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Abstract. Architectural design problems can be quite involved, as there is a 

plethora of – usually conflicting – criteria that one has to address in order to find 

an optimal, performative solution. Multi-Objective Optimization (MOO) tech-

niques can thus prove very useful, as they provide solution spaces which can 

traverse the different trade-offs of convoluted design options. Nevertheless, they 

are not widely used as a) they are computationally expensive and b) the resulting 

solution space can be proven difficult to visualize and navigate, particularly when 

dealing with higher dimensional spaces. This paper will present a system, which 

merges bespoke multi-objective optimization with a parametric CAD system, en-

hanced by supercomputing, into a single, coherent workflow, in order to address 

the above issues. The system architecture ensures optimal use of existing com-

pute resources and enables massive performance speed-up, allowing for fast re-

view and delivery cycles. The application aims to provide architects, designers 

and engineers with a better understanding of the design space, aiding the deci-

sion-making process by procuring tangible data from different objectives and fi-

nally providing fit (and sometimes unforeseen) solutions to a design problem.  

This is primarily achieved by a graphical interface of easy to navigate solution 

spaces of design options, derived from their respective Pareto fronts, in the form 

of a web-based interactive dashboard. Since understanding high-dimensionality 

data is a difficult task, multivariate analysis techniques were implemented to 

post-process the data before displaying it to end users. Visual Data Mining 

(VDM) and Machine Learning (ML) techniques were incorporated to facilitate 

knowledge discovery and exploration of large sets of design options at an early 

design stage. The system is demonstrated and assessed on an applied design case 

study of a master-planning project, where the benefits of the process are more 

evident, especially due to its complexity and size. 
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1 Introduction 

According to Keough and Benjamin (2010) the challenge of the architect is to create a 

high performing building design that is the result of often competing objectives. This 

desire for performance driven design based on variable criteria has led designers to 

introduce a variety of computational techniques (used extensively and for many years 

in other industries) in the design process, such as multi-objective optimization (MOO), 

distributed computing and data visualization. In engineering, architecture and product 



design, optimization is often tied to simulation software such as Finite Element Analy-

sis (FEA) (Kicinger, Arciszewski and DeJong, 2005) and there has been a lot of be-

spoke efforts to develop systems that allow for incorporation of simulation engines in 

the optimization process. The problem that is then posed is that of speed: simulations 

such as FEA, Computational Fluid Dynamics (CFD), Daylight etc. require long  

run-times, even for small models. When that is scaled up for every analysis and for 

thousands of populations of a few hundred individuals each (a typical setup for an op-

timization algorithm), the computation time can be significant and even prohibited, par-

ticularly when dealing with fast passing projects and urban scale models. Roudsari, Yi 

and Drew (2012) tried to tackle this problem by utilizing shared network system to 

speed up daylight autonomy simulation using Radiance. Kyropoulou, Ferrer and Subra-

maniam (2018) distributed annual daylight simulation over Microsoft Azure cloud 

computing system. Both applications were oriented towards a single domain of daylight 

simulation using Daysim and Radiance where only the raytracing part of the simulation 

was distributed. The systems used Rhino and Grasshopper as an interface for generating 

simulation data and visualization of the result. In parallel, CAD software companies, 

such as Autodesk (Project Refinery) and McNeel (RhinoCompute) have not only been 

developing optimization tools but are also moving towards cloud-based solutions with 

custom APIs, enabling the execution of computationally intensive tasks. 

The authors of this paper, who are members of the Applied Research + Development 

group at Foster + Partners, will present a process developed to address the above issues: 

a system that runs a bespoke MOO analysis within a CAD system, using custom simu-

lation engines and enhanced by supercomputing, capable of converging orders of mag-

nitude faster than off-the-shelf software. The paper will initially focus on the distributed 

MOO process developed, presenting its system’s architecture and the way paralleliza-

tion is achieved. Consecutively, the authors will showcase how the results of the MOO 

are presented through a custom design space exploration interface. Finally, the process 

is demonstrated via a case study. The presented approach is assessed in comparison to 

previous multi-optimization techniques for the design industry, in terms of the range of 

the design space and convergence rates. Multi-dimensional Data Visualization tech-

niques such as Self Organized Maps (SOMs) and hierarchical clustering are also com-

pared to existing studies. Finally, similar approaches in generative model development 

using discrete tiling, L-systems or brute force techniques are examined in parallel to the 

documented case study. 

