STRUCTURAL INVESTIGATIONS OF THE COMPONENTS
OF THE COMPLEMENT CASCADE

THESIS PRESENTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
BY
KATHRYN FRANCES SMITH

MEDICAL LIBRARY,
ROYAL FREE HOSPITAL
HAMPSTEAD

DEPARTMENT OF BIOCHEMISTRY AND CHEMISTRY
ROYAL FREE HOSPITAL SCHOOL OF MEDICINE
UNIVERSITY OF LONDON

1992
ABSTRACT
The complement cascade is a multi-component protein system found in plasma and plays an important role in immune defence. The molecular structures of five proteins were studied using a combination of neutron and X-ray small-angle solution scattering and secondary structure prediction techniques.

\(\alpha_1 \)-antitrypsin is the best characterized member of the serpin superfamily. It was shown to have a moderately elongated structure. Models of native and reactive-centre cleaved \(\alpha_1 \)-antitrypsin were created based on the crystal coordinates of the cleaved protein. Since these were very similar, the gross conformational change between the two structures is minor. \(\text{C1} \) inhibitor controls the activation of the classical pathway. It consists of a serpin domain and a highly glycosylated N-terminal domain. The structure of the serpin domain was based upon the crystal structure of \(\alpha_1 \)-antitrypsin. The N-terminal domain was modelled as a highly elongated structure with extended carbohydrates.

The activation of \(\text{C5} \) initiates the formation of the membrane attack complex. Solution scattering showed that this had an elongated structure and was similar to the homologous proteins \(\text{C3} \) and \(\text{C4} \).

Properdin is a regulatory protein of the alternative pathway. The properdin trimer was successfully modelled as a triangle of sides 26 nm in agreement with published electron micrographs. Monomeric properdin contains 6 thrombospondin repeats (TSR). Sequence alignments and secondary structure predictions of the TSR showed this to be comprised of two \(\beta \)-turn regions and one \(\beta \)-strand region.

\(\text{C9} \) is the most abundant member of the membrane attack complex. It consists of four domains: thrombospondin repeat (TSR), low density lipoprotein receptor (LDLR), perforin-like region (PLR) and an epidermal growth factor-like (EGF) domain. Again, solution scattering experiments showed \(\text{C9} \) was elongated. Models for \(\text{C9} \) suggest that the domains are arranged in a V shape with each arm of length 11.1 nm and inter-arm angle of 10°. A total of 74 LDLR, 10 PLR and 99 EGF sequences were aligned and their secondary structures predicted. The LDLR and EGF domains were found to consist of \(\beta \)-strand and \(\beta \)-turn conformations whilst the PLR was predominantly \(\alpha \)-helix.
TABLE OF CONTENTS
CHAPTER 1. THE COMPLEMENT CASCADE

(1.1) Introduction

(1.2) Classical Pathway

(1.2.1) The structure of C1q, C1r and C1s

(1.2.2) Biological activities

(1.2.3) Control proteins

(1.3) Alternative Pathway

(1.3.1) Biological activities

(1.3.2) Control proteins

(1.3.3) Protection mechanisms

(1.4) Terminal Pathway

(1.4.1) C5 convertase

(1.4.2) Biological activity

(1.4.3) Control proteins

(1.4.4) Protection mechanisms

(1.5) The Physiological Effects of Complement

(1.5.1) The inflammatory response

(1.5.2) Defence against infection

(1.5.3) Involvement in other systems

(1.5.4) The role of complement in disease

(1.6) Domain Structures and Protein Families in Complement

(1.6.1) The definition of a domain

(1.6.2) Short Consensus Repeat (SCR)

(1.6.3) Thrombospondin Repeat (TSR)

(1.6.4) Epidermal Growth Factor (EGF)
CHAPTER 2. STRUCTURAL INVESTIGATIVE TECHNIQUES 42

(2.1) Importance of Structure Determination 43

(2.2) Methods of Structure Determination 43

(2.3) Small-Angle Solution Scattering 46

(2.3.1) Coherent and incoherent scattering 46

(2.3.2) Scattering lengths 46

(2.3.3) Small-angle scattering 47

(2.3.4) Derivation of the Debye equation 49

(2.3.5) Scattering densities 51

(2.3.6) Differences between neutron and X-ray scattering 55

(2.4) Computational Techniques 57

(2.4.1) Analytical techniques 57

(2.4.1.1) Guinier plot 57

(2.4.1.2) Cross-sectional plot 58

(2.4.1.3) Importance of I(0) values 58

(2.4.1.4) Matchpoint determination 60

(2.4.1.5) Stuhrmann plot 62

(2.4.1.6) Distance distribution function 63

(2.4.2) Modelling procedures 64

(2.4.2.1) Debye spheres 64

(2.4.2.2) Hydrodynamic modelling 65

(2.5) Predictive Techniques 67

(2.5.1) Robson 68

(2.5.2) Chou-Fasman 74

(2.5.3) Hydropathy profiles 75
CHAPTER 3. METHODS

(3.1) Instrumentation

(3.1.1) Small-angle solution scattering by neutrons

(3.1.1.1) Description of the instrument
(3.1.1.2) Preliminary data reduction

(3.1.2) Small-angle solution scattering by X-rays

(3.1.2.1) Description of the instrument
(3.1.2.2) Preliminary data reduction

(3.2) Computational Analyses

(3.2.1) Analyses of scattering data

(3.2.1.1) Guinier and cross-sectional plots
(3.2.1.2) Matchpoint and Stuhrmann analyses
(3.2.1.3) Distance distribution function

(3.2.2) Small Debye sphere modelling

(3.2.3) Hydrodynamic modelling

(3.2.4) Sequence alignments and secondary structure predictions

(3.2.5) Hydropathy profiles

(3.2.6) Computer hardware

(3.2.7) Computer software

CHAPTER 4. STRUCTURAL STUDIES ON α_1-ANTITRYPsin AND
C1 INHIBITOR

(4.1) Introduction

(4.2) Materials and Methods

(4.2.1) Preparation of α_1-antitrypsin and C1 inhibitor

(4.2.2) Neutron and X-ray scattering experiments

(4.2.2.1) α_1-antitrypsin

(4.2.2.2) C1 inhibitor

(4.2.3) Debye sphere modelling of α_1-antitrypsin and
C1 inhibitor

(4.2.4) Hydrodynamic modelling of α_1-antitrypsin

(4.3) Results and Discussion

(4.3.1) Neutron scattering of native α_1-antitrypsin in
physiological buffers

(4.3.2) X-ray and neutron scattering of native and split α1-antitrypsin in high phosphate buffers

(4.3.3) Neutron analyses of C1 inhibitor

(4.3.4) Debye sphere modelling of α1-antitrypsin

(4.3.5) Debye sphere modelling of C1 inhibitor

(4.4) Conclusions

CHAPTER 5. STRUCTURAL STUDIES ON C5

(5.1) Introduction

(5.2) Materials and Methods

(5.2.1) Preparation of C5

(5.2.2) Neutron and X-ray scattering experiments

(5.2.3) Sequence alignments

(5.3) Results and Discussion

(5.3.1) Neutron scattering of C5

(5.3.2) X-ray scattering of C5

(5.3.3) Comparisons of C5 with C3 and C4 of complement

(5.3.4) Large angle curve analyses of C5

(5.3.5) Sequence alignments of C3, C4 and C5

(5.4) Conclusions

CHAPTER 6. STRUCTURAL STUDIES ON PROPERDIN

(6.1) Introduction

(6.2) Materials and Methods

(6.2.1) Preparation of properdin

(6.2.2) Neutron and X-ray scattering experiments

(6.2.3) Debye sphere modelling of properdin

(6.2.4) Hydrodynamic modelling of properdin

(6.2.5) Sequence alignments and secondary structure predictions

(6.3) Results and Discussion

(6.3.1) Neutron and X-ray scattering experiments of P2 and P3

(6.3.2) Debye sphere modelling of P3

8
LIST OF FIGURES AND TABLES
CHAPTER 1.
Figure 1.1. Diagrammatic representation of the complement cascade 21
Figure 1.2. Proteolytic fragments of C3, C4 and C5 25

CHAPTER 2.
Figure 2.1. The relationship between scattering length and atomic number 47
Figure 2.2. Diffraction of electromagnetic radiation 48
Figure 2.3. Derivation of the scattering angle Q 50
Figure 2.4. The average scattering density of the major biological macromolecules as a function of the 2H$_2$O content of the solvent 52
Figure 2.5. The effects of contrast variation on an idealized protein 61
Figure 2.6. Comparison of the information values for the Robson 1978 and 1986 parameter sets 69

CHAPTER 3.
Figure 3.1. Schematic arrangement of beam-tubes and instruments at the High Flux Reactor, ILL, Grenoble, 1990 78
Figure 3.2. Photograph and schematic diagram of D17 set up for small-angle solution scattering, ILL, Grenoble 80
Figure 3.3. Beamflux at the sample on D17, ILL, Grenoble 81
Figure 3.4. Flowchart showing the data reduction procedures for neutron scattering 85
Figure 3.5. Flowchart showing in detail the dialog for SPOLLY 84
Figure 3.6. Schematic representation of the beamlines at the SRS, Daresbury 86
Figure 3.7. Photograph of the sample area of Station 8.2, SRS, Daresbury 88
Figure 3.8. Aggregation of C9 91
Figure 3.9. Photograph of the quadrant detector at Station 8.2, SRS, Daresbury 90
Figure 3.10. Flowchart of the data reduction procedures for X-ray scattering 92
Figure 3.11. Collagen diffraction pattern 93
CHAPTER 4.

Figure 4.1. Crystal structures of native ovalbumin and the split forms of ovalbumin and α_1-antitrypsin 109

Figure 4.2. Guinier R_G and R_{XS} plots of neutron and X-ray data for native and split α_1-antitrypsin 119

Figure 4.3. Concentration dependence of the R_G and $I(0)/c$ parameters of native α_1-antitrypsin by neutrons 121

Figure 4.4. Neutron contrast variation analysis of native α_1-antitrypsin 124

Figure 4.5. X-ray transmissions of salt solutions 126

Figure 4.6. Dependence of X-ray Guinier parameters on the phosphate concentration 128

Figure 4.7. Dependence of the neutron Guinier parameters of native (○) and split (●) α_1-antitrypsin in 100% 2H$_2$O on phosphate concentration 129

Figure 4.8. Neutron Guinier analyses for native C\tilde{T} inhibitor 131

Figure 4.9. Contrast variation analyses for native and split C\tilde{T} inhibitor 133

Figure 4.10. Indirect transformation of the scattering curves $I(Q)$ for C\tilde{T} inhibitor 135

Figure 4.11. Crystal structure and sphere models of α_1-antitrypsin 137

Figure 4.12. Alignment of the sequences of α_1-antitrypsin and C\tilde{T} inhibitor 139

Figure 4.13. Comparisons of the curve simulations with the α_1-antitrypsin models 142

Figure 4.14. Hydrodynamic models for α_1-antitrypsin 145

Figure 4.15. Final Debye sphere models of C\tilde{T} inhibitor 146

Figure 4.16. Curve fitting for the Debye sphere models of C\tilde{T} inhibitor 148

Figure 4.17. Alternative Debye sphere models for C\tilde{T} inhibitor 150

CHAPTER 5.

Figure 5.1. Neutron Guinier plots of human C5 in 100% 2H$_2$O buffers 161
Figure 5.2. Neutron contrast variation analyses of human C5 164
Figure 5.3. Indirect Transformation into real space of the C5 and C3u neutron scattering curves in 100 % 2H$_2$O buffer 167
Figure 5.4.Comparison of the neutron scattering curve of C5 in 2H$_2$O with Debye scattering curve simulations 168
Figure 5.5. Alignment of amino acid sequences of C3, C4 and C5 171

CHAPTER 6.
Figure 6.1. Alignment of human and mouse properdin sequences 178
Figure 6.2. Guinier plots of properdin P$_2$ and P$_3$ 185
Figure 6.3. Neutron contrast variation analysis of P$_3$ 187
Figure 6.4. Low resolution models of properdin 190
Figure 6.5. Neutron scattering curve simulations for P$_3$ 191
Figure 6.6. Hydrodynamic simulations of properdin 193
Figure 6.7. Alignment of 31 sequences for the thrombospondin repeat 195
Figure 6.8. Secondary structure predictions of the TSR domain 198

CHAPTER 7.
Figure 7.1. Sequence alignments and domain structures of human, mouse and trout C9 204
Figure 7.2. Effect of transthyretin on the C9 scattering curve 210
Figure 7.3. Guinier analyses of C9 by neutron and X-ray scattering 212
Figure 7.4. Neutron contrast variation analyses of C9 215
Figure 7.5. Distance distribution functions $P(r)$ calculations based on the neutron and X-ray $L(Q)$ data for C9 217
Figure 7.6. Synchrotron X-ray radiation damage effects observed in the R_G and R_{XS} Guinier analyses of C9 220
Figure 7.7. An elliptical cylinder model for C9 222
Figure 7.8. Sphere modelling of C9 224
Figure 7.9. Comparisons of the curve simulations for C9 with experimental data 225
Figure 7.10. Comparison of hydrodynamic models for C6, C7, C8 and C9 of complement 227
CHAPER 8.

Figure 8.1. Alignment of 99 mammalian EGF sequences found in the complement components and other proteins 239

Figure 8.2. Summary of five EGF or TGF-α secondary structures determined by 2D-NMR spectroscopy 241

Figure 8.3. Consensus secondary structure predictions for the EGF motifs 245

Figure 8.4. Schematic view of the α-carbon co-ordinates of human EGF 247

Figure 8.5. Alignment of 74 LDLr sequences found in the complement components and other proteins 249

Figure 8.6. Consensus secondary structure predictions for the LDLr motifs 251

Figure 8.7. Alignment of 10 PLR sequences found in the complement components and other proteins 253

CHAPTER 9.

Figure 9.1. Debye sphere models of components of the complement cascade 262

CHAPTER 1.

Table 1.1. Summary of the physiological concentrations and domain structures of the complement components 23

CHAPTER 2.

Table 2.1. Scattering properties of the twenty amino acids and carbohydrate residues 54

Table 2.2. The radii of gyration of simple geometrical bodies 57

Table 2.3. Decision constants for α biased, β biased or unbiased conformation 73

CHAPTER 4.

Table 4.1. Compositional and scattering data for α₁-antitrypsin and C₁ inhibitor 122

CHAPTER 5.

Table 5.1. Compositional and scattering data for C5 163
Table 5.2 Summary of Guinier analyses for C5, C4 and C3 of complement

Table 5.3. Comparisons of electron microscopy studies on C3, C4 and C5 with the Debye solution scattering model

CHAPTER 6.

Table 6.1. Compositional and scattering data for properdin

Table 6.2. Calculated sedimentation coefficients for P_2, P_3 and P_4

CHAPTER 7.

Table 7.1. Compositional and scattering data for C9

Table 7.2. Comparison of ITP and Guinier parameters

CHAPTER 8.

Table 8.1. The average number of residues in loops 1 to 4 of the EGF domain for Groups A, B and C

Table 8.2. Survey of the frequency of residues in the EGF and LDLr domains

CHAPTER 9.

Table 9.1. Elongation parameters of some of the complement components and associated proteins
LIST OF ABBREVIATIONS
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4BP</td>
<td>C4b binding protein</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CR1, CR2, CR3, CR4</td>
<td>complement receptor types 1, 2, 3, 4</td>
</tr>
<tr>
<td>DAF</td>
<td>decay accelerating factor</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>FIM</td>
<td>factor I module</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>HRF</td>
<td>homologous restriction factor</td>
</tr>
<tr>
<td>ICCC</td>
<td>Imperial College Computer Centre</td>
</tr>
<tr>
<td>ILL</td>
<td>Institut Laue-Langevin</td>
</tr>
<tr>
<td>ITP</td>
<td>indirect transform procedure</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td>LDLr</td>
<td>low density lipoprotein receptor</td>
</tr>
<tr>
<td>MAC</td>
<td>membrane attack complex</td>
</tr>
<tr>
<td>MCP</td>
<td>membrane cofactor protein</td>
</tr>
<tr>
<td>Mr</td>
<td>molecular weight</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>P2, P3, P4</td>
<td>properdin dimers, trimers, tetramers</td>
</tr>
<tr>
<td>PLR</td>
<td>perforin-like region</td>
</tr>
<tr>
<td>RCA</td>
<td>regulation of complement activation</td>
</tr>
<tr>
<td>RFHSM</td>
<td>Royal Free Hospital School of Medicine</td>
</tr>
<tr>
<td>RG</td>
<td>radius of gyration</td>
</tr>
<tr>
<td>RXS</td>
<td>radius of gyration of the cross-section</td>
</tr>
<tr>
<td>SCR</td>
<td>short consensus repeat</td>
</tr>
<tr>
<td>SERPIN</td>
<td>serine protease inhibitor</td>
</tr>
<tr>
<td>SP</td>
<td>serine protease</td>
</tr>
<tr>
<td>SRS</td>
<td>synchrotron radiation source</td>
</tr>
<tr>
<td>TSR</td>
<td>thrombospondin repeat</td>
</tr>
<tr>
<td>vWF</td>
<td>von Willebrand Factor</td>
</tr>
</tbody>
</table>
I wish to express my appreciation to the following:

Dr S.J. Perkins, my supervisor, for his guidance and continual help and support.

Mr A.S. Nealis for his help and advice regarding computer hardware and software and for his assistance with the photography.

Dr W. Bras at the Synchrotron Research Source (Daresbury, U.K) and Dr A. de Geyer at the Institut Laue-Langevin (Grenoble, France) for their assistance with the use of the small-angle scattering instruments.

Dr R.A. Harrison and Prof. P.J. Lachmann at the MRC Molecular Immunopathology Unit, Cambridge and Dr K.F. Nolan and Dr K.B.M. Reid at the MRC Immunochemistry Unit, Oxford for the protein preparations.

Other members of the Department of Biochemistry who have given help and advice.

My parents for their continual support and encouragement.

The Wellcome Trust for support.

CHAPTER 1.

THE COMPLEMENT CASCADE
Figure 1.1. Diagrammatic representation of the complement cascade.

The classical pathway is shown on the left, the alternative on the right. The major components, control proteins and proteins involved in host protection mechanisms are shown. Known domain structures are indicated. (See Table 1.1 for abbreviations).
The complement cascade is a multi-component protein system found in plasma. It plays an essential role in the immune defence mechanism and in the mediation of inflammation. Complement has three major functions: (a) opsonization and removal of complement-coated antigens via complement receptors on phagocytic cells; (b) recruitment of phagocytic cells into the site of complement activation; (c) destruction of membrane integrity of target organisms. Over 30 proteins are involved (Figure 1.1; Table 1.1), which function either as enzymes, binding proteins, regulators or membrane-bound receptors. The complement cascade proteins are a major constituent in plasma with a total concentration of around 4 g/l. C3 and C4 are the most abundant complement proteins at 1.3 and 0.6 g/l, respectively, consistent with their central role in the cascade whereas factor D is the least abundant (1 mg/l) (Table 1.1).

The cascade is activated by one of two distinct routes, the classical or the alternative pathway (Figure 1.1). Both lead to the formation of complex proteases which activate the central components C3 and C4. Fragments of C3 or C4 covalently attach to neighbouring targets, marking them for clearance by cells of the immune system carrying complement receptors. Activation of C5 initiates the terminal or lytic pathway, ending with the formation of the cytolytic membrane attack complex. Release of the anaphylatoxins, C3a, C4a and C5a during activation induce the host's inflammatory response. The cascade is tightly regulated by a number of proteins which will either enhance or inhibit the progress of the cascade.
<table>
<thead>
<tr>
<th>M<sub>kDa</sub></th>
<th>Approx. serum conc. (mg l<sup>-1</sup>)</th>
<th>Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1q</td>
<td>457</td>
<td>80</td>
</tr>
<tr>
<td>C1r</td>
<td>172</td>
<td>50</td>
</tr>
<tr>
<td>C1s</td>
<td>158</td>
<td>50</td>
</tr>
<tr>
<td>C4</td>
<td>197</td>
<td>600</td>
</tr>
<tr>
<td>C2</td>
<td>102</td>
<td>20</td>
</tr>
<tr>
<td>C3</td>
<td>187</td>
<td>1300</td>
</tr>
<tr>
<td>Alternative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor D</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>Factor B</td>
<td>89</td>
<td>210</td>
</tr>
<tr>
<td>Terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>194</td>
<td>70</td>
</tr>
<tr>
<td>C6</td>
<td>107</td>
<td>64</td>
</tr>
<tr>
<td>C7</td>
<td>95</td>
<td>56</td>
</tr>
<tr>
<td>C8</td>
<td>154</td>
<td>55</td>
</tr>
<tr>
<td>C9</td>
<td>66</td>
<td>59</td>
</tr>
<tr>
<td>Control proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl inhibitor</td>
<td>71</td>
<td>200</td>
</tr>
<tr>
<td>Factor J</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Factor I</td>
<td>74</td>
<td>35</td>
</tr>
<tr>
<td>Properdin</td>
<td>162</td>
<td>20</td>
</tr>
<tr>
<td>C4BP (trimer)</td>
<td>491</td>
<td>250</td>
</tr>
<tr>
<td>Factor H</td>
<td>150</td>
<td>480</td>
</tr>
<tr>
<td>S-Protein</td>
<td>83</td>
<td>505</td>
</tr>
<tr>
<td>SP-40,40</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Carboxy-peptidase N</td>
<td>310</td>
<td>35</td>
</tr>
<tr>
<td>Membrane bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP</td>
<td>45-70</td>
<td>4 SCR, ST, U, TM, CYT</td>
</tr>
<tr>
<td>DAF</td>
<td>70</td>
<td>4 SCR, ST, G</td>
</tr>
<tr>
<td>HRF</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>CD59</td>
<td>18-20</td>
<td></td>
</tr>
<tr>
<td>Receptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR1</td>
<td>160, 190</td>
<td>30 SCR, TM, CYT</td>
</tr>
<tr>
<td>CR2</td>
<td>220, 250</td>
<td></td>
</tr>
<tr>
<td>CR3</td>
<td>140</td>
<td>16 SCR, TM, CYT</td>
</tr>
<tr>
<td>CR4</td>
<td>265</td>
<td>vWF, 3 MB, TM, CYT</td>
</tr>
<tr>
<td>C5a receptor</td>
<td>245</td>
<td>vWF, 3 MB, TM, CYT</td>
</tr>
<tr>
<td>C1q receptor</td>
<td>39</td>
<td>7 TM</td>
</tr>
<tr>
<td>Abbreviations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYT cytoplasmic domain</td>
<td>SCR short consensus repeat</td>
<td></td>
</tr>
<tr>
<td>EGF epidermal growth factor</td>
<td>SP serine protease domain</td>
<td></td>
</tr>
<tr>
<td>G glycolipid anchor</td>
<td>ST serine/threonine-enriched area</td>
<td></td>
</tr>
<tr>
<td>FIM factor I module</td>
<td>TM transmembrane domain</td>
<td></td>
</tr>
<tr>
<td>LDLr LDL receptor</td>
<td>TSR thrombospondin repeat</td>
<td></td>
</tr>
<tr>
<td>MB metal binding domain</td>
<td>U unknown functional significance</td>
<td></td>
</tr>
<tr>
<td>PLR perforin like region</td>
<td>vWF von Willebrand Factor</td>
<td></td>
</tr>
<tr>
<td>RS C1r/C1s domain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1. Summary of the physiological concentrations and domain structures of the complement components.
(1.2) CLASSICAL PATHWAY

(1.2.1) The structure of C1q, C1r and C1s

The C1 enzyme complex is composed of the subunits C1q, C1r and C1s. C1q is made from 18 polypeptide chains of 3 types, 6A, 6B and 6C. Three of these chains (1A, 1B and 1C) form a collagen-like triple helix at the N-terminal end of the molecule (Reid & Porter, 1976). The 6 triple helices are aligned in parallel for half the collagen-like length and then diverge to terminate at the C-terminus in 6 globular heads (Knobel et al., 1975; Brodsky-Doyle et al., 1976). The subcomponents C1r and C1s have homologous amino acid sequences and similar tertiary structures (Tosi et al., 1987; Kusumoto et al., 1988). C1r and C1s interact to form a tetrameric chain, C1s-C1r-C1r-C1s in which the 2 catalytic domains (Table 1.1) of C1r are orientated in a head to tail manner (Arlaud et al., 1986). C1s interacts with C1r via the C1r/C1s specific domain. The activated C1r2C1s2 complex has been found to have an asymmetric X structure (Weiss et al., 1986; Perkins & Nealis, 1989). A variety of models have been proposed for the interaction of the C1r2C1s2 tetramer with C1q to form the C1 complex (Perkins, 1989a; Schumaker et al., 1987). These can be divided into two groups, those which propose that the C1r2C1s2 tetramer is positioned on the outside of C1q, summarized in the "W-model" (Perkins, 1989a; Perkins & Nealis, 1989) and the "O2- model" (Cooper, 1985) and those proposing the C1r2C1s2 subunits are interwoven between the arms of C1q, summarized in the "S-model" (Poon et al., 1983; Schumaker et al., 1986) and the "8-model" (Colomb et al., 1989; Arlaud et al., 1986). More structural studies on the individual components and their complexes need to be performed to rectify this discrepancy.

(1.2.2) Biological activities

Activation of the classical pathway is initiated by the binding of C1q to a variety of substances (Sim & Reid, 1991). The most familiar is the formation of immune complexes of either IgG or IgM with antigens. C1q binds via the globular heads to multiple Fc regions of IgG or IgM. The interaction between C1q and the
Figure 1.2. Proteolytic fragments of C3, C4 and C5.

The α chain of C3 is cleaved by the C3 convertase enzyme complexes to produce C3a and C3b. C3u is an inactive form of C3 where the internal thiol ester bond has been hydrolysed. C3b or C3u is cleaved by factor I in the presence of cofactors (factor H, CR1 or MCP) to produce iC3b or iC3u with the release of a small fragment, C3f (M_r 2,000). iC3b is further cleaved by factor I in the presence of cofactor CR1 to form C3c and C3dg. C4 is cleaved by C1s to give fragments C4a and C4b. C4b is cleaved by factor I with cofactors of C4BP or CR1 to produce C4c and C4d. C5 is cleaved by the C5 convertases to form C5a and C5b. The interchain disulphide bonds are shown as thin lines.
immunoglobulin is facilitated by the close proximity of many IgG molecules (Borsos, 1989) or a conformational change in the Fab arms of IgM (Perkins et al., 1991b) to expose the Clq binding sites. This induces a conformational change in the collagenous stalks of Clq (Heinz, 1989; Hanson et al., 1985; Schumaker et al., 1986; Hoekzema et al., 1988) which increases the affinity of Clq for $\overline{C\text{lr}_2C\text{ls}_2}$. $\overline{C\text{lr}_2C\text{ls}_2}$ will only interact with Clq, in the presence of calcium, once Clq has bound to an efficient activator. The catalytic domain of one Clr autoactivates and cleaves the corresponding domain in the neighbouring Clr molecule (Dodds et al., 1978). This in turn activates Cls by a proteolytic cleavage (Ziccardi, 1976). The activated Cls is then able to split the classical pathway components C2 and C4 (Thielens et al., 1984).

C4 has sequence homology to the complement components C3 and C5 (Chapter 5) and the non-complement proteins, α_2-macroglobulin and pregnancy zone protein. The proenzyme form of C4 is composed of 3 chains, α, β and γ. Cls cleaves a single peptide bond in the α-chain of C4 to produce a 9 kDa fragment C4a and a metastable fragment C4b (Figure 1.2). The C-terminal portion of the α-chain (α'-chain) of C4b remains disulphide linked to the β-chain. C4b is able to bind covalently to a variety of surfaces via an internal thiolester group in the α' chain, forming an ester or amide bond with respective groups on the neighbouring surface (Harrison et al., 1981). Proenzyme C2 is split by Cls in the $\overline{C\text{I}}$ complex to produce fragments C2a and C2b. C2a associates with C4b in a Mg$^{2+}$ dependent interaction to produce the C3 convertase C4b$_2$a (Horiuchi et al., 1991; Müller-Eberhard et al., 1967).

1.2.3 Control proteins

Regulation of the classical pathway is controlled at two stages, formation of the $\overline{C\text{I}}$ enzyme complex and the C3 convertase. Cl inhibitor controls $\overline{C\text{lr}_2}$ activation through non-covalent interactions (Arlaud et al., 1987; Ziccardi & Cooper, 1979). Cl inhibitor can also covalently interact with the 4 serine protease active sites of the $\overline{C\text{I}}$ complex (Table 1.1) resulting in the dissociation of the complex to form 2 molecules of Cl inhibitor - $\overline{C\text{lr}}$ - Cls - $\overline{C\text{I}}$ inhibitor (Ziccardi
& Cooper, 1979). The free collagen-like stalks of C1q are then free to bind to cell-surface C1q receptors which may then initiate phagocytosis (Malhotra et al., 1990; Malhotra & Sim, 1989; Ghebrehiwet, 1989). Factor J also controls the formation of the C1 complex by inhibiting the association of C1r2C1s2 with C1q (Lopez-Trascasa et al., 1989).

Control of the C3 convertase is governed by its inherently unstable nature and cleavage by factor I. C2a spontaneously dissociates from the complex. This is enhanced by C4 binding protein (C4BP) (Gigli et al., 1979) and decay accelerating factor (DAF) (Nicholson-Weller et al., 1982). Factor I cleaves C4b in two positions to give fragments C4c and C4d (Figure 1.2). C4BP (Fujita et al., 1978; Gigli et al., 1979), membrane cofactor protein (MCP) (Seya et al., 1986) or complement receptor 1 (CR1) act as cofactors for this factor I mediated cleavage. In most physiological circumstances, the concentration of C4BP exceeds that of C4b generated by activation and therefore further activation of the complement components is prevented.
(1.3.1) **Biological activities**

The alternative pathway is in a permanently activated state due to the spontaneous reaction of C3 with water. Native C3, like C4, contains an internal thiolester in the α-chain which hydrolyses at a slow rate to give the initial C3 convertase, C3u (also known as C3(H2O)) which is capable of attaching to membranes (Pangburn & Müller-Eberhard, 1980; Pangburn et al., 1981). Although C3u is structurally different from C3b in that it has an intact α-chain (Figure 1.2), they are functionally similar. C3u interacts with factor B in a Mg$^{2+}$ dependent manner to produce C3uB (Figure 1.1). Factor B is then cleaved by factor D, to produce fragments Ba and Bb which are homologous to the classical pathway fragments C2b and C2a respectively. Fragment Ba dissociates from the complex, leaving the initial fluid-phase C3 convertase, C3uBb. Cleavage of C3 by the convertase releases the fragment C3a and exposes the highly reactive thiolester in C3b, enabling it to bind covalently to surfaces of neighbouring particles. C3b then will bind fragment Bb to produce a covalently linked C3 convertase (C3b,Bb) on the surface of target cells. The ability to bind factor B is thought to precede the susceptibility of C3b to proteolytic cleavage by factor I and factor H (Isenman et al., 1981). The function of this convertase is to increase the number of C3b-bound cells in the immediate environment of activation.

Further activation of the alternative pathway is antibody independent. Activators include polysaccharides, fungi, bacteria, viruses, parasites and certain mammalian cells. It is not known what structure all the activators have in common but it is possible that C3b deposited on activators is protected from proteolytic degradation, enabling the formation of the C3b,Bb complex (Fearon, 1978; Pangburn & Müller-Eberhard, 1978; Pangburn et al., 1980; Fearon & Austen, 1977). C4b bound to a surface can also activate the alternative pathway by binding to C3bBbP, which may be important in cases of C2 deficiency (Farries et al., 1990; Matsusita & Okada, 1986).
(1.3.2) Control proteins

Control of the alternative pathway is comparable to the classical pathway in that homologous proteins fulfil similar roles. Both positive and negative control mechanisms exist. The C3b,Bb convertase is stabilized by the binding of the control protein properdin (P) to form a C3b,Bb,P complex (Fearon & Austen, 1975; Medicus et al., 1976; Farries et al., 1987), which facilitates the binding of factor B and prevents cleavage of the convertase by factor I (Farries et al., 1988a). Negative control of activation is governed by factor H which acts in a similar way to C4BP in the classical pathway by acting as a cofactor for factor I mediated cleavage of C3b and C3u to form the fragments iC3b + C3f and iC3u + C3f (Figure 1.2) (Pangburn & Müller-Eberhard, 1978; Pangburn & Müller-Eberhard, 1983).

(1.3.3) Protection mechanisms

The majority of C3b and C4b (70 to 90%) formed as a result of complement activation do not become covalently linked to surfaces but remain in the fluid-phase (Hourcade et al., 1989). Of the percentage that does bind, some will do so to host cells. These are protected against complement mediated cytolysis by the membrane proteins DAF and MCP (Atkinson & Farries, 1987). DAF prevents assembly of C3 convertase on membranes and will dissociate enzymes already bound. MCP has cofactor activity for factor I mediated cleavage (Liszewski et al., 1991; Fearon, 1979). The other C3b receptors, CR1, CR2, CR3 and CR4 have a number of regulatory and receptor functions (reviews Sim et al., 1987; Ross, 1989). CR1 will inhibit complement activation by either accelerating the decay or dissociation of the C3 convertases or acting as a cofactor for factor I mediated cleavage of C3b. It is involved in processing of immune complexes and in the mediation of binding and phagocytosis of C3b-coated particles by phagocytic cells. CR2 bound to C3b-bearing particles enhances B-cell proliferation in the presence of T-cell derived factors (Lambris, 1988). CR3 adheres to and promotes phagocytic uptake of iC3b-coated particles into circulating phagocytic cells. CR4 mediates binding of iC3b and C3dg (Gaither et al., 1987).
TERMINAL PATHWAY

(1.4) C5 convertase

The binding of one or more C3b molecules to either the classical or the alternative C3 convertase (C4b,2a or C3b,Bb) changes the specificity of the complex to a C5 convertase, that is, C4b,C2a,C3b or C3b,Bb,C3b respectively (Medicus et al., 1976; Daha et al., 1976). The alternative pathway C5 convertase is regulated by MCP and factor I by the conversion of one C3b dimer to C3bu (Seya et al., 1991) whereas the classical C5 convertase is controlled by factor H (Ito & Tamura, 1983). C5 binds to the C3b fragment in the C5 convertase complex. This convertase cleaves a single peptide bond in the α-chain of C5 to yield the fragments C5a and metastable C5b (Nilsson et al., 1975) (Figures 1.1 & 1.2). Although C5 is very similar in structure to C3, it does not have an internal thiolester bond and therefore does not bind covalently to surfaces after activation (Wetsel et al., 1988; Law et al., 1980).

(1.4.2) Biological activity

The C5b fragment contains a labile binding site with specificity for component C6 (Figure 1.1). The complex C5b,C6 remains loosely bound to C3b on target cell surface until interaction with C7. The C5b,6,7 complex undergoes a conformational change, dissociates from C3b and a metastable membrane binding site is formed on the C7 subunit (Preissner et al., 1985). C5b,6,7 binds to a membrane to become an integral membrane protein. C8 is composed of 3 chains (α, β and γ) and binds to C5b,6,7 via the β-chain (Monahan & Sodetz, 1981; Stewart et al., 1987). C8 is then able to undergo a conformational change which allows penetration into the membrane of the disulphide linked α- and γ-chains. C9 binds to the C5b,6,7,8 complex via the α-subunit on C8 (Stewart et al., 1987). This catalyses the polymerisation of up to 18 molecules of C9. C5b,6,7,8 forms small functional channels of approximately 3 nm in diameter (Zalman & Müller-Eberhard, 1985) which can enlarge to 10 nm upon incorporation of C9 molecules (Ramm et al., 1985). The composition of the membrane attack complex (MAC)
depends on the availability of monomeric C9. If sufficient C9 is present, binding will continue to form a typical cylindrical membrane lesion as seen in electron micrographs (see Chapter 7 for details).

The assembly of a functional MAC on a cell membrane leads to cytolysis. Two major hypothesis exist to explain cell death, the "doughnut" hypothesis where the MAC components form a protein lined channel or the "leaky patch" hypothesis where there is a destabilization of the lipid bilayer due to the insertion of the MAC (reviews Bhakdi & Tranum-Jensen, 1991 and Esser, 1991). The MAC can destroy the membrane of enveloped viruses and can kill many types of bacteria. The formation of a MAC on the surface of nucleated cells will stimulate a rapid increase in the concentration of intracellular \(\text{Ca}^{2+} \) which in turn stimulates the recovery processes of the cell. This allows a cell to survive a mild complement attack and also initiates in inflammatory response. If a much stronger attack occurs, the recovery processes are overwhelmed and the cell dies (Morgan et al., 1986).

(1.4.3) Control proteins

Control of the terminal components occurs at two points (Figure 1.1). The complement associated protein, SP40,40 binds to C5,6 to prevent the formation of the complete MAC (Choi et al., 1989). The S-protein and serum low density lipoprotein (LDL) will compete with membrane lipid for the binding site on C5b,C7 and hence can prevent attachment to the surface of bystander cells (Podack et al., 1978).

