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Abstract—In this work, we develop a novel channel estimation
method using recurrent neural networks (RNNs) for massive
multiple-input multiple-output (MIMO) systems. The proposed
framework alleviates the need for channel-state-information
(CSI) feedback and pilot assignment through exploiting the
inherent time and frequency correlations in practical propagation
environments. We carry out the analysis using empirical MIMO
channel measurements between a 64T64R active antenna system
and a state-of-the-art multi-antenna scanner for both mobile
and stationary use-cases. We also capture and analyze similar
MIMO channel data from a legacy 2T2R base station (BS)
for comparison purposes. Our findings confirm the applicability
of utilising the proposed RNN-based massive MIMO channel
acquisition scheme particularly for channels with long time
coherence and hardening effects. In our practical setup, the
proposed method reduced the number of pilots used by 25%.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is the de
facto air-interface technology in modern mobile communica-
tion systems. Massive MIMO provides several key capabilities
including spatial-multiplexing – the ability to serve multiple
users over the same time and frequency resources. However,
as the number of spatial layers is increased, the resources re-
quired for pilots and channel-state-information (CSI) feedback
per coherence interval increases accordingly, especially in the
case of frequency-division-duplex (FDD) operation. Even with
adequate radio resources in place, pilot contamination and non-
full-reciprocity of the end-to-end link may affect the channel
estimation adversely. As a result, enhancements in channel
acquisition for massive MIMO continues to be an active area
of research (e.g., 3GPP RAN1 Working Item on Rel. 16 NR
MIMO Enhancements).

Artificial Intelligence (AI) has in recent years entered the
classical signal processing layers of wireless communications
[1]. The authors in [2] developed an end-to-end communica-
tion system based on autoencoders. In another work in [3], the
authors studied the application of deep learning for channel
estimation. Their results, based on a deep neural network
(DNN), performs joint channel estimation and detection to
recover the received signals. In [4], the feedback overhead for
FDD massive MIMO systems was investigated. The proposed
CsiNet in [4] exploits deep learning to convert the complex
channel matrices to optimal codewords, with the downlink

channel assumed to be perfectly estimated via pilot-based
modes of transmission.

The original CsiNet concept was extended in [5], where the
authors utilised a long short-term memory (LSTM) network,
providing better performance by extracting time correlation
information between the channel matrices. In [6], the authors
proposed a channel estimation method for massive MIMO
in millimeter wave (mmWave) bands using iterative signal
detection algorithms and deep learning. All the above works
focus on reducing the CSI feedback by means of learning. In
[7], the authors propose a cascaded DNN estimation method,
which eliminates the need for CSI feedback entirely in time-
division-duplex (TDD) massive MIMO. Their deep leaning-
based system estimates the channel for all downlink subcarri-
ers based on the uplink sparse channel matrix.

Most of the deep learning-based related work on channel
estimation rely on CSI feedback or pilot assignment. In
addition, the learning from all these works is carried out based
on simulated theoretical channel models. Here, we propose
a novel recurrent neural network LSTM-RNN-based massive
MIMO channel estimation technique which exploits the inher-
ent correlations of practical fading channels for recovering the
current channel information from previous time slots. This is
achieved by utilising empirical MIMO channel measurements
between a state-of-the-art multi-antenna scanner and both a
64T64R active antenna system and a baseline legacy 2T2R
base station (BS) for both stationary and mobile use-cases. We
thoroughly analyze the data and demonstrate that in practice
the complex MIMO channel matrices are correlated in time.
Our findings demonstrate the validity of utilising the proposed
massive MIMO channel estimation approach, which alleviates
the need for CSI feedback and pilot assignment, particularly
for hardened channels with long time coherence.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a massive MIMO system with M antennas
at the BS and K single-antenna user equipments (UEs). The
system is operating in long-term-evolution (LTE) mode. In
this work, we utilise empirical MIMO channel measurements
obtained from measurement campaigns in which a state-of-
the-art scanning device is used to capture LTE reference
signals from a 64T64R massive MIMO cell cite. Moreover,
for comparison purposes, we also obtain empirical MIMO978-1-7281-4490-0/20/$31.00 c© 2020 IEEE



channel measurements from a legacy 2T2R BS. In both cases,
we conduct separate tests for mobile and stationary radio
conditions. In the former, the results correspond to a test drive
with a fixed speed of 10 km/s around the cell cites, whereas
in the latter, the distance between the corresponding BS and
scanner is fixed.