 

2 Distributed Multi-Objective Optimization 

2.1 Optimization as Design Space Exploration Tool 

The process of architectural design often involves challenging optimization problems 

in which there are multiple and often conflicting objectives that must be simultaneously 

satisfied (Newton, 2018). For a conceptual Multi-Objective Optimization (MOO) pro-

cess to gain traction with designers looking for creative, expressive forms, it must yield 

a diverse range of high-performing results that meet a variety of aesthetic preferences 



(Brown, Tseranidis, & Mueller, 2015). According to Mueller and Ochsendorf (2013), 

these results must be generated and evaluated rapidly, while balancing allowances for 

designer preference with clear guidance towards the best solutions. Although multi-

objective optimization design problems are computationally demanding and have slow 

convergence times, supercomputing has not been widely used in the context of archi-

tectural optimization. This is mostly because contemporary parametric CAD software 

such as Grasshopper for Rhino or Dynamo for REVIT have been mainly built and op-

timized to run efficiently on a single workstation rather than in a cloud. 

 

2.2 Precedent Work 

Currently the most popular evolutionary optimization frameworks in architectural 

industry are based on plugins for Grasshopper, namely Galapagos (Rutten, 2013) and 

Octopus (Vierlinger, 2013). Both plugins were designed to work with a single instance 

of Rhinoceros, which is a significant bottleneck, as it limits their applicability to simple 

optimization studies excluding most of the real-world problems. Mueller (2015) built a 

prototype of an evolutionary optimization framework using Generative Components 

from Bentley. The system was capable of distributing phenotype and fitness calcula-

tions using Microsoft Azure. Chaszar, Buelow and Turrin (2016) built a design space 

exploration system called ParaGen based on a Non-Destructive Dynamic Population 

Genetic Algorithm. In this system all solutions were maintained in a database and could 

be recalled or searched at any time by a designer. The system used an SQL database 

and a web interface to visualize design space. Hydra conceptually utilized the ideas 

from Muller, choosing however Grasshopper as the main geometry generation tool and 

an interface to performance simulation engines. This significantly improved the overall 

robustness of the system and allowed to tackle much more elaborate design problems 

than the ones analyzed using ParaGen.    

2.3 Methodology 

Parallelization. The basic optimization requires evaluation of fitness values for candi-

date solutions (individuals). In a real-world scenario huge computational time is usually 

required to evaluate each individual. In this situation, it is typically impossible to obtain 

a certain result in a reasonable calculation time. To solve this issue, a parallel calcula-

tion is often adopted. The most robust implementation of parallelization is known as a 

controller-worker model or global parallelization (Branke, Schmeck, Deb, & Reddy S, 

2005) (Van Veldhuizen, Zydallis, & Lamont, 2003). In this scenario, a controller ap-

plication running on a master node is responsible for initialization, crossover, mutation 

and selection except for evaluation of individuals. In evolutionary computation, multi-

ple individuals exist in a population. The evaluations are completely independent from 

each other and could be carried out on different worker nodes. The controller node 

generates a population of initial solutions and distributes individuals to independent 

worker nodes. Then, the workers simultaneously evaluate all individuals and the fitness 

values are collected by the controller node. Based on the fitness values, the controller 



identifies promising individuals and generates new individuals by applying genetic op-

erators. This is repeated until a given termination condition is met (Talbi et al., 2008).  

