
HYDRA

Distributed Multi-Objective Optimization for Designers

Marcin Kosicki, Marios Tsiliakos, and Martha Tsigkari

Foster + Partners, 22 Hester Road, SW11 4AN, London, UK

Abstract. Architectural design problems can be quite involved, as there is a

plethora of – usually conflicting – criteria that one has to address in order to find

an optimal, performative solution. Multi-Objective Optimization (MOO) tech-

niques can thus prove very useful, as they provide solution spaces which can

traverse the different trade-offs of convoluted design options. Nevertheless, they

are not widely used as a) they are computationally expensive and b) the resulting

solution space can be proven difficult to visualize and navigate, particularly when

dealing with higher dimensional spaces. This paper will present a system, which

merges bespoke multi-objective optimization with a parametric CAD system, en-

hanced by supercomputing, into a single, coherent workflow, in order to address

the above issues. The system architecture ensures optimal use of existing com-

pute resources and enables massive performance speed-up, allowing for fast re-

view and delivery cycles. The application aims to provide architects, designers

and engineers with a better understanding of the design space, aiding the deci-

sion-making process by procuring tangible data from different objectives and fi-

nally providing fit (and sometimes unforeseen) solutions to a design problem.

This is primarily achieved by a graphical interface of easy to navigate solution

spaces of design options, derived from their respective Pareto fronts, in the form

of a web-based interactive dashboard. Since understanding high-dimensionality

data is a difficult task, multivariate analysis techniques were implemented to

post-process the data before displaying it to end users. Visual Data Mining

(VDM) and Machine Learning (ML) techniques were incorporated to facilitate

knowledge discovery and exploration of large sets of design options at an early

design stage. The system is demonstrated and assessed on an applied design case

study of a master-planning project, where the benefits of the process are more

evident, especially due to its complexity and size.

Keywords: Distributed Computing, Parallel Computing, Performance Design,

Optimization; Evolutionary Computing, High Performance Computing

1 Introduction

According to Keough and Benjamin (2010) the challenge of the architect is to create a

high performing building design that is the result of often competing objectives. This

desire for performance driven design based on variable criteria has led designers to

introduce a variety of computational techniques (used extensively and for many years

in other industries) in the design process, such as multi-objective optimization (MOO),

distributed computing and data visualization. In engineering, architecture and product

design, optimization is often tied to simulation software such as Finite Element Analy-

sis (FEA) (Kicinger, Arciszewski and DeJong, 2005) and there has been a lot of be-

spoke efforts to develop systems that allow for incorporation of simulation engines in

the optimization process. The problem that is then posed is that of speed: simulations

such as FEA, Computational Fluid Dynamics (CFD), Daylight etc. require long

run-times, even for small models. When that is scaled up for every analysis and for

thousands of populations of a few hundred individuals each (a typical setup for an op-

timization algorithm), the computation time can be significant and even prohibited, par-

ticularly when dealing with fast passing projects and urban scale models. Roudsari, Yi

and Drew (2012) tried to tackle this problem by utilizing shared network system to

speed up daylight autonomy simulation using Radiance. Kyropoulou, Ferrer and Subra-

maniam (2018) distributed annual daylight simulation over Microsoft Azure cloud

computing system. Both applications were oriented towards a single domain of daylight

simulation using Daysim and Radiance where only the raytracing part of the simulation

was distributed. The systems used Rhino and Grasshopper as an interface for generating

simulation data and visualization of the result. In parallel, CAD software companies,

such as Autodesk (Project Refinery) and McNeel (RhinoCompute) have not only been

developing optimization tools but are also moving towards cloud-based solutions with

custom APIs, enabling the execution of computationally intensive tasks.