(1.4.4) Protection mechanisms

Complement mediated cell lysis is dependent on 'homologous restriction' where complement from one species is inefficient at lysing cells of the same species. This ensures that the self-inflicted complement damage is kept to a minimum (Ojcius et al., 1990). This is due to the interaction of specific membrane proteins with the terminal complement components (Lachmann, 1990). Two
proteins are involved:

1) homologous restriction factor (HRF) or C8 binding protein (C8BP) (Zalman et al., 1986; Schönemark et al., 1986). HRF/C8BP prevents the binding of C9 to C8αγ and its insertion into membranes (Hänsch et al., 1987; Schönemark et al., 1988).

2) P-18 (Sugita et al., 1988), HRF20 (Okada et al., 1989), membrane inhibitor of reactive lysis (MIRL) (Holguin et al., 1989) or CD59 (Davies et al., 1989). Bound CD59 to the C5b-8 complex is thought to prevent the binding of the first molecule of C9 which is required to initiate polymerization and MAC formation (Lachmann, 1991; Rollins & Sims, 1990).
(1.5) THE PHYSIOLOGICAL EFFECTS OF COMPLEMENT

(1.5.1) The inflammatory response

The cleaved peptides, C3a, C4a and C5a (anaphylatoxins) are functionally and structurally homologous (Greer, 1986). These can bind to specific receptors, C3a and C5a receptors (Lambris, 1988) to elicit a variety of cellular responses (Damerau, 1987; Rollins & Springer, 1985; Huey & Hugli, 1985; Johnson & Chenweth, 1985). Signal transduction of the C5a receptor is mediated by a GTP-binding protein (G protein) (Siciliano et al., 1990). The C5a receptor has recently been sequenced (Boulay et al., 1991; Gerard & Gerard, 1991) and has significant homology to other G protein coupled receptors (Boulay et al., 1991). C5a is the most potent mediator of the inflammation response. This leads to chemotactic migration of neutrophilic granulocytes and monocytes, cell adhesion, enzyme release and the formation of arachidonic metabolites and active oxygen species. C3a and C5a can induce histamine release from mast cells and prostaglandins from macrophages which have vasodilator activity and increase the efflux of macromolecules from the plasma. The C-terminal arginine of the anaphylatoxins has been found to be essential for activity. Control of the inflammatory response is mediated by the anaphylatoxin inactivator (carboxypeptidase N) which selectively removes this arginine (Bokisch & Müller-Eberhard, 1970; Plummer & Hurwitz, 1978).

(1.5.2) Defence against infection

Complement can defend against infection either in combination with antibodies or independently via the alternative pathway. C3b produced after alternative pathway activation binds to the surface of foreign cells. Since many host phagocytic cells have receptors for C3b (Fearon & Wong, 1983), these are brought into close contact with the foreign organism. This opsonizes the bacterium and encourages endocytosis by polymorphonuclear leukocytes and monocytes. The Fc, CR1 and CR3 receptors on the phagocytes recognize the Fc portion on the antibody, C3b and iC3b respectively (Micklem & Sim, 1985;
Gresham & Volanakis, 1986). If the amount of antibody attached via the Fc receptor is high enough, phagocytosis of the immune complex will commence. If there is insufficient antibody present, activation of the complement cascade may occur. This will increase efficiency of the binding of phagocytes due to the deposition of C3b on foreign cell surfaces. It is generally considered that opsonization is more important than lysis in defence against infections.

(1.5.3) Involvement in other systems

The complement cascade does not function in isolation but affects both the kallikrein/kinin and the coagulation/fibrinolysis systems (Kalter et al., 1985; Ziccardi, 1983). Activated factor XII (Hageman factor) splits prekallikrein to kallikrein and plasminogen to plasmin and all these enzymes are able to cleave C1 and initiate the complement cascade. Kallikrein and plasmin both split C3 and plasmin will also split factor B. C1q can bind to fibrinogen and fibrin to localize C1q at the site of a wound to provide efficient opsonization (Entwhistle & Furcht, 1988). Control over the 3 systems is exerted by C1 inhibitory which is active against C1r and C1s, factor XII, plasmin and kinin-generating kallikrein and also by carboxypeptidase N which inactivates C3a, C5a and kinin by splitting off the terminal arginine. Although protein S is a vitamin K dependent cofactor in the coagulation system (Comp et al., 1984), it also can form a complex with the complement protein C4BP (review Hessing, 1991), although it does not affect the function of C4BP as a regulator of the C3 convertase (Dahlbäck et al., 1983).

(1.5.4) The role of complement in disease

Although some complement component deficiencies have no obvious deleterious effects, many produce considerable morbidity and mortality. The analysis of disorders involving deficiencies in the complement cascade can highlight the functions of the components concerned. Deficiencies in the components of the classical pathway, C1, C2 and C4, lead to immune complex disorders such as systemic lupus erythematosus (SLE) (reviews Davies, 1983;
Morgan & Walport, 1991), leading to the conclusion that perhaps a major role of complement in vivo is in the prevention of immune complex disease (Lachmann, 1990). C1 inhibitor deficiency leads to the disease hereditary angioedema (HANE) which is characterised by the swelling of the mucous membranes. This is due to the increased activity of C4, C2 and kallikrein to produce the anaphylatoxin C4a, C2-kinin fragment and bradykinin. These fragments increase vascular permeability and hence oedema (Mollnes & Lachmann, 1988).

There have been no cases reported of homozygous factor B deficiencies. Factor D deficiencies are associated with recurrent bacterial infections (Klain-Nelemans et al., 1984). Properdin deficiencies are inherited as an X-linked trait and lead to Neisseria infections in affected males (Nusinow et al., 1985). C3 deficiencies are characterized by recurrent pyogenic infections thus confirming the essential role C3 plays in opsonizing bacteria for removal by phagocytic cells (Alper et al., 1972; Berger et al., 1983). Deficiency in factor I causes an unrestricted amplification of the alternative pathway which depletes factor B and C3 (Nusinow et al., 1985). Factor H deficiencies have the same characteristics as for factor I (Thompson & Winterborn, 1981) due to the fact that factor H is an obligate cofactor for factor I.

Deficiencies in the terminal pathway are linked with a susceptibility to recurrent infections by the bacteria Neisseria. This is rare in Europe and the U.S.A. but relatively common in developing countries (Orren et al., 1987; Schlesinger et al., 1990). This may be because of the contribution of MAC to produce endotoxin shock after infantile gastroenteritis (Orren et al., 1987). If there is a deficiency in the terminal complement pathway, the child may survive (Lachmann, 1990).

Deficiencies of the complement receptors, CR1 (Walport & Lachmann, 1988), CR2, CR3 and CR4 (Kishimoto et al., 1989) lead to a number of disease states, including immune complex diseases, leukocyte adhesion and deficiency syndrome, hypertrophied gums and tendency to have indolent staphylococcal skin infections. The lack of an inflammatory response is because the emigration of
polymorphs and monocytes into the inflammatory region does not occur (Lachmann, 1990).

Patients with paroxysmal nocturnal haemoglobinuria (PNH) lack the ability to synthesize glycosylphosphatidylinositol (GPI) anchors which link a variety of host protection proteins to the cell membrane. These include DAF, HRF and CD59. This makes the cells highly susceptible to complement mediated haemolysis (Lublin & Atkinson, 1989).
(1.6) DOMAIN STRUCTURES AND PROTEIN FAMILIES IN COMPLEMENT

(1.6.1) The definition of a domain

It seems that during evolution regions of homologous sequences have arisen in different proteins (Doolittle, 1985). It is assumed that all these will have similar tertiary structures, although the exact function of the domain may differ. These domains, modules or motifs often correspond to single exons and have the same phase at both the 5' and 3' intron/exon boundaries. It has been proposed that the movement of these domains from the original gene was due to exon insertion and duplication (Doolittle, 1985, 1989; Patthy, 1987, 1988). Although contemporary genes show evidence of gene duplication and significant amino acid divergence, domains often can be recognized by their invariant cysteine residues (Doolittle, 1989). Wetlauffer (1973) defined a domain as an independently folding region of the molecule from a contiguous chain of amino acids. Several authors have proposed that a domain is a stable intermediate in the folding process and functions as an individual entity within the whole protein (Richardson, 1981; Rossman & Argos 1981; Wetlauffer, 1981; Kim & Baldwin, 1982). The minimum size of a domain has been estimated at around 40 residues which reflects the smallest stable structure whereas the largest domain is around 400 residues and represents the largest domain that can fold up efficiently as a single unit (Wetlauffer, 1981; Richardson, 1981). Since domains usually have a stable structure isolated from the protein, the tertiary structure can be determined by 2D-NMR or crystallography and the structure of homologous domains in other proteins can be predicted (Sali et al., 1990).

Brief descriptions of the main domains found in the complement components are given below (Figure 1.1; Table 1.1):

(1.6.2) Short Consensus Repeat (SCR)

The SCR is the most abundant domain found in the complement proteins. The SCR occurs in a total of 12 complement proteins (Figure 1.1) and is also
found in a large number of non-complement proteins (Reid & Day, 1989; Hessing, 1991). The SCR is found in large numbers in the complement proteins involved in the regulation of complement activation (RCA) gene cluster on human chromosome 1q and hence an alternative name was proposed, the Complement Control Protein (CCP) (Reid & Day, 1989). The RCA contains the genes for 6 complement proteins, CR1, CR2, MCP, DAF, C4BP and factor H. CR1 and CR2 contain 30 (Klickstein et al., 1987) and 15-16 SCRs (Weis et al., 1988) respectively. MCP (Lublin et al., 1988) and DAF (Medof et al., 1987; Caras et al., 1987) both contain 4 SCRs each. C4BP is composed of 7 identical \(\alpha \) chains and one \(\beta \) chain. The 7 \(\alpha \) chains contain 8 SCRs each whereas the \(\beta \) chain has been found to contain 3 SCRs (Hillarp & Dahlbäck, 1990). The entire sequence of factor H is composed of a total of 20 SCRs (Ripoche et al., 1988). All these proteins are involved in decay-acceleration of the C3 convertases, cofactor activity for factor I and have overlapping binding sites on C3b (Holers et al., 1985; Lambris, 1988).

The SCR is also found in several complement proteins not involved in regulation. The classical pathway components C1r (Arlaud & Gagnon, 1983), C1s (Carter et al., 1983) and C2 (Bentley, 1986) contain 2, 2 and 3 SCRs respectively. Others include the alternative pathway component factor B (3 SCRs) (Mole et al., 1984), and also the terminal pathway components C6 (DiScipio & Hugli, 1989) and C7 (DiScipio et al., 1988) (2 SCRs each).

The SCR is characterized as a 60 amino acid domain containing 4 half-cysteines which are bonded in the fashion 1-3 and 2-4, and has several other highly conserved residues (Perkins et al., 1988). The 2D NMR structure of 2 SCR domains in factor H have been determined (Barlow et al., 1991a, b; Norman et al., 1991). The overall tertiary structures of the two domains were very similar suggesting that perhaps all SCR domains not only share homologous primary structures but also tertiary structures. The secondary structure consists of \(\beta \)-sheets connected by \(\beta \)-turns (Perkins et al., 1988; Barlow et al., 1991a). It has been proposed that the function of the SCRs found in complement proteins are to bind C3b (or the homologous proteins C4b and C5b) (Lambris, 1988; Reid et al., 1986). Since no complement protein contains only one SCR, it is likely that the C3b-binding site spans two SCR units (Klickstein et al., 1988; Krych et al., 1991).
(1.6.3) Thrombospondin Repeat (TSR)

The TSR occurs as 6 repeats in the complement control protein properdin, three times in the terminal component C6, twice in C7, C8α (Rao et al., 1987), C8β (Haefliger et al., 1987) and once in human C9 (DiScipio et al., 1984). There is also limited homology between the N-terminal region of the TSR and SP-40,40 (Kirszbaum et al., 1989). The domain was first characterized in thrombospondin which contains 3 repeats (Lawler & Hynes, 1986). The TSR can be characterised by a WSxWSxWSxC motif and has 6 Cys residues over a length of approximately 60 residues (Goundis & Reid, 1988; Nolan et al., 1991) (Chapter 6). The TSR may act as a binding domain for protein–protein interactions (Holt et al., 1990; Prater et al., 1991).

(1.6.4) Epidermal Growth Factor (EGF)

The EGF can be found in a wide range of proteins in large numbers of contiguous [e.g. the LDL related protein contains 22 repeats (Herz et al., 1988)] or single repeats (e.g. the EGF itself). In the complement proteins it is found as only one repeat in C1r, C1s, C6, C7, C8α, C8β and C9. The domain is approximately 40 residues in length with 6 conserved cysteine residues forming 3 disulphide bridges, bonded in the manner 1 to 3, 2 to 4 and 5 to 6. There is otherwise comparatively little sequence conservation (Chapter 8). The 2D NMR structure of 5 EGFs have been determined (Cooke et al., 1987, 1990; Montelione et al., 1987; Kohda et al., 1988; Mayo et al., 1989; Brown, S.C. et al., 1989; Selander et al., 1990; Kline et al., 1990). All five have similar tertiary structures, characterized by a core composed of the 6 cysteines joined by 4 loops. The secondary structure consists predominantly of β-strands and β-turns. EGF domains containing a β-hydroxyasparagine or β-hydroxyaspartic acid have a high affinity Ca^{2+} binding site (Öhlin et al., 1988). The binding of Ca^{2+} to the EGFs domain of C1r₂ is thought to be an essential step in the assembly of the C1r₂C1s₂ complex (Aude et al., 1988). The homologous EGF domain in C1s however, requires other structural regions in the molecule for Ca^{2+}-dependent interactions (Thielens et al., 1990).
(1.6.5) LDL receptor (LDLr)

The LDLr domain is found as one repeat in terminal components, C6, C7, C8α, C8β and C9 and also as 2 repeats in factor I (Goldberger et al., 1987; Catterall et al., 1987). It also occurs in LDLr as 7 repeats, LDLr-related protein as 31 repeats and GP330 as 15 repeats (Chapter 8). The LDLr is also a cysteine-rich domain, containing 6 conserved half-cysteines. The disulphide connectivity has not yet been determined. It is approximately 40 amino acids in length and has substantially more residue conservation than the other complement domains (Chapter 8). The homologous domain in the LDLr acts as a binding site and it has been proposed that it has the same function in the complement proteins (Scott, 1989; Tschopp & Masson, 1987).

(1.6.6) Serine Protease (SP)

The serine protease domain found in the complement components C1r, C1s, factor I, C2, factor B and factor D (Johnson et al., 1984). All these proteins show sequence homology to the classic serine proteases, trypsin and chymotrypsin. The catalytic triad (His, Asp, Ser) involved in the active site is conserved amongst all serine proteases. Disulphide bridge connectivity is not fully conserved. One disulphide bridge in C1r and C1s, constituting the 'histidine loop' is absent although this is present in all other mammalian serine proteases (Arlaud et al., 1982). The tertiary structures for seven serine proteases have been elucidated (Greer, 1990). The predominant secondary structure is that of β-sheet along with a characteristic C-terminal α-helix (Read & James, 1988). The β-sheets are organized into two sub-domains of similar topology and are arranged as orthogonal sheets (Read & James, 1988). It is the functional domain involved in enzymatic cleavage of peptide bonds.

(1.6.7) von Willebrand Factor (vWF)

The type A domain of the vWF is found in the complement proteins C2, factor B, CR3 (Corbi et al., 1988) and CR4 (Corbi et al., 1987) and also in the
integrins (Takada & Hemler, 1989), cartilage matrix protein (Kiss et al., 1989) and collagen type VI (Chu et al., 1990). It is approximately 202 residues long. There are no conserved Cys residues. The domain was found to contain significant amounts of α-helices and β-strands (Perkins & Smith, unpublished results). The function of the domain in the non-complement proteins is to mediate the binding to collagen and although there is no evidence for the binding of complement components to collagen, factor B will bind to the cell surface of macrophages (Götze et al., 1979).

(1.6.8) Perforin-like region (PLR)

The terminal components of complement, C6, C7, C8α, C8β and C9 have sequence homology to the pore forming protein perforin (Lichtenheld & Podack, 1989) in the central region of the amino acid sequence. The mean length of the domain is around 360 residues and there are two regions of high homology (Chapter 8). Perforin is a 70 kDa glycoprotein present in the granules of cytotoxic T cells and natural killer cells and is responsible for the formation of pore-like lesions in target cells in a similar way to the MAC of complement.

(1.6.9) Factor I Module (FIM)

This repeat is found once in factor I and twice in C6 and C7. The function of this domain is unknown.

(1.6.10) Serine protease inhibitor (SERPIN)

Cl inhibitor is a member of the SERine Protease INhibitor (SERPIN) superfamily (Carrell & Travis, 1985). Structural comparisons with the crystal structure of the homologous protein α_1-AT show conservation of those features important in inhibitory function and maintaining tertiary structure (Bock et al., 1986) (Chapter 4).
CHAPTER 2.

STRUCTURAL INVESTIGATIVE TECHNIQUES
(2.1) IMPORTANCE OF STRUCTURE DETERMINATION

All biological macromolecules are composed of a specific arrangement of amino acids, carbohydrates, nucleic acids and lipids. These are organized to produce a unique three dimensional structure which has a particular functional role in the living organism. The spatial arrangement of the composite molecules are very important to the function of the macromolecule and a change in conformation may result in loss of activity. In order to understand the function of a macromolecule it is therefore necessary to have a detailed knowledge of its structure.

(2.2) METHODS OF STRUCTURE DETERMINATION

Biological tertiary structure determination can be divided into two categories, those of high and low resolution. High resolution implies a structural determination down to the atomic level, as exemplified by X-ray crystallography and more recently, neutron crystallography and nuclear magnetic resonance (NMR). Over 790 sets of protein atomic coordinates are currently listed in the Brookhaven Protein Data Bank (October 1991) and resolutions of 0.15 nm have been achieved using X-ray crystallography (e.g. lysozyme; Artymiuk & Blake, 1981). Neutron crystallography is complementary to X-ray crystallography and is used to refine X-ray diffraction maps (reviews: Jacrot, 1987a; Moore, 1985). The major problem with all crystallographic techniques is the initial requirement of a crystal. Good crystals are grown in a protein solution under a narrow range of conditions which are empirically determined. Once a suitable crystal has been obtained, basic diffraction experiments will only determine the intensity of the scattered waves. Further preparative techniques are required to elucidate the phase of the waves. The only complement components that have been crystallized so far are C3a (Huber et al., 1980) and more recently factor D (Narayana et al., 1991a, b). This is due to the high degree of glycosylation of complement proteins, for example C1 inhibitor has a carbohydrate content of 26% by weight (Perkins et al., 1990d), and also because the complement proteins are composed of many mobile domain structures (Chapter 1) (Reid & Day, 1989). The concentration in
human plasma of complement proteins is low making it difficult to obtain sufficient yields necessary for crystallography.

Two-dimensional NMR can be used to study low molecular weight (M_r) proteins (up to 12 kDa) to atomic resolutions. NMR is the only high resolution technique to determine the three dimensional structure in solution i.e. in an environment near to physiological. Problems in resolving the NMR signals arise with larger proteins. However, new techniques including three dimensional NMR and isotopically labelling protein samples have been used to determine structural information on proteins of M_r up to 27.5 kDa (Fesik et al., 1989). Although the structures of proteins studied by both crystallography and NMR tend to be similar, significant differences have been identified between the solution and crystal states, attributable in part to the effects of crystal packing and the use of unphysiological buffers to promote crystallization (Chazin et al., 1988; Nettesheim et al., 1988). By 1989 the solution structure of more than 20 different globular proteins of 33 to 108 residues have been determined (Wright, 1989). Large multi-domain proteins can also be studied using NMR by isolating each independently folded domain. This has been achieved for the 5th and 16th SCR of factor H (Barlow et al., 1991a, b; Norman et al., 1991) and is therefore of use in studying other complement proteins since most consist of small domains of less than 100 residues.

Low resolution techniques include electron microscopy, hydrodynamic measurements and small-angle solution scattering. Electron microscopy can visualize the whole macromolecule in vacuo down to a resolution of around 2 nm. Hydrodynamic measurements give information on M_r and shape of a macromolecule in solution. Small-angle solution scattering also is used to study gross shape parameters of macromolecules in solution to a resolution of 2 to 4 nm, and is discussed in some detail below.

The secondary structure of proteins can determined by the high resolution techniques indicated above but also by spectroscopic and predictive methods. Fourier Transform Infrared (FT-IR) spectroscopy (reviews Surewicz & Mansch,
1988; Byler & Susi, 1986; Lee & Chapman, 1986) allows qualitative analysis of secondary structures by deconvolution of the amide I band (1600 to 1700 cm\(^{-1}\)). Secondary structure conformations in \(^2\)H\(_2\)O have typical frequencies. Percentages of \(\alpha\)-helices, \(\beta\)-sheets, \(\beta\)-turns and random coil can be estimated by adding together all the areas under the bands assigned to these conformations and expressing the sum as a fraction of the total area under the amide I band. Many methods have been developed to predict the protein secondary structure from the primary structure and have an accuracy of around 60% on a residue by residue basis. The methods of Robson (Garnier et al., 1978) and Chou and Fasman (Chou & Fasman, 1978) are discussed in detail below.
(2.3) SMALL-ANGLE SOLUTION SCATTERING

(2.3.1) Coherent and incoherent scattering

Diffraction occurs as the result of interference between scattered waves when radiation, for example, X-rays and neutrons, interacts with matter. X-rays are scattered by electrons and neutrons by atomic nuclei. Scattering can either be coherent or incoherent. Coherent scattering implies no change in wavelength but a phase-shift of \(\pi \) with respect to the incident wave. This produces the interference effect typical of solution scattering (Engelman & Moore, 1975). Incoherent scattering produces random scattering over a solid angle of \(4\pi \) and is negligible at small angle for all atoms by X-ray scattering. Incoherent neutron scattering only occurs in nuclei which have spin and is only significant for \(^1\)H. This does not contribute to the interference effect but produces a high background level (Engelman & Moore, 1975). Scattering by \(\text{H}_2\text{O} \) is therefore essentially isotropic and is used in instrument calibration (see Chapter 3).

(2.3.2) Scattering lengths

The coherent scattering length, or scattering amplitude of an atom is a measure of the probability of a coherent scattering event occurring. In X-ray scattering the scattering length (\(l \)) is proportional to the number of electrons in the atom. The scattering length of 1 electron (\(f_e \)) is \(2.81 \times 10^{-15} \) m (2.81 fm). Hydrogen, with just one electron is therefore very difficult to detect by X-ray diffraction. The neutron coherent scattering length (\(b \)) has no simple relationship to the atomic number and is similar for all atoms (Figure 2.1) (Schoenborn & Nunes, 1972). The large difference in scattering lengths of \(^1\)H (3.742 fm) and its isotope \(^2\)H (6.671 fm) is very important in neutron solution scattering. The relatively large value for \(^1\)H infers that it is comparatively easy to detect by neutron scattering and the minus sign means that there is no phase-shift of \(\pi \) with respect to the incident wave.
Figure 2.1. The relationship between scattering length and atomic number.
The X-ray (●) and neutron (▼) scattering lengths for biologically important atoms are plotted against their atomic number. 2H (D) and 1H have the same scattering length by X-rays but by neutrons 2H has a positive scattering length whilst 1H has a negative scattering length.

(2.3.3) Small-angle scattering

Waves scattered from two points within a macromolecule will cancel out when the path-difference between them is $\lambda/2$. The larger the macromolecule, the smaller the angle required to achieve a path-difference of $\lambda/2$ and the scattering curve will occupy a narrower angular range. Hence the shape of the scattering curve reflects the particle shape in reverse. This is related to the general principle of reciprocity between the dimension of the scattering particle and the scattering angle and is represented by λ/D where D is the size of the particle in solution.
Figure 2.2. Diffraction of electromagnetic radiation.

The incident planar wave, denoted as $\psi(z) = \exp(ikz)$ where $k = 2\pi/\lambda$, λ is the wavelength and r is the distance of the scattering particle from the observer, excites the scattering particle to radiate a spherical wave:

$$\psi(r) = \frac{b}{r} \exp(ikr)$$

where b is the scattering length of the particle. The intensity of scattering as a function of scattering angle Q, is measured at the detector. The plot of $\ln I(Q)$ against Q gives a scattering curve characteristic of the protein.
An incident planar wave, of wavelength \(\lambda \), is scattered by a macromolecule in the form of a spherical wave (Figure 2.2). The intensity of the radiation is measured with a planar detector as a function of the scattered angle, \(2\theta \) relative to the direction of the incident wave. The directions of the incident and scattered waves from the origin \(O \) are defined by the unit vectors \(s_0 \) and \(s \) respectively, both of amplitude \(2\pi/\lambda \) (Figure 2.3). The scattering vector \(Q \) is defined as \((s - s_0) \) and has amplitude \(|Q| = 4\pi \sin \theta/\lambda \), where \(2\theta \) is the scattering angle. A scattered wave from a second identical scattering point \(P \) will interfere with that from \(O \). Both waves are exactly in phase when \(2\theta = 0 \) and the intensity of the scattered wave is at a maximum. At angles greater than zero the interference between the waves due to the phase-difference reduce the intensity dramatically (Figure 2.2).

If \(P \) and \(O \) are separated by a vector \(r \), the phase-difference will be \(r \cdot Q \). The amplitude of scattered radiation from \(P \) along vector \(s \) is given by:

\[
A_p = A_e f_p \exp(-ir \cdot Q) \quad (1)
\]

where \(f_p \) is the X-ray scattering factor at \(P \) and \(A_e \) is the amplitude of the wave scattered by one electron (Guinier & Fournet, 1955). The terms \(f_p \) and \(A_e \) are replaced by the analogous terms \(b_p \) and \(A_n \) in neutron scattering. The total amplitude \(A(Q) \) scattered by a macromolecule is simply the sum of all the individual amplitudes. The intensity of scattering \(I(Q) \) is the real part of the product of \(A(Q) \) and its complex conjugate \(A(Q)^* \):

\[
I(Q) = A_e^2 \sum \sum f_p f_q \cos(rQ) = I_e F^2(Q) \quad (2)
\]

where \(F(Q) \) is the structure factor of the macromolecule and is defined as the ratio of the total scattered amplitude to the amplitude of radiation scattered by one electron at the origin (Guinier & Fournet, 1955). \(I(Q) \) depends only on \(Q \) and not on the orientation of the sample and is spherically symmetrical about the origin of reciprocal space. \(I(Q) \) is averaged over all possible orientations to give the Debye equation:

\[
\langle I(Q) \rangle = \sum \sum f_p f_q \frac{\sin(rQ)}{rQ} \quad (3)
\]
Figure 2.3. Derivation of the scattering angle Q.

Incident radiation is scattered from two points P and O separated by a distance r through an angle 2θ. The phase-difference is $AO + OB$. The unit vectors s_0 and s represent the directions of the incident and scattered radiation respectively and Q is the scattering vector ($s - s_0$).
(the angled brackets denoted the average of the enclosed term) with the following assumptions (Jacrot, 1982; Zaccai & Jacrot, 1983):

1) the solution is infinitely dilute and the waves scattered from different particles do not interact;
2) macromolecules are in random motion and the vector r occurs in all orientations equally;
3) thermodynamically the solution is a two component system and the scattering densities of the solute and solvent are homogenous;
4) all the macromolecules are identical;
5) the scattering is only coherent;
6) point-shaped primary beam cross-section (no collimation effect);
7) the measurements are performed in vacuo.

The scattering curve from a dilute system of randomly moving macromolecules is therefore the sum of individual particle scattering intensities averaged over all spatial orientations. Because the intensity is averaged, $F(Q)$ cannot be determined directly as is possible by crystallography and therefore there is a decrease in resolution.

(2.3.5) Scattering densities

The Debye equation above (3) assumes the macromolecule to be in vacuo but a macromolecule in solution has a modified scattering intensity and the equation must therefore be adapted. At low scattering angle, with a wavelength between 0.01 to 0.1 nm, the atom-to-atom variations in scattering length do not contribute to the overall scattering. Therefore a macromolecule can be considered to consist of one or a few large regions of average scattering length per unit volume (scattering density) (Engelman & Moore, 1975). At a point P in the macromolecule, the scattering length f_p (or b_p for neutrons) is equal to the scattering length density $\rho(r_p)$ in a small volume dv_p surrounding the point, hence $f_p = \rho(r_p)dv_p$. The average scattering density of the whole macromolecule is:

$$\rho_v = \frac{1}{V} \int \rho_x(x) d^3x$$

(4)
Figure 2.4. The average scattering density of the major biological macromolecules as a function of the 2H$_2$O content of the solvent (Jacrot, 1987). The % 2H$_2$O at the point at which the scattering density of the constituent intersects the 2H$_2$O line is called the matchpoint. The matchpoint value for lipids is 10 to 14 % 2H$_2$O, for proteins, 40 to 45 % 2H$_2$O, for carbohydrates, 47 % 2H$_2$O, for DNA, 65 % 2H$_2$O and for RNA, 72 % 2H$_2$O (Perkins, 1988).
where V is the macromolecule volume impermeable to solvent. Assuming the solvent to be of uniform density, it can be represented as ρ_s. Scattering occurs when there is a difference in scattering density between the solute and solvent:

$$\Delta \rho = \rho_v - \rho_s$$ \hspace{1cm} (5)

where $\Delta \rho$ is defined as the excess scattering density of the solute above that of the solvent. This difference is analogous to the use of staining techniques used to visualize specimens in both light and electron microscopy. The dependence of the scattered intensity on the contrast is determined by substituting into the Debye equation and integrating over the macromolecular volume:

$$\left< I(Q) \right> = \int \int (\rho(r_p) - \rho_s) \frac{\sin(Qr)}{Q} \, d^3r_p \, d^3r_q$$ \hspace{1cm} (6)

The contrast $\Delta \rho$ and therefore the scattering intensity can be varied by altering either the solute or solvent scattering density. The solvent scattering density can be altered easily in the case of neutron scattering because the densities of H_2O and $^2\text{H}_2\text{O}$ are very different (-0.562×10^{-4} nm$^{-2}$ and 6.404×10^{-4} nm$^{-2}$ respectively). Changing the solute scattering density is less straightforward and is achieved by either chemical labelling and/or in vivo deuteration of non-labile hydrogen atoms (Worcester, 1988).

Equation (6) above assumes that the scattering density of the solute is homogenous. However, the major biological macromolecular constituents have significantly different scattering densities (Figure 2.4) (Jacrot, 1987b). This is due to the different amounts of non-exchangeable protons found in each class. Lipids have a very high ^1H content whereas nucleic acids have a low content. Amino acids can be further subdivided into two groups, those with high scattering densities and those with lower scattering densities (Table 2.1) (Jacrot, 1976; Perkins, 1988). The hydrophilic amino acids tend to have higher scattering densities than the hydrophobic ones. The scattering density of $\text{H}_2\text{O} : ^2\text{H}_2\text{O}$ mixtures varies linearly with $\%$ $^2\text{H}_2\text{O}$ and spans the range of scattering densities of the major biological constituents. The scattering curve can therefore be considered to be composed from the scattering due to the contrast between the
<table>
<thead>
<tr>
<th>Name</th>
<th>Composition</th>
<th>Exchange-able protons</th>
<th>Electrons ((\text{H}_2\text{O})) ((\text{d}^2\text{H}_2\text{O}))</th>
<th>Volume ((10^{-3}) nm(^3))</th>
<th>Electron density (e nm(^{-3}))</th>
<th>Neutron density (% (\text{H}_2\text{O}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>1</td>
<td>62</td>
<td>13.958</td>
<td>24.361</td>
<td>168.8</td>
</tr>
<tr>
<td>Phe</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>1</td>
<td>78</td>
<td>41.385</td>
<td>51.798</td>
<td>203.4</td>
</tr>
<tr>
<td>Val</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>1</td>
<td>54</td>
<td>14.781</td>
<td>25.194</td>
<td>141.7</td>
</tr>
<tr>
<td>Leu</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>1</td>
<td>62</td>
<td>13.948</td>
<td>24.361</td>
<td>167.9</td>
</tr>
<tr>
<td>Trp</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>2</td>
<td>98</td>
<td>60.345</td>
<td>81.171</td>
<td>237.6</td>
</tr>
<tr>
<td>Met</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>1</td>
<td>70</td>
<td>17.628</td>
<td>28.041</td>
<td>170.8</td>
</tr>
<tr>
<td>Ala</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>1</td>
<td>38</td>
<td>16.447</td>
<td>26.860</td>
<td>91.5</td>
</tr>
<tr>
<td>Gly</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>1</td>
<td>30</td>
<td>17.280</td>
<td>27.693</td>
<td>66.4</td>
</tr>
<tr>
<td>Cys</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>1</td>
<td>53</td>
<td>23.036</td>
<td>33.449</td>
<td>105.6</td>
</tr>
<tr>
<td>Tyr</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>2</td>
<td>86</td>
<td>47.189</td>
<td>68.015</td>
<td>203.6</td>
</tr>
<tr>
<td>Pro</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>0</td>
<td>52</td>
<td>22.265</td>
<td>22.265</td>
<td>129.3</td>
</tr>
<tr>
<td>Thr</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>2</td>
<td>54</td>
<td>21.418</td>
<td>42.244</td>
<td>122.1</td>
</tr>
<tr>
<td>Ser</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>2</td>
<td>46</td>
<td>22.251</td>
<td>43.077</td>
<td>99.1</td>
</tr>
<tr>
<td>His</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>3</td>
<td>73</td>
<td>43.974</td>
<td>75.213</td>
<td>167.3</td>
</tr>
<tr>
<td>Glu</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>1</td>
<td>67</td>
<td>37.615</td>
<td>48.028</td>
<td>155.1</td>
</tr>
<tr>
<td>Asn</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>3</td>
<td>60</td>
<td>34.560</td>
<td>65.799</td>
<td>135.2</td>
</tr>
<tr>
<td>Gln</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>3</td>
<td>68</td>
<td>33.727</td>
<td>64.966</td>
<td>161.1</td>
</tr>
<tr>
<td>Asp</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>3</td>
<td>63</td>
<td>38.448</td>
<td>48.861</td>
<td>124.5</td>
</tr>
<tr>
<td>Lys</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>4</td>
<td>71</td>
<td>15.864</td>
<td>57.516</td>
<td>171.3</td>
</tr>
<tr>
<td>Arg</td>
<td>C(_6)H(_5)N(2)O (\text{H}_2\text{O})</td>
<td>6</td>
<td>85</td>
<td>34.664</td>
<td>97.142</td>
<td>202.1</td>
</tr>
<tr>
<td>Glc</td>
<td>C(_6)H(_5)O(_5)</td>
<td>3</td>
<td>86</td>
<td>31.506</td>
<td>62.745</td>
<td>171.9</td>
</tr>
<tr>
<td>Gal</td>
<td>C(_6)H(_5)O(_5)</td>
<td>3</td>
<td>86</td>
<td>31.506</td>
<td>62.745</td>
<td>166.8</td>
</tr>
<tr>
<td>Man</td>
<td>C(_6)H(_5)O(_5)</td>
<td>3</td>
<td>86</td>
<td>31.506</td>
<td>62.745</td>
<td>170.8</td>
</tr>
<tr>
<td>Gln</td>
<td>C(_6)H(_5)O(_5)</td>
<td>3</td>
<td>108</td>
<td>42.982</td>
<td>74.221</td>
<td>222.0</td>
</tr>
<tr>
<td>Gan</td>
<td>C(_6)H(_5)O(_5)</td>
<td>3</td>
<td>108</td>
<td>42.982</td>
<td>74.221</td>
<td>232.0</td>
</tr>
<tr>
<td>Fuc</td>
<td>C(_6)H(_5)O(_5)</td>
<td>3</td>
<td>78</td>
<td>25.702</td>
<td>56.941</td>
<td>160.8</td>
</tr>
<tr>
<td>Neu</td>
<td>C(_6)H(_5)O(_5)</td>
<td>5</td>
<td>153</td>
<td>69.121</td>
<td>121.186</td>
<td>326.3</td>
</tr>
</tbody>
</table>

Table 2.1. Scattering properties of the twenty amino acids and carbohydrate residues. The residues are listed in increasing hydrophilicity, according to the scale of Eisenberg (1984). The electron densities are calculated assuming an unhydrated volume and the matchpoint assumes full solvent \(\text{H}_2\text{O} - \text{d}^2\text{H}_2\text{O}\) exchange (Perkins, 1986; Perkins, 1988; Chapter 3).

Solute and solvent and also that due to internal contrast variations within the macromolecule. However, because amino acids contain labile protons (N-H and O-H) which are able to exchange with \(\text{d}^2\text{H}\) in the solvent, the scattering density of a macromolecule is not constant but depends on the \(\text{H}_2\text{O} : \text{d}^2\text{H}_2\text{O}\) composition of the solvent. One further complication is that the proton exchange is not uniform over the macromolecular volume because the distribution of labile protons within the macromolecule is not uniform and hence the internal structure is itself a function of contrast. If the amino acid composition of the macromolecule is
known the number of labile protons can be determined. However even in 100% 2H$_2$O, only 90% of these will be accessible to the solvent and exchange, the others being involved in secondary structure interactions (Perkins, 1986).

Contrast variation by X-rays is more problematic since the solvent scattering density must be altered by adding small molecules such as sucrose. Since biological molecules are sensitive to the surrounding solvent, X-ray contrast variation experiments are rarely done (Zaccaï, 1978; Moore, 1988).

(2.3.6) Differences between neutron and X-ray scattering

(a) Neutrons are scattered by atomic nuclei, X-rays by electrons.