Inter-process communication. Recent developments in cloud computing and software 

interoperability technologies greatly simplify the task of building and managing mas-

sively parallel computing infrastructure. The widespread adoption of Representation 

State Transfer (REST) software architecture pattern (Fielding, 2000) for Web services 

proved to be especially successful. REST is based on stateless transactions. Software 

components which implement such transactions can be freely redeployed if something 

fails, and they can scale to accommodate load changes. This is because any request can 

be directed to any instance of a component; there can be nothing saved that has to be 

remembered by the next transaction. This makes its especially useful in cloud compu-

ting scenarios. 

2.4 System Architecture 

By implementing the REST pattern, the authors were able to develop a bespoke system 

named Hydra which is scalable, can be adapted to any programmable CAD software 

and can leverage both on-premises HPC (High Performance Computing) and cloud so-

lutions. The system uses a Microservice software pattern (Newman, 2015) and a REST 

API for inter-process communication. The system’s back-end, responsible for storing 

and querying metadata, was built on top of an SQL database. The front-end for data 

visualization and user interaction was implemented as a web application. To leverage 

the power of distributed computing, a multi-objective GA was decoupled from a CAD 

system and developed as a separate standalone application (controller). The algorithm 

was based on Strong Pareto Evolutionary Algorithm 2 (SPEA2) adopted from the 

JMetal framework (Durillo & Nebro, 2011). The controller application only operates 

on the metadata level using genome-score vector pairs. It uploads and retrieves each 

individual’s metadata from the SQL database and sends job request to an on-premises 

computer cluster. The cluster is controlled by a commercially available compute man-

agement system called Deadline from Thinkbox. A job in this context is understood as 

a set of customized definitions with bespoke components processed in parallel using 

worker nodes. Each definition pulls a respective genome from the database and creates 

a phenotype based on a predefined parametric model. Then the phenotype is evaluated 

using simulation engines and the aggregated scores are reported back to the database 

via a bespoke REST client. Additionally, both the phenotype mesh and partial simula-

tion results are saved to the hard drive for future visualization. Grasshopper for Rhino 

was the environment chosen to take advantage of custom simulation engines previously 

developed in-house as well as community supported plugins such as Ladybug 

(Roudsari, Pak, & Smith, 2013). This approach limited data transfer between different 

simulation engines to a minimum and simplified interoperability issues. After all eval-

uations have finished, the compute management system notifies the controller applica-

tion that an entire population has been processed and the next could be generated 



(Error! Reference source not found.). This solution proved to be efficient and relia-

ble. 

 

 

Fig. 1. High level diagram of the system 

3 Case Study 

3.1 Design Problem 

The authors examined the robustness of the system on a highly complex real-life design 

case study. It involved a large master-plan proposal, with set planning regulation con-

straints and an open building brief. Hydra was introduced at the concept design stage, 

to help the team explore a vast number of generative massing possibilities based on 

their performance on set objectives. The entire process was broken down into 3 distinct 

parts: a) the urban model generation, both genotype and phenotype, which plugged into 



our GA system, b) the custom simulation set-up based on the design team’ s perfor-

mance objectives and c) the parallelization of the entire process through Hydra. 

3.2 Procedural City Generation 

On the geometry generation side, an interpretation of a Procedural City Generation 

(PCG) model was introduced. The rapid pace of the project and the specifics of the 

constraints and program rendered the creation of a fast, flexible but at the same time 

robust system imperative for the conveyance of a beneficial exploration and evaluation 

of the design space.  

Road network and land parcels. The PCG model employed a hierarchical sequence 

of actions for the generation of the urban massing, similar to the system architecture 

introduced by Parish and Müller (2001) for CityEngine. These steps start from the 

roadmap graph initially describing the allotments of available area, further subdivision 

of which, is achieved by introducing the anticipated common areas and pedestrian 

routes. This network consequently specified the available parcels for the building ge-

ometry distribution, which are then populated with potential building volume insertion 

locations.  