The authors of this paper, who are members of the Applied Research + Development

group at Foster + Partners, will present a process developed to address the above issues:

a system that runs a bespoke MOO analysis within a CAD system, using custom simu-

lation engines and enhanced by supercomputing, capable of converging orders of mag-

nitude faster than off-the-shelf software. The paper will initially focus on the distributed

MOO process developed, presenting its system’s architecture and the way paralleliza-

tion is achieved. Consecutively, the authors will showcase how the results of the MOO

are presented through a custom design space exploration interface. Finally, the process

is demonstrated via a case study. The presented approach is assessed in comparison to

previous multi-optimization techniques for the design industry, in terms of the range of

the design space and convergence rates. Multi-dimensional Data Visualization tech-

niques such as Self Organized Maps (SOMs) and hierarchical clustering are also com-

pared to existing studies. Finally, similar approaches in generative model development

using discrete tiling, L-systems or brute force techniques are examined in parallel to the

documented case study.

2 Distributed Multi-Objective Optimization

2.1 Optimization as Design Space Exploration Tool

The process of architectural design often involves challenging optimization problems

in which there are multiple and often conflicting objectives that must be simultaneously

satisfied (Newton, 2018). For a conceptual Multi-Objective Optimization (MOO) pro-

cess to gain traction with designers looking for creative, expressive forms, it must yield

a diverse range of high-performing results that meet a variety of aesthetic preferences

(Brown, Tseranidis, & Mueller, 2015). According to Mueller and Ochsendorf (2013),

these results must be generated and evaluated rapidly, while balancing allowances for

designer preference with clear guidance towards the best solutions. Although multi-

objective optimization design problems are computationally demanding and have slow

convergence times, supercomputing has not been widely used in the context of archi-

tectural optimization. This is mostly because contemporary parametric CAD software

such as Grasshopper for Rhino or Dynamo for REVIT have been mainly built and op-

timized to run efficiently on a single workstation rather than in a cloud.

2.2 Precedent Work

Currently the most popular evolutionary optimization frameworks in architectural

industry are based on plugins for Grasshopper, namely Galapagos (Rutten, 2013) and

Octopus (Vierlinger, 2013). Both plugins were designed to work with a single instance

of Rhinoceros, which is a significant bottleneck, as it limits their applicability to simple

optimization studies excluding most of the real-world problems. Mueller (2015) built a

prototype of an evolutionary optimization framework using Generative Components

from Bentley. The system was capable of distributing phenotype and fitness calcula-

tions using Microsoft Azure. Chaszar, Buelow and Turrin (2016) built a design space

exploration system called ParaGen based on a Non-Destructive Dynamic Population

Genetic Algorithm. In this system all solutions were maintained in a database and could

be recalled or searched at any time by a designer. The system used an SQL database

and a web interface to visualize design space. Hydra conceptually utilized the ideas

from Muller, choosing however Grasshopper as the main geometry generation tool and

an interface to performance simulation engines. This significantly improved the overall

robustness of the system and allowed to tackle much more elaborate design problems

than the ones analyzed using ParaGen.

2.3 Methodology

Parallelization. The basic optimization requires evaluation of fitness values for candi-

date solutions (individuals). In a real-world scenario huge computational time is usually

required to evaluate each individual. In this situation, it is typically impossible to obtain

a certain result in a reasonable calculation time. To solve this issue, a parallel calcula-

tion is often adopted. The most robust implementation of parallelization is known as a

controller-worker model or global parallelization (Branke, Schmeck, Deb, & Reddy S,

2005) (Van Veldhuizen, Zydallis, & Lamont, 2003). In this scenario, a controller ap-

plication running on a master node is responsible for initialization, crossover, mutation

and selection except for evaluation of individuals. In evolutionary computation, multi-

ple individuals exist in a population. The evaluations are completely independent from

each other and could be carried out on different worker nodes. The controller node

generates a population of initial solutions and distributes individuals to independent

worker nodes. Then, the workers simultaneously evaluate all individuals and the fitness

values are collected by the controller node. Based on the fitness values, the controller

identifies promising individuals and generates new individuals by applying genetic op-

erators. This is repeated until a given termination condition is met (Talbi et al., 2008).