This has a major implication in the solute volume measured by these two techniques. A protein in solution has associated with it a layer of water molecules of different density compared to the bulk (free) water. This water layer causes X-rays to scatter but does not affect neutrons. Although the Guinier parameters calculated by X-ray scattering should be comparable with those calculated in 0% 2H$_2$O buffers by neutrons, often the R_q is slightly larger by X-ray scattering because of this hydration shell. It is important to incorporate this extra volume when modelling (Chapter 3). Since these water molecules are in close proximity to charged groups on the protein surface, the volume occupied by a water molecule will be smaller (i.e. electrostriction). The hydration shell surrounding the protein is calculated assuming 0.3 g of water / g glycoprotein and an electrostricted volume of 0.0245 nm3 per water molecule, compared to a volume of 0.0299 nm3 of free water (Perkins, 1986).

(b) The instrumental effects on the incident beam.

The synchrotron X-ray incident radiation is monochromatic and point collimated whereas the neutron radiation is typically subject to a wavelength spread on 10% and slit width and slit height smearing errors.

(c) The effect of beam on the protein.

X-rays produce free radicals and therefore are destructive to protein and samples cannot be reused. Some proteins are very sensitive to X-ray radiation and will aggregate very quickly. Neutron radiation is not destructive and samples can
(d) Counting statistics in 0% 2H$_{2}$O.

The counting statistics are much better in 0% 2H$_{2}$O by X-ray scattering than by neutron scattering. This is due to the high amount of incoherent scattering and decreased intensity of the neutron beam passing through water.

(e) Contrast variation.

It is very easy to change the scattering density of the solvent by neutron scattering, by simply altering the ratio of 2H$_{2}$O to H$_{2}$O. The corresponding procedure by X-ray scattering requires the addition of sucrose or ethanol which may affect the conformation of the macromolecule. The scattering density of the solute can be changed in neutron scattering by selective deuteration of a particular functional group to enhance spatial resolution.
When Q is small, the Debye equation approximates to a Gaussian function. This can be simplified to give the Guinier equation:

$$
\ln I(Q) = \ln I(0) - \frac{R_G^2 Q^2}{3}
$$

(7)

where the R_G (radius of gyration) is defined as the root-mean-square distance of all scattering centres (electrons or neutrons) from their centre of gravity and $I(0)$ is the intensity of scattering in the direction of the incident beam. These are easily determined by plotting $\ln I(Q)$ against Q^2 to get a straight line of negative slope $R_G^2/3$ and y-axis intercept $\ln I(0)$. The R_G is a measure of the elongation of a molecule and is independent on shape assumptions. The most compact shape, a sphere, of volume V has the lowest R_G (R_θ). The ratio R_G/R_θ is a measure of the anisotropy of a macromolecule and is approximately 1.28 for most glycoproteins (Perkins, 1988). The R_G values for several simple geometric shapes are given in Table 2.2.

<table>
<thead>
<tr>
<th>Shape</th>
<th>R_G^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere (radius r)</td>
<td>$\frac{3}{5} r^2$</td>
</tr>
<tr>
<td>Ellipsoid (semi-axes a, b, c)</td>
<td>$\frac{a^2 + b^2 + c^2}{5}$</td>
</tr>
<tr>
<td>Elliptical cylinder (height h, semi-axes a, b)</td>
<td>$\frac{3a^2 + 3b^2 + h^2}{12}$</td>
</tr>
</tbody>
</table>

Table 2.2. The radii of gyration of simple geometrical bodies.

The smallest Q to yield an R_G is $Q_{\min}D_{\max} \leq \pi$ where D_{\max} is the maximum dimension of the particle. The largest Q used depends upon the macromolecular shape. The Guinier equation approximation breaks down when $Q.R_G$ is greater than 1. For mildly elliptical particles such as most globular proteins, a $Q.R_G$...
range out to 1.5 is acceptable (Perkins, 1988). The \(R_G \) can be used to follow changes of molecular shape with time for example, dissociation and association effects, conformational changes by denaturation, binding of coenzymes, temperature effects, etc.

(2.4.1.2) Cross-sectional plot

If one macromolecular dimension is large compared to the other two, the analysis of the scattering curve at larger \(Q \) will give the radius of gyration of the cross-section \(R_{XS} \)

\[
\ln [I(Q) \cdot Q] = [\ln (I(Q) \cdot Q)]_{Q-0} - \frac{R_{XS}^2 Q^2}{2}
\]

A plot of \(\ln[I(Q) \cdot Q] \) against \(Q^2 \) will have a slope of \(R_{XS}^2/2 \) and y-axis intercept of \([\ln(I(Q) \cdot Q)]_{Q-0} \). The length \(L \) can be determined from the Guinier and cross-sectional parameters by assuming a macromolecular shape of an elliptical cylinder:

\[
L = \sqrt{12 (R_G^2 - R_{XS}^2)} \]

The two shorter dimensions \(A \) and \(B \) can also be calculated from the dry (neutrons) or hydrated (X-rays) volume \(V = \pi ABL \) and \(R_{XS}^2 = (A^2 + B^2)/4 \). The length can also be calculated assuming a shape of an ellipsoid:

\[
L = \sqrt{\frac{5 R_G^2 - 4 R_{XS}^2}{2}} \]

The length can be calculated with no assumptions made on the protein shape from the intensity ratios:

\[
L = \frac{\pi \cdot I(0)}{[I(Q) \cdot Q]_{Q-0}} \]

(iii) Importance of \(I(0) \) values

At zero scattering angle, the waves are exactly in phase and the coherent scattering intensity, \(I(0) \) depends only on the number and nature of the nuclei and not their spatial arrangement:
\[I(0) = N (\Sigma \rho_p \rho_s V)^2 G \]

where \(N \) is the number of particles and \(G \) is a factor which represents the geometrical parameters of the experiment (Jacrot & Zaccai, 1981). To a first approximation \(\Sigma \rho_p \) and \(V \) are proportional to the relative molecular weight \(M_r \) and therefore \(I(0) \) is proportional to \(M_r^2 \). The factor \(G \) is equal to

\[G = T_s I_0 \Omega \]

where \(T_s \) is the transmission of the sample, \(I_0 \) is the intensity of the incident neutron beam and \(\Omega \) is a geometric term accounting for the angular aperture of the incident beam and the solid angle used for detection. The incoherent scattering of \(H_2O \) at wavelengths of 1 nm or more is isotropic and the uniform scattering of neutrons over \(4\pi \) by a sample of thickness 1 mm is approximately 55% of the incident beam. Since other processes which remove neutrons from the main beam are very small, the transmission \((T_w) \) of neutrons through the sample is approximately \((1 - 0.55) \). The number of neutrons scattered per solid angle is:

\[I_{\text{inc}} = \frac{1}{4\pi} (1 - T_w) I_0 S \Omega (\text{neutrons/s}) \]

where \(I_{\text{inc}} \) is the intensity of incoherent scattering. \(I_{\text{inc}} \) can be determined experimentally by measuring the transmission of a water sample subtracted from the transmission due to an empty container. Providing the samples are also measured under identical conditions,

\[I_0 \Omega = \frac{I_{\text{inc}}(0) 4\pi}{(1 - T_w) S} \]

where \(I_{\text{inc}}(0) \) is the incoherent scattering of \(H_2O \) at zero scattering angle and \(S \) is the cross-sectional area of the sample. The term \(G \) can now be written as

\[G = \frac{T_s I_{\text{inc}}(0) 4\pi}{(1 - T_w) S} \]

The number of particles \(N \), is determined from:

\[N = \frac{C N_s S t}{M_r} \times 10^{-3} \]
where \(c \) is the concentration, \(t \) is the pathlength and \(N_a \) is Avogadro's number.

The combination of these equations gives:

\[
\frac{I(0)}{cI_{inc}(0)} = N_a t M_r \times 10^{-3} \left(\frac{1}{M_r} \left(\sum b - \rho_s V \right) \right)^2 \frac{4\pi T_s}{1 - T_w} (18)
\]

\(I(0)/c \) is hence proportional to the \(M_r \). \(I(0) \) can be calculated from the Guinier plot and \(c \) from the absorbance at 280 nm. The parameter \(\Sigma b/M_r \) can be determined from the amino acid composition. The average value of \(\Sigma b/M_r \) for a protein is \(2.27 \times 10^{-14} \) cm/Da and the deviation from this mean is less than 3% in 80% of cases (Jacrot & Zaccai, 1981). The particle volume \(V \), is the dry volume and is related to the \(M_r \) by:

\[
V = \frac{M_r \bar{v}}{N_a} (19)
\]

where \(\bar{v} \) is the partial specific volume of the particle. In H\(_2\)O the scattering density of the solvent \(\rho_s \), is very small and the difficulties in measuring \(\bar{v} \) accurately become less significant. The mean value of \(\bar{v} \) for a protein is 0.74 cm\(^2\)g\(^{-1}\). An error of 5% in \(\bar{v} \) gives an error of 1.5% in the \(M_r \) (Jacrot & Zaccai, 1981). The determination of the \(M_r \) by X-rays is more problematic. The sample intensity is normalized with respect to the detector response rather than H\(_2\)O as by neutrons and the detector response varies from session to session. Also by X-rays, an error in \(\bar{v} \) leads to a much larger error in \(M_r \), so in X-ray scattering the relative \(M_r \) is determined by comparison with a sample of known \(M_r \) in the same buffer measured in the same experimental session. The \(M_r \) is also obtainable from the amino acid and carbohydrate composition of the macromolecule and can be compared to the experimentally derived value. The accuracy should be within 5% (Jacrot, 1987b) with the limiting factor being the calculation of the macromolecular concentration. Since aggregation is immediately detectable, the determination of a correct \(M_r \) is a good control for a good Guinier plot.

(2.4.1.4) **Matchpoint determination**

From equation (12) a plot of \(\sqrt{[I(0)/cT_s t]} \), where \(I(0) \) is normalised to concentration (c), transmission (\(T_s \)) and path length (t), against the solvent
Figure 2.5. The effects of contrast variation on an idealized protein.

In a solvent of 0% $^2\text{H}_2\text{O}$ (Penguin (a)) both the hydrophobic and hydrophilic regions of the protein have a higher scattering density than the solvent (positive contrast). Penguin (b) has a hydrophobic core which has the same scattering density as the solvent and the protein is 'visualized' as being hollow. When the solvent $^2\text{H}_2\text{O}$ to H_2O ratio is increased further, (Penguin (c)) the hydrophilic region becomes 'invisible' and only the smaller hydrophobic core is seen. Finally in 100% $^2\text{H}_2\text{O}$ (Penguin (d)) both hydrophilic and hydrophobic regions are visible against the solvent but have a lower scattering density than the solvent (negative contrast).
scattering density ρ_S produces a straight line. When the solvent scattering density equals the scattering density of the solute, i.e. $\rho_S V = \Sigma b$, the contrast $\Delta \rho$ and $I(0)$ are zero. This is termed the solute matchpoint. At this point, the solute will become indistinguishable from the solvent and effectively invisible since the forward scattering intensity is zero (Figure 2.5). This is analogous to the case in light scattering where a particle is not seen if its refractive index is the same as that of the surrounding medium. One constituent of, for example, a 2 component macromolecule can be matched out, leaving only the second 'visible'. Therefore by altering the contrast over the range encompassed by the major groups of biological constituents, the internal composition of the macromolecule can be established. The matchpoint for a protein can also be derived theoretically (Perkins, 1986) assuming 10% of the main-chain peptide protons do not exchange (Chapter 3).

(2.4.1.5) Stuhrmann plot

For most biological macromolecules, the scattering density is not uniform. The scattering intensity varies with contrast (Table 2.1) and hence the particle shape parameters (R_G) will also be dependent on contrast. This is accounted for in the Stuhrmann equation (Ibel & Stuhrmann, 1975):

$$R_G^2 = R_{G-C}^2 + \frac{\alpha}{\Delta \rho} - \frac{\beta}{\Delta \rho^2}$$ \hspace{1cm} (20)

The Stuhrmann graph is the plot of the experimental R_G^2 against reciprocal contrast ($1/\Delta \rho$). The R_{G-C}^2 (y-axis intercept) is the radius of gyration at infinite contrast (i.e when $1/\Delta \rho = 0$) and corresponds to a particle of homogenous scattering density with the same shape and volume as the one in question. The term α is calculated from the tangent to the curve at $1/\Delta \rho = 0$ and reflects the radial distribution of internal scattering density fluctuations. The slope will be positive if there is an outer region of high scattering density surrounding a lower scattering density core and negative if the reverse is true. The R_G of glycoproteins is larger in positive contrasts (0% 2H$_2$O) than negative contrasts (80% 2H$_2$O and 100% 2H$_2$O) due to surface regions of carbohydrate and hydrophilic amino acids which have a higher scattering density than that of the
hydrophobic core (approximately 50% $^2\text{H}_2\text{O}$ and 40% $^2\text{H}_2\text{O}$, respectively). The value for α is therefore positive. β is a measure of the curvature of the parabola and corresponds to the distance between centres of different scattering densities. In practice, for globular proteins this value is too small to be measured unless deuteration is used and the Stuhrmann plot becomes simply a straight line of intercept $R_G.C^2$ and gradient α. The R_G by X-rays, which is measured in H_2O buffers is therefore comparable to the R_G given by neutrons in 0% $^2\text{H}_2\text{O}$.

(2.4.1.6) Distance distribution function

The scattering curve $\mathcal{I}(Q)$ against Q represents the macromolecular structure in reciprocal space. This can be converted into real space by a Fourier transform of the experimental $\mathcal{I}(Q)$ for $0 \leq Q \leq \infty$.

$$P(r) = \frac{1}{2\pi^2} \int_0^\infty I(Q).Qr.\sin Qr.dQ$$

where $P(r)$ is the distance distribution function and corresponds to the number of distances of length r that connect a volume element i with another element k within the same macromolecule. D is the maximum macromolecular dimension and is easily obtained from $P(r)$ because there can be no distances longer than the maximum dimension, i.e. $P(r) = 0$ at $r = D$ (Figure 4.10). $P(r)$ reaches a maximum at the most probable intramolecular distance. However, $\mathcal{I}(Q)$ cannot be measured at zero angle because of the beam stop and at large angles there are high signal to noise ratios. To overcome these termination effects, the Indirect Transform Procedure (ITP) of Glatter (1977a, b, 1982) was formulated. The only requirement is an estimation of D_{max}, which may be 1.5 times the actual value of D. An underestimation of D_{max} leads to strong oscillations of the $P(r)$ curve ('Fourier ripples') whereas an overestimation also leads to errors, especially at high r in the $P(r)$ curve. This is due to errors at low Q in the experimental scattering curve which influence $P(r)$ at high r. These errors in the $P(r)$ curve increase the more D_{max} is overestimated (Müller & Glatter, 1982). The experimental curve is smoothed by approximating to a mathematical function by fitting a specified number of B-splines to the data using a least squares fitting routine. If too few splines are used the approximation to the data is poor whereas the use of too
many splines corresponds to an overinterpretation of the experimental data and produces 'Fourier ripples' in the \(P(r) \) curve. These numerical instabilities are dampened by the use of a stabilization parameter, the Lagrange multiplier, \(\lambda \) (Glatter, 1977a). The instrumental smearing effects are also removed i.e. wavelength spread, slit length and slit width and the curve is extrapolated to zero \(Q \). The \(R_G \) and \(I(0) \) (Guinier & Fournet, 1955) can be determined from \(P(r) \), using the whole scattering curve rather than just the Guinier region.

\[
I(0) = 4\pi \text{const.} \int_0^D P(r) \, dr \quad (22)
\]

\[
R_G^2 = \frac{\int_0^D P(r) \, r^2 \, dr}{2\int_0^D P(r) \, dr} \quad (23)
\]

Experimental data typically have errors due to the subtraction of the scattering background and any concentration dependence. These are characterized in the \(P(r) \) curve by a small increase in \(P(r) \) at zero \(r \) and a negative oscillation around \(D \) due to interparticle interference effects, respectively. However the influence of background scattering does not cause any problems in practice and the position of the minimum value of \(P(r) \) of the oscillation due to concentration effects remains virtually constant and is in good agreement with the maximum dimension (Müller & Glatter, 1982). Obviously the \(R_G \) and \(I(0) \) values will still be affected by the concentration effect and the points at lowest \(Q \) of the experimental scattering curve may have to be deleted. Providing this is not too broad, it is equivalent to extrapolating the data to zero concentration.

(2.4.2) Modelling procedures

(2.4.2.1) Debye spheres

Simulated scattering curves are calculated from models made from small overlapping spheres. These do not represent chemically defined subunits but are used only to approximate a simple structure. Crystal co-ordinates of either the
whole protein structure or a single domain can be converted into a sphere model. If no tertiary structure is available, simple elliptical cylinder models are created based on molecular dimensions derived from the Guinier parameters or from electron micrographs. The scattering density of the protein can be incorporated into the model by either using a single uniform scattering density or dividing the spheres into two regions of different scattering densities. For a model based on a single scattering density the R_G is calculated from Damaschun et al. (1979):

$$R_G^2 = \frac{1}{n} \sum_{k=1}^{n} (R_k^2 + r_k^2)$$ \hspace{1cm} (24)

for n spheres, where R_k is the R_G of a sphere and r_k is the distance between the sphere and centre of mass of the model. The scattering curve is calculated according to the equation (Rol'bin et al., 1974):

$$\frac{I(Q)}{I(0)} = g(Q) \frac{n+2 \sum_{j=1}^{A_j} \frac{\sin Q \cdot r_j}{Q \cdot r_j}}{n^2}$$ \hspace{1cm} (25)

where n is the number of spheres, A_j is the number of distances r_j and m represents the maximum length of the model.

If two scattering densities are used in the model, the $R_{G\cdot C}$ and Stuhrmann α can be determined. The Stuhrmann α value is calculated from:

$$\alpha_G = n^{-1} \sum_{k=1}^{n} (\rho_k - \rho_m) r_k^2$$ \hspace{1cm} (26)

where ρ_k is the scattering density of the sphere and ρ_m is the mean scattering density. The scattering curve is calculated from (Rol'bin et al., 1974):

$$\frac{I(Q)}{I(0)} = g(Q) \frac{n_1 \rho_1^2 2 \sum_{j=1}^{A_{j1}} \frac{\sin Q r_j}{Q r_j} + 2 \rho_2^2 \sum_{j=1}^{A_{j2}} \frac{\sin Q r_j}{Q r_j} + 2 \rho_1 \rho_2 \sum_{j=1}^{A_{j12}} \frac{\sin Q r_j}{Q r_j}}{(n_1 \rho_1 + n_2 \rho_2)^2}$$ \hspace{1cm} (27)

where the model is constructed from n_1 and n_2 spheres of different scattering densities ρ_1 and ρ_2; $g(Q) = 3(\sin QR - QR \cos QR)^2/Q^6 R^6$ (the squared form factor of the spheres of radius R); A_{j11}, A_{j22} and A_{j12} are the number of distances r_j for that increment of j between the spheres 1 and 1, 2 and 2 and 1 and 2.
respectively; \(m \) is the number of different distances \(r_j \).

(2.4.2.2) Hydrodynamic modelling

Frictional coefficients \(f \) were calculated theoretically from:

\[
f = \frac{M_r (1 - \bar{v} \cdot \rho_{20,w})}{N_a s_{20,w}^o} \tag{28}
\]

where \(\bar{v} \) is the partial specific volume, \(\rho_{20,w} \) is the density of water at 20°C, \(N_a \) is Avogadro's constant, and \(s_{20,w}^o \) is the sedimentation coefficient. Frictional ratios \(f/f_0 \) were calculated using \(f_0 = 6\pi \eta r \) in which the macromolecule was assumed to be a hydrated sphere of radius \(r \). Frictional coefficients were calculated for hydrodynamic models by the modified Oseen tensor procedure of Bloomfield (Garcia de la Torre & Bloomfield, 1977a, b; Perkins, 1985). The Stokes-law frictional coefficient for a given sphere in a multi-subunit structure is dependent upon the hydrodynamic interactions of the other spheres and is accounted for in the Oseen tensor. The Oseen tensor assumes each element to be a point source, and is hence modified to allow for the finite size of each of the \(n \) elements. The frictional force \(F_i \) associated with the \(i \)th element of hydrodynamic radius \(r_i \) is:

\[
F_i = 6\pi \eta r_i (u_i - v_i) \quad (i = 1, n) \tag{29}
\]

where \(u_i \) is the velocity of the \(i \)th element and \(v_i \) is the velocity of the solvent would have at the same point if the element was absent. The modified hydrodynamic interaction tensor, \(T_{ij} \), for spheres of finite sizes and of different hydrodynamic radii of \(r_i \) and \(r_j \) is:

\[
T_{ij} = \frac{1}{8\pi \eta R_{ij}} \left(I + \frac{R_{ij} R_{ij}}{R_{ij}^2} + \frac{R_{ij}^2}{R_{ij}^2 R_{ij}^2} \right) \left(\frac{1}{3} I - \frac{R_{ij} R_{ij}}{R_{ij}^2} \right) \tag{30}
\]

where \(I \) is the unit vector and \(R_{ij} \) is the vector between \(i \) and \(j \). The \(T_{ij} \) and \(F_j \) terms are related:

\[
v_i = v_i^0 - \sum_{j=1}^{n} T_{ij} F_j \quad (31)
\]

(excluding terms \(i = j \)), where \(v_i^0 \) is the unperturbed solvent velocity when the other elements are absent.
The amino acid sequence contains sufficient information to define the final folded conformation of a protein in a particular environment. This was demonstrated by the classic experiment by Anfinsen which showed that denatured ribonuclease was able to refold without loss of enzymatic activity (Anfinsen, 1973; Anfinsen et al., 1961). Proteins with similar primary structures tend to have homologous tertiary structures but this can also be true of proteins with different primary structures suggesting that there is some redundancy in the rules determining tertiary from primary structure.

It is theoretically possible to determine the final protein structure using the rules governing protein folding. However the number of possible structures is very large. The prediction of the secondary structure therefore is likely to yield better results. Secondary structure prediction implies the assignment of individual amino acid residues to specific conformational states, α-helices, β-sheets, β-turns and random coils, but the tertiary structure must first be determined before the secondary structures can be finalized. The criteria for assigning secondary structures to known tertiary structures must be unambiguous and physically meaningful. Kabsch and Sander produced a set of criteria for assigning secondary structures to crystal coordinates based on hydrogen bonding patterns (Kabsch & Sander, 1983).

At least 20 methods have been published for the prediction of secondary structure from the amino acid sequence (Fasman, 1989). These can be divided into two main groups, those based on statistical methods, using a database of known sequences and structures (for example, Garnier et al., 1978) and those based on stereochemical methods (for example, Lim, 1974). It is the statistical approach to secondary structure prediction which is of interest here. The secondary structure prediction for the whole protein depends on the prediction of the secondary structure for each individual residue. The particular conformational state of one residue depends ultimately on every other residue in the protein. The two most commonly used procedures are discussed in detail below.
The Robson secondary structure prediction method is an information theory technique based initially on 26 proteins of known sequence and conformation (Garnier et al., 1978) and this has been updated using a database of 75 proteins (Gibrat et al., 1987). Each residue was unambiguously assigned one of 4 possible conformations, α-helix (H), β-sheet (extended, E), β-turn (T) or random coil (C). The H and E conformations imply runs of at least 4 residues with \(\phi, \psi \) angles approximately representative of a right-handed α-helix and a β-sheet respectively. The T conformation implies a 2-residue turn and the C state is anything that is not H, E or T (Robson & Garnier, 1986). Although in theory the conformation of any particular residue is dependent on every other amino acid in the protein, in practice, it has been established that the conformation of 1 residue is primarily governed by the 8 residues either side of it i.e. \(-8 \leq m \leq 8\) to give 17 separations, \(m\) (Robson & Pain, 1974; Robson & Suzuki, 1976). There are 20 common amino acid types and 4 conformations for each separation. The total number of parameters is therefore \(20 \times 4 \times 17 = 1360\). The information \(I\) on the conformation \(S\) of the \(j^{th}\) residue \(R\), can be approximated as:

\[
I(S_j; R_1, R_2, \ldots, R_{\text{last}}) = \sum I(S_j; R_{j+m})
\]

Information is expressed in terms of the logarithm of probabilities or probability ratios. Equation (32) is evaluated for each conformational state (H, E, C and T) and the conformation with the highest information content is chosen. A large positive value for a α-helix conformation will indicate a strong bias towards helix formation whereas a large negative value will be bias towards non-helix. A small or zero value indicates impartiality. The information values used in equation (32) are calculated from the frequencies observed in the database for each amino acid \(R\) and for each conformation by scanning every position \(j\). The information values for the 1978 and 1987 databases are compared for each amino acid and each conformation in Figure 2.6. Although in most cases the two parameter sets give similar values, notable differences are α-helical propensities for Arg, Cys and Trp; the β-sheet propensities for Gln and Pro; the β-turn propensities for Cys, Gln, Ile and Trp and the random coil propensities for Trp.
Figure 2.6(a) Alpha propensities
Figure 2.6(b) Beta propensities
Figure 2.6(c) Turn propensities
Figure 2.6(d) Coil propensities
Table 2.3. Decision constants for \(\alpha \) biased, \(\beta \) biased or unbiased conformation.

Many residues have strong tendencies to form \(\alpha \)-helical and \(\beta \)-sheet conformations and these may govern the conformation of less partial neighbouring residues. A region of residues with a strong \(\beta \)-sheet forming tendency may override a nearby region of weak \(\alpha \)-helix. The predictions can be improved if experimentally derived information on the secondary structure content is available, for example from circular dichroism (CD) or FT-IR. A constant value (Decision Constant) can be subtracted to favour a particular conformation determined experimentally (Table 2.3) (Garnier et al., 1978). Decision constants are measured in centinats and correspond to units of information content. Only decision constants for \(\alpha \)-helix and \(\beta \)-sheet conformations are used because the contribution of turns to the CD spectrum is not understood (Robson & Garnier, 1986). A decision constant of 0 implies that no external information has been used

<table>
<thead>
<tr>
<th></th>
<th>(\beta) biased</th>
<th>(\alpha) biased</th>
<th>unbiased</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_{CH})</td>
<td>158</td>
<td>-10</td>
<td>0</td>
</tr>
<tr>
<td>(D_{CE})</td>
<td>-88</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>(D_{CT})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(D_{CC})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2.6. Comparison of the information values for the Robson 1978 and 1987 parameter sets.

The information content for each amino acid (cnats) in each conformation is plotted against residue position \(j \), where \(-8 \leq j \leq 8\).

The Robson 1978 parameter set is represented by the symbol (●) and the 1987 parameter set by a (▼). A measure of the difference between the old and new parameter sets was calculated as:

\[
\sum_{j=-8}^{8} |I_{old} - I_{new}|
\]
to weight the raw prediction. If the protein is known to contain less than 20% \(\alpha\)-helix and greater than 20% \(\beta\)-sheet, a \(\beta\)-biased prediction is used whereas an \(\alpha\)-biased prediction is used when the \(\alpha\)-helix content is over 50%.

Using the database of 26 proteins, the overall percentage of correctly predicted conformations for each residue was 60%. Of the four conformations, \(\alpha\)-helix was correctly predicted 66%, extended 55%, turn 42% and coil 29% (Garnier et al., 1978). The poor prediction of random coil was due to the low content of this conformation in the proteins tested by Garnier.

(2.5.2) Chou-Fasman

The Chou-Fasman predictive method is based upon a database of 29 known protein structures. The number of times an amino acid was found in a particular conformation was tabulated. Then all the amino acids were classified as being either helix formers, sheet formers, helix breakers, sheet breakers or indifferent (Chou & Fasman, 1978). The \(\alpha\)-helix and \(\beta\)-sheet conformational parameters, \(P_a\) and \(P_b\) were calculated where:

\[
P_a = \frac{f_a}{<f_a>} \tag{33}
\]

\[
P_b = \frac{f_b}{<f_b>} \tag{34}
\]

\(f_a\) and \(f_b\) were the frequency of residues in \(\alpha\)-helix and \(\beta\)-sheet regions and \(<f_a>\) and \(<f_b>\) were the average frequency of residues in \(\alpha\)-helix and \(\beta\)-sheet regions. The \(\alpha\)-helical or \(\beta\)-sheet potential for any residue in a protein segment was calculated by averaging the \(P_a\) and \(P_b\) values for that residue.

To initiate \(\alpha\)-helix and \(\beta\)-sheet formation there must be clusters of helix \(<P_a> \geq 1.03\) or sheet \(<P_b> \geq 1.05\) formers. Extension of the conformation takes place in both directions providing there are no helix or sheet breakers. Termination occurs by a tetrapeptide with a \(<P_a>\) or \(<P_b>\) < 1.00 or an adjacent region of opposite conformation with a larger potential i.e. if \(<P_b> > <P_a>\), will
terminate an α-helix.

Secondary structure predictions by either method can be enhanced by aligning many homologous proteins (Garnier et al., 1978, Perkins et al., 1988). Interactions that are distant from a particular residue can have substantial effects in determining its conformation but these are not considered in the predictive techniques highlighted above. To predict structures it will always be better to search for a protein of known tertiary structure that is homologous to the protein of interest, since this is likely to have a similar conformation (Creighton, 1984).

(2.5.3) Hydropathy profiles

Hyrophobicity is a measure of the unfavourable ordering of water molecules around solvent accessible non-polar atoms. A large number of hydrophobicity scales have been derived for amino acids but these are often contradictory and have determined using different criteria. The scales are either solution or empirically derived. Solution measurements are based on distribution coefficients between an aqueous and an organic phase whilst empirical measurements are based on the partitioning between the solvent-accessible surface and the buried interior of proteins of known structure (Fasman, 1989). A comparative analysis of 10 such scales has been reviewed by van Regenmortel & Daney de Marcillac (1988). This found that none of the methods tested had a very high success rate. This was also found by Fasman & Gilbert (1990) when they compared 9 scales on their accuracy to predict the trans-membrane reactive centre protein from Rhodopseudomonas viridis. Four scales were used here. Hopp and Woods (1981) use a method based on hydrophilicity scales which select charged or polar residues to identify antigenic determinants on proteins (review Hopp, 1986). The Kyte and Doolittle (1982) method emphasizes the positively charged Arg and Lys residues at the detriment of the negatively charged residues. The hydrophilicity scale of Parker et al. (1986) is based on peptide retention times during high performance liquid chromatography and also includes the charged groups at the N- and C-termini of the peptide. The Eisenberg et al. (1984) scale
is based on the hydrophobic moment of a protein segment and is used to predict hydrophobic periodicities of protein structures, e.g. α-helices (periodicity of 3.6 residues), 3_{10} helices (periodicity of 2.5 residues) and β-sheets (periodicity of 2.3 residues). Eisenberg (1984) also devised a consensus scale which was the average of four scales in order to alleviate the effects of anomalous values in any one scale.
CHAPTER 3.

METHODS
Schematic Arrangement of Beam-Tubes and Instruments at the HFR (90)
(3.1) **INSTRUMENTATION**

(3.1.1) **Small-angle solution scattering by neutrons**

(3.1.1.1) **Description of the instrument**

Neutron solution scattering studies were carried out using the high flux reactor at the Institut Laue-Langevin (ILL) in Grenoble, France. High energy neutrons were produced by the fission of 235U. The thermal neutron flux was moderated either by the inclusion of a hot (graphite) or a cold (deuterium at 25 K) source to enhance neutron intensities at low wavelengths ($0.04 < \lambda < 0.08 \text{ nm}$) or at the longer wavelengths used for solution scattering of $\lambda > 0.4 \text{ nm}$, respectively. Neutron guides transferred the neutrons from the reactor core to the external instruments (Figure 3.1). The small-angle scattering instruments used were D11 on beamline H15 which had a sample-to-detector distance of up to 35 m and a Q range of 5×10^{-2} to 5 nm^{-1} and D17 (Figure 3.2) on beamline H17 with a maximum sample-to-detector distance of 3.5 m and a Q range of 3×10^{-2} to 10 nm^{-1}.

At the instrument, the incident beam was made monochromatic using a velocity selector (Figure 3.2). This consisted of a rotating drum with a helical slot which allowed only those neutrons with a specified velocity and hence wavelength range, to pass through. The beam flux for D17 is shown in Figure 3.3 where the maximum neutron flux occurred around 1.1 nm. The triangular wavelength range

Figure 3.1. Schematic arrangement of beam-tubes and instruments at the High Flux Reactor, ILL, Grenoble, 1990.

High energy neutrons are produced by the fission of 235U and the flux is modified either by the inclusion of a hot source (HS) or a cold source (CS). Neutron guides transfer the neutrons from the reactor core to the external instruments. The small-angle solution scattering stations D11 and D17 are found at the ends of cold neutron guides H15 and H17 respectively.
Figure 3.2. Photograph and schematic diagram of D17 set up for small-angle solution scattering, ILL, Grenoble.

The sample-to-detector distance can be set to be 0.8m, 1.4m or 2.8 m to 3.5 m. The detector can be rotated horizontally about the sample from 0° to 90°.
distribution gives a FWHM (full width half maximum) $\Delta \lambda /\lambda$ of 10%. Collimation was achieved by changing the apertures at either end of a 2.5 m boron carbide composite tube (Figure 3.2). Diaphragms of size 20 mm at the reactor end and 14 mm at the detector end of the collimator were used in all experiments. Although ideally the two diaphragms should be of the same size (14 mm) to limit beam divergence, the use of different sizes had the advantage that substantially more neutrons were allowed through at the cost of a slight deterioration in the collimation of the main beam.

Prior to measurement the samples were extensively dialysed against their buffer for at least 36 hours and the final dialysate was used for buffer background subtraction. For neutron scattering studies, proteins were usually measured in buffers containing 0%, 80% and 100% 2H$_2$O for matchpoint and Stuhrmann analyses (Chapter 2). Adequate dialysis was especially important in neutron studies because both the sample and buffer must have the same exchangeable
proton content. Samples were measured in quartz Hellma cuvettes of path thickness 1 mm (volume 200 μl) for 0% 2H$_2$O samples and 2 mm (volume 400 μl) for 80% and 100% 2H$_2$O samples. A shorter path length for H$_2$O samples was used because of the high incoherent (background) scattering. Up to 12 cuvettes were placed in an automatic and temperature controlled cell holder. This was maintained at 20°C for all measurements. Protein concentrations were ascertained by measuring their optical densities at 280 nm in the same cuvettes and either calculating the absorption coefficient from the amino acid and carbohydrate composition (Perkins, 1986) (Section 3.2.7) or using published values. In accordance with the Debye equation (Chapter 2), the sample of macromolecules must be infinitely dilute to eliminate interparticle interference effects. Interparticle interference effects at low concentrations lead to a decrease in scattering intensity at small angles. High protein concentrations could induce aggregation which was characterized as an increase in intensity at low Q due to the increase in molecular weight. In practice this meant that a concentration series was always performed, and Guinier parameters were extrapolated to zero concentration if a concentration effect was found. The sample counting time was dependent on the sample concentration, the buffer composition and the sample-to-detector distance. This could range from a few minutes at high protein concentration, in 100% 2H$_2$O buffers and a sample-to-detector distance of 3.4 m to several hours for all samples in 0% 2H$_2$O because of the high degree of incoherent scattering and the decreased intensity of scattering. Samples to be measured for long periods were counted in several separate measurements in case of sudden reactor or instrument failure, and these were subsequently averaged together in the final data reduction stage. The 0% 2H$_2$O calibration samples especially were measured throughout the experimental session to ensure reproducibility of the detector response was maintained.

The transmission of the neutron beam through the sample was dependent upon the % 2H$_2$O present. This varied from approximately 0.45 for samples in 0% 2H$_2$O buffers to 0.9 in 100% 2H$_2$O buffers. Accurate transmission measurements were necessary for H$_2$O samples for normalization and calculation of the M_r. The transmission was calculated as the ratio of the intensity of the attenuated direct
beam through the sample to the intensity through the empty cell. The beam was attenuated with a 5 mm polymethylmethacrylate sheet (Rennie, 1988) and the beam stop was moved out to the edge of the detector. All transmission measurements were counted for 2.6 minutes to get sufficient counts for statistically significant results. The transmission from at least one sample from each dilution series was obtained to ensure the dialyses ran correctly. Since transmissions of different samples in the same 2H$_2$O buffer gave approximately the same value, these were averaged together in the final analyses.

Allowable sample-to-detector distances for D17 ranged from 0.8 m to 3.5 m and the detector could be rotated from 0° to 90° about the sample (Figure 3.2). Typical configurations of 3.4 m 0°, 1.4 m 0° and 1.4 m 20° gave a total Q range of approximately 0.05 to 3.25 nm$^{-1}$. The highest nominal structural resolution of the scattering curve was around 2 to 4 nm, according to the equation $2\pi/Q_{max}$.

The BF$_3$ multi-detector on D17 has dimensions of 64 x 64 cm2 and is composed of 4,096 cells of area 1 x 1 cm2. Both the incident and diffracted beam were in vacuo. The direct beam was prevented from hitting the detector by a 8 cm x 6 cm cadmium beam stop. The position of the beam stop was determined using a 1 mm thick strip of Teflon inserted in the sample holder, which was a very high scatterer of neutrons. CAMAC standard electronics and a VAX 11-730 minicomputer controlled the instrument and data acquisition.