The total system radio resource is divided into Nrb resource
blocks, each being 0.5 ms wide in time (a slot) and 180
kHz wide in frequency (12 subcarriers with a spacing of 15
kHz). We consider all channels to be full rank hence enabling
spatial-multiplexing; this is confirmed through analyzing the
data from our measurement campaigns. The channel condition
number, defined as the ratio between maximum and minimum
sigular values of the MIMO channel matrix, provides an
additional indication of the air-interface suitability for MIMO
operation. Extracting and utilizing empirical MIMO channel
measurements is a key contribution of this work, providing the
means to understand the impact of parameters and algorithms
in the real-world.

In particular, we utilise the measured MIMO channel data
to investigate the following concepts:

1) Channel Hardening: It is well-understood in the lit-
erature that for a massive MIMO system, with M antennas
at the BS, as M grows larger, spatial diversity leads to the
channel hardening phenomenon [8]. This means the wireless
channel variations are closer to the mean which results in
the fading channel behaving in a deterministic fashion within
a coherence interval. This concept has inspired many blind
channel estimation methods [9]. In this work, we train our
RNN-based estimator on data from a massive MIMO BS
(64T64R) as well as a legacy BS (2T2R) for both mobile and
stationary use-cases in order to test whether channel hardening
exits in practice and to understand its impact on channel
estimation.

2) Channel Time Coherence: Although in theory the time-
varying fading channel is typically considered to be random
from one time slot to another, that is not exactly the case
in practice. Specially in low-mobility conditions, channel
matrices can be fairly correlated for long periods. Here,
we aim to exploit the time-correlated behavior of practical
fading channels in our RNN-based estimation method. We use
the LSTM network to estimate the future channel based on
previous channel measurement. Based on our measurements,
the method outperforms the conventional blind estimation, and
in some cases even those with pilot-assisted estimation.

3) Stationary vs. Mobile Conditions: For the stationary
user, channel matrices are expected to be correlated for longer
periods (i.e., larger time coherence interval). However, for
mobile use-cases, due to mobility of the user and Doppler
spread, channel matrices are expected to be correlated on
a smaller time scale in comparison. Let the time coherence
interval to be denoted with tc, which can be calculated as
λ/2v where λ is wavelength of the carrier signal and v is
the velocity of the UE. We train RNN-based estimator with
channel instances sampled with ∆t intervals. Here, we consider
the cases where ∆t ≥ tc and ∆t < tc.

III. RNN-BASED CHANNEL ESTIMATION

Let H(ti) be the channel matrix of nRB-th resource block at
time ti. H is sampled every ∆t. We train a LSTM network,
which estimates the channel matrix at time ti based on the T
previous channel matrices sampled every ∆t. The problem can
be formulated as in the following:

Ĥ(ti) = fest(H(ti−∆t ),H(ti−2∆t ), ...,H(ti−T ∆t )) (1)

where fest is the LSTM estimator and T is the number of time
steps or number of previous values of H that are considered
for the estimation of current value of H.

Finding the optimal value of T and ∆t is of high importance
in training the channel estimator. Note that different values of
T and ∆t result in different accuracy values for the estimator.
Since we are considering time-correlation property of practical
channels, if channel matrices are correlated in the interval
(T +1)∆t the estimator is expected to be highly accurate. In
the mobility scenario, the term can be compared with the cor-
relation time of the channel (tc), which was defined previously.
In theory, the channel is frequency-flat in an interval tc, and
completely random in the next interval. However, in practice,
this is not the case. Subsequent channel matrices become less
and less random especially in cases with long time coherence
and channel hardening present. If T grows larger in a way
that (T +1)∆t >> tc, the randomness of the channel outweighs
the time correlation and thus results in low accuracy. If T is
relatively small the estimator might not properly capture the
time correlation between the channel matrices. We train the
LSTM network with different values for T and choose the
one which results in highest accuracy between the empirical
and predicted channel.