Inter-process communication. Recent developments in cloud computing and software

interoperability technologies greatly simplify the task of building and managing mas-

sively parallel computing infrastructure. The widespread adoption of Representation

State Transfer (REST) software architecture pattern (Fielding, 2000) for Web services

proved to be especially successful. REST is based on stateless transactions. Software

components which implement such transactions can be freely redeployed if something

fails, and they can scale to accommodate load changes. This is because any request can

be directed to any instance of a component; there can be nothing saved that has to be

remembered by the next transaction. This makes its especially useful in cloud compu-

ting scenarios.

2.4 System Architecture

By implementing the REST pattern, the authors were able to develop a bespoke system

named Hydra which is scalable, can be adapted to any programmable CAD software

and can leverage both on-premises HPC (High Performance Computing) and cloud so-

lutions. The system uses a Microservice software pattern (Newman, 2015) and a REST

API for inter-process communication. The system’s back-end, responsible for storing

and querying metadata, was built on top of an SQL database. The front-end for data

visualization and user interaction was implemented as a web application. To leverage

the power of distributed computing, a multi-objective GA was decoupled from a CAD

system and developed as a separate standalone application (controller). The algorithm

was based on Strong Pareto Evolutionary Algorithm 2 (SPEA2) adopted from the

JMetal framework (Durillo & Nebro, 2011). The controller application only operates

on the metadata level using genome-score vector pairs. It uploads and retrieves each

individual’s metadata from the SQL database and sends job request to an on-premises

computer cluster. The cluster is controlled by a commercially available compute man-

agement system called Deadline from Thinkbox. A job in this context is understood as

a set of customized definitions with bespoke components processed in parallel using

worker nodes. Each definition pulls a respective genome from the database and creates

a phenotype based on a predefined parametric model. Then the phenotype is evaluated

using simulation engines and the aggregated scores are reported back to the database

via a bespoke REST client. Additionally, both the phenotype mesh and partial simula-

tion results are saved to the hard drive for future visualization. Grasshopper for Rhino

was the environment chosen to take advantage of custom simulation engines previously

developed in-house as well as community supported plugins such as Ladybug

(Roudsari, Pak, & Smith, 2013). This approach limited data transfer between different

simulation engines to a minimum and simplified interoperability issues. After all eval-

uations have finished, the compute management system notifies the controller applica-

tion that an entire population has been processed and the next could be generated

(Error! Reference source not found.). This solution proved to be efficient and relia-

ble.

Fig. 1. High level diagram of the system

3 Case Study

3.1 Design Problem

The authors examined the robustness of the system on a highly complex real-life design

case study. It involved a large master-plan proposal, with set planning regulation con-

straints and an open building brief. Hydra was introduced at the concept design stage,

to help the team explore a vast number of generative massing possibilities based on

their performance on set objectives. The entire process was broken down into 3 distinct

parts: a) the urban model generation, both genotype and phenotype, which plugged into

our GA system, b) the custom simulation set-up based on the design team’ s perfor-

mance objectives and c) the parallelization of the entire process through Hydra.

3.2 Procedural City Generation

On the geometry generation side, an interpretation of a Procedural City Generation

(PCG) model was introduced. The rapid pace of the project and the specifics of the

constraints and program rendered the creation of a fast, flexible but at the same time

robust system imperative for the conveyance of a beneficial exploration and evaluation

of the design space.

Road network and land parcels. The PCG model employed a hierarchical sequence

of actions for the generation of the urban massing, similar to the system architecture

introduced by Parish and Müller (2001) for CityEngine. These steps start from the

roadmap graph initially describing the allotments of available area, further subdivision

of which, is achieved by introducing the anticipated common areas and pedestrian

routes. This network consequently specified the available parcels for the building ge-

ometry distribution, which are then populated with potential building volume insertion

locations.