(3.1.1.2) Primary data reduction

A number of calibration and normalization measurements were performed during the processing of any sample (Ghosh, 1989) (Figure 3.4). DETEC listed the raw counts from the detector cell by cell and was used to calculate the position of the beam stop. RNILS listed and stored the radial distribution function $I(Q)$ of the detector. Individual cells were averaged from a given radial step length of 1 cm to give a mean Q and intensity, $I(Q)$. The error on $I(Q)$ is calculated as:

$$\text{error } I_{er}(Q) = \sqrt{(\text{total counts})/(\text{number of cells})}$$

SPOLLY normalised and combined individual spectra and listed and stored the
Figure 3.5. Flowchart showing in detail the dialogue for SPOLLY.

Name, ext. and cnts. refer to the individual run number, its extension number and the monitor counts (proportional to the time in the beam) respectively. The cross-section of water and the sample is always set as 1. The transmission of the sample plus buffer and buffer alone are assumed to be equal and the default value of 1 is always used. The sample flat-background default is always taken, which is 0.
Figure 3.4. Flowchart showing the data reduction procedures for neutron scattering.

DETEC lists the raw counts from the detector cell by cell, RNILS lists and stores the radial distribution function \(I(Q) \) of the detector, SPOLLY corrects and normalizes the sample spectrum \(I(Q) \), RPLCT plots out 2 spectra on the same axes, RCARD produces a card image disk file of formatted data and RGUIM is used to calculate the Guinier and cross-sectional parameters. See text for details.

Output (Figure 3.5). All spectra were normalized with respect to the monitor counts (counting time). The role of the cadmium sample was to block the direct beam of neutrons and hence to provide an estimation of the neutron and electronic background counts in the Guide Hall which was subtracted from each spectrum. Pure H\(_2\)O and 0\% H\(_2\)O buffers (assuming these were very dilute) were used as a standard to produce an absolute scale to enable molecular weight determinations. These were corrected for the transmission of H\(_2\)O and the scattering due to the empty cell. Each sample spectrum was normalized by subtracting the buffer background and dividing by the corrected H\(_2\)O sample. Preliminary \(R_G \) and \(I(0) \) values were calculated using RGUIM to check the samples were not aggregated and that the samples had been counted for a sufficient amount of time. RPLCT was a general graphics program and could plot two spectra together. This was used to ensure spectra of the same sample from different instrument configurations overlap in regions of similar \(Q \). RCARD produced output containing \(Q \), \(I(Q) \) and error on \(I(Q) \) on magnetic tape for transfer to London. The spectra were reanalysed more carefully in London using the FORTRAN interactive graphics program, SCTPL.
(3.1.2) Small-angle solution scattering by X-rays

(3.1.2.1) Description of the instrument

X-ray studies were carried out at the Synchrotron Radiation Source (SRS) at Daresbury, Warrington, U.K. Electrons were emitted from a hot cathode and accelerated to 12 million electron volts (12 MeV) in a linear accelerator (LINAC). The electrons were further accelerated in a booster synchrotron to 600 MeV and from there, injected into the storage ring and finally accelerated to 2,000 MeV (2 GeV, 99.999997% of the speed of light) by a high power radio-frequency accelerating system. This also maintained the energy at this level. The average starting current was 205 mA with an average overall current of 169 mA (Annual Report, 1990/91). The beam was refilled generally every 24 hours. The main beam intensity continually decreased between beam-fills. The electrons travelled round the 96 m circumference ring 3.12 million times a second and remained in orbit for approximately 30 hours. The path followed by the electrons was bent into a circle by 16 dipole magnets. Synchrotron radiation was emitted by the electrons when they were deflected by the magnetic field. The radiation was transmitted tangentially down beamlines to different experimental stations (Figure 3.6). The small angle X-ray scattering instruments were situated at stations 2.1, 7.3 (now discontinued) and 8.2.

Figure 3.6. Schematic representation of the beamlines at the SRS, Daresbury. Electrons are emitted from a hot cathode and accelerated in a linear accelerator (LINAC). The electrons are further accelerated in a booster synchrotron and then injected into the storage ring. The path followed by the electrons in the storage ring is bent into a circle by 16 dipole magnets and has a 96 m circumference. Synchrotron radiation is emitted by the electrons when they are deflected by the magnetic field and is transmitted tangentially down beamlines to the different experimental stations. The small-angle scattering instruments are located on beamlines 2, 7 and 8.
The X-ray beam from the storage ring is monochromated and collimated and passes through a front ion chamber before reaching the sample. The scattered beam goes through a back ion chamber onto the detector. The air gap between the sample and the front and back ion chambers should be kept as small as possible. The sample-to-detector distance can be varied from 0.3 to 4.5 m.
The beam was monochromated to a wavelength of 0.154 nm and focused horizontally by a Ge(111) crystal and focused vertically with a curved mirror. Sets of slits positioned before and after the monochromator and mirror were used to collimate the beam and reduce parasitic scatter (Towns-Andrews et al., 1988). Wavelength spread is negligible as the result of monochromatization. The beam passed through a front ion chamber, used for qualitative monitoring, through the sample and then through a back ion chamber, used for normalization and equivalent to transmission measurements by neutron scattering (Figure 3.7).

As for neutron experiments, the samples were dialysed against their buffer for at least 36 hours and the final dialysate was used for buffer subtraction procedures. The buffers used were based on a low concentration of salts in H2O which kept the transmission high. Samples were placed in the beam in round cells with mica window thicknesses of approximately 10 μm, held in place with Teflon inserts. The sample volume was 20 μl and the path length was 1 mm. The cell holder was either made of brass and temperature controlled via a waterbath (maintained at 20°C for all measurements) or Perspex where measurements were made at room temperature (≈20°C). The sample holder was aligned in the beam by using 'green paper' which turns red on exposure to X-rays. Protein concentrations were determined by the optical density at 280 nm, measured in 1 mm path-length quartz Hellma cells and a concentration series was always measured as for neutron scattering. The counting times were dependent upon the sample concentration and were limited in some cases by the susceptibility to radiation damage which caused the sample to aggregate (Figure 3.8). The counting time was split into 10 equal timeframes which were plotted individually to assess if any radiation damage had occurred and then were averaged together. The protein samples were measured alternately with their buffer using equal collection times to reduce background subtraction errors.

The sample-to-detector distances on station 8.2 range from 0.5 to 4.5 m. Sample-to-detector distances from 2.2 to 4.2 m were used here to give a Q range of 0.1 to 1.8 nm$^{-1}$ (linear detector) (0.1 to 3.8 nm$^{-1}$ quadrant detector) or 0.1 to 1.0 nm$^{-1}$ (linear detector) (0.1 to 1.8 nm$^{-1}$ quadrant detector), respectively.
Figure 3.9. Photograph of the quadrant detector at Station 8.2, SRS, Daresbury. The beam is guided to the detector along an evacuated beamline. The quadrant detector measures the scattering intensity in a 76° arc over 150 mm. The beam is aligned with the centre of the circle.
Figure 3.8. Aggregation of complement component C9.
The scattering curves from the first and tenth minute of exposure of C9 to X-rays are very different at low Q. This is attributed to protein aggregation as a result of radiation damage.

Two detector types were used, a linear and a quadrant detector. The linear detector measured scattering intensity in one dimension whereas the quadrant detector measured the intensity in a 76° arc over a radial length of 150 mm (Towns-Andrews et al., 1988) (Figure 3.9). The main beam was aligned with the centre of this arc and the increase in circumference with increase of scattering angle compensated for the decrease in scattering intensity at higher angles, hence achieving better counting statistics at high Q. To characterise the detector response, a constant radioactive source of 55Fe was measured over several hours.

(3.1.2.2) Preliminary data reduction

Data reduction at Daresbury utilized the FORTRAN software OTOKO (Bendell, P., Bordas, J., Koch, M.H.C. & Mant, G.R., EMBL Hamburg and SERC Daresbury Laboratory, unpublished software) running on a VAX 11-750 (Figure
Figure 3.10. Flowchart of the data reduction procedures for X-ray scattering.

The .DIN procedure normalises all the spectra to the counts measured in the back ion chamber. The buffer background is subtracted from the sample plus buffer spectra using .ADD. The resultant spectra are normalised to the detector response using .DIV and the 10 individual time-frames are averaged together with .AVE. The spectra are plotted either with .PLO (averaged spectrum) or .PL3 (individual time-frames). The detector gap is removed using .XSH (Figure 3.11). The Q axis is calculated using .XAX from the diffraction pattern of wet, slightly stretched rat tail collagen. RECONV converts the binary OTOKO files to card image files for transfer via KERMIT to London. DOTKO combines the Q axis file with the spectrum intensity files for final analyses using SCTPL.
The .DIN procedure normalised all the spectra to the counts measured in the back ion chamber. This corrected for beam flux, transmission of the sample and exposure times. The buffer background was subtracted from the sample spectra using .ADD to give the scattering curve due to the sample only. The resultant spectra were normalised using the detector response using .DIV and finally the 10 individual time-frames were averaged together with .AVE. The spectra could be plotted either with .PLO (plots out the averaged spectrum) or .PL3 (plots out the individual time-frames). The x-axis contained an artificially produced gap due to the electronics (Figure 3.11). This was removed using the program .XSH by specifying the position of beginning of the gap and the size of the gap in pixels. The Q axis was calibrated using .XAX from the diffraction pattern of wet, slightly stretched rat tail collagen (Figure 3.11). The spectrum consisted of a series of peaks of diffraction spacing 67 nm and the major peaks

![Collagen diffraction pattern](image)

Figure 3.11. Collagen diffraction pattern.

A total of 21 diffraction peaks are visible here, each of which is $2\pi/67$ nm$^{-1}$ apart. The channel numbers are converted into Q values using .XAX. The gap between peaks 11 and 12 is artificial and is removed during data reduction by determining the position of beginning of the gap and the size of the gap in pixels.
were the 1st, 3rd, 5th and 9th peak. The position in pixels of all the peaks was
determined. Since the number of pixels between any two peaks was approximately
the same, the position of the 0th order peak ($Q = 0$) could be extrapolated. The
pixel position and Q value ($Q = 2\pi x$ order / 67) of another peak, usually the 9th
order, was calculated. The pixel position and Q value of these two peaks were
used by .XAX to produce a Q axis file. RECONV converted the binary OTOKO
files to card image files for transfer via KERMIT to London. DOTKO combined
the Q axis file with the spectrum intensity files for final analyses using SCTPL.
(3.2) COMPUTATIONAL ANALYSES

(3.2.1) Analyses of scattering data

(3.2.1.1) Guinier and cross-sectional plots

Plots of $\ln I(Q)$ against Q^2 (called Guinier plots) (Chapter 2) were performed on neutron data measured at 3.4 m on D17 and 10 m on D11 and all X-ray data using the FORTRAN program SCTPL. The Q range selected for line-fitting went to as low a Q as possible and out to a $Q.R_G$ of approximately 1.5. Curves which were slightly aggregated increased at very low Q and these points were not included in the Guinier analyses. The program calculated the R_G from the gradient of the line and the $I(0)$ from the y-axis intercept (Chapter 2). The Q and $Q.R_G$ range for the fitted points was also given. Cross-sectional plots of $\ln [I(Q).Q]$ against Q^2 were performed on neutron data measured at 1.4 m 0° D17 or 2 m on D11 and all X-ray data again using SCTPL. The Q range was constrained out to a $Q.R_{XS}$ of 1.5 and the lowest Q used in line-fitting was slightly larger than the largest Q used in the Guinier plots. Aggregates were not a problem over this Q range. The R_{XS} was calculated from the gradient and the $[I(Q).Q]_{Q-0}$ from the y-axis intercept. The Q and $Q.R_{XS}$ range were also given.

The $I(0)$ and $[I(Q).Q]_{Q-0}$ values were dependent on protein concentration and therefore were normalized to concentration. The R_G, $I(0)/c$, R_{XS} and $[I(Q).Q]_{Q-0}/c$ parameters were checked for concentration dependencies by plotting each against protein concentration using the software SIGMAPLOT. If a concentration dependence was observed, the line was regressed to zero concentration using MINITAB and these values used in further analyses. The length and triaxial dimensions of macromolecules were determined from the Guinier and cross-sectional parameters (Chapter 2). The M_r was calculated (Chapter 2) from the neutron $I(0)/c$ values measured in H_2O only using the spreadsheet, LOTUS 1-2-3.
(3.2.1.2) Matchpoint and Stuhrmann analyses

The experimental matchpoint was determined from a plot of $\sqrt{[I(0)/cT_{st}]}$ against $\% ^2H_2O$. The plot should be linear and the errors small. The protein matchpoint corresponded to the $\% ^2H_2O$ when the abscissa was zero and was calculated by linear regression analyses using MINITAB. A theoretical matchpoint was calculated for comparison from the amino acid and carbohydrate composition, using the software SLUV (Perkins, 1986). The Stuhrmann parameters were determined from plots of R_G^2 or R_{XS}^2 against $1/\Delta \rho$. $1/\Delta \rho$ corresponds to the difference in scattering density between the solute and solvent. The solute scattering density was calculated from the matchpoint and the solvent scattering density is dependent on the $\% ^2H_2O$ composition. The R_G or R_{XS} at infinite contrast, R_{G-C} or R_{XS-C} were obtained from the square root of the ordinate when $1/\Delta \rho$ was zero. The gradient of the plots gave α_G or α_{XS}. These values were determined from linear regression analyses using MINITAB.

(3.2.1.3) Distance distribution function

The Indirect Transformation Procedure was performed on neutron, X-ray and simulated curves out to a Q of at least 1.6 nm$^{-1}$. In the case of the neutron data, this meant joining together the scattering curves from the 3 instrumental set-ups (3.4 m 0°, 1.4m 0° and 1.4m 20°), ensuring that the difference in Q values (ΔQ) at the intercept of each domain corresponded to the ΔQ of either one of the domains. Each domain must have an even number of data points (bearing in mind that the last point of one domain was also the first point of the next domain). The experimental X-ray and simulated curves consisted of a single domain only, of constant ΔQ. The lowest Q value used was the same as that used in the Guinier analyses, i.e. points considered to be indicative of aggregation were not included in the ITP analyses. A flowchart of the typical input statements for ITP is shown in Figure 3.12. The maximum particle dimension, D was estimated from the macromolecular length determined by Guinier analyses (Chapter 2) and D_{max} was calculated as $1.5 \times D$. The number of splines used was a trial-and-error procedure since the recommended number of 15 to 30 splines (Müller & Glatter, 1982) was
Title: C9x001

Data on disk: Disdat (I)
Graz (D), Neither (N): N

Normal correlation function (N)
Thickness correlation function (L)
Cross-section (C)
Size distribution (P): N

Complete listing (Y or N): N
P(r) output (Y or N): N

Simulation with theoretical curves: N
Line printer (default 1): 1

Wavelength spread: N
Slit length: N
Slit width: N

Number of subdomains: 3
Transformation factor (default 1): 1

Constant background (A1): 0
Linear function (A2 * Q): 0

Number of intervals in subdomain 1: 12
Number of intervals in subdomain 2: 16
Number of intervals in last subdomain: 54

Number of continuation steps: 0

Known spline coefficients (Y or N): N
Number of points neglected at innermost Q: 0

First Q value in subdomain 1: 0.02138
Last Q value in subdomain 1: 0.04109
Last Q value in subdomain 2: 0.1054
Last Q value in last subdomain: 0.3252
ΔQ of the last subdomain: 0.003983

Integration constant (default 1): 1

Intensity from disk (Y or N): Y

Filename: G10715P
Data format Basic(0), Hamburg(1), Grenoble(2), Daresbury(3), Argonne(4), Simulated(5): 2
Number of lines: 42

Number of splines: 10
Number of points in real space: 101
Increment in real space: 1.0

Identical abscissa as previous (Y or N): N

Start Lagrange parameter: 10
Further number of multipliers: 19
Decrement: 1

Filename for card output: ITP
Write file on teletype (Y or N): N
Write file on line printer (Y or N): N

97
usually too high and overinterpreted the experimental data. Around 10 splines was usually found to be satisfactory. The correct D_{max} was indicated by stable R_G and $I(0)$ values over a suitable range of Lagrange multipliers whereas the wrong choice of D_{max} would not give a stable range (Müller & Glatter, 1982). Criteria for an acceptable calculation of $P(r)$ for glycoproteins were: (i) $P(r)$ should exhibit positive values; (ii) the R_G from ITP should agree with the R_G from Guinier analyses; (iii) $P(r)$ is zero when r is zero; (iv) $P(r)$ is stable and reproducible for different experimental $I(Q)$ curves when the number of splines and D_{max} is varied over a reasonable range. The maximum particle dimension was determined from $P(r)$ when this became zero at large r (Chapter 2) although errors in D can be significant as a result of the low intensity of $P(r)$ in this region.

(3.2.2) **Small Debye sphere modelling**

Molecular modelling of the neutron and X-ray scattering curves used small spheres based on the Debye equation (Perkins & Weiss, 1983; Perkins, 1985) (Chapter 2). If the crystal structure of the protein was available, the crystal

Figure 3.12. Flowchart of the Indirect Transform Procedure.

The typical procedure and input parameters for an experimental scattering curve from Grenoble is shown. The three sub-curves are added together to give a full scattering curve out to a Q of 3.3 nm^{-1}. Although background subtraction errors can be corrected by applying a constant to the experimental curve (values A1 and A2), in practice, if this is deemed necessary, the data is rejected. The number of intervals in a sub-domain is one less the number of points and must be an even number. Points at the innermost part of the curve can be rejected, this is important if the data is suspected of being aggregated. The program extrapolates the experimental curve back to zero Q using the Q values requested. The number of splines used is requested and the number of points in real space multiplied by the increment in real space gives D_{max} (see text for details). The range of Lagrange multipliers printed can be altered but typically, for a good curve, a parameter around 0 gives stable R_G and $I(0)$ values.
co-ordinates were subdivided into small cubes using a program COTOS ("C-o-
ordinates TO Spheres"). A 3-dimensional grid was defined and each atom was
assigned to a particular cube. A cutoff was chosen such that only cubes containing
a certain number of atoms were used. The total volume of the cubes should equal
the dry volume of the crystal structure (Chothia, 1975). Cubes of side 0.608 nm
were used to facilitate the representation of a carbohydrate residue as a single
cube. If no atomic resolution structure existed, models were made based on simple
geometric bodies using the triaxial dimensions calculated from the Guinier
parameters or on electron micrographs, using the program BY444. The dry protein
volume was simply divided into a convenient number of small cubes generally of
side 0.8 nm. The scattering curve simulations were based on overlapping spheres
of the same volume as the cube, positioned at the centre of each cube. The sphere
diameter should be much less than the nominal resolution of $2\pi/Q_{\text{max}}$ of the
scattering curves, i.e. 4.3 nm for $Q_{\text{max}} = 1.45 \text{ nm}^{-1}$.

If there was a significant dependence of the R_G on contrast (i.e. a large
Stuhrmann α value) this was incorporated into the model by subdividing the
spheres into an outer hydrophilic surface region and an inner core on the basis of
the volumes of these two components. Each component was assigned a different
scattering density calculated from the matchpoint. The volumes and matchpoints
were determined for the hydrophilic amino acids plus carbohydrates and the
hydrophobic amino acids of the glycoprotein using SLUV output.

The 'dry' model was compared with the neutron experimental data
(Chapter 2). This was converted for comparison with X-ray data by adding an
hydration shell performed by rescaling the co-ordinates by a factor derived from
the cube root of the ratio of the hydrated and dry volumes. The hydrated volume
was calculated assuming 0.3 g water/g glycoprotein and an electrostricted water
volume of 0.0245 nm3/water molecule (Chapter 2). For a two density model the
outermost spheres now corresponded to the hydration shell as well as the
carbohydrate and hydrophilic amino acid residues. Electron densities instead of
scattering lengths per volume were calculated from SLUV for each component.
If a single scattering density was used, the R_G and full Debye scattering curve were calculated using the programs APS and SCT respectively. If two scattering densities were used, the R_{G-C} and Stuhrmann α values were calculated using APSNEW and the scattering curve was calculated using SCTNWW. Prior to comparison with the experimental neutron scattering curves, the calculated curve was smeared to account for a wavelength spread of 10% on D17 and the beam divergence in radians (Cusack, 1981; Perkins & Weiss, 1983) based on the empirical parameters of 16% and 0.016 radians (Cusack, 1981). Since the X-ray cameras utilise point collimation, the calculated and experimental $I(Q)$ curves were directly comparable without corrections. To facilitate quantitative comparisons between the experimental and model scattering curves, a residual R was employed by analogy with protein crystallography (Blundell & Johnson, 1976):

$$R = \frac{\sum_i I(Q)_{\text{exp}} - I(Q)_{\text{cal}}}{\sum_i I(Q)_{\text{exp}}}$$

(1)

This was generally less than 0.02 for a good curve fit between $0 < Q < 1.6 \text{ nm}^{-1}$.

(3.2.3) **Hydrodynamic modelling**

The models were made in similar way to the Debye sphere models, using either COTOS if a crystal structure was available or BY444. The hydrodynamic model differed from the Debye sphere model by having fewer, non-overlapping spheres and a larger volume to include the hydration shell surrounding the protein. Fewer spheres were used due to constraints on computing time. Non-overlapping spheres were used because T_{ij} is only valid when $r_i + r_j < R_{ij}$ (Chapter 2). Since a relatively low number of spheres were used, allowance for the void spaces between the spheres was necessary. Accordingly a hypothetical hydration of 0.39 g H$_2$O/g glycoprotein in place of 0.3 g H$_2$O was used to calculate the total hydrated volume. This increased the glycoprotein volume in order to compensate for these voids (Perkins, 1989b). The frictional coefficient was determined from the program FRCC (Garcia de la Torre & Bloomfield, 1977a, b). From this, the sedimentation coefficient was determined and compared with values given in the literature.
Amino acid sequences were aligned both manually and with the guidelines provided with the automatic sequence alignment program, MULTAL (Taylor, 1990). Sequences were downloaded from the databases at Daresbury; and the OWL software was used to find a particular protein sequence from different species. The MULTAL software was used to produce an initial alignment which was then finalized manually. MULTAL aligns the most homologous sequences into groups, all relative to the first sequence which may be a consensus sequence. The sequences then were positioned manually to maximize the alignment of conserved or chemically homologous residues and to minimize gaps. Chemically homologous residues were grouped as:

- Tiny: G, A, S
- Aliphatic: I, L, V
- Aromatic: F, H, Y, W
- Positive: R, H, K
- Negative: D, E

Exon structures where available, were used to define the beginning and end of the protein domain.

Averaged secondary structure predictions were based on the sequence alignment. The Robson or Chou-Fasman prediction methods were performed on each sequence individually using the programs ROBSCDC and CHOUCDC respectively. For the Robson prediction, if the content of α-helix or β-sheet of the protein was known from other sources, a relevant decision constant was used (Chapter 2), otherwise an unbiased prediction was performed. The Robson algorithm forced a choice between one of four conformational states (α-helix, β-sheet, β-turn and coil), so the sum of all four states was 100%. The Chou-Fasman prediction was unrestrained in this respect, and any propensity for α-helix, β-sheet or β-turn in the sequences was indicated. Residue positions in the alignment which were occupied in over 50% of the sequences were averaged together using the programs PREDRB and PREDCCF for the Robson and Chou-Fasman predictions respectively (Perkins et al., 1988). The average total score in centinats and
percentage propensity for each position in the alignment to be in a particular conformation was given as graphical output by PREDRB whereas just the percentage propensities were given in PREDCF. The consensus sequence length was defined as the number of residues occupied in over 50% of the sequences. The mean sequence length was calculated from the sum of the number of residues in each sequence in the alignment divided by the number of sequences. The mean dry volume was similarly determined, by calculating the dry volume for each sequence using SLUV (Chothia, 1975; Perkins, 1986) and dividing by the number of sequences.

(3.2.5) **Hydropathy profiles**

The averaged hydropathy was calculated using the Kyte & Doolittle (1982), Eisenberg *et al.* (1984), Hopp & Woods (1981) and Parker *et al.* (1986) hydrophilicity or hydrophobicity scales. In contrast to the general use of windows of several residues in length to specify hydropathy profiles, a window size of 1 was found necessary to give an undistorted averaged profile at each residue position in the sequences. The most frequently occurring maxima in the four hydropathy profiles were assigned as hydrophilic or hydrophobic.

(3.2.6) **Computer hardware**

The principal computers used in London were the Cyber 960 at the Imperial College Computer Centre (ICCC) and the Silicon Graphics 4D35S Datastation at the Royal Free Hospital School of Medicine (RFHSM). All the base small-angle scattering analyses and secondary structure predictions were done on these machines. An Opus PC V and an ELONEX PC at the RFHSM was used for wordprocessing, graphical representation of the data and statistical analyses and a Silicon Graphics Personal Iris 4D25TG Workstation, also at the RFHSM was used for crystal structure and Debye sphere model inspection and diagrams.
(3.2.7) Computer software

The software used was either commercially available or base written in FORTRAN. The commercial programs on the OPUS were WordPerfect (WordPerfect Corporation), Lotus 1-2-3 (Lotus Development, U.K.), Sigmaplot (Jandel Scientific) and Minitab (Ryan et al., 1985) and on the ELONEX, Charisma (Micrografx); and on Silicon Graphics, Insight II version 2 (Biosym Technologies, San Diego, CA, U.S.A.) and Showcase (Silicon Graphics). Many programs were written on the Cyber and the datastation by Dr S.J. Perkins and Mr A.S. Nealis for data analyses. Brief descriptions of the major programs are given below:

General

SLUV (Scattering Length per Unit Volume). Produces a table of protein characteristics calculated from the amino acid and carbohydrate composition (Perkins, 1986). These include:

Amino acid and carbohydrate volumes. These were taken from protein (Chothia, 1975) and carbohydrate (Perkins, 1986) crystal structures.

Absorption coefficient x 1.03. This is based on the Trp, Tyr and Cys content in 23 proteins and calibrated over a range of experimentally calculated \(A_{280} \) of between 5 and 27 (Perkins, 1986).

Matchpoint. This first requires the calculation of the neutron scattering length density from the summation of scattering lengths divided by the volume of the macromolecule, \(\Sigma b/V \). Since the matchpoint is very sensitive to the amount of hydrogen exchange of the protein with the solvent (Chapter 2), a value of 10% nonexchange of the main-chain peptide NH protons was assumed.

Partial specific volume (\(\bar{v} \)). This is derived from the consensus volumes data set of Perkins (1986) and is based on the sum of the dry volume and the electrostricted water shell volume as calculated from the amino acid and carbohydrate composition.

ITP. Produces the Fourier transform of either experimental or model data by the Indirect Transform Procedure (Glatter, 1982).
Plotting

SCTPL. An interactive plotting program for graphical representation of experimental scattering curves with error bars (neutron data only), calculation of R_G, $\langle L(0)\rangle$, R_{XS}, and $[\langle Q\rangle R]_{Q=0}$ parameters from Guinier and cross-sectional plots, calculates smeared curves for simulated data prior to comparison with neutron experimental data, comparison of simulated model curves with experimental scattering curves and automatically finds the lowest R factor and writes output in a standard ASCII format for importing into SIGMAPLOT (A.S. Nealis & S.J. Perkins, unpublished software).

Modelling

BY444. Creates a sphere model based on a simple geometric shape and attaches extended carbohydrate structures to this. Input parameters include the cube diameter; number of spheres in the x, y, and z directions; spheres to be deleted at the corners to create simple ellipsoids and carbohydrate structures (S.J. Perkins, unpublished software).

APS. Calculates the R_G and volume of a Debye sphere model for a single density model (Chapter 2) (S.J. Perkins, unpublished software).

APSNEW. Calculates the R_G-C, α_G and volume of a Debye sphere model for 2 different scattering densities (Chapter 2) (S.J. Perkins, unpublished software).

COTOS. Converts a set of crystal co-ordinates into an array of cubes of a specified size (S.J. Perkins, unpublished software).

FRCC. Based on the hydrodynamic simulation program, GENDIA (Garcia de la Torre & Bloomfield, 1977a,b), it calculates the frictional coefficient $<f>$ (Chapter 2). The program utilizes the diagonal approximation, where the off-diagonal components of the Oseen tensor are usually much lower than the diagonal ones with little effect on the precision of the calculation.

SCT. Calculates the theoretical scattering curve from the cube co-ordinates of
a specified model (Chapter 2) and then creates a composite file of model and experimental scattering curves for plotting with SCTPL (S.J. Perkins, unpublished software).

SCTNWW. Calculates the complete Debye scattering curve for a model of two scattering densities (Chapter 2) and then creates a composite file of model and experimental scattering curves for plotting with SCTPL (S.J. Perkins, unpublished software).

SLICER. Takes the model co-ordinates and depicts them pictorially on a 2-dimensional grid. Additional co-ordinates can be added (A.S. Nealis, unpublished software).

Secondary structure prediction
The Robson and Chou-Fasman programs were kindly made available through Dr M.J.E. Sternberg (Birkbeck College, London; ICRF, London). The versions implemented on the Cyber were:
ROBSCDC. The Robson secondary structure prediction of a given primary structure is calculated for an amino acid sequence in the 3-letter code format. The decision constants for the four conformations (α-helix, β-sheet, β-turn and random coil) can be varied to correspond to an unbiased, α-biased or β-biased structure (Chapter 2).

CHOUCDC. Similarly, the secondary structure is predicted using the Chou-Fasman method and the prediction is unbiased.

PREDRB. Produces graphical output of averaged Robson predictions of aligned sequences. Plots of either the percentage propensities or the average total score are drawn for α-helix, β-strand, β-turn and random coil conformations (Perkins et al., 1988; A.S. Nealis & K.F. Smith, unpublished software).

PREDCEF. Produces graphical output of averaged Chou-Fasman predictions of aligned sequences. Plots of percentage propensities of α-helix, β-strand and
random coil are drawn (Perkins et al., 1988; A.S. Nealis & K.F. Smith, unpublished software).

Databases

The protein sequence database OWL (SERC, Daresbury Laboratory) is a composite of three major sequence databases (National Biomedical Research Foundation, SWISSPROT and GenBank) and four minor ones which were maintained by Dr A.J. Bleasby, who is thanked for his support. Sequences were downloaded onto either the Cyber or the datastation using KERMIT.
CHAPTER 4.

STRUCTURAL STUDIES ON α_1-ANTITRYSIN

AND $\tilde{C}I$ INHIBITOR
The human serine protease inhibitors of plasma show a remarkable degree of sequence homology and have been grouped together in a superfamiliy termed SERPINs (SERine Protease INhibitor) (Carrell & Travis, 1985). Many have important roles in the physiological regulation of certain serine proteases, although some have no known function. The most abundant and well characterised member of this superfamily is α_1-antitrypsin (M_r 51,500), sometimes termed α_1-proteinase inhibitor (Carrell et al., 1982). At least 50 other members have been identified (Huber & Carrell, 1989) including antithrombin III (Carrell et al., 1981), α_1-antichymotrypsin (Chandra et al., 1983; Bao et al., 1987), the C1 inhibitor component of complement (Davis et al., 1986; Bock et al., 1986, Tosi et al., 1986) and the non-inhibitory serpin, ovalbumin (Kurachi et al., 1981). In a healthy individual, α_1-antitrypsin is present at a plasma concentration of 1.3 mg/ml (Jeppsson et al., 1978), but this substantially increases under inflammatory conditions. Two common mutants of α_1-antitrypsin are the Z-variant where Glu342 is replaced by a lysyl residue (Owen & Carrell, 1977) and the S-variant where Glu264 is replaced by valine (Owen et al., 1976). Patients homozygous for Z have much decreased levels of α_1-antitrypsin and suffer from frequent and severe bouts of pulmonary emphysema.

α_1-antitrypsin exhibits its highest affinity towards leukocyte elastase released by neutrophil leukocytes (Travis & Salvesen, 1983). It acts by presenting the enzymatic reactive site as an ideal substrate to the proteolytic enzyme to form a stable stoichiometric 1:1 complex, thereby inhibiting it. The reactive site is cleaved if the inhibitor-protease complex is dissociated and the serpin is irreversibly inhibited. The reactive site was identified as being the Met358 - Ser359 peptide bond, which is situated 37 residues from the C-terminus of α_1-antitrypsin (Carrell et al., 1980; Johnson & Travis, 1978). In the intact inhibitor the reactive site is thought to reside on a loop on the surface of the molecule (Engh et al., 1990; Stein & Chothia, 1991).
Figure 4.1. Crystal structures of native ovalbumin and the split forms of ovalbumin and α_1-antitrypsin.

The crystal structures of native and split ovalbumin are compared with split α_1-antitrypsin. The co-ordinates for native and split ovalbumin were kindly provided by Dr P.E. Stein (Stein et al., 1990) and Dr R. Engh and Prof. R. Huber (Wright et al., 1990). The co-ordinates for α_1-antitrypsin were taken from the Brookhaven database, reference 7API. The structures were positioned by superimposing α-helices A and B and β-sheet B (Wright et al., 1990). The residues involved in the formation of the reactive loop α-helix in the native form are highlighted in black. The cleavage of ovalbumin resulted in the loss of 12 residues (Val348-Ser359) (α_1-antitrypsin numbering). The residues at either end of this cleavage are indicated. The residues at the reactive site of α_1-antitrypsin are indicated.

The activity of α_1-antitrypsin is controlled either by oxidation of the methionine residue at the reactive site to the sulphoxide form (Schechter et al., 1977) or by proteolytic cleavage of the reactive site (Carrell et al., 1982; Carrell
Oxidation is important physiologically during phagocytosis because leukocytes release myeloperoxidase which oxidizes the methionine residue (Maier et al., 1989). At the site of infection, other proteolytic enzymes also released by leukocytes are no longer inhibited by α_1-antitrypsin. These then break down the surrounding connective tissue as a precursory event to expulsion of the foreign body (Carrell et al., 1982). The spread of this attack on tissue is constrained by α_1-antitrypsin which is not inactivated by leukocytes further away from the site of infection. Unfortunately, other oxidizing agents such as cigarette smoking (Gadek et al., 1979; Carp et al., 1982) are also capable of inhibiting α_1-antitrypsin resulting in pulmonary emphysema (Beatty et al., 1980). The reactive site of α_1-antitrypsin can be cleaved by many proteases, including those secreted by invading pathogens. This "split" α_1-antitrypsin is no longer able to inhibit proteases and the unrestricted neutrophil enzymes may provide nutrients for the pathogens (Travis et al., 1990).

The crystal structures for five serpins have been determined, native ovalbumin (resolution 0.195 nm) (Stein et al., 1990) and the split forms of α_1-antitrypsin (resolution 0.30 nm) (Löbermann et al., 1984), ovalbumin (also known as plakalbumin) (resolution 0.28 nm) (Wright et al., 1990), antithrombin III (resolution 0.32 nm) (Mourey et al., 1990) and α_1-antichymotrypsin (resolution 0.27 nm) (Baumann et al., 1991). The structures of three serpins, native ovalbumin, and the split forms of ovalbumin and α_1-antitrypsin are shown in Figure 4.1. All have similar and secondary and tertiary structures, containing three β-sheets and nine α-helices. The three β-sheets (called A, B and C) contain 6, 6 and 4 strands respectively. The exceptions to this are the native and split forms of ovalbumin where sheet A only contains 5 strands (Wright et al., 1990). The native form of ovalbumin has an intact reactive loop (Gettins, 1989) which comprises of 19 residues (Gly349 to Glu368, α_1-antitrypsin numbering) in an α-helical structure (Stein et al., 1990). In split α_1-antitrypsin, antithrombin III and α_1-antichymotrypsin, the newly-formed N- and C-termini at the cleavage site (Met358 and Ser359; Arg393-Ser394; Leu358-Ser359 respectively) lie at opposite ends of the molecule and are separated by 6 to 7 nm. This is suggestive that a significant conformational change must have occurred on cleavage. It is
commonly assumed that the central strand, s4A, of β-sheet A is removed in the intact protein (Löbermann et al., 1984; Stein & Chothia, 1991) and by analogy with ovalbumin, may form an α-helix containing the reactive site (Stein et al., 1990). The similarity of the rest of the ovalbumin structure with split α₁-antitrypsin is very high, with the differences in sequence being accommodated at a few surface loops (Figure 4.1) (Stein et al., 1990; Stein & Chothia, 1991). The mean difference between the α-carbons was 0.069 nm (Wright et al., 1990). Since the separation of the reactive site peptides was not found in the non-inhibitory serpin, ovalbumin, it may be linked to the inhibitory activity of the other serpins. Insertion of the reactive loop into β-strand A seems necessary for inhibitory activity (Schulze et al., 1990). Residues in the base of the reactive centre loop, the "hinge" region 10 to 14 residues from the reactive site (Figure 4.12) are typically small in the inhibitory serpins. In the non-inhibitory serpins, like ovalbumin and angiotenisiogen, the residues have large side-chains and these may prevent the conformational change from occurring (Carrell et al., 1991). This has been substantiated by the lack of complex formation with substrates of inhibitory serpins if the residues in this region were substituted for large-chain amino acids (Skriver et al., 1991).

