–2 used monochrome full-screen CS, which
may facilitate or inhibit scan speed: spontaneous scanning is
unconstrained by visual features, but on the other hand does
not reveal any information. Also, Experiments 1–2 were

Fig. 4 Fixation in Exp 1 and 2. a, b Fixation distribution on the screen in
a Exp 1 and b Exp 2. Plots are scaled to the real screen with coordinate
ranges of [– 156.21, 156.21] mm in x-axis and [– 113.445, 113.445] mm

in the y-axis. c, d Distribution of distances of fixation points from screen
center in c Exp 1 and d Exp 2. e, f Distribution of fixation duration in e
Exp 1 and f Exp 2
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conducted directly after a visually rich instrumental condition-
ing task where participants might have suspected the occur-
rence of further visual elements. Here, we sought to generalize
our findings to an experiment with visually structured CS and
without any other task manipulation. Furthermore, we sought
to establish to what extent scan speed responses are
extinguished.

During acquisition, scanpath length (computed over the
optimal 2-s time period before US onset) discriminated CS+
from CS- (t(25) = 2.23; p = .035; g = 0.42, paired t test, Fig.
3c). Exploratory analysis with the GLM approach confirmed
this finding (t(25) = 2.37; p = .026; g = 0.45, not corrected for
multiple comparison).

We then analyzed a subsequent extinction block, during
which SCR to CS+ and CS- were not significantly different
anymore (t(24) = 1.28; p = .21; g = 0.25). We observed that
HPR were to some extent resistant to extinction (t(25) = 2.49;
p = .020; g = 0.47). Similar to SCR, scanpath length was not
different between CS when analyzed over the entire extinction
phase (t(25) = 0.01; p = .99; g < 0.01, Fig. 3d).We then sought
to confirm extinction by comparing the second block of ac-
quisition phase with the extinction phase and found a non-
significant reduction of the CS+/CS- difference in scan path
length from late acquisition to extinction (t(25) = 2.03; p =
.053; g = 0.39).

Experiment 4: Generalizability to auditory CS during
instructed fixation

Next, we sought to investigate to what extent scan speed re-
sponses occur in the absence of visual information presented,
and when fixation is encouraged by a fixation cross and ex-
plicit instruction. In this experiment, we did not observe sta-
tistically significant CS+/CS- differences in scanpath length
(t(21) = 1.58; p = .13; g = 0.32, Fig. 3e) or in an exploratory
analysis of GLM measures (t(21) = 1.88, p = .07, g = 0.39).

Psychometric properties of different threat
conditioning measures

Finally, we compare psychometric properties of different
threat conditioning measures (Fig. 5). We did not include
PSR in this comparison as these are compromised by the lack
of an explicit instruction to fixate (Xia et al., 2019a). Our main
development criterion was retrodictive validity, which gives
an estimate of combined trueness and precision of a measure.
Retrodictive validity for scanpath length was similar to SCR,
which is one of the most commonly used measures in human
threat learning research. Both scan path length and SCR had
lower effect size than HPR.

For each measure, our approach provides a single CS-US
association estimate per participant, i.e., the difference be-
tween CS+ and CS-. If this estimate has the same sign as the

average over participants, then the measure correctly classifies
CS+ and CS- for this participant. The proportion of partici-
pants for which this estimate is positive thus serves as binary
classification accuracy. Classification accuracy of scanpath
length was 0.81 in Exp 1, 0.74 in Exp 2, and 0.65 in the
acquisition phase of Exp 3. This contrasts with 0.76, 0.86,
and 0.72 for SCR, and 0.71, 0.80, and 0.77 for HPR,
respectively.