Fig. 2. Procedural City Model

In order to occupy these insertion coordinates with geometry, a series of discrete build-

ing components and their relevant connectivity in terms of program have been provided

as modular blocks for the design. Our approach differs from the previously mentioned

CityEngine one, due to the fact that the Level of Detail (LOD) is inherent to the geom-

etry of the components, rather than being created in a sequence of operations eroding

the bounding box of a building volume. Moreover, this methodology does not employ

a stochastic grammar to create mass models that fill out a specific parcel with random-

ized ranges of dimension (Muller et al., 2006) but enables a richer language of building

volumes where components can interlock, avoid each other and cohere to density,

height and boundary as numerical parameters depended on a primitive building

voxelized module of certain dimensions. The purpose of this approach is not to generate

accurate building volumes, nor to define tectonic characteristics. The resulting building

mass is a flexible, rich in information model which will provide the input for the simu-

lations set-up in order to evaluate it.

Building blocks population. Two different directions were explored for the population

of the parcels. One utilizing an L-system (Prusinkiewicz & Lindenmayer, 1991) con-

figuration and a second one using a brute-force placement of the blocks. The L-System

is iteratively evaluating the neighboring or linked building blocks regarding their re-

spective program connectivity starting from a randomly picked insertion point location

from the aforementioned in the previous step. Whilst this methodology might be more

consistent with a realistic space planning approach, it was by far more computationally

intensive, as every new block would have to check at least 8 potential neighbors. In

addition, due to the early stage of the project and the lack of an amalgamated program

definition, it was challenging to define concise rules for the L-System parameters. The

brute force placement method was preferred in the final simulation being significantly

faster and at the same time providing a wider variety of massing assemblies hence a

richer exploration of the design space. This exhaustive search of available placement

locations and conglomerations of the voxelized components would run continuously

until certain criteria, such as density, total height or availability of open spaces, were

met. The building volume aesthetics are depended on the basic module dimensions and

the combinations of this to form program as defined by the design team, thus a different

module would lead to potentially less segregated mass. However, the emanated geom-

etry is to be used solely to indicate which combination of building volume and urban

space performs better, and not to suggest architectural solutions.

Gene Conversion. This modular and flexible volumetric system further facilitated a

versatile parametrization of the three-dimensional metrics of space to a gene conver-

sion. Rather than explicitly encoding the parameters of the buildings generated as in-

dividual genes, genes that control the generative process itself were instigated. The

main reason behind this is that of parametrizing the process using a smaller number of

genes, hence a smaller quantity of dimensions to explore. However, the hierarchical

design of the PCG allowed more control over the final design, even with a just a few

initial genes, resulting in greater complexity, due to the iterative population of the build-

ing components (Error! Reference source not found.). As such, the initial road net-

work graph was characterized by a series of genes, the open urban spaces by others and

number of available parcels by another gene. As a nested level of hierarchy each parcel

had its own internal encoding, the dictated density, height, initial point for the volume

population and available program.

Fig. 3. Genotype Breakdown

3.3 Performance Evaluation

After the iterative population of elements has finished, the resulting elements are further

voxelized in correspondence to the preferred grid module, which time is a finer defini-

tion of the initial building volume. The whole model can then be fed to the relevant

simulation engines. A range of objectives were set for this project, including area,

quality of view, environmental and spatial criteria. Floor Area Ratio (FAR)/Gross Floor

Area (GFA) targets were derived directly from the voxels. Views of the waterfront and

hills neighboring the site were analyzed, as well as cumulative solar radiation at street

level and daylight potential, visual connectivity from the open spaces and walkability

of the scheme. (see Error! Reference source not found.).

The FAR/GFA target is a simple addition of the area data associated with each voxel.

The view analysis, on both targets, was conducted via a custom written analysis engine.

Faces with no views are marked with black color whereas the viewing score is also

displayed by the intensity of the color on the respective face. For instance, dark blue

indicates greater view potential towards the sea, when lighter tones specify smaller val-

ues. Similarly, a graph-based system was utilized for the visual connectivity and walk-

ability performance criteria, where the color gradient represents distance and time met-

rics. Finally, the Ladybug add-on was used for the Solar radiation and Skylight poten-

tial. All the routines were executed through the Grasshopper3d UI, limiting all the com-

putation within one CAD framework.