Split α₁-antitrypsin is a more stable form of the protein. Using circular dichroism and fluorescence, Bruch et al. (1988) confirmed that the secondary structures of the native and split forms of four serpins (including α₁-antitrypsin and C1 inhibitor) were significantly different. The split forms of α₁-antitrypsin and antithrombin III are more resistant to denaturation by heat (Hervé & Ghélis, 1990; Gettins & Harten, 1988), suggesting the transition from a stressed native form to a relaxed cleaved form of the protein (Carrell & Owen, 1985). The non-inhibitory serpin, ovalbumin does not show the characteristic spectral changes or resistance to heat upon cleavage. Although the crystal structure suggests a major conformational change upon cleavage, the glycosylation sites and heparin binding sites on the split forms of serpins are not in conflict with what would be expected in the native form (Huber & Carrell, 1989). This puts a constraint as to the extent of any conformational change. However no experimental data are available on whether the conformational transition of α₁-antitrypsin is a localised or a more
C1 inhibitor, previously known as C1 inactivator or C1 esterase inhibitor, controls both the activation of C1 to C1 and the activity of C1 (Harpel, 1976; Sim & Reboul, 1981; Cooper 1985; Davis, 1988). It is present at 0.20 mg/ml in plasma and forms covalent 1:1 complexes at the reactive sites of the C1r and C1s subcomponents of C1, preventing further complement activation. Like α1-antitrypsin, the reactive site of C1 inhibitor (Arg444-Thr445) is irreversibly cleaved upon complex formation (Salvesen et al., 1985) resulting in a much more stable protein structure (Bruch et al., 1988). Physiological control of the activity of C1 inhibitor is brought about by cleavage around the reactive centre by neutrophil proteases (Pemberton et al., 1989). While C1 inhibitor is the only known inhibitor of C1r and C1s, it is a critical regulatory component of the coagulation, fibrinolytic and kinin releasing systems. Much decreased levels of C1 inhibitor lead to hereditary angioneurotic edema (Donaldson & Evans, 1963; Rosen et al., 1971; Davis, 1988). This is associated with either inherited deficiencies in C1 inhibitor (type I) or dysfunctional forms of C1 inhibitor (type II) which are characterised by a single point mutation at the reactive site (Aulak et al., 1988; Aulak & Harrison, 1990).

Compositional and structural studies on the C1 inhibitor are required to understand the mechanism of control of C1 activation in serum. Its molecular weight has been estimated to fall in a range of 98,000 to 116,000 by SDS gel electrophoresis and ultracentrifugation analyses (Pensky et al., 1961; Haupt et al., 1970; Reboul et al., 1977; Nilsson & Wiman, 1982; Harrison, 1983). However the sequence shows that the protein mass is only 52,300 (Bock et al., 1986). The commonly assumed total molecular weight of 104,000 implies a carbohydrate content as high as 49% (Bock et al., 1986). It is thus strongly glycosylated, but previous determinations of its carbohydrate content have ranged from 33% to 35% by mass (Haupt et al., 1970; Harrison, 1983). The structure of the N-linked and O-linked oligosaccharides have been determined (Strecker et al., 1985). The amino acid sequence indicated the presence of 6 N-linked oligosaccharide binding sites (Asn3, Asn47, Asn59, Asn216, Asn231 and Asn330) (Bock et al., 1986). These and
7 O-linked oligosaccharides were identified by high voltage electrophoresis (Perkins et al., 1990d). These corresponded to the seven carbohydrate attachment sites at Ser42, Thr26, Thr49, Thr61, Thr66, Thr70 and Thr74 (Bock et al., 1986).

The first structural investigations on C\(\text{I}\) inhibitor were based on sedimentation data which reported extremely small \(s_{20,w}^0\) values at around 3.7 S (Schultze et al., 1962; Haupt et al., 1970; Reboul et al., 1977; Chesne et al., 1982), indicating a highly elongated structure (Odermatt et al., 1981; Perkins, 1985). Electron microscopy suggested that C\(\text{I}\) inhibitor had an elongated two-domain "head-and-tail" structure of total length of 33 to 36 nm and a head region of approximately 4 nm (Odermatt et al., 1981). The existence of a two-domain structure was supported by microcalorimetry fluorescence (Lennick et al., 1985). Because of the high degree of homology of the C\(\text{I}\) inhibitor amino acid sequence with that of \(\alpha_1\)-antitrypsin, the crystal structure of \(\alpha_1\)-antitrypsin can be used to model the C-terminal 365 residues, corresponding to the "head" of C\(\text{I}\) inhibitor (Löbermann et al., 1984; Bock et al., 1986; Huber & Carroll, 1989). The "tail" therefore corresponds to the heavily glycosylated N-terminal 113 residues of presumed length anywhere between 26 nm to 53 nm. The function of the N-terminal domain has not been clearly established but may be involved in the binding to leukocytes since the removal of sialic acid decreased dramatically the binding of C\(\text{I}\) inhibitor to leukocytes (Chang et al., 1991). The terminal sialic acid also plays a role in the \textit{in vivo} survival of C\(\text{I}\) inhibitor since its removal results in rapid clearance C\(\text{I}\) inhibitor from the blood (Minta, 1981). The structure of the N-terminal domain, however, is unknown (Davis, 1988).

In principle, small-angle solution scattering should detect the large conformational change between the native and split forms of \(\alpha_1\)-antitrypsin and C\(\text{I}\) inhibitor. Furthermore, the physiological structure of \(\alpha_1\)-antitrypsin can be compared with that observed in higher phosphate concentrations approaching that in which split form was crystallised (2.5 M). Neutron contrast variation in mixtures of \(\text{H}_2\text{O}\) and \(^2\text{H}_2\text{O}\) provides information on the arrangement of hydrophobic and hydrophilic amino acids and the conformation of the carbohydrate structures. The crystal co-ordinates of split \(\alpha_1\)-antitrypsin
(Löbermann et al., 1984) can be used to calculate the scattering curves of native and split α₁-antitrypsin. This permits both a careful comparison of the two structures, and also a critical assessment of the methods used for these calculations. The two domain model for CI inhibitor can be compared quantitatively with the crystal structure of α₁-antitrypsin and molecular models for CI inhibitor can be developed in order to assess its function.
(4.2.1) Preparation of α_1-antitrypsin and Cl^{-} inhibitor

α_1-antitrypsin and Cl^{-} inhibitor were prepared by Dr R. A. Harrison (Smith \textit{et al.}, 1990; Perkins \textit{et al.}, 1990d). Native α_1-antitrypsin and Cl^{-} inhibitor were purified using methods described by Laurell \textit{et al.} (1975) and Harrison \& Lachmann (1986), respectively. Split α_1-antitrypsin was formed by papain cleavage (Johnson \& Travis, 1977). This not only cleaved at the reactive-centre Met358-Ser359 peptide bond but also at Gly5-Asp6 and Asp12-Thr13 peptide bonds. Sequence analyses of the N-terminus showed that the small peptides Glu-Asp-Pro-Gln-Gly and Asp-Ala-Gln-Lys-Thr-Asp were lost upon dialysis against scattering buffers whereas native α_1-antitrypsin remained intact, as expected. Split Cl^{-} inhibitor was cleaved by an unidentified protease which produced fragments indistinguishable from those produced by \textit{Pseudomonas aeruginosa} elastase (Pemberton \textit{et al.}, 1989). As with α_1-antitrypsin, cleavage not only occurred at the reactive-centre peptide bond, Ser441-Val442, but also in approximately equimolar amounts at Met31-Leu32 or Leu32-Phe33 peptide bonds. Although after dialysis the C-terminal peptide (M_r 4400) remained associated with the major Cl^{-} inhibitor fragment, up to 30% of the N-terminal 31 or 32 residues (M_r 3200) may have been lost.

Initial neutron scattering experiments for native α_1-antitrypsin and Cl^{-} inhibitor were performed in 0.012 M-sodium/potassium phosphate buffer, pH 7.0 containing 1 mM EDTA and 0.2 M-NaCl. Neutron and X-ray scattering data were also obtained for both native and split α_1-antitrypsin over a range of concentrations of sodium/potassium phosphate buffer from 0.05 M to a maximum of 2.5 M, pH 8.0, used in the crystallization of split α_1-antitrypsin (Löbermann \textit{et al.}, 1982). $\text{K}_2\text{HPO}_4.3\text{H}_2\text{O}$ was dissolved to 3.0 M in H_2O or $^2\text{H}_2\text{O}$, back-titrated with stirring at room temperature to pH 8.0 by additions of known amounts of NaH$_2$PO$_4.2$H$_2$O, and diluted to the final desired PO$_4$ concentration. The α_1-antitrypsin samples were dialysed with stirring at 4°C into 0%, 70%, 80% and 100% $^2\text{H}_2\text{O}$ buffers for neutron measurements or into 0% $^2\text{H}_2\text{O}$ buffers for X-ray
measurements, with four buffer changes over at least 36 hours. Similarly, Cl inhibitor was dialysed into 0%, 80% or 100% $^2\text{H}_2\text{O}$ buffers for neutron measurements. Optical densities for concentration determinations were recorded at 280 nm immediately afterwards, and scattering studies were performed within the following 24-48 hours. SDS/PAGE analysis of samples before and after scattering analysis showed that they had the anticipated band patterns, and that no radiation induced damage or non-specific proteolysis had occurred.

(4.2.2) Neutron and X-ray scattering experiments

(4.2.2.1) α_1-antitrypsin

Neutron data were obtained on Instrument D17 at the high flux reactor at the ILL, Grenoble. Guinier data were obtained in three sessions using sample-to-detector distances of 3.44 m with a wavelength of 1.095 nm (corresponding to a Q range of 0.016 to 0.615 nm$^{-1}$) and 3.396 m with a wavelength of 1.105 nm (Q range of 0.07 to 0.60 nm$^{-1}$). Data at large Q were obtained in one session using a sample-to-detector distance of 1.41 m and a wavelength of 1.095 nm (Q range of 0.045 to 1.451 nm$^{-1}$). Samples were measured for 3 to 16 min in $^2\text{H}_2\text{O}$ buffers and 1 to 6 h in H_2O buffers.

X-ray data were obtained at the SRS at Daresbury, operating at 2.00 GeV. The low angle solution scattering cameras at Station 2.1 (preliminary data was measured by Dr S.J. Perkins in 1985 - 1986) (beam currents of 61 mA to 52 mA) and subsequently at Station 8.2 (261 mA to 75 mA) were used in a total of four sessions. At Station 2.1, the detector-to-sample distance was 2.52 m, with a wavelength of 0.155 nm (Q range of 0.189 to 3.206 nm$^{-1}$). At Station 8.2, the sample-to-detector distances of 2.605 m, 2.608 m and 3.83 m and a wavelength of 0.159 nm resulted in Q ranges of 0.051 to 1.534 nm$^{-1}$ and 0.039 to 1.012 nm$^{-1}$ respectively. Samples were measured for 10-20 min in a protein dilution series.
Neutron samples were measured on Instrument D17 at the ILL, Grenoble by Dr S.J. Perkins in 1986. Guinier R_G data were collected using a sample-to-detector distance of 3.46 m and neutron wavelengths of 1.385 to 1.395 nm or 1.600 nm, giving a Q range of 0.033 to 0.486 nm$^{-1}$. Scattering curves at larger Q ranges were recorded with a sample-to-detector distance of 1.40 m and wavelengths of 1.001 to 1.004 nm, to give a Q range of 0.13 to 1.60 nm$^{-1}$, and also with a detector rotation of 19.89° relative to the main beam direction to give a larger Q range of 0.8 to 3.6 nm$^{-1}$. Some data were collected on instrument D11 with a sample-to-detector distance of 10.5 m and wavelength of 1.00 nm to achieve a lower Q range of 0.0019 to 0.220 nm$^{-1}$.

The experimental or theoretical (from Debye sphere models) scattering curve $I(Q)$, measured in reciprocal space can be transformed into real space by the Indirect Transformation Procedure of Glatter (1982). This provides an alternative method of determining the R_G, $I(0)$ and the length of Cl inhibitor (Chapters 2 & 3). A full experimental scattering curve is created from the 3 domains (or sub-curves) corresponding to the 3 instrumental setups of D17 (see above). A total of 10 splines were used to fit the 75 experimental data points, using a specified D_{max} of 20 nm. ITP analyses of model scattering curves of 99 points out to a Q of 1.6 nm$^{-1}$ were based on a D_{max} of 25 nm and 10 splines.

(4.2.3) Debye sphere modelling of α_1-antitrypsin and Cl inhibitor

Molecular modelling of the neutron and X-ray scattering curves of α_1-antitrypsin and the neutron curves of Cl inhibitor used small spheres based on the Debye equation (Chapter 2). The crystal co-ordinates of split α_1-antitrypsin (Protein Data Base ref. 7API) (Löbermann et al., 1984; Engh et al., 1989) were subdivided into cubes of side 0.608 nm using the program COTOS (Chapter 3) applying a cut-off such that the total volume of the cubes equalled that of the dry volume of the residues with crystal co-ordinates (Chothia, 1975). The scattering curve simulations were based on the use of overlapping spheres of volume 0.6083.
nm3 that were positioned at the centre of each cube. The spheres were thus of
diameter 0.754 nm, which was much less than the nominal resolution of $2\pi/Q_{\text{max}}$
of the scattering curves, i.e. 4.3 nm for $Q_{\text{max}} = 1.45$ nm$^{-1}$. To account for the
contrast dependence of the neutron scattering curves, the 291 spheres of the
model were subdivided into an outer hydrophilic surface region and an inner
hydrophobic core on the basis of the volume of each component, each of which
was assigned a different scattering density. Strictly the neutron scattering
densities should be assigned as 49.4 % 2H$_2$O and 31.6 % 2H$_2$O respectively
(Perkins, 1986), but in view of the simplicity of this model, absolute densities of
60 % 2H$_2$O and 30 % 2H$_2$O respectively were used. These gave net scattering
densities of 60% and 30% 2H$_2$O in 0% 2H$_2$O, 20% and 50% 2H$_2$O in 80% 2H$_2$O and
40% and 70% 2H$_2$O in 100% 2H$_2$O contrasts. The neutron model was converted
into the hydrated X-ray model (Chapter 2) by rescaling the co-ordinates by a
factor of 1.10 derived from the cube root of the ratio of the hydrated and dry
volumes, to give a cube side of 0.668 nm. Since X-rays were affected by the layer
of water surrounding the protein, the outermost spheres now corresponded to the
hydration shell as well as the carbohydrate and hydrophilic amino acid residues.
Electron densities were taken as 334 e nm$^{-3}$ for solvent, 435 e nm$^{-3}$ for the
hydrophilic spheres of the model, and 389 e nm$^{-3}$ for the hydrophobic spheres.

(4.2.4) Hydrodynamic modelling of α_1-antitrypsin

The crystal structure was subdivided into 31 dry cubes of side 1.216 nm
using COTOS (Chapter 3) with a cutoff chosen to make the overall dimensions of
the cubes close to those of the co-ordinates. The 31 "dry" co-ordinates were then
rescaled by a factor of 1.39 to allow for hydration and non-overlap to give a final
sphere diameter of 1.69 nm (Chapter 3) (Figure 4.14). If it is assumed that the
protein surface is uniformly covered by a single layer of water molecules of
thickness 0.36 nm (which corresponds to a hydration of 0.3 g H$_2$O /g protein, as
seen by crystallography; Perkins, 1986, 1989b), good agreement with the
dimensions of the crystal co-ordinates can be obtained.
(4.3.1) Neutron scattering of native α_1-antitrypsin in physiological buffers.

Good linear Guinier plots were obtained in an acceptable $Q.R_G$ range of 0.3 to 1.1 for native α_1-antitrypsin in 100% 2H$_2$O under physiological conditions (Figure 4.2(a)). A dilution series of the R_G data for α_1-antitrypsin over concentrations of 2.4 to 13.7 mg/ml (Figure 4.3(a)) in 3 different sodium/potassium phosphate concentrations showed that the R_G was dependent upon both the protein and phosphate concentration. The protein concentration dependence was also found by sedimentation experiments on α_1-antitrypsin (Kress & Laskowski, 1973). Extrapolation to zero concentration by regression gave an R_G...
Figure 4.3. Concentration dependence of the R_G and $I(0)/c$ parameters of native α₁-antitrypsin by neutrons.

(a) The R_G values were measured by neutron scattering in 100% 2H₂O in sodium/potassium phosphate buffers at concentrations of 0.012 M (○), 0.05 M (▼), 0.50 M (■). The R_G at zero α₁-antitrypsin concentration was obtained from linear regression.

(b) The plot $I(0)/cT_s$ of the samples in (a).

of 2.40 ± 0.03 nm for samples in the 0.012 M-sodium/potassium phosphate buffer, 2.37 ± 0.03 nm for the 0.05 M-sodium/potassium phosphate buffer and 2.38 ± 0.03 nm for the 0.5 M-sodium/potassium phosphate buffer (Figure 4.3(a)). The R_G parameter became significantly less dependent on the α₁-antitrypsin concentration with increasing sodium/potassium phosphate concentration. This
<table>
<thead>
<tr>
<th>Residues</th>
<th>α,AT</th>
<th>Cl inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>total amino acids</td>
<td>394</td>
<td>478</td>
</tr>
<tr>
<td>total carbohydrate</td>
<td>36</td>
<td>89</td>
</tr>
<tr>
<td>% mass carbohydrate</td>
<td>14.1</td>
<td>25.7</td>
</tr>
</tbody>
</table>

Mr		
protein	44,300	52,800
carbohydrate	7,300	18,300
total	51,500	71,100
neutron scattering	51,700 ± 2,000	76,000 ± 4,000

Dry volume (nm³)¹	65.3	88.2
Overall ν (ml/g)²	0.732	0.7478
Overall Eb/Mr in H₂O (fm)	0.2248	0.2192
in D₂O (fm)	0.3813	0.3846

| Predicted A₂₈₀ (1%, 1cm)³ | 3.86 | 3.87 |
| Literature A₂₈₀ | 5.0 - 5.4 | 3.6 - 4.5 |

Pred. matchpoint (% D₂O)⁴	40.3	41.0
Exp. matchpoint (% D₂O)		
from I(0)	41.3 ± 1.1	42.3 ± 0.5
from [I(0)].0¹	42.1 ± 1.2	42.2 ± 0.5

Stuhrmann analysis		
R₆₋₇C (nm)	2.61 ± 0.02	4.85 ± 0.01
α₆₋₇G (x 10⁻⁵)	29 ± 5	59 ± 3
Rₓ₇₋₇C (nm)	1.34 ± 0.01	1.43 ± 0.03
αₓ₇ (x 10⁻⁵)	13 ± 1	29 ± 2
R₆₋₇C/R₀	1.35	2.27

Models		
R₆₋₇C (nm)	2.58	4.87
α₆₋₇G (x 10⁻⁵)	29	54

Table 4.1. Compositional and scattering data for α₁-antitrypsin and Cl inhibitor

Footnotes to Table 4.1

¹ The dry volume was taken from Chothia (1975) (amino acids) and Perkins (1986) (carbohydrates) and used in matchpoint and modelling calculations.

² Partial specific volumes ν were calculated from the consensus volume set of Perkins (1986). These values were used in sedimentation simulations.

³ Calculated from the content of Tyr, Cys and Trp residues by the Wetlaufer (1962) procedure and rescaled using a factor of 1.03 (Perkins, 1986) (Chapter 3).

Literature determinations of A₂₈₀ are reported in Bundy & Mehl (1953), Kress & Laskowski (1973) and Bruch et al. (1988) for α₁-antitrypsin and Harrison, 1983; Salvesen et al., 1985; Haupt et al., 1970 and Bruch et al., 1988 for Cl inhibitor.

⁴ Calculated using the assumption of the non-exchange of 10% of the mainchain peptide hydrogens (Perkins, 1986).
may have been due to the increased interactions of the dipole moments between
different molecules in lower sodium/potassium phosphate buffers. No such
dependence was observed for the $I(0)/cT_s$ parameter (Figure 4.3(b)). At larger
scattering angles, good cross-sectional Guinier plots were also obtained. Figure
4.2(b) shows that the mean R_{XS} of 1.22 nm was obtained in a satisfactory $Q.R_{XS}$
range of 0.8 to 1.8. The R_{XS} and $I(Q).Q/cT_s$ parameters were independent of
sodium/potassium phosphate concentration.

This protein concentration dependence is unusual for plasma glycoproteins
although C1 inhibitor also showed this effect. Analysis of the crystal structure
of α_1-antitrypsin showed an asymmetric distribution of acidic and basic charged
groups, the S-359 end was positively charged and the M-358 end negatively
charged therefore producing a large dipole moment (Löbermann et al., 1984; Engh
et al., 1989). C1 inhibitor also had an asymmetric distribution of charged groups.
The serpin domain had a net charge of +6 and the N-terminal domain had a net
charge of -20. It was likely that the concentration dependence was due to
interparticle interference effects (Guinier & Fournet, 1955).

Full contrast variation using 2.7 to 12.2 mg/ml concentrations of native α_1-
antitrypsin was carried out in 0.012 M-sodium/potassium phosphate buffers
containing 0%, 70%, 80% and 100% 2H$_2$O. The protein concentration dependence
was eliminated by regressing the R_G and $I(0)/c$ values to zero concentration. To
verify that the neutron data corresponded to monomeric α_1-antitrypsin, the M_r
was determined from the $I(0)/c$ values at 0% 2H$_2$O (Chapter 3). This required the
calculation of the concentration from the absorption coefficient A_{280} (1%, 1 cm).
Published values ranged between 5.0 to 5.4 (Bundy & Mehl, 1959; Kress &
Laskowski, 1973; Bruch et al., 1988). By using an M_r of 51,500 calculated from the
amino acid and carbohydrate composition, the $I(0)/c$ data gave an A_{280} of 5.4 ±
0.2 (Table 4.1). This was in good agreement with Bruch et al. (1988) and also
showed that α_1-antitrypsin was monomeric in solution. The theoretical calculation
of the A_{280} from the molecular composition of α_1-antitrypsin gave a value of 3.86
(Chapter 3) (Wetlaufer, 1962; Edelhoch, 1967; Perkins, 1986) which gave M_r values
that are too low. However, it was known that deviations occurred from the linear
Figure 4.4. Neutron contrast variation analysis of native α_1-antitrypsin.

(a) The matchpoint determination was based on extrapolation of the $I(0)/c$ values to zero concentration, and calculating $\sqrt{I(0)/cT_s}$ from these. The error in the matchpoint is thus higher than usual.

(b) The Stuhrmann plot of the R_G^2 against the reciprocal solute-solvent contrast difference $\Delta \rho^{-1}$ is also based on the R_G data extrapolated to zero concentration (Figure 4.3). The regressed line gave an $R_G - C$ of 2.61 ± 0.02 nm and the slope gave a Stuhrmann α of $29 \pm 5 \times 10^{-5}$.

relationship for A_{280} values less than 10 (Wetlauffer, 1962; Perkins, 1986). The neutron matchpoint was determined for comparison with that predicted from the sequence. Figure 4.4(a) gave the matchpoint as $41.3\% \pm 1.0 \%^{2}\text{H}_2\text{O}$ (16 points in 4 contrasts) which agreed well with a predicted value of $40.3\% ^{2}\text{H}_2\text{O}$ (Table 4.1).
The limited cross-sectional data of $\sqrt{[l(Q).Q]}_{Q=0}/cT_{st}$ (4 points in 2 contrasts) gave a comparable matchpoint of 42.1% ± 1.2% $^2\text{H}_2\text{O}$. These results showed that by neutron scattering, α_1-antitrypsin was an unhydrated monomeric macromolecule.

The contrast variation R_G data were analyzed in the Stuhrmann plot (Figure 4.4(b)). The R_G at infinite contrast R_{G-C} was determined to be 2.61 ± 0.02 nm. The elongation ratio, R_{G-C}/R_O is 1.35 (where R_O is the R_G of the sphere of the same dry volume as α_1-antitrypsin). This is close to the average of 1.28 ± 0.10 found for many globular proteins (Perkins, 1988). The corresponding cross-sectional analysis gave an R_{XS-C} value of 1.34 ± 0.01 nm. In both cases, the slope α was strongly positive, α_G was $29 \pm 5 \times 10^{-5}$ and α_{XS} was $13 \pm 1 \times 10^{-5}$. This indicated that the surface regions of α_1-antitrypsin had a higher scattering density than those near the core. Since the hydrophilic amino acid and carbohydrate residues had a mean matchpoint of 49.4% $^2\text{H}_2\text{O}$ and hydrophobic amino acid residues had one of 31.6% $^2\text{H}_2\text{O}$, hydrophilic residues were seen to be predominant in the outer regions of the α_1-antitrypsin structure, as expected.

The triaxial dimensions of α_1-antitrypsin could be estimated from the Guinier analyses (Chapter 2) and compared with those from the crystal structure. The mean length L calculated from the ratio of $\pi.l(0)/[l(Q).Q]_{Q=0}$ was 7.6 ± 0.5 nm (4 values). The R_{G-C} and R_{XS-C} gave a similar length of 7.8 ± 0.1 nm if α_1-antitrypsin was approximated as an elliptical cylinder. With the length as 7.8 nm, the two shorter axes 2A and 2B were 4.9 ± 0.1 nm and 2.2 ± 0.1 nm (Chapter 2). These dimensions can be compared with those of the crystal structure of α_1-antitrypsin of 6.7 nm x 3.2 nm x 3.2 nm reported in Löbermann et al. (1984). The latter should be uniformly increased to 7.2 nm x 3.4 nm x 3.4 nm to give the correct total volume of α_1-antitrypsin. Even though the shorter axes of the protein component were more similar in the crystal structure, molecular graphics showed that the three oligosaccharide sites were positioned in such a way that one of the two shorter axes would be significantly longer if the oligosaccharide chains were extended into solution. The Guinier data therefore suggested that the carbohydrates had extended conformations. This was confirmed by use of the
Figure 4.5. X-ray transmissions of salt solutions.

The sample thickness was 1 mm and was contained within mica walls of thickness 10 to 20 μm. The mean transmission of the sodium/potassium phosphate buffers (■) from three independent sessions were compared with a NaCl (●) and a MgCl₂ (▲) buffer (Perkins et al., 1985).
neutron R_G and R_{XS} values in 100% 2H$_2$O, which emphasize the hydrophobic structure of α_1-antitrypsin more than that of carbohydrate. These gave triaxial dimensions of 7.0 nm x 3.8 nm x 3.1 nm which are now within 0.4 nm of the corrected crystallographic dimensions.

(4.3.2) X-ray and neutron scattering of native and split α_1-antitrypsin in high phosphate buffers

Synchrotron X-ray scattering was used to compare:

(a) the physiological protein structure with that seen in the high phosphate conditions used in X-ray crystallography;
(b) the hydrated structure with the dry structure seen by neutrons and
(c) the native and split structures of α_1-antitrypsin.

As shown in Figures 4.2(c) and 4.2(d), excellent R_G and R_{XS} Guinier plots were obtained for both native and split α_1-antitrypsin in 0.05 M sodium/potassium phosphate buffer. A slight time-dependent aggregation of α_1-antitrypsin was occasionally seen at very low Q values. This was especially prevalent with increased beam currents (especially just after beam refills), increased phosphate concentration, the prior presence of trace aggregates, or the use of native α_1-antitrypsin. The ten individual time-slices of each run were examined to check that the R_G and the $I(0)$ parameters remained constant with time.

A full dilution series was performed with concentrations of native and split α_1-antitrypsin ranging from 2.3 mg/ml to 25.2 mg/ml in sodium/potassium phosphate buffers of phosphate concentrations between 0.05 M and 1.2 M. Sample transmissions decreased with increasing phosphate (Figure 4.5) to the extent that satisfactory signal-to-noise ratios were achieved only up to 0.6 M sodium/potassium phosphate buffer (Figure 4.6). The X-ray analyses showed that, on increasing dilution of α_1-antitrypsin, the $I(0)/c$ values increase (not shown), unlike the corresponding neutron data in 100% 2H$_2$O buffers. This was probably due to the different solute-solvent scattering density and radiation in use. The protein concentration dependence decreased with increasing phosphate concentration and the $I(0)/cT_s$ and $[I(Q).Q]_{Q=0}/cT_s$ values after extrapolation to
Figure 4.6. Dependence of X-ray Guinier parameters on the phosphate concentration.

The upper plot shows the R_G dependence upon sodium/potassium phosphate concentration for three sessions of X-ray data for native (Δ, v and o) and split α_1-antitrypsin (▲) and 67% split, 33% native α_1-antitrypsin (●). Error bars are shown only when significant and increase at higher phosphate concentrations. The lower plot shows the corresponding R_{XS} dependence using the same symbols.

zero concentration were constant within error in the different phosphate buffers.

The R_G values did not exhibit a statistically significant dependence on protein concentration, hence the mean R_G from each experiment was shown in Figure 4.6. No concentration dependence is seen for the R_{XS} data and the mean values were given in Figure 4.6. As the phosphate concentration was increased to 0.6 M, the mean R_G of native α_1-antitrypsin remained unchanged. In 0.05 M sodium/potassium phosphate buffer, the mean R_G of native α_1-antitrypsin from three different sessions were 2.80 ± 0.09 nm, 2.93 ± 0.06 nm and 3.00 ± 0.04 nm. These were comparable to the neutron R_G of 2.82 ± 0.03 nm in H_2O as expected, since both experiments corresponded to positive solute-solvent contrasts. The X-ray R_G values tended to be larger than the neutron R_G value due to the
Figure 4.7. Dependence of the neutron Guinier parameters of native (o) and split (●) α₁-antitrypsin in 100% ²H₂O on phosphate concentration.

(a) Dependence of $I(0)/cT_s$ on sodium/potassium phosphate concentration after extrapolation to zero protein concentration. Between three and six measurements were made at each phosphate concentration in a range of 3.0 to 13.9 mg/ml.

(b) The corresponding R_G values after extrapolation to zero protein concentration.

Error bars are shown only where these are significant.
hydration shell surrounding α_1-antitrypsin visible only by X-rays. Likewise, the mean "hydrated" R_{XS} values of 1.73 ± 0.19 nm (19 values) and 1.82 ± 0.13 nm (7 values) from two experimental sessions were slightly larger than the neutron "dry" R_{XS} value of 1.53 ± 0.10 measured in H$_2$O in 0.012 M-sodium/potassium phosphate buffer. The corresponding data for split α_1-antitrypsin is also shown in Figure 4.6, and no difference in R_G or R_{XS} was observed. This suggested that the conformational transition between the native and split forms of α_1-antitrypsin involved only a localised rearrangement of the protein structure, and that the loss of the N-terminal peptides (Section 4.2) had a negligible effect on the structure.

The tridimensional axes L x 2A x 2B of native α_1-antitrypsin were determined as 7.9 nm x 7.0 nm x 2.0 nm from the X-ray R_G data, assuming an elliptical cylinder for its structure. These compared well with the corresponding dimensions of 8.3 nm x 5.7 nm x 1.8 nm calculated from the neutron R_G data in H$_2$O. The two shorter axes were more asymmetric in high positive solute-solvent contrasts than in the case of the 2H$_2$O data. This was attributed to the structure of the carbohydrate moiety which scattered more strongly than the protein in this contrast by both X-rays and neutrons. The effect of this was clear from the different slopes of Figures 4.2(a) and 4.2(c).

The effect of high phosphate concentrations (up to 1.8 M phosphate) on native and split α_1-antitrypsin was studied by neutron scattering. This technique was not affected by poor sample transmissions as by X-rays. The R_G and $l(0)/c$ Guinier parameters were dependent on protein concentration between phosphate concentrations of 0.05 M and 0.5 M. No concentration dependence was observed at phosphate concentrations higher than 0.5 M and the mean values were calculated. These were regressed to zero concentration and plotted in Figure 4.7. No differences in the Guinier parameters for native and split α_1-antitrypsin could be detected up to a phosphate concentration of 0.8 M. The conformational changes upon ligation of proteins such as haemoglobin (Conrad et al., 1969), aspartate transcarbamylase (Moody et al., 1979) and hexokinase (McDonald et al., 1979) were detectable from Guinier analyses. It therefore can be concluded that the tertiary structure of native and split α_1-antitrypsin under physiological
Figure 4.8. Neutron Guinier analyses for native C\textsubscript{1} inhibitor.

The $Q.R_{G1}$, $Q.R_{G2}$ and $Q.R_{XS}$ ranges are arrowed and indicated by filled symbols.

(a) A dilution series in 100\% 2H\textsubscript{2}O buffers is shown. At low Q, the concentration dependence of the Guinier R_{G1} curves is visible. From top to bottom, the sample concentrations are 7.9 mg/ml (o), 5.9 mg/ml (v), 4.1 mg/ml (□) and 2.2 mg/ml (○).

The R_{G1} values were analyzed over a Q range of 0.08 to 0.22 nm-1 and the R_{G2} values over a Q range of 0.32 to 0.48 nm-1.

(b) Cross-sectional analyses are shown in 100\%, 80\% and 0\% 2H\textsubscript{2}O buffers. The sample concentrations are 14.0 mg/ml (o), 12.7 mg/ml (v) and 8.5 mg/ml (□) respectively. The R_{XS} dependence on contrast is clearly visible.
conditions were similar and no gross conformational change occurred upon cleavage.

At phosphate concentrations above 1.0 M, both the R_G and $I(0)/c$ parameters increased for native α_1-antitrypsin but remained unchanged for the split form. The $I(0)/c$ value for native α_1-antitrypsin had doubled by 1.8 M phosphate, suggesting the formation of dimers. The aggregation of native α_1-antitrypsin suggested that the properties of several surface amino acids had changed under high phosphate concentrations. This may be due to the insertion of the reactive loop into β-sheet A (Schulze et al., 1990).

4.3.3 Neutron analyses of C{1} inhibitor

Neutron Guinier and cross-sectional data for C{1} inhibitor were analyzed jointly with Dr S.J. Perkins and are summarized in Table 4.1. Both native and split data were analyzed (Section 4.2) from three independent sessions over a concentration range of 2 to 14 mg/ml. All the Guinier plots had a biphasic nature, and two R_G ranges were studied, R_{G1} and R_{G2} (Figure 4.8(a)). The region at lowest Q, R_{G1} corresponded to the R_G of the whole protein and was calculated between Q values of 0.08 and 0.22 nm$^{-1}$ on D17. This was confirmed using a lower Q range on D11. The R_{G1} and $I(0)/c$ values for C{1} inhibitor showed a similar concentration dependence as for α_1-antitrypsin. This was also seen by sedimentation studies (Haupt et al., 1970). To eliminate this concentration dependence the R_G and $I(0)/c$ were regressed to zero concentration. The M_r calculated from the $I(0)/c$ extrapolated to zero concentration in H$_2$O for both forms of C{1} inhibitor was 76,000 ± 4,000 which was compatible with value derived from the sequence of 71,100. The A_{280} used to calculate the concentration was 3.6 (Harrison, 1983; Salvesen et al., 1985) which was in agreement with that determined from the amino acid and carbohydrate composition of 3.86 (Perkins, 1986) (Chapter 3). An A_{280} of 4.5 as reported by Haupt et al. (1970) and Bruch et al. (1988) would give a M_r (95,000 ± 5,000) much larger than the sequence value. The matchpoint calculated from Figure 4.9(a) was 42.3 ± 0.5 %2H$_2$O which compared well with that determined from the composition of 41.0 %2H$_2$O.
Figure 4.9. Contrast variation analyses for native and split Cl inhibitor.

(a) The matchpoint determination of Cl inhibitor, using the I(0)/cT_{st} data extrapolated to zero concentration, gives 42.3% ²H₂O and 41.8% ²H₂O for I(0)₁ and I(0)₂ respectively. The matchpoint using the mean [I(Q)Q]_{Q=0} values gives 42.2% ²H₂O.

(b) The Stuhrmann plot gives an R_G₁ and R_G₂ values of 4.85 ± 0.01 nm and 2.78 ± 0.03 nm and slopes α of 59 ± 3 x 10⁻⁵ and 52 ± 5 x 10⁻⁵ respectively. The Stuhrmann plot of the mean R_{XS}² values gives an R_{XS-C} of 1.43 ± 0.02 nm and an α of 29 ± 2 x 10⁻⁵.
The R_{G1} values for the native and split forms of Cl inhibitor were similar and indicate that, like α_1-antitrypsin, no large conformation change occurred upon proteolytic cleavage. The R_{G1-C} determined from the Stuhrmann plot gave an elongation ratio R_{G1-C}/R_Q of 2.27 (Figure 4.9(b)). This was much larger than the value of 1.35 for α_1-antitrypsin and the average of 1.28 for globular proteins (Perkins, 1986) and indicated that Cl inhibitor was highly elongated in solution. This elongation was attributable to the N-terminal domain since the serpin domain was assumed to have similar tertiary structure as α_1-antitrypsin. The large positive slope of the Stuhrmann plot, α_{G1} of $59 \pm 3 \times 10^{-5}$ was indicative of a surface region dominated by hydrophilic amino acids and carbohydrates and an inner core of hydrophobic amino acids.

The R_{G2} data were measured over a Q range of either 0.32 to 0.48 nm$^{-1}$ at 3.46m on instrument D17, or a Q range of 0.32 to 0.63 nm$^{-1}$ at 1.40m on instrument D17 (Figure 4.8(a)). No difference was found for the native or split forms and no dependence on protein concentration was observed for either the R_{G2} or $l(0)_2/c$ parameters. The mean M_r calculated from the $l(0)_2/c$ value in H$_2$O (13 values) was 46,000 ± 6,000. The matchpoint was 41.8 ± 0.3 %H$_2$O (Figure 4.9(a)) and the Stuhrmann R_{G2-C} and α_2 (Figure 4.9(b)) were determined as 2.78 ± 0.03 nm and $52 \pm 5 \times 10^{-5}$ respectively. Although these values were comparable with those determined for α_1-antitrypsin (M_r of 51,500, matchpoint of 41.3 ± 1.0 %H$_2$O, R_{G-C} of 2.61 ± 0.02 nm and α of $29 \pm 5 \times 10^{-5}$, respectively), they cannot be attributed to solely the serpin domain of Cl inhibitor but represent a convolution of scattering from the serpin and N-terminal domains.