 

Fig. 2. Procedural City Model 

 

In order to occupy these insertion coordinates with geometry, a series of discrete build-

ing components and their relevant connectivity in terms of program have been provided 

as modular blocks for the design. Our approach differs from the previously mentioned 

CityEngine one, due to the fact that the Level of Detail (LOD) is inherent to the geom-

etry of the components, rather than being created in a sequence of operations eroding 



the bounding box of a building volume. Moreover, this methodology does not employ 

a stochastic grammar to create mass models that fill out a specific parcel with random-

ized ranges of dimension (Muller et al., 2006) but enables a richer language of building 

volumes where components can interlock, avoid each other and cohere to density, 

height and boundary as numerical parameters depended on a primitive building 

voxelized module of certain dimensions. The purpose of this approach is not to generate 

accurate building volumes, nor to define tectonic characteristics. The resulting building 

mass is a flexible, rich in information model which will provide the input for the simu-

lations set-up in order to evaluate it. 

 

Building blocks population. Two different directions were explored for the population 

of the parcels. One utilizing an L-system (Prusinkiewicz & Lindenmayer, 1991) con-

figuration and a second one using a brute-force placement of the blocks. The L-System 

is iteratively evaluating the neighboring or linked building blocks regarding their re-

spective program connectivity starting from a randomly picked insertion point location 

from the aforementioned in the previous step. Whilst this methodology might be more 

consistent with a realistic space planning approach, it was by far more computationally 

intensive, as every new block would have to check at least 8 potential neighbors. In 

addition, due to the early stage of the project and the lack of an amalgamated program 

definition, it was challenging to define concise rules for the L-System parameters. The 

brute force placement method was preferred in the final simulation being significantly 

faster and at the same time providing a wider variety of massing assemblies hence a 

richer exploration of the design space. This exhaustive search of available placement 

locations and conglomerations of the voxelized components would run continuously 

until certain criteria, such as density, total height or availability of open spaces, were 

met. The building volume aesthetics are depended on the basic module dimensions and 

the combinations of this to form program as defined by the design team, thus a different 

module would lead to potentially less segregated mass. However, the emanated geom-

etry is to be used solely to indicate which combination of building volume and urban 

space performs better, and not to suggest architectural solutions. 

Gene Conversion. This modular and flexible volumetric system further facilitated a 

versatile parametrization of the three-dimensional metrics of space to a gene conver-

sion.  Rather than explicitly encoding the parameters of the buildings generated as in-

dividual genes, genes that control the generative process itself were instigated. The 

main reason behind this is that of parametrizing the process using a smaller number of 

genes, hence a smaller quantity of dimensions to explore. However, the hierarchical 

design of the PCG allowed more control over the final design, even with a just a few 

initial genes, resulting in greater complexity, due to the iterative population of the build-

ing components (Error! Reference source not found.). As such, the initial road net-

work graph was characterized by a series of genes, the open urban spaces by others and 

number of available parcels by another gene. As a nested level of hierarchy each parcel 

had its own internal encoding, the dictated density, height, initial point for the volume 

population and available program.  

 

 



 

 
 

Fig. 3. Genotype Breakdown 

3.3 Performance Evaluation 

After the iterative population of elements has finished, the resulting elements are further 

voxelized in correspondence to the preferred grid module, which time is a finer defini-

tion of the initial building volume. The whole model can then be fed to the relevant 

simulation engines.  A range of objectives were set for this project, including area, 

quality of view, environmental and spatial criteria. Floor Area Ratio (FAR)/Gross Floor 

Area (GFA) targets were derived directly from the voxels. Views of the waterfront and 

hills neighboring the site were analyzed, as well as cumulative solar radiation at street 

level and daylight potential, visual connectivity from the open spaces and walkability 

of the scheme. (see Error! Reference source not found.).  

The FAR/GFA target is a simple addition of the area data associated with each voxel. 

The view analysis, on both targets, was conducted via a custom written analysis engine. 