To investigate the internal consistency of our measures
across trials, we computed the average correlation between
consecutive pairs of trials, as surrogate split-half reliability.
Reliability was larger for SCR (Exp 1, r = 0.63; Exp 2, r =
0.72; Acquisition phase of Exp 3, r = 0.68) compared to
scanpath length (r = 0.41; r = 0.27; r = 0.56) and HPR (Exp
2, r = 0.44; Acquisition of Exp 3, r = 0.64). We further com-
puted the correlation between the different measures, where
the CS+/CS- difference for scanpath length is on average neg-
ative, and for the other two measures positive. Correlation
between the paired CS+/CS- difference in scanpath length
and SCR was r = – 0.43 (Exp 1) and r = – 0.11 (Exp 2),
between scanpath length and HPR r = 0.13 (Exp 2), and be-
tween SCR and HPR r = – 0.05 (Exp 2).

Discussion

In the current study, we investigated the impact of threat-
conditioned cues on summary statistic of gaze patterns,

Fig. 5 Comparison to other psychophysiological measures. Effect size
(Hedge’s g) and confidence interval for scanpath length, SCR, and HPR
in Experiments 1–3. No HPR data was available for Experiment 1 due to
short inter trial interval. SCR skin conductance response. HPR heart
period response. +/- direction of the effect (+: measure is larger for
CS+, -: measure is larger for CS-). Longer heart period corresponds to
bradycardia
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scanpath length, and optimized this measure as an index
of human threat conditioning. We first observed shorter
scanpath length in CS+ compared to CS- trials when an-
alyzed over the entire CS-US interval. The optimal time
window to best differentiate CS+/CS- turned out to be a
2-s time period before anticipated US onset, something
that we independently replicated in a second experiment.
A GLM-based response measure taking into account the
time course of scan speed during CS presentation provid-
ed no additional advantage. We confirmed our results in a
third experiment with different CS and demonstrated ex-
tinction of scanpath length differences when CS+ was no
longer reinforced. In a final experiment with auditory CS
and instruction to fixate a central screen location, we ob-
served no difference in scanpath length. Thus, it appears
that scanpath length differences are not a reflexive re-
sponse to any CS, but specific either to visual CS or to
the absence of an instruction to fixate.

As scanpath length has not been investigated before,
we cannot directly compare this study to previous work.
However, our results appear consistent with findings on
selective overt attention in cue competition paradigms.
Since threat-conditioned cues capture bottom-up attention
at an early processing stage during visual search
(Theeuwes, 2010), one may assume that participants show
longer fixation during CS+ trials. This was indeed the
case in our study, in line with longer fixation duration
on CS+ than on CS- stimuli in cue competition paradigms
(Austin & Duka, 2010; Koenig et al., 2017). Interestingly,
participants also fixated more on the central part of the
full-screen CS and thus scanned an overall smaller area
within the visual CS presentation.

As a complementary, but not mutually exclusive inter-
pretation, smaller scanning area and fewer saccades may
be conceptually related to freezing as observed during
CS+ presentation in rodents.

Freezing behavior is assumed to depend on amygdala-
periaqueductal grey (PAG) circuitry in both rodents and
humans (Roelofs, 2017). To the best of our knowledge, how-
ever, there is currently no evidence showing more freezing
(i.e., reduction in body movement) in humans during CS+
than CS- presentation in threat conditioning (see for reviews
Hagenaars, Oitzl, & Roelofs, 2014; Roelofs, 2017).

Previous studies demonstrated threat-biased overt at-
tention also after threat conditioning (Mulckhuyse et al.,
2013; Schmidt et al., 2015; Hopkins et al., 2016;
Mulckhuyse & Dalmaijer, 2016; Koenig et al., 2017;
Nissens et al., 2017). Here, we found that the CS+/CS-
difference was reduced from acquisition to extinction, and
there was no significant difference of scanpath length be-
tween CS+/CS- during threat extinction any more, as for
SCR. This discrepancy with previous literature could pos-
sibly be due to weaker conditioning in the current study.

Experiments with higher reinforcement rates during ac-
quisition may shed light on this point.