Since Cl inhibitor was elongated, cross-sectional R_{XS} analyses could be performed (Pilz, 1982). Linear plots of In $l(Q).Q$ against Q^2 were obtained over the Q range of 0.67 to 1.30 nm$^{-1}$ (Figure 4.8(b)). Again, no protein concentration dependence was observed for the R_{XS} or $l(Q).Q_{Q-o}/c$ parameters and there was no difference in these values for the native and split forms. The matchpoint determined from Figure 4.9(a) was 42.2 ± 0.5 %H$_2$O which compares well with that of 41.0 %H$_2$O predicted from the sequence. The Stuhrmann plot of R_{XS}^2 against $1/\Delta\rho$ (Figure 4.9(b)) gave an R_{XS-C} of 1.43 ± 0.02 nm and an α_{XS} of .
Figure 4.10. Indirect transformation of the scattering curves for Cl inhibitor.
The experimental $P(r)$ curve corresponds to data on native Cl inhibitor at 14 mg/ml in 100% 2H_2O, based on 69 $l(Q)$ points extending to $Q = 3.1$ nm$^{-1}$, fitted using 10 B-splines, and transformed using a D_{max} of 20.2 nm. The errors of the transformation are shown for the experimental curve. The three model curves are based on those of Figure 4.15 (N-terminus domain length 25 x 3 spheres) and Figure 4.17(a) (34 x 2 and 17 x 4) as calculated for the 100% 2H_2O contrast, based on 99 $l(Q)$ points extending to $Q = 1.6$ nm$^{-1}$, fitted using 10 B-splines, and transformed using a D_{max} of 25.25 nm. The r values corresponding to the positions of the main peak in $P(r)$ and where $P(r)$ becomes zero are arrowed.
29 ± 2 × 10⁻⁵. This unusually high contrast dependence was clearly visible in Figure 4.8(b). The cross-sectional structure of C—I inhibitor was also strongly influenced by the carbohydrate component on the surface of the molecule.

The combination of the \(R_{GI} \) data and the \(R_{XS} \) values gave estimates of the particle length (Chapter 3). The length calculated from the intensities ratio \(\pi \cdot \lambda(0)/|\lambda(Q)\cdot Q^{-0.5} \) in 0%, 80% and 100% \(^2\text{H}_2\text{O} \) gave values of 15.7 nm, 16.1 nm and 15.0 nm respectively. The length calculated assuming an elliptical cylinder, \(L^2 = 12(R_{GI}^2 - R_{XS}^2) \) for 0%, 80% and 100% \(^2\text{H}_2\text{O} \) data gave lengths of 16.5 nm, 15.4 nm and 15.8 nm. The mean length was 15.8 ± 0.5 nm (Table 4.1). The indirect transformation of the scattering curve \(\lambda(Q) \) into the distance distribution function \(P(r) \) in real space gave another calculation of the length since \(P(r) \) becomes zero at the maximum distance within the macromolecule (Chapter 2). This had the advantage over the Guinier analyses in that the full curve to \(Q = 3.1 \text{ nm}^{-1} \) was used, although the low intensities at high \(Q \) had the highest errors. Experimental scattering curves for both the native and the split forms in 100% \(^2\text{H}_2\text{O} \) were analyzed. The most satisfactory \(P(r) \) calculations had a maximum \(P(r) \) at \(r \) of 2.4 nm (Figure 4.10). The \(R_{GI} \) value for native C—I inhibitor (concentration 14.1 mg/ml) was 4.35 nm (stable over a range of Lagrange multipliers of 1.00 to -8.00) and that for split C—I inhibitor (concentration 8.47 mg/ml) was 4.67 nm (stable over a range of Lagrange multipliers of 0.00 to -8.00). These compare reasonably to the experimental values of corresponding concentration in 100% \(^2\text{H}_2\text{O} \) of 4.02 nm and 4.29 nm. The maximum distance was determined as 16 to 19 nm which is in agreement with the Guinier estimate of \(L \) of 15.8 ± 0.5 nm (Table 4.1).

(4.3.4) Debye sphere modelling of α₁-antitrypsin

Molecular models were constructed for α₁-antitrypsin and C—I inhibitor to interpret the scattering curve analyses. The crystal structure of split α₁-antitrypsin (Löbermann et al., 1984) was converted into a Debye sphere model for scattering curve simulations (Section 4.2, Chapters 2 & 3) and compared with the solution scattering data. Only 374 of the 394 amino acid residues were present in the crystal structure, since Gly1 to Asp19 and Lys394 are not visible in the
• Cleavage site
• Carbohydrate attachment site
• N- and C- termini
• Deletion in C1 inhibitor
• Cys residues in C1 inhibitor

(a)

Extended α1 antitrypsin

Compact α1 antitrypsin

Protein
N-terminus
Carbohydrate
More hydrophilic
More hydrophobic

(b)
electron density map. The crystal co-ordinates were subdivided into 246 cubes of side 0.608 nm to obtain an equivalent unhydrated protein volume. A cube of this size represents a single oligosaccharide residue (Perkins et al., 1985). The outermost 163 spheres (hydrophilic) were assigned a scattering density of 60% $^2\text{H}_2\text{O}$ and the innermost 128 spheres (hydrophobic) one of 30% $^2\text{H}_2\text{O}$ (Figure 11(b)) (Section 4.2). Both tetragonal and hexagonal split α_1-antitrypsin co-ordinates were taken from the Protein Data Bank. After adding hydrogen atom co-ordinates (Perkins, 1982), and using a unit weighting of atoms, the R_G of these structures was calculated as 2.12 nm and 2.13 nm (Chapter 3). This agreed with the R_G of 2.15 nm calculated from the sphere model. The two co-ordinate sets gave very similar results and only the tetragonal model was used further.

Figure 4.11. Crystal structure and sphere models of α_1-antitrypsin.

(a) The α-carbon co-ordinates of tetragonal split α_1-antitrypsin (Löbermann et al., 1984) are shown. The three N-linked carbohydrate attachment sites (Asn-46, Asn-83, Asn-247) are highlighted in red and the carbohydrates are shown in white. The N- and C-termini are highlighted in cyan. The cleaved reactive-site, Met-358 and Ser-359 are coloured in dark blue and the proposed 16 residues of the β-strand involved in the transition from native to split forms are shown as a green ribbon. The N-terminal residues 21 to 45 form an α-helical structure, coloured as a green ribbon. The 10 residue deletion in C1 inhibitor compared to α_1-antitrypsin are indicated in purple and includes the Asn-83 carbohydrate attachment site. The residues homologous to the two cysteine residues in C1 inhibitor which bind to the N-terminal domain are highlighted in yellow.

(b) The extended and compact Debye sphere models for native α_1-antitrypsin in the same orientation as the crystal structure. These give rise to the scattering curves (1) and (2) in Figure 4.13(a), 4.13(b) and 4.13(c). The three carbohydrates (coloured white) are assumed to be biantennary and either extended away from the surface of the protein or compact, alongside it. The N-terminus (coloured green) is positioned as an extension of the previous 26 residues in the $-z$ direction. The assignment of hydrophilic (magenta) and hydrophobic (cyan) spheres to the extended carbohydrate model is also shown.
N-terminal and carbohydrate residues were added to the model. The 19 N-terminal residues were represented by 12 cubes positioned close to His20. Examination of the crystal structure showed that residues 21 to 45 form an \(\alpha \)-helix running in the \(-z\) direction (Figure 4.11(a)) (Löbermann et al., 1984). Robson and Chou-Fasman secondary structure predictions (Garnier et al., 1978; Chou & Fasman, 1978) suggested that 6 to 11 of the missing residues also constituted an \(\alpha \)-helix, of length 1 to 2 nm (Figure 4.12). The 19 residues were assumed to be fully solvent exposed since they contain up to 10 charged groups and this amino-terminal section was readily cleaved by a number of proteolytic enzymes (Section 4.2). The N-terminus was thus modelled as a 6 x 2 x 1 array of spheres of length 3.6 nm extending away from the protein surface in the \(-z\) direction. This increased the \(R_G \) by 0.04 nm. The three N-linked oligosaccharides at Asn46, Asn83 and Asn247 were assumed to be biantennary with 11 residues each (Vaughan et al., 1991).

Figure 4.12. Alignment of the sequences of \(\alpha_1 \)-antitrypsin and \(\text{Cl} \) inhibitor.

The amino acid sequences for human (Carrell et al., 1982), mouse (Hill et al., 1984), baboon (Kurachi et al., 1981), rat (Chao et al., 1990), sheep (Brown et al., 1989) and guinea pig (Suzuki et al., 1991) \(\alpha_1 \)-antitrypsin are aligned, together with human \(\text{Cl} \) inhibitor (Bock et al., 1986). The \(\alpha \)-helices A to I (Löbermann et al., 1984) in the crystal structure of \(\alpha_1 \)-antitrypsin are denoted HA to HI, while the strands in the three \(\beta \)-sheets A, B and C are denoted A1 to A6, B1 to B6, and C1 to C3. N-linked carbohydrate sites are located at Asn46, Asn83 and Asn247 in \(\alpha_1 \)-antitrypsin, and at Asn216, Asn231 and Asn330 in \(\text{Cl} \) inhibitor and are underlined. Residues which are 100% conserved in all six \(\alpha_1 \)-antitrypsin sequences are shaded. Residues which are conserved between human \(\alpha_1 \)-antitrypsin and \(\text{Cl} \) inhibitor are also shaded. Cys residues, the active site (Met358 - Ser359) for the \(\alpha_1 \)-antitrypsin and (Arg44 - Thr445) for \(\text{Cl} \) inhibitor and the conserved "hinge" region (E-X-G-X-E) are highlighted. The secondary structure predictions for the 112 N-terminal residues of \(\text{Cl} \) inhibitor (unbiased) and N-terminal 20 residues of \(\alpha_1 \)-antitrypsin (unbiased and \(\alpha \)-biased) are shown (a, \(\alpha \)-helix; b, \(\beta \)-strand; c, coil; t, turn). The hydrophobicity (b) or hydrophilicity (l) propensity of these residues is also indicated according to the Eisenberg (1984) scale.
et al., 1982). The carbohydrate residues were modelled in an extended configuration as indicated by the Guinier results and the crystal structure (Figure 4.11(a)). The carbohydrate residues were only partially visible in the electron density map. This was due to packing disorder in the crystal structure and only residues close to the protein surface had a sufficient electron density to be defined (Engh et al., 1989). Each oligosaccharide was thus modelled by 11 cubes in an extended arrangement (Figure 4.11(b)). An alternative configuration is that the oligosaccharide chains are folded against the protein surface. Such a model (Figure 4.11(b)) has an R_G that is 0.22 nm smaller than that of the extended structure.

A model for native α_1-antitrypsin required the rejoining of Met358 and Ser359 of split α_1-antitrypsin (Figures 4.1 & 4.11). Lobermann et al. (1984) proposed that residues 359-394 were fixed in the two structures, and residues 343-358 have been relocated (Figure 4.1). This was supported by the susceptibility of peptide bonds around the reactive site to proteolytic attack by several proteases of α_1-antitrypsin and Cl inhibitor. Inspection of the α_1-antitrypsin crystal structure suggested that the minimum conformational change required to form native α_1-antitrypsin occurred between residues 348-358. Since these residues corresponded to 7 cubes those cubes closest to residues 348-358 were relocated to rejoin Met358 and Ser359 on the protein surface. This relocation was supported by the subsequent crystal structure for native ovalbumin which showed the reactive site to be situated on a surface loop (Stein et al., 1990). The R_G of the native α_1-antitrypsin model was increased by 0.03 nm, which was not detectable experimentally by this technique.

The curve fitting to the neutron and X-ray data for native α_1-antitrypsin in three contrasts is summarised by Curves 1 and 2 in Figure 4.13. The model with extended carbohydrate chains gave the three good Curve 1 fits for native α_1-antitrypsin. The residual R were 0.006, 0.017 and 0.011 respectively for (a), (b) and (c) in Figure 4.13. The calculations based on the compact carbohydrate model gave worsened curve fits as shown by Curves 2 in Figure 4.13 and the R of 0.010, 0.019 and 0.028. This was clearest in Figure 4.13(c) since a positive solute-solvent
Figure 4.13. Comparisons of the curve simulations with the α_1-antitrypsin models.

(a) Neutron data in 0.05 M sodium/potassium phosphate buffer in 100% 2H$_2$O for native α_1-antitrypsin are compared with the smeared simulated curves (see Chapter 3 for empirical smearing parameters). The vertical arrows indicate the Q ranges of 0.17 to 0.57 nm$^{-1}$ and 0.61 to 1.42 nm$^{-1}$ used for the R_G and R_{XS} determinations (Figures 4.2(a) and 4.2(b)) respectively.

Curve 1: the unhydrated native α_1-antitrypsin structure with extended oligosaccharide and the use of two densities; R of 0.006 (Section 4.2).

Curve 2: unhydrated native α_1-antitrypsin structure with compact oligosaccharide and two densities; R of 0.010.

Curve 3: unhydrated native α_1-antitrypsin with extended oligosaccharide and use of a single density; R of 0.020.

Curve 4: native α_1-antitrypsin with two densities and a hydration of 0.3 g H$_2$O / g α_1-antitrypsin; R of 0.024.

(b) Neutron data in 0.012 M-sodium/potassium phosphate buffer in H$_2$O for native α_1-antitrypsin are compared with the four simulated curves numbered as in (a) but recalculated for this contrast. The R for curves 1, 2, 3 and 4 are 0.017, 0.019, 0.017 and 0.029 respectively.

(c) X-ray data in 0.05 M-sodium/potassium phosphate buffer for native α_1-antitrypsin are compared with unsmeared simulated curves. The vertical arrows indicate the Q ranges of 0.33-0.57 nm$^{-1}$ and 0.60-1.20 nm$^{-1}$ used for the R_G and R_{XS} determinations (Figures 4.2(c) and 4.2(d)).

Curve 1: native α_1-antitrypsin, hydrated to 0.3 g H$_2$O / g α_1-antitrypsin, with extended oligosaccharide and two densities; R of 0.011.

Curve 2: native α_1-antitrypsin, hydrated to 0.3 g H$_2$O / g α_1-antitrypsin, with compact oligosaccharide and two densities; R of 0.028.

Curve 3: unhydrated native α_1-antitrypsin with extended oligosaccharide and two densities; R of 0.035.

Curve 4: native α_1-antitrypsin, hydrated to 0.67 g H$_2$O / g α_1-antitrypsin, with extended oligosaccharide and two densities; R of 0.028.
contrast corresponded to the strongest contribution of carbohydrate to the scattering curve. X-ray scattering curves measured in H$_2$O resulted in better signal-noise ratios at large Q than neutrons in the same contrast (Figure 4.13(c)). The R_{G-C} of the extended carbohydrate model (Curve 1) was 2.58 nm which agreed well with 2.61 nm ± 0.02 nm from the experimental determination (Table 4.1). The compact carbohydrate model (Curve 2) gave worsened agreement with an R_{G-C} of 2.36 nm. The α of the extended model was 29 x 10^{-5} which was in better agreement with the α of 29 ± 5 x 10^{-5} by experiment (Table 4.1) than that of the compact model with an α of 20 x 10^{-5}. The density-weighted X-ray R_G of the extended model was 2.97 nm in good agreement with the experimental X-ray values of 2.80 to 3.00 nm (Figure 4.6). It was concluded that the solution structure of native α_1-antitrypsin was similar to that seen in the crystal structure if the carbohydrate and N-terminal moieties were in extended conformations.

Two sets of control calculations were performed to indicate the importance of incorporating the internal scattering density and hydration into these models.

(a) Given the large α values, it was necessary to assign different scattering densities to the hydrophilic amino acid/carbohydrate and hydrophobic amino acid components in the neutron simulations (Section 4.2). If this was neglected the simulated curves at large Q would underestimate the neutron $I(Q)$ data in negative contrasts in 2H$_2$O (Curve 3 of Figure 4.13(a); R of 0.025) and overestimate those in positive contrasts in H$_2$O (Curve 3 of Figure 4.13(b); R of 0.017).

(b) X-ray simulations required an hydration shell of 0.3 g H$_2$O/g α_1-antitrypsin in addition to different internal electron densities. Calculations for a model without hydration gave curves that generally overestimated the X-ray $I(Q)$ data (Curve 3 of Figure 4.13(c); R of 0.036). Too great a hydration of 0.67 g H$_2$O/g α_1-antitrypsin lead to worsened agreements beyond $Q = 1$ nm$^{-1}$ (Curve 4 of Figure 4.13(c); R of 0.030). The poorer fits of Curves 4 in Figures 4.13(a) and 4.13(b) (R of 0.037 and 0.026 respectively) showed that the accommodation of an hydration shell was not appropriate for neutron curve modelling.

As an independent test of the α_1-antitrypsin solution models, hydrodynamic models were derived from the crystal structure in order to calculate the frictional
The hydrodynamic models of native α_1-antitypsin with carbohydrates (white) in extended and compact conformation are shown. The protein spheres are 1.69 nm in diameter and the carbohydrate spheres are of diameter 0.95 nm.

The sedimentation coefficient $s_{20,w}^0$ of α_1-antitypsin had been reported as 3.41 S, 3.3 S and 3.45 S (Bundy & Mehl, 1959; Shamash & Rimon, 1966; Kress & Laskowski, 1973). The frictional coefficient was thus 6.7 to 7.0 x 10^{-8} g/cm/s. From this the frictional ratio f/f_0 was calculated as 1.29 to 1.35 to show that this had a moderately elongated structure, in agreement with the conclusion from the R_G/R_O ratio of 1.35. The 31 hydrodynamic spheres for the protein core were of diameter 1.69 nm. One more was added to allow for the N-terminus. Each carbohydrate moiety was represented by 8 spheres of diameter 0.95 nm in the extended model (Figure 4.14). In the compact model, these were replaced by 4 spheres of diameter 1.69 nm. The frictional coefficients were 7.2
Figure 4.15. Final Debye sphere models of C1 inhibitor.

Models of C1 inhibitor with extended and compact carbohydrate structures (white). The N-terminus domain is extended in the +x direction and is 25 spheres in length and 3 spheres in cross-section (green). The assignment of hydrophilic (magenta) and hydrophobic (cyan) spheres to the extended carbohydrate model is also shown. The orientation is the same as that for the crystal co-ordinates of α1-antitrypsin.
and 6.4×10^{-8} g/cm/s for the extended and compact models, which were greater than and less than the estimated experimental range, respectively. This suggested that the carbohydrate of α_1-antitrypsin existed in a range of extended conformations, and was consistent with the Debye modelling.

(4.3.5) Debye sphere modelling of C^{-1} inhibitor

Debye sphere models of C^{-1} inhibitor were based on the crystal structure of split α_1-antitrypsin (Löbermann et al., 1984; Bernstein et al., 1977). The α_1-antitrypsin secondary structure was homologous to the C^{-1} inhibitor sequence if residues Asn83 to Ile92 were deleted (Figure 4.12; Huber & Carrell, 1989). The deletion corresponded to a surface loop between Helix C and D, and included one of the three oligosaccharide sites in α_1-antitrypsin at Asn83. The 264 residues visible in the crystal structure were converted into 237 spheres of diameter 0.754 nm based on cubes of side 0.608 nm (Figure 4.15). In a similar way as the α_1-antitrypsin model, the model was subdivided into 243 surface hydrophilic spheres and 152 core hydrophobic spheres. These were assigned the same matchpoints as for α_1-antitrypsin of 60% and 30% $^2\text{H}_2\text{O}$ respectively.

The N-terminal 19 residues missing in the α_1-antitrypsin crystal structure were replaced by the N-terminal domain (Asn1-Ser113) in C^{-1} inhibitor (Figure 4.12). This domain was modelled as an extended structure of 69 spheres with an initial total length of 15.2 nm, corresponding to 25 spheres. The reasons for this are summarized below:
(a) Scattering showed that the overall length of α_1-antitrypsin of 7.0 to 7.8 nm was increased to 16 to 19 nm in C^{-1} inhibitor;
(b) An unbiased Robson secondary structure prediction (Garnier et al., 1978) of the N-terminal 112 residues indicated relatively low amounts of α-helix (17%) and β-sheet (16%), and high amounts of β-turn (25%) and coil (41%) (Figure 4.12) which is consistent with an extended structure;
(c) Of the 112 residues, 61% are hydrophilic (Eisenberg, 1984) and there are 10 glycosylation sites, which was compatible with a high exposure to solvent;
(d) Of the 112 residues 15 are proline (13.4%), mostly between Pro62 and Pro104,
Figure 4.16. Curve fitting for the Debye sphere models of CI inhibitor.

(a) Comparison of the simulated scattering curves for the final CI inhibitor model with extended carbohydrates shown in Figure 4.15 with scattering curves of native CI inhibitor in 0%, 80% and 100% 2H\textsubscript{2}O (see text) and the compact model with the experimental scattering curve in 100% 2H\textsubscript{2}O.

(b) Simulated scattering curves for four +x models in which the N-terminal domain is of length 68, 34, 17 and 8 spheres (models shown in Figure 4.17(a)). These are compared with the native CI inhibitor scattering curve in 100% 2H\textsubscript{2}O.

(c) Simulated scattering curves for models in which the N-terminal domain is in the -x, -y, -z and +z orientations (models shown in Figure 4.17(b)).
which is high compared to an average of 5.2% in proteins (Dayhoff, 1978). The N-terminus may adopt a polyproline II helix, which with a rise of 0.31 nm per residue, would have a length of 13.3 nm over 43 residues (Huber & Carrell, 1989).

(e) Several proteases cleave peptide bonds in the N-terminus domain, indicating that these residues lie on the surface (Section 4.2).

The thirteen oligosaccharides were represented by extended structures, as justified by the large Stuhrmann a. The six N-linked oligosaccharide groups were modelled by biantennary structures of 11 spheres each (Strecker et al., 1985). The seven O-linked oligosaccharides were represented by 3 spheres each. The three N-linked and seven O-linked oligosaccharides of the N-terminal domain were arbitrarily positioned along the 25-sphere length in the same ratio as their occurrence in the primary sequence.

The relative orientation of the two domains in Cl inhibitor was determined from the crystal structure of \(\alpha_1 \)-antitrypsin. Cys101 and Cys108 in the N-terminal domain of Cl inhibitor form disulphide bridges with Cys406 and Cys183 in the serpin domain (Bock et al., 1986). These correspond to residues 7, 14, 321, and 98 respectively of \(\alpha_1 \)-antitrypsin. This disulphide bridging pattern constrained the positioning of the N-terminus domain to run alongside the serpin domain in the +x direction (Figure 4.11(a)), starting from His20 (\(\alpha_1 \)-antitrypsin numbering) (the +x model). Some rearrangement of the spheres of the protein core of the N-terminal domain was required to avoid steric conflict with the serpin domain, including the deletion of 6 spheres to conserve the correct volume. The long axes of the two domains lie in similar directions.

The curve simulations are compared with the experimental data in Figure 4.16(a) and the corresponding models are shown in Figure 4.15. The simulations agreed well with experiment. The residuals R were low at 0.020 (0% \(\text{H}_2\text{O} \)), 0.011 (80%) and 0.012 (100%). The \(R_G \) in the three contrasts were 5.03 nm, 4.61 nm and 4.71 nm, in good agreement with the experimental values of 5.05 nm, 4.60 nm and 4.71 nm (Table 4.1). The Stuhrmann parameters of this model, \(R_{G1-C} = 4.87 \text{ nm} \) and \(\alpha_{G1} = 54 \times 10^{-5} \) agreed well with the experimental values of 4.85 nm and 59
68 spheres
34 spheres
17 spheres
8 spheres

Protein
N-terminus
Carbohydrate

(a)

(b)
x 10^{-5} respectively. Transformation of $I(Q)$ into $P(r)$ gave a maximum dimension of 17.8 nm for the 100% 2H$_2$O model, together with a major peak at 2.5 nm and R_G of 4.70 nm, in good agreement with the experimental $P(r)$ which gave a maximum dimension of 18.0 nm, peak at 2.4 nm and R_G of 4.35 nm (Figure 4.10). A second model with oligosaccharide chains repositioned closely against the protein core in a compact conformation gave worsened agreements, as exemplified in Figure 4.15. The R_G values were lower by 0.3 nm and the residual R was 0.0161. This showed that the extended oligosaccharide conformations in C1 inhibitor could be identified by scattering.

Other models for C1 inhibitor were produced (Figure 17). Four alternative $+x$ models with different N-termini were constructed, based on sphere lengths and cross-sections of 68 x 1, 34 x 2, 17 x 4 and 8 x 9 (lengths 41 nm, 21 nm, 10 nm and 5 nm) (Figure 4.16(b)). The R_G values of these models were 12.1 nm, 6.2 nm, 3.7 nm and 2.9 nm respectively, and were clearly different from the experimental R_G value of 4.85 nm. The deviations from the experimental scattering curve in 100% 2H$_2$O seen in Figure 4.16(b) were reflected by the larger residuals R were 0.031, 0.015, 0.023 and 0.040 respectively than the R of 0.012 from Figure 4.15. The $P(r)$ calculated for the 34 x 2 and 17 x 4 models resulted in maximum lengths of 22.8 nm and 13.2 nm and R_G values of 5.70 nm and 3.54 nm respectively, which clearly differ from experiment (Figure 4.10). Scattering was thus able to distinguish the length of C1 inhibitor in solution.

The N-terminus domain was repositioned in the $-x$, $-y$, $-z$ and $+z$ directions relative to the serpin domain. The curve simulations are shown in Figure 4.16(c) and the corresponding models in Figure 4.17(b). The R_G of the models was
adjusted to be close to the experimental value of 4.85 nm by altering the length
of the N-terminus domain. In the -x and -y directions, this was 17 spheres long,
with R_{G-C} of 4.47 nm and 4.68 respectively. Models with the N-terminus domain
in the -z and +z directions were 23 spheres long and had R_{G-C} of 5.27 nm and
4.64 nm, respectively. All gave slightly worsened curve fits compared to those of
Figure 4.15 with R values of 0.016, 0.014, 0.016 and 0.013 respectively. While the
+x direction was favoured by the modelling, this was not unambiguous.
Large conformational and stability changes had been reported between the native and split forms of α_1-antitrypsin and Cl inhibitor (Löbermann et al., 1984; Carrell & Owen, 1985; Bruch et al., 1988). Solution scattering however showed no evidence for a gross conformational change between the two forms. Although it was assumed from the crystal structure of α_1-antitrypsin that a large conformational change must have occurred on proteolytic cleavage, Löbermann et al. (1984) stated that native α_1-antitrypsin could be reform ed by the minimal movement of β-strand 4A (residues 343 - 358) from the centre of β-sheet A. This was in agreement with the results of Huber and Carrell (1989) who compared 20 serpin amino acid sequences with the known crystal structure of α_1-antitrypsin. Since then, the crystal structures of four more serpins have been established, including the native form of ovalbumin (Stein et al., 1990). This structure had an intact reactive loop and one less strand in β-sheet A, again confirming the view that after cleavage, the stressed reactive loop of the inhibitory serpins folded back into β-sheet A with a minimum of a conformational change. The models presented here of native α_1-antitrypsin involved a minor relocation of 7 spheres out of the total of 291 in the split α_1-antitrypsin model (Figure 4.11(b)). This placed an upper structural limit on the extent of the changes seen by spectroscopy (Bruch et al., 1988).

More sensitive techniques are required to examine the conformational transition between the native and split forms. FT-IR (Haris et al., 1990), NMR (Perkins et al. unpublished data) and CD (Bruch et al., 1988; Gettins & Harten, 1988) spectroscopy and fluorescence quenching (Koloczek et al., 1991) studies on several members of the serpin family have highlighted differences in secondary and tertiary structures between the native and cleaved forms. These data were supported by monoclonal antibodies with different epitopic specificities which bind either to native or to split α_1-antitrypsin (Zhu et al., 1987; Zhu & Chan, 1987). FT-IR spectroscopy indicated the presence of well-defined hydrogen bonds in α-helices and β-sheets in split α_1-antitrypsin that were not present in the native form. Both FT-IR and NMR studies showed that the native form underwent
greater 1H-2H exchange within the peptide backbone than the split form (Haris et al., 1990). The increased stability of the split form of α_1-antitrypsin was probably due to the more complete hydrogen bonding in the secondary structure due to the insertion of s4A into the β-sheet.

Conformational changes in a variety of proteins have been observed by solution scattering. In deoxyhaemoglobin, the neutron and X-ray R_G increased by 0.05 - 0.15 nm on binding oxygen (Conrad et al., 1969; Schneider et al., 1969) which corresponded to α-helix movements of 0.05-0.15 nm and movement between the four subunits of 0.6 nm (Baldwin & Chothia, 1979). The X-ray R_G of aspartate transcarbamylase increased by 0.25 nm after ligation to a substrate analogue (Moody et al., 1979; Hervé et al., 1985). Crystallography showed that the catalytic trimers move apart by 1.2 nm and that the regulatory and catalytic subunits reorientate by rotations of 10° to 15° (Krause et al., 1987; Ke et al., 1988). In X-ray scattering of glucose-binding hexokinase and L-arabinose binding protein (McDonald et al., 1979; Newcomer et al., 1981), the R_G values decrease by 0.09 nm to 0.13 nm after substrate binding. Sometimes no changes are seen by scattering, such as the activation of chymotrypsinogen to α-chymotrypsin (Krigbaum & Godwin, 1968) or the binding of pyridoxal 5'-phosphate to aspartate aminotransferase, (Vergé et al., 1983). In conclusion, the observation of a conformational change depends on the protein system being measured.

The characterization of the serpin structure of α_1-antitrypsin facilitated the modelling of the homologous protein, Cl inhibitor. Structural evidence for the distinct existence of the serpin and N-terminus domains was obtained from the successful curve fitting (Figure 4.16) and possibly from the biphasic Guinier plots (Figure 4.8). The N-terminal domain was extended, as deduced from the length calculations and comparison of the maximum length of Cl inhibitor (16 to 19 nm) with α_1-antitrypsin (7.0 to 7.8 nm) and heavily glycosylated as shown by contrast variation experiments (Table 4.1). Electron microscopy had suggested that Cl inhibitor was much longer at 33 to 36 nm (Odermatt et al., 1981) but inherent difficulties exist in EM work such as the incorporation of artifacts and magnification errors. The final length of 16 to 19 nm was similar to lengths of 17
to 20 nm determined for the substrates of Cl inhibitor, Clr and Cls (Figure 9.1) (Villiers et al., 1985; Weiss et al., 1986; Perkins & Nealis, 1989).

The conformational properties of oligosaccharides in glycoproteins are not readily accessed by physical techniques. Solution scattering was potentially of value since the R_G corresponded to the mean square distance of scattering vectors from the centre of scattering. Oligosaccharides are usually on the protein surface and therefore contribute maximally to the R_G or R_{G-C}. Even though the Stuhrmann α is less accurately measured than the R_{G-C}, it can be used to monitor oligosaccharide conformations. In this study, the oligosaccharide chains of α_1-antitrypsin and Cl inhibitor were found to be mostly extended into solution. These were mostly biantennary oligosaccharides, but may be replaced at Asn83 in α_1-antitrypsin and to a lesser extent at Asn46 by triantennary oligosaccharides (Mega et al., 1980; Vaughan & Carrell, 1981). The carbohydrate of both α_1-antitrypsin and Cl inhibitor have been found not to be important for inhibitory activity (Guzdek et al., 1990; Prandini et al., 1986; Reboul et al., 1987; Avron et al., 1991) but may have functions in secretion, removal from circulation and the recognition by receptors for complex uptake (Travis et al., 1990).

The present study has tested approaches for the modelling of scattering curves starting from a known crystal structure. The modelling simulations had to include the different scattering densities of the hydrophilic and hydrophobic residues. This however may be less important for proteins with a low Stuhrmann α for its R_G value. Modelling of neutron scattering data does not require the incorporation of an hydration shell which was consistent with a survey of neutron scattering densities of glycoproteins (Perkins, 1986). In contrast, X-ray modelling required hydrated structures. This was consistent with the calculation of partial specific volumes from the sum of the unhydrated volume and the electrostricted water shell surrounding the protein (Perkins, 1986), and also with the calculation of electron densities for X-ray scattering studies by contrast variation (Perkins, 1988).
CHAPTER 5.

STRUCTURAL STUDIES ON C5
Activation of the early components of the classical and alternative pathways by proteolytic cleavages leads to the formation of the C5 convertases, C4b2a3b or C3bBb3b respectively. The convertases activate C5 to form C5b and C5a by a single proteolytic cleavage. The generation of C5b is the initial step in the formation of the membrane attack complex, which is assembled from the complement components C6, C7, C8 and C9 in association with C5b. Insertion of the complex into membranes leads to the formation of transmembrane channels in the target cell and ultimately to cell death due to osmotic imbalance.

Human C5 is a glycoprotein of \(M_r \ 194,000 \) with 4 putative N-glycosylation sites. The primary sequences of the complement components C3, C4 and C5 show significant homologies (Belt et al., 1984; de Bruijn & Fey, 1985; Wetsel et al., 1988; Haviland et al., 1991a) although the genes are found on different chromosomes (Carroll et al., 1984; Whitehead et al., 1982; Wetsel et al., 1988). Comparison of the genomic organization of human C3, murine C4 and murine C5 showed that around 75% of the positions of the intron-exon junctions shared between the genes are identical and the remaining are close in position (Haviland et al., 1991b) (Figure 5.5). The exon sizes in the C3, C4 and C5 genes were either the same or very similar but the intron sizes were very different (Haviland et al., 1991b). While not as abundant as C3 and C4 (Table 1.1), C5 at 0.15 mg/ml is still one of the more abundant complement components in plasma.

C5, like C3, is composed of two disulphide-linked polypeptide chains \(\alpha \) and \(\beta \). In contrast C4 has three chains \(\alpha \), \(\beta \) and \(\gamma \) (Figure 1.2). Activation of C5 is brought about by either cleavage of the peptide bond between residues 74 and 75 of the \(\alpha \) chain, releasing C5a (Nilsson et al., 1975) or by reaction with oxygen radicals \((\text{OH}^+)\) to form C5(H\(_2\)O\(_2\)) (Vogt et al., 1989). C5a is the most potent of the three anaphylatoxins C3a, C4a and C5a formed by the complement cascade. C3 and C4, but not C5, have a highly reactive internal \(\beta \)-cysteiny1-\(\gamma \)-glutamyl thiolester bond in a region of high sequence homology. During activation, this enables C3b and C4b to form covalent bonds to target surfaces (Law et al., 1980).
Since there is no thiolester bond in C5, C5b is unable to form a covalent bond to a surface (DiScipio, 1981). Thus C5b in the presence of C6 forms a fluid-phase C5b6 bimolecular complex, and this in association with C7 expresses a membrane-binding site (Podack et al., 1978).

In this study, comparisons between the solution structures of C3, C4 and C5 are made. Electron microscopy of C5 depicts a multilobal, irregular ultrastructure of dimensions of 10.4 nm x 14.0 nm x 16.8 nm (DiScipio et al., 1983); different dimensions have however been reported for C3 and C4 (Smith et al., 1982, 1984a; Dahlbäck et al., 1983). The sedimentation coefficients of C3, C4 and C5 are similar at 9.5 S (Pâques, 1980), 8.9 S (Müller-Eberhard et al., 1966) and 9 S (Isenman et al., 1980), respectively. Limited solution scattering data on C3, C4 and C5 suggested that despite their sequence homologies they had dissimilar R_G values (Österberg et al., 1984, 1988). In this study, extensive neutron scattering experiments on the external and internal structure of C5 are critically compared with similar studies on C3 and C4 (Perkins & Sim, 1986; Perkins et al., 1990a). Together, the neutron data show that C3, C4 and C5 are more homologous in their physical structures than previously believed.
(5.2) MATERIALS AND METHODS

(5.2.1) Preparation of C5

C5 was prepared by Dr R.A. Harrison (Perkins et al., 1990b) from 3.5 l of human plasma from normal, healthy donors essentially as described in Harrison & Lachmann (1986). SDS-PAGE analysis showed the C5 to be greater than 95% pure and to have the anticipated two-chain structure. Neutron scattering studies were performed on freshly-prepared C5 or C5 that was stored frozen at -70°C. Samples were re-analyzed by SDS-PAGE subsequent to solution scattering studies, and no differences between pre- and post-scattering were detected.

Four different buffers were used in neutron data collection: A (200 mM NaCl, 12 mM Na phosphate, 1 mM EDTA, pH 7.0); B (50 mM NaCl, 12 mM Na phosphate, 1 mM EDTA, pH 7.0); C (3.1 mM diethyl barbituric acid, 0.9 mM sodium barbitone, 145 mM NaCl, 0.83 mM MgCl2, 0.25 mM CaCl2, 20 μM ZnSO4); D (buffer C diluted 1 in 4, except for ZnSO4 which remained at 20 μM). These had ionic strengths of 0.22 M, 0.07 M, 0.15 M and 0.04 M respectively. Buffer A was predominantly used. Samples were dialysed against the appropriate amounts of 2H2O buffers at 6°C with four changes of buffer over at least 36 hours. The final dialysate was used for the neutron background buffer runs.