A. LSTM network architecture

An LSTM cell is consisted of an Input, an Output, and a
Forget gate. The Forget gate decides which information the
cell should throw away. The Input gate determines what new
information should be stored while updating the cell state, and
Output gate decides what information should be output based
on the cell state.

A single cell of an LSTM network can be formulated as:

ft = σ(Wf hht−1 +Wf xxt +b f ) (2)

it = σ(Wihht−1 +Wixxt +bi) (3)

c̃t = tanh(Wc̃hht−1 +Wc̃xxt +bc̃) (4)

ct = ft∆ct−1 + it∆c̃t (5)

ot = σ(Wohht−1 +Woxxt +bo) (6)

ht = ot . tanh(ct) (7)

where Wf h, Wf x, Wih,Wix, Wc̃h, Wc̃x, Woh, and Wox are weight
parameters. b f , bi, bc̃, and bo are bias values, and σ is the
Sigmoid function. In (2), if the value of ft (Forget cell) is
equal to 1, all the information will be kept in the cell state
and a value of 0 means it will get rid off all the information.
Similarly, (3) acts for the input gate and new information. ct in



(5) is the current cell state. ot in (6) decides what information
should be output and finally ht denotes the output of the cell.
Each layer of the LSTM network contains several number of
cells. In order to fully exploit the channel matrix features,
we stack multiple LSTM Layers followed by dense layer(s).
We implement the aforementioned network architecture using
Keras library. We use grid search for hyper parameter tuning
and use Dropout in each layer to prevent over-fitting.

B. Data pre-processing

For each resource block, we train the channel estimator
separately. Consider the resource block number nRB. We pick
Ns channel matrices of resource block nRB with average
condition number cnnRB shown as Ht1 , Ht2 ,..., Hti , where
ti− ti−1 = ∆t and i = 0,1, ...,Ns. We train the network for the
resource block with a very good condition number cnnRB → 1
and draw the estimation accuracies.

1) Feature scaling: After distribution fitting, we came
to realize that the Hti values in the data set follows a
Gaussian distribution with C N (µ,ν) where µ → 0 and ν

in (−40dB,−50dB) . We scale the channel matrices (input
features) in a way that the distribution become C N (µ →
0,ν → 1).

2) Input/Output Structure: Consider X to be the input array
and y the out put array of the LSTM network. X is of shape
(Ns,T,2×K×M), where Ns is total number of samples, T is
the number of time steps, and 2×K×M is the size of feature
vector or the flatten real equivalent of the channel matrix.

To illustrate, consider a 2×2 MIMO system. Assume T is
equal to four, which means to estimate the current channel
matrix, we take into account four previous MIMO channel
matrix values. A training example (Xi,yi) can be given as:

Xi =


h(ti−4)

11 h(ti−4)
12 h(ti−4)

21 h(ti−4)
22

h(ti−3)
11 h(ti−3)

12 h(ti−3)
21 h(ti−3)

22

h(ti−2)
11 h(ti−2)

12 h(ti−2)
21 h(ti−2)

22

h(ti−1)
11 h(ti−1)

12 h(ti−1)
21 h(ti−1)

22

 (8)

yi =
[
h(ti)11 h(ti)12 h(ti)21 h(ti)22

]
. (9)

Note that Xi and Xi+1 or any two subsequent training examples
have T −1 row in common. To feed the data to the network,
first, we have to convert the complex MIMO channel matrices
to an equivalent real representation:

Xi =
[
R (XXX iii)I (XXX iii)

]
,yi =

[
R (yyyiii)I (yyyiii)

]
. (10)

C. Loss function and metrics

Since this is a regression problem and the probability of
the data is Gaussian we use mean square error (MSE) as
the loss function to be minimized. Adam optimizer is used
for this purpose. We use MSE as the metric for comparing
the predicted channel and the actual value. This performance
measure is defined as:

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2 (11)

0 100 200 300 400 500 600 700

−38.4

−38.2

−38

−37.8

−37.6

−37.4

−37.2

−37

−36.8

Time sample

C
ha

nn
el

en
ve

lo
pe

(d
B

)