After all the simulations are completed, individual performance scores and overall fit-

ness values are fed back to the user and can be executed locally on a single node. Hydra,

facilitates the parallelization of both the PCG process and the simulation tasks, sending

back to the SQL database all the relevant metrics and scores whilst visually document-

ing each solution.

Fig. 4. Performance Driven Objectives

4 Results

4.1 Summary

Once the system was set-up the tasks were distributed to eight computing nodes, run-

ning five instances of Rhino in parallel, each containing in total 320 CPUs. In this case

study over 6000 masterplan solutions were generated and evaluated over 54 hours. Fig-

ure 5 shows the comparison of the processing times per generation. The average pro-

cessing time per individual (including phenotype generation and performance simula-

tions) was 15.03 minutes. Using Hydra, the actual processing time per generation con-

taining 60 individuals was on average 32.8 minutes. The total simulation time for 100

generations was 55 hours. If Hydra had not been used and the individuals had been

processed sequentially, the same study would have taken 1504 hours (almost 63 days).

This is illustrated by the Total Combined Processing time which shows linearly aggre-

gated processing times for all individuals in given generation. Therefore, including

wasted time due to the overhead of switching between individual jobs which are ex-

pensive to start, Hydra provided a 27x times speedup. The sudden spike in actual pro-

cessing times around generation 33 was caused by a sudden influx of different jobs to

the render farm, which temporarily reduced computational resources available for this

study.

Fig. 5. Comparison of Processing Times per Generation

4.2 Interactive Dashboard

The results were then post-processed and visualized using an interactive web-based

dashboard (see Error! Reference source not found.). The dashboard used multivariate

analysis algorithms for exploring and understanding the relations between various de-

sign parameters, as self-organizing maps (Harding, 2016), hierarchical clustering and

dendrograms (Vesanto & Alhoniemi, 2000) and parallel-charts (Sileryte et al. 2016),

(Chaszar, Buelow and Turrin (2016). The detailed description of the dashboard is be-

yond the scope of this paper. These results were well received by the design team, pri-

marily because of the fast delivery pace, but more importantly because they provided

feasible design options, a coherent evaluation of the local, site-specific, design space

and enabled assessing tradeoffs between conflicting objectives.

Fig. 6. Interactive Dashboard

5 Conclusions

This paper presented Hydra: a distributed multi-objective optimization system which

was evaluated on a complex urban case study developed by members of the Applied

Research + development group at Foster + Partners. The principles of Microservice

software architecture applied to parametric CAD software and various performance

analysis engines proved to be highly efficient and resilient. The system scaled up well,

utilizing hundreds of CPUs. Hydra was capable of generating not only thousands of

masterplans but also of running complex analysis on them (e.g. daylight potential, qual-

ity of view, solar radiation) considerably faster than currently widespread methods. It

is a significant improvement over the previous case studies, which were limited either

simplistic massing models or simulations only form a single performance domain.

Moreover, it also proved that such design space exploration system, while combined

with distributed computing platforms, could be effectively used at the early design stage

even for complex models. Additionally, faster processing times and database storage

capacity, both addressed by Hydra, allow for generation of massive data sets which are

essential for building more sophisticated design systems based on predictive models.

Current advancements in Machine Learning, especially in Convolutional Neural Net-

work (CNNs) have been explicitly possible due to both access to large data sets and an

increase in parallel compute power. This suggests that Hydra-like systems have a great

potential to help advancing the state of the art in AEC computing

References

Branke, J., Schmeck, H., Deb, K., & Reddy S, M. (2005). Parallelizing multi-objective

evolutionary algorithms: cone separation. In Proceedings of the 2004 Congress on

Evolutionary Computation (IEEE Cat. No.04TH8753) (pp. 1952–1957). IEEE.

https://doi.org/10.1109/CEC.2004.1331135

Brown, N., Tseranidis, S., & Mueller, C. (2015). Multi-objective optimization for diversity and

performance in conceptual structural design. In Proceedings of the International

Association for Shell and Spatial Structures (IASS), Future Visions, 17 - 20 August 2015,

Amsterdam, The Netherlands. Retrieved from http://digitalstructures.mit.edu/files/2015-

09/ncb-iass-paper-final.pdf

Chaszar, A., Buelow, P. Von, & Turrin, M. (2016). Multivariate Interactive Visualization of Data

in Generative Design Multivariate Interactive Visualization of Data in Generative Design.