(5.2.2) Neutron and X-ray scattering experiments

Neutron experiments were performed on instrument D17 at the ILL, Grenoble in five independent sessions by Dr S.J. Perkins. Guinier data were obtained using a sample-to-detector distance of 3.45 to 3.46 m and wavelengths of 1.30 nm to 1.60 nm, giving a Q range of 0.0053 to 0.049 nm⁻¹. Data at larger Q were obtained with a sample-to-detector distance of 1.40 m, wavelengths of 0.99 nm to 1.00 nm and two main beam-to-detector axis angles of 0° to give a Q range of 0.18 to 1.60 nm⁻¹ or 20° to give a Q range of 1.03 to 3.41 nm⁻¹. Samples were counted using times of 4 min in 2H2O to 62 min in H2O.
The Indirect Transformation Procedure (ITP) method (Glatter, 1982) was used to transform the neutron scattering curves $I(Q)$ into real space $P(r)$ (Chapters 2 & 3). A total of 10 splines were used to fit the 75 experimental points. The number of splines was limited because of poor counting statistics at large Q. D_{max} was specified as 20 nm on the basis of the length calculations from the Guinier R_G analyses; control calculations based on maximum lengths of 17 nm gave similar results. The number of points used to define $P(r)$ in real space was 101.

Synchrotron X-ray experiments were performed by Dr S.J. Perkins on station 7.3 (Nave et al., 1985) at the SRS, Daresbury. The synchrotron operated at 1.8 GeV with beam currents of 143 to 132 mA. The sample-to-detector distance was 2.185 m and the wavelength was 0.1608 nm which gave a Q range of 0.1 to 1.3 nm$^{-1}$. The samples were counted for 10 minutes in alternation with their buffers.

(5.2.3) Sequence alignments

The seven C3, C4 and C5 sequences were aligned by hand as shown in Figure 5.5 in the order: human and mouse C5 (Haviland et al., 1991a; Wetsel et al., 1987), human, mouse and rat C3 (de Bruijn & Fey, 1985; Lundwall et al., 1984; Wetsel et al., 1984; Misumi et al., 1990) and human and mouse C4 (Belt et al., 1984; Nonaka et al., 1985; Sepich et al., 1985). The sequences were aligned to maximize the occurrence of identical or chemically homologous residues and to minimize gaps (Chapter 3). The amino acids occurring at intron/exon boundaries were marked for human C3 (Vik et al., 1991) human C4 (Yu, 1991) and murine C5 (Haviland et al., 1991b).
Figure 5.1. Neutron Guinier plots of human C5 in 100% 2H$_2$O buffers.
(a) Guinier plots and (b) cross-sectional Guinier plots of a dilution series for C5. The vertical displacements of the curves reflect sample concentrations at 5.4, 3.9 and 1.9 mg/ml in (a) and 3.9 and 1.9 mg/ml in (b). The Q range used for line fitting was 0.12 to 0.30 nm$^{-1}$ in (a) and 0.31 to 0.58 nm$^{-1}$ in (b). A slight decrease of the R_G with concentration is observable in (a) and in other % 2H$_2$O buffers, but was not significant in terms of the error of the R_G determination in Table 5.2.
(5.3) RESULTS AND DISCUSSION

(5.3.1) Neutron scattering of C5

Neutron contrast variation experiments were performed on human C5 in 0%, 70%, 80% and 100% \(^2\text{H}_2\text{O} \) buffers. Linear Guinier analyses were successfully obtained in 100% \(^2\text{H}_2\text{O} \) over an acceptable \(Q.R_G \) range of 0.6 to 1.5 (Figure 5.1(a)). Similarly linear cross-sectional analyses were obtained in the \(Q.R_{XS} \) range of 0.7 to 1.4 (Figure 5.1(b)). Comparisons of the Guinier data from all four buffers A, B, C and D showed that although the two higher salt buffers A and C gave similar good results, the two lower salt buffers showed evidence of aggregation, and these data were not considered further. A dilution series of C5 of 1.8 to 7.9 mg/ml in the high salt buffers indicated that while the \(I(0)/c \) and \(R_G \) values exhibit minor decreases with concentration (results not shown), this was not significant.

The concentration of C5 was calculated from the absorption coefficient \(A_{280} \) (1%, 1 cm) for human C5 which has been estimated as 10.8 (DiScipio et al., 1983) or 10.2 (Osterberg et al., 1988). The mean of these two values (10.5) was used. The absorption coefficient calculated from the amino acid and carbohydrate composition (Chapter 3), assuming all four carbohydrate attachment sites were occupied by biantennary carbohydrates was 10.9 (Table 5.1), in good agreement with the value derived by DiScipio et al. (1983). The mean \(M_r \) of four measurements was found to be 211,000 ± 10,000. This was in reasonable agreement with the calculated \(M_r \) of 194,000 from the human C5 sequence (Haviland et al., 1991a) (Table 5.1) and showed that the absorption coefficient of 10.5 was satisfactory. It also confirmed that C5 was monomeric in solution. The 4.5% carbohydrate content by weight determined from the sequence composition was in good agreement with the value of 3.8% determined by Tomana et al. (1985). The neutron matchpoint graph (Figure 5.2(a)) gave an excellent straight line with a matchpoint of 40.9 ± 0.4 % \(^2\text{H}_2\text{O} \) by linear regression analyses of 33 values in 4 contrasts. The corresponding cross-sectional plot (Figure 5.2(b)) yielded a matchpoint of 41.5 ± 0.4 % \(^2\text{H}_2\text{O} \) (33 values in 4 contrasts). Both of
<table>
<thead>
<tr>
<th>Residues</th>
<th>1698</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total amino acids</td>
<td>1698</td>
</tr>
<tr>
<td>Total carbohydrate</td>
<td>44</td>
</tr>
<tr>
<td>% Mass carbohydrate</td>
<td>4.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M<sub>r</sub></th>
<th>186,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>186,000</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>9,000</td>
</tr>
<tr>
<td>Total</td>
<td>194,000</td>
</tr>
<tr>
<td>Neutron scattering</td>
<td>201,000 ± 9000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dry volume (nm<sup>3</sup>)</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (\bar{v}) (ml/g)</td>
<td>0.738</td>
</tr>
<tr>
<td>Overall (\Sigma b/M_r) in H<sub>2</sub>O (fm)</td>
<td>0.2247</td>
</tr>
<tr>
<td>in H<sub>2</sub>O (fm)</td>
<td>0.3876</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicted (A_{280}) (1%, 1cm)</th>
<th>10.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature (A_{280})</td>
<td>10.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pred. matchpoint (% H<sub>2</sub>O)</th>
<th>40.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. matchpoint (% H<sub>2</sub>O)</td>
<td>40.9 ± 0.4</td>
</tr>
<tr>
<td>from (I(0))</td>
<td>41.5 ± 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stuhrmann analysis</th>
<th>4.87 ± 0.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{G-C}) (nm)</td>
<td>4.87 ± 0.03</td>
</tr>
<tr>
<td>(\alpha_G \times 10^{-5})</td>
<td>13 ± 8</td>
</tr>
<tr>
<td>(R_{XS-C}) (nm)</td>
<td>2.35 ± 0.03</td>
</tr>
<tr>
<td>(\alpha_{XS} \times 10^{-5})</td>
<td>13 ± 4</td>
</tr>
<tr>
<td>(R_{G-C}/R_o)</td>
<td>1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Models (R_{G-C}) (nm)</th>
<th>4.97</th>
</tr>
</thead>
</table>

Table 5.1. Compositional and scattering data for C5

Footnotes to Table 5.1

1, 2, 3 & 4: see Table 4.1.

3 Literature determinations of \(A_{280} \) are reported as 10.8 (DiScipio *et al.*, 1983) or 10.2 (Österberg *et al.*, 1988) and the mean of these two values was used here.

these agreed well with the matchpoint of 40.2% H₂O predicted (Perkins, 1986; Chapter 3) from the human C5 sequence and confirmed the good quality of the scattering data.

To characterise the shape of C5 and its internal structure, the contrast dependence of the structural data was analyzed using Stuhrmann plots of \(R_G \) and \(R_{XS} \) against the reciprocal solvent-solute contrast difference \(\Delta \rho^{-1} \) (Figures 5.2(c) & (d)). The radii of gyration at infinite contrast \(R_{G-C} \) and \(R_{XS-C} \) were found to be 4.87 nm and 2.35 nm respectively. The elongation ratio \(R_{G-C}/R_o \) was 1.61.
Figure 5.2. Neutron contrast variation analyses of human C5.
(a) and (b) show the matchpoint graphs of the Guinier and cross-sectional data respectively in 0%, 70%, 80% and 100% \(^2\text{H}_2\text{O} \) buffers. The symbols are displaced for clarity. The matchpoints from linear regression are 40.9 ± 0.4 % \(^2\text{H}_2\text{O} \) and 41.5 ± 0.4 % \(^2\text{H}_2\text{O} \) respectively.
(c) and (d) show the \(R_G^2 \) and \(R_{XS}^2 \) data plotted against the reciprocal solvent-solute contrast difference \(\Delta \rho^{-1} \). The regressed line based on the \(R_G^2 \) values gives an \(R_G - C \) of 4.87 ± 0.03 nm and a slope \(\alpha \) of 13 ± 8 x 10⁻⁵. For the \(R_{XS}^2 \) data, \(R_G - C \) is 2.35 ± 0.03 nm and \(\alpha \) is 13 ± 4 x 10⁻⁵.

Calculated as 1.61 (where \(R_O \) is the \(R_G \) of the sphere of the same dry volume as C5) (Table 5.1). This was significantly larger than the average value of 1.28 ± 0.10 for globular proteins (Perkins, 1988), and showed that C5 is elongated in shape. The radial inhomogeneity of scattering density \(\alpha \) was positive at 13 x 10⁻⁵ in both Stuhrmann plots (Table 5.1). On average, the outermost scattering densities in C5 were higher than those nearer the centre. This suggested that C5 had a surface of hydrophilic amino acids and carbohydrates surrounding a hydrophobic core, typical of soluble globular glycoproteins.
The dimensions of C5 can be calculated from the R_G and R_{XS} data and also from the $I(0)$ and $[I(Q).Q]_{Q=0}$ data (Chapter 3). Using the data in 100% 2H$_2$O, the length L of the longest axis of C5 (assuming an elliptical cylinder) was determined as 14.9 ± 0.5 nm. From the ratio of $\pi. I(0) / [I(Q).Q]_{Q=0}$, L was found to be 15.7 ± 1.1 nm. Combination of the L values with the total dry volume and the R_{XS} values gave axial dimensions of 14.9 nm x 8.7 nm x 2.5 nm as a first approximation to the structure of C5.

(5.3.2) X-ray scattering of C5

X-ray scattering of C5 were performed to substantiate the neutron experiments. In Guinier analyses, the final R_G and R_{XS} values were based on $Q.R_G$ and $Q.R_{XS}$ ranges of 1.0 to 1.6 and 0.7 to 1.4, i.e. Q ranges of 0.18 to 0.30 nm$^{-1}$ and 0.31 to 0.60 nm$^{-1}$ respectively, which were slightly more restricted than those of Figure 5.1. Many of the spectra were found to be aggregated and therefore only those spectra which gave linear Guinier plots were used. The mean R_G and R_{XS} values were 5.3 ± 0.1 nm (2 values) and 2.3 ± 0.1 nm (1 value) respectively. These were in reasonable agreement with the neutron scattering data in the same positive contrast buffer (0% 2H$_2$O) (Table 5.2).

<table>
<thead>
<tr>
<th></th>
<th>C5</th>
<th>C4, C4u, C4(a+b)</th>
<th>C3, C3u, C3(a+b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-rays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_G (nm)</td>
<td>5.3 ± 0.1</td>
<td>5.3 ± 0.1</td>
<td>5.2 ± 0.1</td>
</tr>
<tr>
<td>R_{XS} (nm)</td>
<td>2.3 ± 0.1</td>
<td>2.5 ± 0.1</td>
<td>2.6 ± 0.1</td>
</tr>
<tr>
<td>Neutrons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{G-C} (nm)</td>
<td>4.9 ± 0.1</td>
<td>4.9 ± 0.1</td>
<td>5.1 ± 0.1</td>
</tr>
<tr>
<td>R_{XS-C} (nm)</td>
<td>2.4 ± 0.1</td>
<td>2.2 ± 0.1</td>
<td>2.4 ± 0.1</td>
</tr>
<tr>
<td>$\alpha_G \times 10^{-5}$</td>
<td>13 ± 8</td>
<td>2 ± 10</td>
<td>30 ± 10</td>
</tr>
<tr>
<td>$\alpha_{XS} \times 10^{-5}$</td>
<td>13 ± 4</td>
<td>20 ± 10</td>
<td>10 ± 10</td>
</tr>
</tbody>
</table>

Table 5.2. Summary of Guinier analyses for C5, C4 and C3 of complement

The data for C4 and C3 are taken from Perkins et al. (1990a) and Perkins & Sim (1986), and mean values are shown.
(5.3.3) Comparisons of C5 with C3 and C4 of complement

The present X-ray and neutron data on C5 were compared with data previously obtained for C3 and C4 and their fragments (Perkins & Sim, 1986; Perkins et al., 1990a) to assess the degree of structural homology between the three proteins. C3u and C4u correspond to C3 and C4 with hydrolysed thiolester bonds, while C3(a+b) and C4(a+b) correspond to activated C3 and C4 in which the two fragments continue to be associated (Figure 1.2). By both X-ray and neutron scattering, the R_g and R_{XS} values of C3, C3u, C3(a+b), C4, C4u, C4(a+b) and C5 were found to be the same within error (Table 5.2). Therefore C3, C4 and C5 have similar overall shapes in solution from the scattering curve analyses out to Q of 0.6 nm$^{-1}$. The values for the Stuhrmann α of C3, C4 and C5 were similar (Table 5.2) although α is less accurately measured than the R_g values. From the sequences, the ratios of hydrophilic to hydrophobic residues (Eisenberg, 1984) for C3, C4 and C5 were similar at 50:50, 47:53 and 49:51 respectively. The similarity of the α values was thus consistent with compositional data and indicate that C3, C4 and C5 had similar internal structures.

(5.3.4) Large angle curve analyses of C5

Indirect transformation of the neutron curves $I(Q)$ into real space $P(r)$ using ITP (Section 5.2 & Chapter 3) was carried out for C5, C4, C4u and C3u to assess further the structural homologies between C3, C4 and C5. The whole scattering curve was used over a Q range of 0.2 to 3.6 nm$^{-1}$ as obtained in 100 % 2H$_2$O in three detector positions at the 3.4 m and 1.4 m detector position and mainbeam-to-detector angles of 0° and 20°. The R_g and R_{XS} data above were based on the smaller Q range out to 0.6 nm$^{-1}$. At large Q, the $P(r)$ curves for C5, C4, C4u and C3u were all similar, as illustrated for C5 and C3u in Figure 5.3. This agreement confirmed the structural homologies in solution to a nominal structural resolution of 1.7 nm. The maximum lengths of C5, C4u and C3u were determined to be 14.0 nm, 15.2 nm and 15.0 nm, respectively, from the value of r where $P(r)$ diminishes to zero intensity. These were compatible with the length of 14.9 to 15.7 nm determined from the Guinier analyses for C5. The most frequently occurring
Figure 5.3 Indirect Transformation into real space of the C5 and C3u neutron scattering curves in 100 % 2H$_2$O buffer.

The intraparticle distance distribution function $P(r)$ for C5 (—) and C3u (---) are shown after normalisation for concentration. The 75 experimental data points extending to a Q of 3.41 nm$^{-1}$ were fitted using 10 splines and transformed assuming a maximum length of 20 nm. The errors of the transformation are shown for C5. The $P(r)$ curves for C5 and C3u are seen to be very similar.

length (the maximum in $P(r)$) for C5, C4u and C3u were all 5.2 nm. The R_G for C5 from the indirect transformation was determined as 4.89 nm over the range of $-8.0 \leq \lambda_{\text{opt}} \leq 0.0$, where λ_{opt} is the Lagrange stabilization parameter (Chapter 2). This was in good agreement with the mean value of 4.82 ± 0.10 nm for the 16 R_G values from the Guinier analyses in 100 % 2H$_2$O buffers. The R_Gs for C3u and C4u were 4.77 nm and 4.71 nm over a similar range of λ_{opt}. These also compare well with the mean R_G values in 100% 2H$_2$O of 5.00 ± 0.03 nm (4 values) and 4.92 ± 0.10 nm.

Further comparisons of the scattering curves out to a Q value of 1.6 nm$^{-1}$ were performed using computer models made from Debye spheres (Chapters 2 &
Figure 5.4. Comparison of the neutron scattering curve of C5 in 2H$_2$O with Debye scattering curve simulations.

(a) The two domain model for C4 (taken from Perkins et al., 1990a). The precise arrangement for the two domains should not be over interpreted.

(b) The experimental data (●) are compared with the calculated Debye scattering curve (-----) using the possible two-domain model for C4 and C4u shown above. This sphere model gives a satisfactory curve fit. The R_G of the model is 4.97 nm, in good agreement with the values of 4.82 nm and 4.89 nm from the Guinier and ITP analyses of the data in 100% 2H$_2$O (see text).
3). To test whether C5 and C4 were similar in structure, the experimental scattering curve for C5 was compared with the simulated scattering curve of the C4 and C4u model (Figure 5.4(a)) (Perkins et al., 1990a). The simplistic model was constructed from two distinct domains (Table 5.3) which corresponded to C4d and C4c, and which were set at an angle to each other. Their dimensions are given in Table 5.3; the length of 18 nm was slightly longer than the three calculations of 15 to 16 nm above but was within error of the modelling technique. The R_G of the C4 model (4.97 nm) is in good agreement with the R_G-C (4.87 nm) for the experimental C5 data. The reasonable agreement of the C4 model with the C5 experimental curve (R factor 0.015) (Figure 5.4(b)) suggested that C5 also has a substructure with at least two domains as found for C3 and C4, even though this structure had not been revealed in physiological inactivation events.

<table>
<thead>
<tr>
<th>Triaxial dimensions (nm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobra venom factor*</td>
<td>8.2 x 13.7</td>
</tr>
<tr>
<td>C4b</td>
<td>9 x 17</td>
</tr>
<tr>
<td>C3b, C4b</td>
<td>6.5 x 7.5 x 12.5</td>
</tr>
<tr>
<td>C5</td>
<td>10.4 x 14.0 x 16.8</td>
</tr>
<tr>
<td>Solution scattering model+</td>
<td>C3c, C4c 2 x 8 x 18</td>
</tr>
<tr>
<td></td>
<td>C3dg, C4d 2 x 4 x 9</td>
</tr>
</tbody>
</table>

Table 5.3. Comparisons of electron microscopy studies on C3, C4 and C5 with the Debye solution scattering model

* The cobra venom factor is a structural analogue of C3c. The reported standard deviations are ± 1.1 to ± 1.3 nm.

+ See Figure 5.4(a) for the possible arrangement of the two domains.

(5.3.5) Sequence alignments of C3, C4 and C5

Seven sequences of C3, C4 and C5 were aligned manually as shown in Figure 5.5 in order to assess the degree of sequence similarity between the three
complement components. The number and size of inserted gaps were minimized. A total of 381 residues, or homologous residues (defined in Chapter 2), were conserved over all 7 sequences and total of 23 (68%) cysteine residues were conserved in all 7 sequences. Comparison of the 1658 residues in human C5 with human C3 and C4 showed that 26% and 22% of residues were identical, respectively. These compare favourably with the values of 27% and 25% determined by the alignment of Wetsel et al. (1988). It should be noted that only the last 1639 residues of human C5 were available to Wetsel and a more liberal use of gaps were used in his alignment. Carbohydrate attachment sites (Nxs or Nxt) were fairly well conserved within species. One site (residue 1612) was conserved over the C3 and C5 sequences. Human C3 contained an RGD sequence (residue 1391, C5 numbering) which is thought to act as a recognition signal in ligand-receptor interactions. Since this sequence is not conserved amongst species, there must be other factors required (Wetsel et al., 1984). The thiolester region in C3 and C4 was well conserved but the critical cysteine and glutamine residues were replaced by serine and alanine respectively in C5.

The amino acids at the splice junctions for murine C5, human C3 and human C4 were compared (Figure 5.5). Each protein contained 40 intron/exon boundaries and of these 75% were found in identical positions for all three proteins. The other 25% were no more than 4 amino acids distant. This indicated that the three genes were very similar in structural organization.

Properdin only binds to C3, not C5 or C4 and the binding site has been localized to a 34 residue fragment at the C-terminal end of the α-chain (Daoudaki et al., 1988). These authors argued that the lack of sequence homology between C3 with C4 and C5 in the region 1402 to 1435 (C3 numbering) and the high degree of homology between C3 species was evidence that this sequence of 34 residues formed part of the binding site. However, in the alignment shown in Figure 5.5, which differs from the Daoudaki et al. alignment, a relatively high degree of homology is seen, with C5 and C4 being 35% and 47% homologous to C3 in this region. There is a region of insertion in the C3 sequences relative to C4 and C5 and this may be significant, as was also pointed out by Daoudaki et al. (1988).
Figure 5.5. Alignment of amino acid sequences of C3, C4 and C5.

Residues or homologous residues conserved over all 7 sequences are shaded. Putative N-carbohydrate attachment sites are underlined and cysteine residues are highlighted. The thiol ester region and the C3 properdin binding site are indicated. The 4 arginine residues lost during formation of the α and β chains in C3, C4 and C5 and the γ chain in C4, are boxed. The amino acids involved at the intron/exon boundaries for murine C5, human C3 and human C4 are double underlined.
Scattering studies on C5 correlated well with similar studies on the homologous complement components C3 and C4 (Perkins & Sim, 1986; Perkins et al., 1990a). The data of Table 5.2 showed that C5 was very similar in gross structural features to those of C3, C3u, C3(a+b), C4, C4u and C4(a+b). Comparisons of the full scattering curves out to a structural resolution of 2 nm \((Q = 3.6 \text{ nm}^{-1}) \) showed that these three glycoproteins were structurally closely homologous. This was further verified by comparisons between the complete amino acid sequences that have been recently published for human C3, C4 and C5 (de Bruijn & Fey, 1985; Belt et al., 1984; Wetsel et al., 1987, 1988; Haviland et al., 1991a). The C3, C4 and C5 sequences can be readily aligned, and the location of cysteiny1 residues and the hydrophathy plots for C3, C4 and C5 were very similar (Nonaka et al., 1985; Wetsel et al., 1987).

This result was in contrast to previous electron microscopy studies on these complement components, as summarised in Table 5.3 (Smith et al., 1982, 1984a; Dahlbäck et al., 1983). It was reported that C3, C4 and C5 possessed globular structures which could be subdivided into at least two and at most four or five domains and with dimensions that differ by several nanometres. Calculation of the volume of the C3b and C4b images was comparable with values of 241 to 244 nm\(^3\) calculated from their sequences, while that of C5, assuming a shape of an elliptical cylinder, gave a volume that was five times larger than the sequence volume of 248 nm\(^3\) (Table 5.1). At least one of the dimensions of C5 may be overestimated. These differences were most likely to result from the non-physiological conditions of the electron microscopy measurements. In relation to the limited scattering data reported by Österberg et al. (1984, 1988) on C3, C4 and C5, their \(R_G \) values of C3u, C4u and C5 were found to be similar at 5.0 to 5.3 nm, in agreement with the data presented here. However their \(R_G \) values for C3 and C4 were as low as 4.25 nm, and their \(\alpha \) values for C3, C4 and C5 varied between -100 to \(55 \times 10^{-5} \). These differences with the present study were best explained by the limited data that were available in the previous studies. For example, the range of the data points in Figure 5.2 show that repeated
measurements of the scattering curves preferably in different buffers and protein concentrations were necessary for a safer interpretation of the experiments.

Structural information on the three small homologous anaphylatoxins C3a, C4a and C5a (Chapter 1) has been obtained using protein crystallography (Huber et al., 1980), model building (Greer, 1985, 1986) and proton NMR (Muto et al., 1985, 1987; Nettesheim et al., 1988; Zuiderweg et al., 1988a, b; Zarbock et al., 1988). The model building showed that C3a, C4a and C5a all have conserved interior residues but very different external surfaces. The crystal structure of C3a has also proved to be a good model for the secondary structure of C3a and C5a in solution by NMR except at the N- and C-terminal ends of the structure. These results extend the above observations of structural homologies.

C5b initiates the formation of the membrane attack complex. Since this complex is inserted into membranes, the degree to which the C5 structure is hydrophobic becomes relevant. Al Salih et al. (1982, 1988) interpreted observations of the behaviour of C5 on phenyl-Sepharose chromatography and the effects of trypsin digestion as evidence for hydrophobic surface regions on C5. The loss of C5a resulted in an increased hydrophobicity in the C5b fragment, suggesting that a conformational change had occurred (Al Salih et al., 1988). Furthermore, DiScipio et al. (1983) suggested that the aggregation of C5b seen on activation of C5 was the result of the exposure of hydrophobic sites; the observation of such aggregates was supported by our preliminary neutron studies on C5b. It should however be noted that activation of C5 in the absence of C6 is nonphysiological and that neither C5b nor C5b,6 binds to membranes. The formation of a ternary complex with C7 is required before membrane binding occurs, and it is likely that the membrane binding site of the complex lies on C7. Neutron and X-ray scattering provided information about the average internal disposition of hydrophilic and hydrophobic residues. The present data on the Stuhrmann α showed that within C5 this distribution was similar to that of native C3 and C4 (Table 5.2) with hydrophilic residues found on average furthest from the core, as indeed found for globular proteins (Perkins, 1988). This was expected since all three were water soluble and had similar ratios of hydrophobic and
hydrophilic residues. The scattering data thus limits the extent to which the surface of C5 can be considered hydrophobic, and in contrast to deductions made from other biochemical investigations, rules out any significant region of surface hydrophobicity.
CHAPTER 6.

STRUCTURAL STUDIES ON PROPERDIN
Figure 6.1. Alignment of human and mouse properdin sequences.

Human (Nolan, 1991) and mouse (Goundis & Reid, 1988) properdin are aligned and conserved residues are shaded. Cysteine residues are highlighted. There is a high degree of homology (76%) between the two species. There is a 49 residue N-terminal region followed by 6 tandemly repeated TSR motifs and ending with a 32 residue long C-terminus.
Properdin is involved in the regulation of the alternative pathway by binding to and stabilizing the C3/C5 convertase complexes, C3b.Bb and C3b\(_n\).Bb (Fearon & Austen, 1975; Medicus et al., 1976; Farries et al., 1987). It also inhibits the cleavage of C3b by factor I in the presence of factor H as cofactor by interfering with the ability of factor I to bind to C3b (Farries et al., 1988a). Properdin binds to the C-terminal region of the \(\alpha\)-chain of C3 between residues 1402 - 1435 (Lambris et al., 1984; Daoudaki et al., 1988) (Figure 5.5) and this binding site is expressed preferentially on surface-bound C3b rather than fluid-phase C3b (Farries et al., 1988a). There is also evidence that properdin binds to the Ba domain of factor B in order to facilitate the cleavage by factor D to form the C3 convertase complex, with the concomitant release of Ba (Farries et al., 1988b).

Mouse and human properdin each consist of a single polypeptide chain of 441-442 amino acids (Goundis & Reid, 1988; Nolan & Reid, 1990; Nolan et al., 1991) (Figure 6.1) with an apparent \(M_r\) of 55,000 when examined under dissociating conditions with or without reduction of disulphide bridges. The percentage homology between the two sequences is high with a value of around 76% (Nolan et al., 1991). Human properdin also contains up to 10% by weight of complex-type N-linked carbohydrate, corresponding to 1 or 2 oligosaccharides per monomer (Minta & Lepow, 1974; Farries & Atkinson, 1989). Six structural motifs homologous to a domain found in thrombospondin (the thrombospondin repeat; TSR) have been identified in properdin, together with an N-terminal and C-terminal region (Goundis & Reid, 1988) (Figure 6.1). In human properdin, each TSR is coded by a separate exon, except that the C-terminal segment also has half the sixth TSR (Nolan et al., 1991). Each TSR is about 58 residues in size. While circular dichroism experiments did not identify any \(\alpha\) helix or \(\beta\) sheet structures (Smith et al., 1984b), FT-IR spectroscopy indicated evidence for \(\beta\)-sheet and \(\beta\)-turn structures in the TSRs, and secondary structure predictions suggested that the \(\beta\)-turns could be correlated with the high proportions of Gly, Pro, Cys and Ser residues in properdin (Perkins et al., 1989).
In plasma, human properdin exists as dimers (P²; 26% of the total), trimers (P³; 54%) and tetramers (P⁴; 20%) at a total concentration of 5.7 ± 1.0 µg/ml, making it one of the least abundant complement components (Pangburn, 1989). Their specific activities decrease in the order P⁴ > P³ > P². A polymer of high molecular weight (Pₙ) had been identified as the "activated" form of properdin, however this has now been shown to be an artefact of purification (Farries et al., 1987; Pangburn, 1989). Electron microscopy on properdin has shown that the monomer is a flexible, rod-like structure of 26 nm in length and 2.5 nm in diameter (Smith et al., 1984b). The quaternary structure of the P², P³ and P⁴ oligomers is formed by the association of these monomers into cyclic structures, probably by strong noncovalent interactions between the N-terminal and C-terminal regions of each monomer.

The TSR is the second most abundant domain found in the complement components. Since about 80% of properdin is constructed of TSRs, properdin is ideal for structural studies of the TSR. These data are required for structural studies of the late complement components, C6, C7, C8αγ, C8β and C9 (Chapter 8). The availability of TSR sequences in these proteins now permits the computation of an optimal sequence alignment and the classification of the TSRs and their physical properties. Small-angle scattering is a powerful technique for determining the arrangement of domains in multi-domain proteins, especially if the analyses can be constrained by other sequence or structural information (Perkins, 1988). For this, high flux beam sources are required in view of the low solubility of properdin. Since the structure is studied under conditions close to physiological, this offers the important advantage that the dimensions of electron microscopy images of properdin (measured in vacuo) can be quantitatively tested. This analysis is independently verified by the use of hydrodynamic spheres to simulate experimental sedimentation coefficients. By these means, the arrangements of TSR domains in properdin P² and P₃ is determined, together with an assessment of the TSR structure in the late complement components.
(6.2) MATERIALS AND METHODS

(6.2.1) Preparation of properdin

The dimeric P₂, trimeric P₃ and tetrameric P₄ forms of properdin were prepared by Dr K.B.M. Reid as described in Perkins et al. (1989). Neutron data were collected on Instrument D11 using either a buffer containing 0.15 M-NaCl, 0.2 mM-EDTA and 12 mM-phosphate, pH 7.4, or 0.5 M-NaCl, 0.2 M-glycine and 12 mM phosphate, pH 7.4, or on Instrument D17 using a buffer containing 0.2 M-NaCl and 12 mM-phosphate at pH 7.0. X-ray data were collected using a buffer containing 0.5 M-NaCl, 0.2 M-glycine and 12 mM phosphate, pH 7.4. For the neutron experiments, samples were dialysed at 6°C into their buffers containing 0%, 80% or 100% ²H₂O for at least 36 hours with four buffer changes. The properdin samples showed a single band corresponding to a \(M_r \) of approximately 55,000 on SDS-PAGE both before and after the solution scattering experiments. The functional activity of the properdin samples was checked after solution scattering in an assay involving the lysis of rabbit red blood cells by a reagent dependent upon the addition of purified properdin (Reid, 1981).

(6.2.2) Neutron and X-ray scattering experiments

Neutron scattering data were obtained in four independent sessions on Instruments D11 and D17 at the ILL, Grenoble. Data were collected by Dr S.J. Perkins on Instrument D11 in two sessions with sample-to-detector distances of 2.00 m, 10.00 m and 11.00 m and wavelengths of 1.001 to 1.002 nm which resulted in a \(Q \) range of 0.05 nm \(^{-1}\) to 1.1 nm \(^{-1}\). Counting times ranged between 2.5 to 4 hours in 0% ²H₂O buffers at 10 m and 11 m for Guinier data to 5 to 8 min in 100% ²H₂O buffers at 2 m for data at large \(Q \), over a concentration range of 0.43 to 1.16 mg/ml. In two sessions on Instrument D17, the \(Q \) range used was 0.07 to 1.4 nm \(^{-1}\), based on sample-to-detector distances of 1.40 m and 3.46 m with a wavelength of 1.106 nm and a main beam-to-detector angle of 0°. Samples in 100% ²H₂O buffers were counted for 1.6 hours at 3.46 m and 0.8 hours at 1.40 m over concentrations of 0.34 to 0.42 mg/ml.
X-ray scattering data were obtained on station 8.2 at the SRS, Daresbury. Experiments were performed with beam currents of 118-133 mA and a ring energy of 2.00 GeV in one session. Samples were measured for 20 minutes at concentrations between 0.28 and 0.85 mg/ml. A 500-channel linear detector at a sample-to-detector distance of 3.83 m was used to give a Q range of 0.05 to 0.97 nm$^{-1}$. Because of the low protein concentrations the data were prone to buffer subtraction errors and curves were only accepted for subsequent analyses if their Guinier plots were linear and led to reproducible data in repeated measurements. Curves were recorded in 10 time frames which were checked individually for radiation damage and then were averaged.

(6.2.3) Debye sphere modelling of properdin

Small Debye sphere modelling was used to interpret the experimental scattering curve out to a Q of 1.6 nm$^{-1}$. To constrain the simulations, the unhydrated volume (66.8 nm3) of properdin (Table 6.1) was calculated using standard crystallographic volumes for amino acids and carbohydrates (Chapters 2 & 3) for the 442 amino acid residues (Nolan et al., 1991) and 28 presumed carbohydrate residues at two sites per monomer. This volume was subdivided into 128 cubes of side 0.8 nm per monomer in an array of 32 x 2 x 2 cubes for the simulations (total volume 65.5 nm3). The total length of the monomer was 25.6 nm in agreement with electron microscopy. Overlapping spheres of the same volume as the cubes (radius 0.496 nm) were positioned at the centre of each cube. Neutron curve fitting was based on data in 0% 2H$_2$O and in 80% and 100% 2H$_2$O to correspond to high positive and high negative solute-solvent contrasts respectively. A trial-and-error procedure was employed to test a wide range of different sphere models in order to determine which ones could be ruled out by the scattering data. Note that this method does not lead to the determination of a unique structure, although all the possible models were constrained by the total volume. The simulated neutron curves were smeared to correct for the contribution of wavelength spread and beam divergence in the experimental data (Chapter 3).
X-ray curve fitting is based on the hydrated volume. The total volume of 88.8 nm3 per monomer was calculated as the sum of the dry volume and a hydration shell surrounding the protein based on a standard hydration of 0.3 g H$_2$O / g glycoprotein and an electrostricted water molecule volume of 0.0245 nm3 in place of the free water volume of 0.0299 nm3 (Chapter 3). This model was subdivided into 128 spheres as above, and the final Debye models were generated on the basis of cubes of side 0.885 nm and spheres of radius 0.549 nm$^{-1}$.

(6.2.4) Hydrodynamic modelling of properdin

Modelling of the sedimentation coefficient $s_{20,w}^0$ was based on the hydrated volume of 88.8 nm3 as in the X-ray curve fitting. The \bar{V} of properdin was calculated as 0.710 ml/g from its composition (Table 6.1), using the consensus volumes in Perkins (1986) which allow for glycoprotein hydration. Calculations of f were performed using a small number of non-overlapping spheres (Chapter 2, 3). The properdin monomer was formed from a line of 10 spheres with a sphere diameter of 2.644 nm, giving a total length of 26.44 nm, in agreement with the length from electron microscopy.

(6.2.5) Sequence alignments and secondary structure predictions

A total of 31 TSR sequences from 11 proteins were aligned manually and also with guidelines provided by the automatic multiple sequence alignment program MULTAL (Taylor, 1990). In the order shown in Figure 6.7 these were: human thrombospondin (3 TSRs) (Lawler & Hynes, 1986; Wolf et al., 1990); mouse thrombospondin (2 of 3 TSRs) (Bornstein et al., 1990); mouse properdin (6 TSRs) (Goundis & Reid, 1988); human properdin (6 TSRs) (Nolan et al., 1991); thrombospondin-related anonymous protein (TRAP) from *Plasmodium falciparum* (1 TSR) (Robson et al., 1988); the late complement components human C6 (3 TSRs) (DiScipio & Hugli, 1989; Chakravarti et al., 1989; Haefliger et al., 1989); human C7 (2 TSRs) (DiScipio et al., 1988), human C8α (2 TSRs) (Rao et al., 1987); human C8β (2 TSRs) (Haefliger et al., 1987; Howard et al., 1987); human C9 (1 TSR) (DiScipio et al., 1984; Stanley et al., 1985); mouse C9 (1 TSR) and trout C9
Secondary structure predictions based on the alignment of Figure 6.7 utilized the Robson and Chou-Fasman methods (Chapter 2, 3). The 31 predictions were averaged using the FORTRAN programs PREDRB7 and PREDCF (Chapter 3).
Figure 6.2. Guinier plots of properdin P_2 and P_3.

The regressed $Q.R_G$ range is arrowed and indicated by filled symbols.