Empirical channel
Estimated channel

Fig. 1: Channel estimation between the BS antenna #1 and the UE
#2 for the stationary 2T2R system.

where yi, and ŷi are the actual and predicted values of the
channel, respectively.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we investigate the performance of the
proposed LSTM-RNN channel estimator. Given our scheme
requires a fewer number of pilots assigned, we compare the
proposed model with two schemes: (i) a blind estimator, which
utilizes the mean of the channel as the estimation in each
time stamp and (ii) a conventional LS estimator which requires
pilots in every time coherence interval. The analysis is carried
out based on measured complex MIMO channel data for
stationary and mobile conditions taken from both a 64T64R
active antenna system and a legacy 2T2R BS.

Fig. 1 shows the channel estimation for the stationary 2T2R
case between antenna #1 of the BS and UE #2. Note that the
scanner time stamps are 30 ms apart. As it can be seen from the
figure, even with less pilot assignment, LSTM-RNN estimator
can successfully track the actual channel variations. This
shows although in theory the channel is typically considered
to be memoryless or with short time coherence, in practice
and based on the our measurement campaigns, the MIMO
channels behave differently. The LSTM-RNN looks back at
T = 3 channel realizations to estimate the current channel
matrix. Thus, in each 30×4 = 120 ms interval, channel values
are highly correlated in time. Note that in the previous T = 3
time slots channel estimation is done via pilot transmission and
in the fourth time slot , with the aid of LSTM-RNN estimator,
channel value can be obtained with no pilot transmission. To
measure the goodness of the proposed estimator we use MSE
as metric (in dB) and compare the result with the baseline
blind estimator.

Fig. 2a shows the MSE in dB for both methods of estimation
on the stationary 2T2R data. As it can be seen, the proposed
method performs better by achieving a reduced error of at least
10 dB. For comparison, we trained the LSTM-RNN estimator
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Fig. 2: Channel estimation error under stationary radio conditions.

for a stationary 64T64R massive MIMO system and drew
the results in fig. 2b. Considering fig. 2a and fig. 2b, for the
stationary use-case, we observe the following trends:
• When the number of antennas grows much larger (64�

2), the estimation error becomes noticeably smaller and
the gap between the proposed LSTM-RNN estimator and
the blind estimator becomes smaller. This is because of
the channel hardening effect from having larger num-
ber of antennas in massive MIMO. When the channel
hardens, it behaves almost deterministic (close to mean),
hence, a mean (blind) estimator performance gets closer
to the proposed method.

• To train the estimator for the 64T64R active antenna
system, time stamps are separated with an interval of 88
ms and the estimator looks at the previous T = 2 samples
to estimate the current channel value. This results in a
semi-coherence interval of 3×88 = 264 ms. This time is
much larger than the actual coherence time of the channel
especially in mobile condition, however, the results show
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Fig. 3: (a) variations of the channel in time, and (b) channel
estimation error for the 64T64R BS with mobile UEs.

that although channel is not flat in this interval it can be
estimated with high accuracy without pilot transmission.

To compare stationary and mobile conditions, consider fig.
2b, and fig. 3b. We expected the mobile channel to have higher
estimation error since for the mobile user, channel varies more
frequently than the stationary case. The average MSE over
all time samples are higher in mobile conditions than the
stationary case. Note that the LSTM-RNN estimator seems
to capture channel variation quite well and leads to have an
estimation error in the range of a stationary condition for
time stamps 200-300. Comparing with the blind estimator, in
fig. 3b for some time stamps, both methods perform almost
the same, this suggests in some channel environments it is
better to use the blind estimator rather than the RNN one.
We provide empirical channel measurements in fig. 3a, which
explains the high estimation error in some time stamps in fig.
3b results from high variations in channel (time stamps 100-
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Fig. 4: Impact of channel hardening effects on the performance of
the different estimation techniques.

200 in fig. 3a). We investigate this trend in figures 4b and 4a.
Therein, the channel hardening effect in massive MIMO is
studied. We define the channel hardening factor (CH), which
is the channel standard deviation (std) (channel variation from
the mean) divided by mean of the channel in dB [10]. Thus,
when CH→−∞ the channel acts as almost deterministic and
is assumed to be hardened.