In A. Ramtin, A. Chronis, S. Hanna, & M. Turrin (Eds.), SimAUD. London.

Durillo, J. J., & Nebro, A. J. (2011). jMetal: A Java framework for multi-objective optimization.

Advances in Engineering Software, 42(10), 760–771.

https://doi.org/10.1016/j.advengsoft.2011.05.014

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architecturese. University of California, Irvine. Retrieved from

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Harding, J. (2016). Dimensionality Reduction for Parametric Design Exploration. In S.

Adriaenssens, F. Gramazio, M. Kohler, A. Menges, & M. Pauly (Eds.), Advances in

Architectural Geometry 2016 (pp. 204–221). Zurich, Switzerland: vdf Hochschulverlag

AG. https://doi.org/10.3218/3778-4_19

Mueller, C., & Ochsendorf, J. (2013). An Integrated Computational Approach for Creative

Conceptual Structural Design. Proceedings of the International Association for Shell and

Spatial Structures (IASS) Symposium 2013, 1–6.

Mueller, V. (2015). Second Generation Prototype of a Design Performance Optimization

Framework, (April).

Newman, S. (2015). Building Microservices (1 Edition). O’Reilly Media.

Newton, D. (2018). Multi-Objective Qualitative Optimization (MOQO) in Architectural Design.

In A. Kepczynska-Walczak & S. Bialkowski (Eds.), Computing for a better tomorrow -

Proceedings of the 36th eCAADe Conference (Vol. 1, pp. 187–196). Lodz, Poland.

Parish, Y. I. H., & Müller, P. (2001). Procedural Modeling of Cities. 28th Annual Conference on

Computer Graphics and Interactive Techniques, (August), 301–308.

https://doi.org/10.1145/383259.383292

Prusinkiewicz, P., & Lindenmayer, A. (1991). The Algorithmic Beauty of Plants. Springer-

Verlag.

Roudsari, M. S., Pak, M., & Smith, A. (2013). Ladybug: a Parametric Environmental Plugin for

Grasshopper To Help Designers Create an Environmentally-Conscious Design. 13th

Conference of International Building Performance Simulation Association, 3129–3135.

Retrieved from http://www.ibpsa.org/proceedings/bs2013/p_2499.pdf

Rutten, D. (2013). Galapagos: on the logic and limitations of generic solvers. Architectural

Design 83(2), 132–135.

Sileryte, R., D’Aquilio, A., Di Stefano, D., Yang, D., & Turrin, M. (2016). Supporting

Exploration of Design Alternatives using Multivariate Analysis Algorithms. In A. Ramtin,

A. Chronis, S. Hanna, & M. Turrin (Eds.), Proceedings of the Symposium on Simulation

for Architecture and Urban Design (pp. 215–222). London, UK.

Talbi, E. G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., & Coello Coello, C. A.

(2008). Parallel approaches for multiobjective optimization. In Multiobjective

Optimization (Vol. 5252 LNCS, pp. 349–372). https://doi.org/10.1007/978-3-540-88908-

3-13

Thinkbox. Deadline. Retrieved April 14, 2019, from https://deadline.thinkboxsoftware.com

Van Veldhuizen, D. A., Zydallis, J. B., & Lamont, G. B. (2003). Considerations in engineering

parallel multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary

Computation, 7(2), 144–173. https://doi.org/10.1109/TEVC.2003.810751

Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions

on Neural Networks, 11(3), 586–600. https://doi.org/10.1109/72.846731

Vierlinger, R. (2013). A Framework for flexible search and optimization in parametric design.

Rethinking Prototyping - Proceedings of the Design Modelling Symposium, (October

2013). https://doi.org/10.13140/RG.2.1.1516.8727