Faces with no views are marked with black color whereas the viewing score is also 

displayed by the intensity of the color on the respective face. For instance, dark blue 

indicates greater view potential towards the sea, when lighter tones specify smaller val-

ues. Similarly, a graph-based system was utilized for the visual connectivity and walk-

ability performance criteria, where the color gradient represents distance and time met-

rics. Finally, the Ladybug add-on was used for the Solar radiation and Skylight poten-

tial. All the routines were executed through the Grasshopper3d UI, limiting all the com-

putation within one CAD framework. 

After all the simulations are completed, individual performance scores and overall fit-

ness values are fed back to the user and can be executed locally on a single node. Hydra, 

facilitates the parallelization of both the PCG process and the simulation tasks, sending 

back to the SQL database all the relevant metrics and scores whilst visually document-

ing each solution. 

 



 
 

 

Fig. 4. Performance Driven Objectives 

 

4 Results 

4.1 Summary 

Once the system was set-up the tasks were distributed to eight computing nodes, run-

ning five instances of Rhino in parallel, each containing in total 320 CPUs. In this case 

study over 6000 masterplan solutions were generated and evaluated over 54 hours. Fig-

ure 5 shows the comparison of the processing times per generation. The average pro-

cessing time per individual (including phenotype generation and performance simula-

tions) was 15.03 minutes. Using Hydra, the actual processing time per generation con-

taining 60 individuals was on average 32.8 minutes. The total simulation time for 100 

generations was 55 hours. If Hydra had not been used and the individuals had been 

processed sequentially, the same study would have taken 1504 hours (almost 63 days). 

This is illustrated by the Total Combined Processing time which shows linearly aggre-

gated processing times for all individuals in given generation. Therefore, including 

wasted time due to the overhead of switching between individual jobs which are ex-

pensive to start, Hydra provided a 27x times speedup. The sudden spike in actual pro-

cessing times around generation 33 was caused by a sudden influx of different jobs to 

the render farm, which temporarily reduced computational resources available for this 

study.     



  
 

Fig. 5. Comparison of Processing Times per Generation 

4.2 Interactive Dashboard 

The results were then post-processed and visualized using an interactive web-based 

dashboard (see Error! Reference source not found.). The dashboard used multivariate 

analysis algorithms for exploring and understanding the relations between various de-

sign parameters, as self-organizing maps (Harding, 2016), hierarchical clustering and 

dendrograms (Vesanto & Alhoniemi, 2000) and parallel-charts (Sileryte et al. 2016), 

(Chaszar, Buelow and Turrin (2016). The detailed description of the dashboard is be-

yond the scope of this paper. These results were well received by the design team, pri-

marily because of the fast delivery pace, but more importantly because they provided 

feasible design options, a coherent evaluation of the local, site-specific, design space 

and enabled assessing tradeoffs between conflicting objectives. 



 
 

Fig. 6. Interactive Dashboard 

 



5 Conclusions 

This paper presented Hydra: a distributed multi-objective optimization system which 

was evaluated on a complex urban case study developed by members of the Applied 

Research + development group at Foster + Partners. The principles of Microservice 

software architecture applied to parametric CAD software and various performance 

analysis engines proved to be highly efficient and resilient. The system scaled up well, 

utilizing hundreds of CPUs. Hydra was capable of generating not only thousands of 

masterplans but also of running complex analysis on them (e.g. daylight potential, qual-

ity of view, solar radiation) considerably faster than currently widespread methods. It 

is a significant improvement over the previous case studies, which were limited either 

simplistic massing models or simulations only form a single performance domain. 

Moreover, it also proved that such design space exploration system, while combined 

with distributed computing platforms, could be effectively used at the early design stage 

even for complex models. Additionally, faster processing times and database storage 

capacity, both addressed by Hydra, allow for generation of massive data sets which are 

essential for building more sophisticated design systems based on predictive models. 

Current advancements in Machine Learning, especially in Convolutional Neural Net-

work (CNNs) have been explicitly possible due to both access to large data sets and an 

increase in parallel compute power. This suggests that Hydra-like systems have a great 

potential to help advancing the state of the art in AEC computing 
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