In fig. 4a, for the 64T64R system, the proposed LSTM-
RNN estimator performs better than both the LS estimator
and the blind estimator. This suggests that the proposed esti-
mator performs better when the MIMO channel is hardened.
Moreover, the LSTM-RNN estimator is using less pilots than
LS estimator in a way that for each 12 time slots, LS uses
24 pilots for two users, LSTM-RNN here uses 18 pilots for

two users (25% less control overhead). However, in fig. 4b,
for the 2T2R system, the proposed method error is higher than
the LS and lower than the blind estimator. Nevertheless, the
proposed method is using less pilots than LS estimator. For
each 12 time slots with two users, LS uses 24 pilots, LSTM-
RNN uses 16 pilots for two users (33% less control overhead).
The higher error for the proposed model in fig. 4b roots in the
higher variation of the channel for the 2T2R mobile case.

In fig. 4a, for the 64T64R system, as CH gets higher it is
expected for error to get higher which is indeed the case. In
fig. 4b for the 2T2R system, the error is much higher than fig.
4a since CH is high and channel has not hardened. Note that
in both figures as the CH gets lower and channel is behaving
more deterministically, the gap between the different methods
becomes smaller. The gap becomes larger as the variation of
the channel is higher in the right side of both graphs. This
suggests that, the proposed estimator performs notably better
in fading environments with significant channel variations.

V. CONCLUSION

We designed a LSTM-RNN channel estimation method
using measured complex MIMO channel data from a 64T64R
active antenna system and a 2T2R legacy BS for two stationary
and mobile use-cases. Our findings demonstrated that the
proposed scheme, which alleviates per coherence interval CSI
feedback or pilot assignment, outperforms the conventional
blind detection approach and LS estimator in massive MIMO
environments with channel hardening. For mobile use-cases,
LSTM-RNN also proved to be a more efficient implementa-
tion, albeit higher estimation errors were recorded due to the
shorter channel time coherence and higher fading variations.

REFERENCES

[1] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[2] T. J. O’Shea, T. Erpek, and T. C. Clancy, “Deep learning based mimo
communications,” arXiv preprint arXiv:1707.07980, 2017.

[3] H. Ye, G. Y. Li, and B. Juang, “Power of deep learning for channel
estimation and signal detection in ofdm systems,” IEEE Wireless Com-
munications Letters, vol. 7, no. 1, pp. 114–117, Feb 2018.

[4] C. Wen, W. Shih, and S. Jin, “Deep learning for massive mimo csi
feedback,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp.
748–751, Oct 2018.

[5] T. Wang, C. Wen, S. Jin, and G. Y. Li, “Deep learning-based csi
feedback approach for time-varying massive mimo channels,” IEEE
Wireless Communications Letters, vol. 8, no. 2, pp. 416–419, April 2019.

[6] H. He, C. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel
estimation for beamspace mmwave massive mimo systems,” IEEE
Wireless Communications Letters, vol. 7, no. 5, pp. 852–855, Oct 2018.

[7] N. Athreya, V. Raj, and S. Kalyani, “Beyond 5g: Leveraging cell
free tdd massive mimo using cascaded deep learning,” arXiv preprint
arXiv:1910.05705, 2019.

[8] B. M. Hochwald, T. L. Marzetta, and V. Tarokh, “Multiple-antenna
channel hardening and its implications for rate feedback and scheduling,”
IEEE Transactions on Information Theory, vol. 50, no. 9, pp. 1893–
1909, Sep. 2004.

[9] H. Q. Ngo and E. G. Larsson, “No downlink pilots are needed in
tdd massive mimo,” IEEE Transactions on Wireless Communications,
vol. 16, no. 5, pp. 2921–2935, May 2017.

[10] S. Gunnarsson, J. Flordelis, L. Van der Perre, and F. Tufvesson, “Channel
hardening in massive mimo-a measurement based analysis,” in 2018
IEEE 19th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), June 2018, pp. 1–5.