During an auditory threat conditioning experiment with
instruction to fixate a central fixation cross, we found no
difference in scanpath length between CS+ and CS-. This
is in line with a salience-based account of scanpath
length, whereby saliency of binaurally presented auditory
information should not spatially bias visual attention.
However, we note that the presence of a fixation cross
during CS, and the instruction to fixate on this cross,
may also have suppressed possible gaze differences be-
tween CS+/CS-.

Split-half reliability of the scanpath measure was mod-
erate, and smaller than for SCR, although retrodictive va-
lidity was similar. As a possible reason, retrodictive va-
lidity simultaneously depends on trueness and precision of
a measure, whereas reliability only depends on precision.
For two measures with similar retrodictive validity, the
more reliable one will have higher precision and lower
trueness, compared the less reliable one (Bach et al.,
2020). It is thus possible that scanpath length provides
higher trueness but lower precision to measure CS-US
association, compared to SCR. As a second possible rea-
son, different threat conditioning measures may not index
the same learning quantity (Tzovara et al., 2018; Bach,
Tzovara, & Vunder, 2018b; Ojala & Bach, 2020), and
although they may similarly distinguish CS+/CS- when
averaged over trials, their trial-by-trial dynamics can be
different. Our method of approximating internal consis-
tency is susceptible to trial-by-trial changes in the learn-
ing measure. If, for example, one measure asymptotes
more quickly than another, its reliability will appear
higher, even if the measure is not more precise when
averaged over trials.

In keeping with such differences between measures, the
correlation between averaged scanpath length and SCR
was moderate, and almost zero between scanpath length
and HPR. This may mean that these metrics may not
measure the same latent variable even on average, al-
though our small sample size precludes any strong con-
clusions at this point. Furthermore, this correlation as well
as reliability depend on interindividual differences in
learning. Experimental tasks such as the one used here
seek to minimize individual differences (Hedge et al.,
2018), and may thus not be optimally suited to assess
reliability and the correlation between measures.

Our work has several limitations. First, in order to
maintain attention during experiments, participants were
asked to press designated keys to respond to CS pre-
sentations. Although we used full-screen colors and pat-
terns as visual cues, this instruction might restrict vol-
untary visual search during CS presentation and could
be an additional interference on threat driven attentional
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bias, waiting for future exploration. We did not examine
how threat memory retention during early extinction tri-
als is reflected in scanpath length, which could be fur-
ther studied in future work with larger sample sizes.
Finally, we compared scanpath length against SCR and
HPR only. These measures have moderate retrodictive
validity (Bach & Melinscak, 2020), but this may depend
on the CS-US interval, which was rather short here (3–
3.5 s), precluding strong conclusions from this
comparison.

We developed this threat conditioning measure with an eye
on concurrent pupil size recordings but we note that the lack of
a fixation cross may decrease retrodictive validity of pupillary
responses (Xia et al., 2019a). In order to combine both mea-
sures, more sophisticated correction of the pupil
foreshortening error may be required (Hayes & Petrov,
2016). On the other hand, scanpath length could be conceived
as an alternative to pupillary responses in situations of low-
quality eye tracking, because recording gaze coordinates like-
ly requires lower camera resolution than pupillary responses
and has been reported using consumer-grade cameras
(Papoutsaki, Laskey, & Huang, 2017; Papoutsaki et al.,
2016). With the resolution of such cameras, typical threat-
conditioned PSR are on the order of one pixel and thus possi-
bly not detectable at all.

In conclusion, the present study investigated a sum-
mary statistic of gaze patterns, scanpath length, as a
potential measure of threat conditioning. The effect size
for scanpath length in our study was comparable to that
of SCR, a commonly used threat conditioning measure
(Staib et al., 2015). In addition to being a potential
complement to existing measures, gaze patterns have a
potential to be recorded with consumer-grade hardware
or in other species (Hannula et al., 2010). Thus, we
hope to have contributed to the toolkit of comparative
and translational threat conditioning research in humans.
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