(a) Data for P_2 in $^2\text{H}_2\text{O}$ buffers (o) by neutron scattering and in H_2O buffers (Δ) by X-ray scattering, at concentrations of 0.51 mg/ml and 0.95 mg/ml respectively.

(b) Neutron data for P_3 in 100% (o) and 0% $^2\text{H}_2\text{O}$ (Δ) at concentrations of 1.21 mg/ml and 1.14 mg/ml respectively.
In order to obtain solution structure data on the arrangement of the six TSRs in monomeric properdin, P₂, P₃ and P₄ were studied by neutron scattering in three contrasts at concentrations between 0.3 to 1.2 mg/ml. Scattering data were however only accessible for P₂ and P₃ on Instruments D11 and D17, since P₄ was found to possess too elongated a structure. In addition, P₃ could only be studied in 100% ²H₂O buffers on D17 for reason of the lower neutron flux on D17, since only this buffer has a sufficiently low background. Guinier plots for P₂ and P₃ were linear over a Q range of 0.07 to 0.19 nm⁻¹ (Figure 6.2) which gave acceptable Q.Rₚ ranges of 0.5 to 1.4 (P₂) and 0.7 to 2.0 (P₃). Sample concentrations were determined using an A₂₈₀ (1%, 1 cm) coefficient of 23.9 calculated (Chapter 3) from the human properdin amino acid and carbohydrate composition. It was assumed that there were two triantennary complex-type carbohydrate chains (28 residues) per properdin monomer, giving a total \(M_r \) of 54,100 and a 10.6% carbohydrate content by weight (Table 6.1). The latter was compatible with a biochemical determination of 9.8% carbohydrate (Minta & Lepow, 1974). By comparison, if the carbohydrates were biantennary, the \(M_r \) was 52,800 (8.3% carbohydrate by weight) and the A₂₈₀ coefficient was 24.5. Both these A₂₈₀ coefficients were higher than other estimates of 18 (Reid, 1981) and 17.1 (DiScipio, 1982), but were similar to a value of 23.4 (Nolan & Reid, 1990).

Analyses of the Guinier neutron \(I(0)/c \) or \(R_G \) parameters showed that no dependences on protein concentrations or buffer compositions was found. As a further check of the Guinier data, the \(M_r \) for P₂ and P₃ were calculated from the \(I(0)/c \) values measured in H₂O buffers. The \(M_r \) values of 80,000 ± 20,000 (P₂: 1 value) and 150,000 ± 30,000 (P₃: 2 values) were in satisfactory agreement with the expected values from the primary sequence of 108,200 and 162,300 respectively (Table 6.1). The calculated A₂₈₀ coefficient from the primary structure was one-third higher than previously reported by biochemical determinations but this new value led to satisfactory \(M_r \) values by solution scattering. This revision also
A concentration range of 0.5 to 1.2 mg/ml was used. Buffers were either 0.15 M-NaCl or 0.2 M-NaCl in phosphate (●) (Section 6.2), or 0.5 M-NaCl, 0.2 M-glycine and 12 mM phosphate, pH 7.4 (○).

(a) Matchpoint determination of P₃ from a graph of √(I₀)/ctTS against the volume percentage of ²H₂O. Regression gave a matchpoint of 41.8 ± 1.9 % ²H₂O.

(b) Stuhrmann plot of R_G^2 against the reciprocal solute-solvent contrast difference $\Delta \rho^{-1}$. The solid line corresponds to the mean R_G of 10.7 ± 0.5 nm. The dashed-dotted line corresponds to the regressed line and give an R_G-C of 11.0 nm at zero $\Delta \rho^{-1}$ (dashed line) and a slope α of 4×10^{-3}. The error bars indicate one standard deviation of the Guinier analyses.
Residues
 total amino acids 442
 total carbohydrate 28
 % mass carbohydrate 10.5

M_r, Monomer
 protein 48,400
 carbohydrate 5,700
 total 54,100
 neutron scattering
 Dimer 80,000 ± 20000
 Trimer 150,000 ± 30000

Dry volume (nm³)² 66.8
Overall V (ml/g)² 0.710
Overall Eb/M_r in H₂O (fm) 0.2377
 in 2H₂O (fm) 0.4058

Predicted A₂₈₀ (1%, 1cm)³ 23.92
Literature A₂₈₀ 17.1 to 23.4

Pred. matchpoint (% 2H₂O)⁴ 43.87
Exp. matchpoint (% 2H₂O)
 Dimer 39.3 ± 1.2
 Trimer 41.8 ± 1.9

Stuhrmann analysis mean R_G (nm)
 Dimer 7.3 ± 1.6
 Trimer 10.7 ± 0.5

R_G-C/R_G
 Dimer 3.0 ± 0.7
 Trimer 3.8 ± 0.2

Models
 R_G (nm) Trimer 10.9

Table 6.1. Compositional and scattering data for properdin

Footnotes to Table 6.1
1, 2, 3 & 4: see Table 4.1
3 Literature determinations of A₂₈₀ are reported in Reid, 1981; DiScipio, 1982 and Nolan & Reid, 1990.

implies that previous estimates of the concentration of properdin in plasma, initially 20-25 μg/ml (Minta et al., 1973), then 5.7 μg/ml (Pangburn, 1989), should now be 4.3 μg/ml. For P₃, contrast variation showed that its matchpoint was 41.8 ± 1.9% 2H₂O (nine data points: Figure 6.3(a)). This agreed well with the prediction of 43.9% 2H₂O from the amino acid and carbohydrate composition. For P₂, the limited availability of three data points in 0% and 100% buffers gave a comparable matchpoint of 39.3 ± 1.2% 2H₂O. The linear Guinier plots and the above agreements with known compositions showed that the scattering curves corresponded to monodisperse P₂ and P₃ samples required for structural analyses.
The Stuhrmann plot of P3 is shown in Figure 6.3(b). As a result of low concentrations, the statistical errors of the R_G data were high. Because of the large errors, the final R_G analysis was based on the mean R_G of 10.7 ± 0.5 nm, even though an R_{G-C} of 11.0 ± 0.1 nm and a positive slope α of $4 \pm 1 \times 10^{-3}$ for P3 could be determined from the nine values in Figure 6.3(b). For P2, the mean R_G value was 7.3 ± 1.6 nm from three measurements. Calculation of the elongation ratio R_G/R_O (where R_O is the R_G of the sphere with the same dry volume as P2 or P3) gave values of 3.0 ± 0.7 and 3.8 ± 0.2 for P2 and P3 respectively. Since the R_G/R_O values for typical globular proteins are close to 1.28 (Perkins, 1988), both P2 and P3 possess highly extended structures in solution, in common with many other complement components (Perkins et al., 1990c). If one molecular dimension is much larger than the other two as here, cross-sectional plots of $\ln[I(Q).Q]$ against Q^2 should provide $[I(Q).Q]_{Q=0}$ and R_{XS} data. However, such plots were affected by poor signal-noise or buffer subtraction problems. The R_{XS} was estimated to be of the order of 0.6 ± 0.2 nm from data measured in 100% 2H2O buffers.

Synchrotron X-ray experiments were performed with P2, P3 and P4 at concentrations of 0.29-0.89 mg/ml in order to extend the neutron analyses. Scattering curves were accepted for analyses if linear Guinier plots were obtained in Q ranges of 0.05-0.10 to 0.18-0.20 nm$^{-1}$ (Figure 6.2(a)). As before, data for P4 could not be analyzed. The mean R_G values were 9.1 ± 0.6 nm for P2 (2 values) and 11.6 ± 0.9 nm for P3 (4 values). The ratio of $I(0)/c$ values for P2 : P3 was 1.00 : 1.49 (±17%), which corresponded to the ratio of their relative molecular weights (1 : 1.5). These data were measured in high positive solute-solvent contrasts (Chapter 2), and therefore were comparable with the neutron R_G values in 0% 2H2O buffers. Good agreements were found with the neutron R_G of 9 ± 2 nm for P2 (1 value) and 11.5 ± 0.4 nm for P3 (2 values) in H2O, thus corroborating these analyses. From time frame analyses of the P3 data, the $I(0)$ values increased indicating on-going aggregation during beam exposure, but the R_G values remained constant within error. These data therefore were not utilised in the curve fitting analyses below.
Scattering data for P₃ were compared with molecular models made from small Debye spheres. The length and possible arrangements of the TSRs and the properdin monomers in P₃ therefore could be deduced. Electron micrographs (Smith et al., 1984b) suggested that properdin monomers were 26 nm in length and

Figure 6.4. Low resolution models of properdin.

(a) The final Debye model for trimeric properdin with a cross-section of 2 x 2 spheres is shown (sphere diameter 0.8 nm, monomer of 32 x 2 x 2 spheres).

(b) This model has a similar triangular shape to (a) but with a cross-section of 1 x 4 spheres.

(c) A ring of circumference of 96 spheres and a cross-section of 2 x 2 spheres.

(d) A Y shape, again with a cross-section of 2 x 2 spheres.
Figure 6.5. Neutron scattering curve simulations for P_3.
(a) The curve calculated from the model shown in Figure 6.4(a) is compared with the experimental curves measured in 100%, 80% and 0% 2H$_2$O buffers. The simulated curves were corrected for beam divergence and wavelength spread. The sample concentrations are 0.43, 0.40 and 1.1 mg/ml respectively. Guinier R_G analyses were carried out in the Q range of 0.05 to 0.19 nm$^{-1}$. Error bars due to data counting statistics are shown.
(b) The experimental curve in 100% 2H$_2$O is compared with three alternative models (models (b), (c) and (d) in Figure 6.4).
2.5 to 3 nm in width and associated as cyclic structures. Assuming the monomer to be cylindrical in shape the volume from these dimensions would be 128 to 184 nm3 ($\pi \times \text{(radius)}^2 \times \text{length}$) which is 2 to 3 times larger than that calculated from the composition. The Debye sphere model for the monomer was 26 nm in length and the width was constrained by a dry volume close to 66.8 nm3 (Section 6.2; Table 6.1).

P_3 was most successfully modelled as three linear rods, each of length 32 spheres and circular cross-section 2 x 2 spheres, that were arranged as the sides of an equilateral triangle (Figure 6.4(a)). This dry model had an R_G of 10.9 nm, in very good agreement with the observed mean neutron R_G of 10.7 ± 0.5 nm. The simulated neutron curves agreed well with the neutron data in 100%, 80% and 0% 2H$_2$O (Figure 6.5(a)), with satisfactory R values of 0.026, 0.047 and 0.059 respectively. The structure of this model agreed well with the observed electron micrographs of P_3.

Three other cyclic and extended models for P_3 were tested against the solution data (Figure 6.5(b)). The use of an asymmetric cross-section of 1 x 4 spheres in the triangular model (Figure 6.4(b)) led to worsened curve fits at large Q values (R of 0.034 in place of 0.026) although the R_G was comparable at 10.7 nm. The use of a circular ring of circumference 96 spheres and cross-section 2 x 2 spheres (Figure 6.4(c)) led to an R_G of 12.6 nm that was significantly larger than the experimental value, and worsened curve fits in the Q range between 0.2 to 0.4 nm$^{-1}$, although the curve fits at large Q were similar (R of 0.030). Y-shaped models were tested in which the sides of the triangle were brought into contact with each other to result in a three-armed structure, such that the TSRs within each monomer were positioned in contact with TSRs in the neighbouring monomer (Figure 6.4(d)). Here, however, the R_G value was much increased to 15.0 nm, but the curve fits were similar (R of 0.031). These poorer curve fits and altered R_G values with alternative arrangements of properdin monomers supported the proposal of a triangle model as the likely solution structure for P_3.

192
Figure 6.6. Hydrodynamic simulations of properdin.
Hydrodynamic models for tetrameric, trimeric and dimeric properdin are shown, using spheres of diameter 26.44 nm. These are based on a monomer of 1 x 10 spheres.
For properdin, sedimentation coefficients $s_{20,w}^0$ of 5.0 S (DiScipio, 1982), 5.2 S (Minta & Lepow, 1974; Minta & Kunar, 1976) and 5.1–5.3 S (Pensky et al., 1968) have been reported. These authors were not able to resolve P₂, P₃ and P₄ by ultracentrifugation. These $s_{20,w}^0$ data provide independent structural data of the degree of elongation of the P₂, P₃ and P₄ structures in solution. Simulations were performed using hydrodynamic sphere models to calculate the $s_{20,w}^0$ values of the models determined by solution scattering. The best agreements were based on a monomer length of 26 nm, constructed from a line of 10 spheres of diameter 26.44 nm. The P₂, P₃ and P₄ models were represented by two parallel lines, an equilateral triangle, and a square respectively (Figure 6.6). The predicted $s_{20,w}^0$ values were 5.08 S, 4.98 S and 5.21 S respectively. The similarity of these values explained why the three forms cannot be distinguished by ultracentrifugation. These agreements were evidence that the length of the monomer was very close to that of 26 nm determined by solution scattering and electron microscopy. Calculations based on other lengths (Table 6.2) for the monomer showed that a typical error of ± 0.2 S in the simulation corresponded to changes in the monomer length of ± 2 nm.

<table>
<thead>
<tr>
<th>Monomer length</th>
<th>$s_{20,w}^0$ Dimer (S)</th>
<th>$s_{20,w}^0$ Trimer (S)</th>
<th>$s_{20,w}^0$ Tetramer (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 nm</td>
<td>5.86</td>
<td>6.14</td>
<td>6.58</td>
</tr>
<tr>
<td>26 nm</td>
<td>5.08</td>
<td>4.98</td>
<td>5.21</td>
</tr>
<tr>
<td>28 nm</td>
<td>4.96</td>
<td>4.80</td>
<td>5.01</td>
</tr>
<tr>
<td>30 nm</td>
<td>4.83</td>
<td>4.63</td>
<td>4.81</td>
</tr>
</tbody>
</table>

Table 6.2. Calculated sedimentation coefficients for P₂, P₃ and P₄

(6.3.4) Classification of TSR sequences

In order to characterize the properties of a TSR within the properdin monomer, 31 full TSR sequences were aligned in Figure 6.7. This analysis was improved in comparison to that given in Perkins et al. (1989) because the intron/exon boundaries of the human and mouse thrombospondin genes (Wolf
<table>
<thead>
<tr>
<th>Group 1</th>
<th>1---------17</th>
<th>18--24</th>
<th>25---------37</th>
<th>38-------50</th>
<th>51-----58</th>
<th>Net change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombospondin (human)</td>
<td>SDSADGWSPKPSKTSKSTSTS</td>
<td>CGGISQQ</td>
<td>RRGRSDSLNNR</td>
<td>CEGSVTQRT</td>
<td>CHIQE</td>
<td>-2 (-1)</td>
</tr>
<tr>
<td>Thrombospondin (mouse)</td>
<td>SDSADGWSPKPSKTSKSTSTS</td>
<td>CGGISQQ</td>
<td>RRGRSDSLNNR</td>
<td>CEGSVTQRT</td>
<td>CHIQE</td>
<td>-2 (-1)</td>
</tr>
<tr>
<td>Properdin (mouse)</td>
<td>SPWSAWIKLPGKCSVT</td>
<td>CGGISQL</td>
<td>RRGRSDSLNNR</td>
<td>CEGSVTQRT</td>
<td>CHIQE</td>
<td>-2 (-1)</td>
</tr>
<tr>
<td>Properdin (human)</td>
<td>SPWSAWIKLPGKCSVT</td>
<td>CGGISQL</td>
<td>RRGRSDSLNNR</td>
<td>CEGSVTQRT</td>
<td>CHIQE</td>
<td>-2 (-1)</td>
</tr>
<tr>
<td>Properdin (human)</td>
<td>SPWSAWIKLPGKCSVT</td>
<td>CGGISQL</td>
<td>RRGRSDSLNNR</td>
<td>CEGSVTQRT</td>
<td>CHIQE</td>
<td>-2 (-1)</td>
</tr>
<tr>
<td>Properdin (human)</td>
<td>SPWSAWIKLPGKCSVT</td>
<td>CGGISQL</td>
<td>RRGRSDSLNNR</td>
<td>CEGSVTQRT</td>
<td>CHIQE</td>
<td>-2 (-1)</td>
</tr>
<tr>
<td>C6 N1 (human)</td>
<td>CFCGHYAMQHTWSKST</td>
<td>CNSGTQS</td>
<td>RHRQTVVDKYQGE</td>
<td>NCFOEIOCKSOETREDNWO</td>
<td>DP</td>
<td>+1 (+3)</td>
</tr>
<tr>
<td>TRAP (human)</td>
<td>KTASGVDWIKPSKCSVT</td>
<td>CGKTR</td>
<td>RKREL</td>
<td>HEGCSTQEOQCEEER</td>
<td>DP</td>
<td>-2 (-1)</td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6 N2 (human)</td>
<td>INCLGDFPSKPSDCP</td>
<td>GIEKQ</td>
<td>KVRSLRPSQFGG</td>
<td>GPTETPLVAFOF</td>
<td>CIPSGLK</td>
<td>+1</td>
</tr>
<tr>
<td>C7 N (human)</td>
<td>VNDWOFKPSKPSENG</td>
<td>CTKQT</td>
<td>RRRWSVAYQGYYG</td>
<td>OPCDGAFETOS</td>
<td>CEPTGRP</td>
<td>+1</td>
</tr>
<tr>
<td>C8a N (human)</td>
<td>VDOLSKSWKPSODFB</td>
<td>QDQKKY</td>
<td>RHRSLQPOKNGF</td>
<td>TICSSQDIOOAS</td>
<td>CSSITTV</td>
<td>0 (+1)</td>
</tr>
<tr>
<td>C8b N (human)</td>
<td>IDEGSQLSKPSOCD</td>
<td>QDQKRY</td>
<td>RYALQLPOQFHG</td>
<td>EPCNFSQKVE</td>
<td>CVRTNRP</td>
<td>-1 (0)</td>
</tr>
<tr>
<td>C9 N (human)</td>
<td>IDCDMSKPSKSDCP</td>
<td>GLQMF</td>
<td>RRSRSIVFGQFNG</td>
<td>KRCDDAVQORQ</td>
<td>CVPTPEP</td>
<td>0</td>
</tr>
<tr>
<td>C9 N (mouse)</td>
<td>IDCDMSKPSKSDCP</td>
<td>GLQMF</td>
<td>RRSRSIVFGQFNG</td>
<td>KRCDDAVQORQ</td>
<td>CVPTPEP</td>
<td>0</td>
</tr>
<tr>
<td>C9 N (trout)</td>
<td>VOGWSKPSKPSQCP</td>
<td>CTKIRW</td>
<td>RRSRSIVFGQFNG</td>
<td>KRCDDAVQORQ</td>
<td>CVPTPEP</td>
<td>0 (+1)</td>
</tr>
<tr>
<td>Group 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6 C (human)</td>
<td>VDGQWGSWIKPSKQTDA</td>
<td>TYKRS</td>
<td>RRREDNNPAPOQG</td>
<td>GKRCDEGEKQED</td>
<td>GT</td>
<td>+1</td>
</tr>
<tr>
<td>C7 C (human)</td>
<td>VDGQWGSWIKPSKQTDA</td>
<td>TYKRS</td>
<td>RRREDNNPAPOQG</td>
<td>GKRCDEGEKQED</td>
<td>GT</td>
<td>+1</td>
</tr>
<tr>
<td>C8a C (human)</td>
<td>ADGGWGSWIKPSQCP</td>
<td>GQIE</td>
<td>RRRREDNNPAPOQG</td>
<td>GASPGRKQVPQ</td>
<td>C</td>
<td>+2</td>
</tr>
<tr>
<td>C8b C (human)</td>
<td>IDGGWGSWIKPSQCP</td>
<td>RRRKKT</td>
<td>RRREDNNPAPOQG</td>
<td>GASPGRKQVPQ</td>
<td>C</td>
<td>+3</td>
</tr>
<tr>
<td>C9 C (trout)</td>
<td>EKGNWSPKPSKSEQ</td>
<td>GKKRI</td>
<td>TKRSQT</td>
<td>QGL</td>
<td>DATORDGVIDTEYD</td>
<td>C</td>
</tr>
</tbody>
</table>

Robson
- bttttttttttttttttttttt
- bbbttttttttttttttttttt

Chou-Fasman
- tttttttttttttttttttttt
- bttttttttttttttttttttt

195
et al., 1990; Bornstein et al., 1990) and the human properdin gene (Nolan et al., 1991) have been determined. These define the start and end of each TSR (Craik et al., 1982; Traut, 1988). The start of the TSR has now been displaced by 10 residues compared to that in Perkins et al. (1989). The alignment was also improved by the use of the automated multiple sequence alignment program MULTAL (Taylor, 1990). In order to facilitate the averaging of structural properties (Taylor, 1986; Perkins et al., 1988), gaps were minimized and homology was maximized between conserved or conservatively replaced residues. Figure 6.7 shows that 8 residues were greater than 90% conserved in the 31 TSRs (Trp-8, Ser-9, Trp-11, Cys-14, Arg-25, Arg-27, Cys-41, Cys-51).

The TSRs were readily subdivided into 3 groups on the basis of different Cys residue locations and different TSR lengths, in an extension of the initial survey of Patthy (1988). The closer similarities of the sequences within each group was confirmed by the MULTAL analyses using a range of sequence gap penalties. The principal characteristics of the three groups are summarized:

(i) Group 1, which included the thrombospondin and properdin sequences,

Figure 6.7. Alignment of 31 sequences for the thrombospondin repeat.
Residue conservation greater than 70% within a group of sequences is denoted by * above the sequences, and are shaded if these are Cys residues. Residues conserved to better than 90% in all 31 sequences are indicated by two * above the sequences, and all are shaded. Putative glycosylation sites are underlined and indicated by g beneath the sequences. IQQ and RDG peptides are shown in the first and fourth sequences, and the last sequence respectively. The averaged secondary structure prediction by the Robson and Chou-Fasman methods for the 31 sequences is shown beneath the sequences (b, β-sheet; a, α-helix; t, turn; c, coil). The letter is underlined if the prediction occurs in over 75% of the 31 sequences. To the right, the net charge found in each TSR is given assuming that the charged residues are D, E, R and K; the bracketed figures correspond to the assumption that H is charged also, which, at a blood pH of 7.4, is not likely to be significant.
and interestingly the first N-terminal TSR of C6, contained complex arrangements of between 4 to 7 Cys residues. These occurred most frequently at Cys-14, -18, -29, -41, -51 and -57. The consensus length of the TSR was 58 residues, of which 19 residues were conserved to better than 70%. The mean length of 19 sequences was 59.2 ± 3.8 residues. The properdin TSRs generally displayed 2 to 4 positive charges on average, depending on the ionisation state of about two His residues per TSR. Insertions or deletions in the Group 1 sequences led to five contiguous peptide segments and four gap/insertion regions as indicated in Figure 6.7, of which the first segment (residues 1-17) exhibited the highest residue conservation.

(ii) Group 2 corresponded to the N-terminal TSRs of the late complement components except for that above in C6. These contained 6 Cys as in Group 1, except that Cys-29 is replaced by Cys-3. Most notably, the well conserved Trp-5, Cys-29 and Gly-43 residues in Group 1 were poorly conserved in Group 2, while several well-conserved residues 33-37 in Group 2 do not have their counterpart in Group 1. The consensus length was 55 residues and the mean length (7 sequences) was 55.1 ± 0.4 residues, 23 of which were conserved to better than 70%. These TSRs were generally uncharged.

(iii) Group 3 corresponded to the C-terminal TSRs in the late components. This group contained 5 Cys residues at Cys-7, -14, -29, -41 and -51. This group exhibited the highest residue conservation and the shortest sequences; the consensus length was 48 residues and mean length (5 sequences) was 47.4 ± 1.5 residues, 25 of which were conserved to better than 70%. While Trp-5, Cys-29 and Gly-43 were as well-conserved as in Group 1, many conserved residues in Group 3 have no counterpart in Group 1. These TSRs exhibited low positive charges.

A possible connectivity scheme for the three principal disulphide bridges in TSRs may be proposed from the alignment. It is likely that Cys-18 is linked to Cys-57 since both were missing in Group 3 when compared to Groups 1 and 2. Inspection of the four remaining Cys residues showed suggestively that Cys-41 and Cys-51 were both missing in the last TSR of human and mouse properdin, and therefore these appeared to be bridged in other sequences. Accordingly Cys-14 may be linked either to Cys-29 (Groups 1 and 3) or Cys-3 (Group 2; and similar
Figure 6.8. Secondary structure predictions of the TSR domain.

(a) The β-biased Robson prediction based on the 1978 (Garnier et al., 1978) propensity tables. The coil predictions are only shown when they are the dominant structure.

(b) The Chou-Fasman prediction.

In both prediction methods, two regions of turn (t₁ and t₂; residues 1 to 22 and 32 to 42) and one region of β-sheet (b₁; residues 23 to 31) could be identified. The symbols are: α-helix (■), β-sheet (●), β-turn (▲) and coil (v).
Cys residues in the C6 N1 and TRAP sequences of Group 1). This scheme implied that Cys-7 in Group 3 was unlinked within the TSR.

A total of 9 putative NxT or NxS glycosylation sites were identified. An IQQ motif (factor XIII_a binding; Bale et al., 1985) was found in human and mouse thrombospondin. An RGD motif (cell surface receptor binding; Yamada, 1989) was found in trout C9 (Stanley & Herz, 1987). The structural motif WSxWS was found in 14 TSRs, occurring once or twice in all the protein sequences of Groups 1, 2 and 3 except for those of TRAP and trout C9. This motif exists also in the cytokine haematopoietin receptor superfamily but the function of this motif has not been determined (Cosman et al., 1990). Within several TSRs in Group 1 (but not in Groups 2 or 3), a motif CSVTCGxGxxxRxR was found which is thought to function as a sulphated glycoconjugate-binding domain in properdin (Holt et al., 1990), although this motif was only conserved in full in the TRAP sequence and in three of the thrombospondin sequences. Prater et al. (1991) suggested that the VTCG peptide was a recognition site for a receptor and a sequence further downstream was the glycoconjugate-binding site. The 2

The average of the 31 secondary structure predictions was computed, based on the Robson (β biased) (Figure 6.8(a)) and Chou-Fasman methods (Figure 6.8(b)). Very similar predictions to those reported previously (Perkins et al., 1989) were obtained. The total percentages of the four or three conformations present were identical. By the Robson method, these were: α-helix, 0%; β-sheet, 38%; turn, 57%; coil, 5%. The Chou-Fasman method gave: α-helix, 16%; β-sheet, 18%; turn, 66%. Two regions of high turn propensities could be identified (t_1 and t_2; residues 1-22 and 32-42) and one region of β-sheet (b_1; residues 23-31). While the two turn regions contained both hydrophilic and hydrophobic residues, nine out of the ten residues in the b_1 region were found to be hydrophilic. Further examination of the individual structure predictions supported the subdivision of
TSRs into three groups. Unlike Groups 1 and 3, residues 1 to 5 in Group 2 were predicted as β-sheet. The predictions suggested that the b_1 region had different lengths, namely residues 23 to 28 in Group 1, residues 19 to 33 in Group 2, and residues 22 to 26 in Group 3.
(6.4) CONCLUSIONS

(6.4.1) Structure of monomers in properdin

Despite the low properdin concentrations, the use of high flux beam sources (in particular at the ILL) led to successful measurements of solution scattering curves. These were the most fruitful for the trimer P₃, which is the most abundant oligomer. Curve fitting was most successfully carried out in terms of open triangular structures in solution conditions close to physiological, with overall dimensions that were highly similar to the length of 26 nm reported by electron microscopy. Flexibility between the TSRs in each properdin monomer cannot however be ruled out by the scattering data.

Properdin had a high isoelectric point greater than 9.5. This was readily correlated with the excess of positive charges (R, K) over negative charges (D, E) in five of the six TSRs in the human sequence (Figure 6.7). It is possible that these charges may offer an explanation of these open cyclic structures, since the TSRs may repel each other. The three forms of properdin P₂, P₃ and P₄ once isolated do not re-equilibrate into a mixture. The structural studies suggest that the monomers associate between alternate N-terminal and C-terminal peptides at each end of each monomer. Inspection of their sequences suggest that the stability of these oligomers may be mediated by ionic interactions between up to 22 opposite charges in these regions.

(6.4.2) Structure of TSRs in properdin

Structural information on TSRs have been deduced from this study. Since TSRs exist in single copies in the late complement components, and since the multiple TSRs in thrombospondin and five out of the six TSRs in properdin are encoded by separate exons, it can be inferred that each TSR constitutes an independently folded protein structure. While TSRs are the second most abundant complement sequence motif, analysis shows that these may be subdivided into three groups.
The TSRs in these three groups exhibit distinct differences in Cys contents, lengths and overall charges. Since similar locations for gaps and insertions could be proposed in the 31 TSR sequences (Figure 6.7), the protein backbone structure is expected to be similar in all three groups, even though the TSR in the late complement components is smaller. In support of this premise, only minor differences were seen between the Groups in the structure predictions.

To interpret the solution scattering analyses, the dry volume of each TSR can be calculated from amino acid compositions (Perkins, 1986). The average volume of the TSRs of Group 1 (excepting TRAP), Group 2 and Group 3 without carbohydrates were $8.2 \pm 0.6 \text{ nm}^3$, $7.6 \pm 0.6 \text{ nm}^3$ and $6.3 \pm 0.3 \text{ nm}^3$ respectively. If the TSR were spherical, its diameter would be 2.5 nm, 2.4 nm and 2.3 nm respectively in the three Groups. The average volume for human and mouse properdin of the N- and C-terminal polypeptides was found to be $6.64 \pm 0.18 \text{ nm}^3$ and $4.16 \pm 0.08 \text{ nm}^3$ respectively. If spherical, these would have diameters of 2.4 and 2.0 nm respectively. The length of a properdin monomer is 26 nm. If each of the six Group 1 TSRs found in properdin are assumed to be spherical in shape, together with the N-terminal and C-terminal peptides, the sum of the eight diameters gives a total length of 19 nm if all eight structures were positioned in a linear arrangement. Since this length is notably shorter than the observed length, this shows that the TSR has an elongated structure. Its length can range between 3.25 nm to 4.3 nm, depending on the presumed structure of the N-terminal and C-terminal regions (Perkins et al., 1989). On the basis of the scattering curve fits at large Q for properdin, the cross-sectional dimensions of the TSR are compact at average values of $1.7 \text{ nm} \times 1.7 \text{ nm}$. On this scale, each TSR is equivalent to 16 spheres (Figure 6.4). Similar overall dimensions are expected for the TSRs found in the late complement components.
CHAPTER 7.

STRUCTURAL STUDIES ON C9
Figure 7.1. Alignment and domain structure of human, mouse and trout C9.

Human (DiScipio et al., 1984; Stanley et al., 1985), mouse and trout (Stanley & Herz, 1987) sequences are aligned and residues homologous to all three sequences are shaded. A total of 29% of the residues are conserved in all three sequences with reference to the human sequence. The residue numbering follows the human sequence. The 4 domains of C9 as determined from sequence homologies i.e. the TSR, LDLr, PLR and the EGF are indicated. Full sequence and structural analyses of these domains can be found in Chapters 6 and 8.
INTRODUCTION

The complement component C9 is the final protein involved in the lytic pathway of the cascade. The sequential addition of the late complement components C6, C7, C8 and several molecules of C9 \((n = 1 \text{ to } 18)\) to C5b leads to the formation of the membrane attack complex (MAC). Although the binding of a single C9 molecule to the C5b-8 complex is sufficient for lysis of the simple membrane bilayer of erythrocytes, at least two molecules of C9 are necessary to span the bacterial outer and inner membranes of *Escherichia coli* to cause cell lysis (MacKay & Dankert, 1990; Bloch et al., 1987). Electron micrographs show that the MAC appears as a ring-like or cylinder-like pore structure penetrating the membrane. This creates open lesions through which cellular components can leak, thereby causing cell death (Borsos et al., 1964; Podack et al., 1982a, b; Tschopp et al., 1982, 1984; Tschopp, 1984a; Dankert & Esser, 1985; Bhakdi & Tranum-Jensen, 1986; Biesecker et al., 1991). It is thus clear that C9 is the major protein involved in the terminal stage of complement-mediated cell lysis.

C9 consists of a 537-residue polypeptide chain to which are attached two N-linked oligosaccharides (DiScipio et al., 1984; Stanley et al., 1985; Kontermann & Rauterberg, 1989). C9 contains three cysteine-rich domains. There is a thrombospondin repeat (TSR) and a low density lipoprotein receptor (LDLr) domain at the N-terminus, and an epidermal growth factor-like (EGF) domain at the C-terminus (Figure 7.1). The TSR and LDLr domains form a large part of the hydrophilic C9a fragment \((M_r 28,000)\) formed by the cleavage of C9 into C9a and C9b by \(\alpha\)-thrombin (Biesecker et al., 1982; DiScipio et al., 1984; Stanley et al., 1985; Shiver et al., 1986) (Figure 7.1). The central region of the C9 sequence has strong sequence homology with perforin (perforin-like region, PLR), a pore-forming protein secreted from cytotoxic T lymphocytes (Figure 7.1) (Shinkai et al., 1988) and appears to possess some specific hydrophobic properties. Both C9 and perforin form large aqueous channels in membranes (internal diameter 10 nm for C9 and 16 nm for perforin) with little ion selectivity (Young et al., 1986).

Other constituents of the MAC (C6, C7, C8\(\alpha\) and C8\(\beta\)) have structural,
functional and antigenical similarities to C9. Comparison of the sequences show that, while C6, C7, C8α and C8β all contain the TSR, LDLr, PLR and EGF domains also found in C9, they also contain between one to six extra TSR, SCR and FIM domains at their amino and/or carboxy terminal ends (Chapter 1) (Haefliger et al., 1989; Chakravarti et al., 1989; DiScipio & Hugli, 1989). C9 is thus the archetypal protein structure whose molecular properties are likely to be present in other components of the MAC.

C9 undergoes a dramatic structural change upon polymerisation and insertion into lipid bilayers in which the N-terminal and C-terminal segments appear to unfold, doubling the length of the molecule (Podack & Tschopp, 1982a; Tschopp et al., 1982; DiScipio & Hugli, 1985, Marazziti et al., 1989) and forming neoantigenic sites (Dalmasso et al., 1984). This unfolding appears to be catalysed by the interaction of C9 with the C5b-8 complex (Tschopp et al., 1984). The insertion of C9 into the MAC is thought to occur in a two stage process. First, C9 binds to C8α in the C5b-8 complex, projecting partly into the membrane. The N-terminus of C9 projects into the cytoplasmic space whereas the C-terminus is not involved in either haemolysis or polymerization (Kontermann et al., 1990). C9 then unfolds in a temperature dependent step (Marazziti et al., 1989) and exposes more binding sites for C8α and C9, allowing C9 polymerization (Kontermann et al., 1990). The sequential association of between 12 and 18 of these extended molecules forms a circular tubular polymer of \(M_r \) in excess of \(10^6 \). Electron micrographs of tubular poly-C9 suggest that this assembly has a length of 16 to 21 nm, an outer diameter of 15 to 22 nm and an inner diameter of 9 to 11 nm (Podack & Tschopp, 1982a; DiScipio & Hugli, 1985) whereas monomeric, free C9 has dimensions of 7-8 nm x 5-5.5 nm (Podack & Tschopp, 1982a). An estimation of the channel diameter of poly-C9 by the liposome swelling assay gave a comparable value of 9 to 10 nm (Zalman & Müller-Eberhard, 1990) and the diameter of the MAC in erythrocyte ghosts by confocal laser-scanning microscopy gave a value 7 nm, corresponding to around 8 C9 molecules (Sauer et al., 1991). The diameter of pores created by C5b-8 only were much smaller at 3 nm. The incorporation of 12 molecules of C9 into the MAC gives a similar pore diameter as poly-C9 (Zalman & Müller-Eberhard, 1990).
Three major hypotheses for the action of C9 on lipid bilayers currently exist. In one, it is proposed that C5b-9 complexes form a stable hollow polymeric structure in the bilayer and that leakage of cellular components through this causes cell death (the "doughnut" hypothesis) (Young & Young, 1990). Alternatively, the insertion of C9 destabilises the lipid bilayer surrounding the inserted polymer by a detergent-like mechanism (the "leaky patch" hypothesis) (Mayer, 1972; Esser et al., 1979). Arguments both for and against these two hypothesis have recently been published (Esser, 1991; Bhakdi & Tranum-Jensen, 1991). A third possible mechanism for complement-mediated cell death is the dissipation of the membrane potential across the inner membrane. The insertion of the C5b-8 complex leads to a transient collapse in potential which becomes irreversible upon the incorporation of C9 (Dankert & Esser, 1986; Dankert & Esser, 1987). The presence of the C5b-8 complex also increases the permeability of the membrane. The binding of C8 to the C5b-7 complex is thought to initiate the redistribution of lipid between the inner and outer monolayers, affecting the physical properties of the membrane surface (Van der Meer et al., 1989; Young & Young, 1990).

Small-angle scattering can give structural data on the arrangement of domains in multi-domain proteins, especially if the analyses are constrained by known volumes or known structures (Perkins, 1988). Here, the structure of C9 and its overall dimensions could be defined under conditions close to physiological. Interpretations of the scattering data were constrained by analyses of the sequences for the four domains in C9 (Chapters 6 & 8). Together with similar studies on C5 of complement (Chapter 5; Perkins et al., 1990b), and complementary hydrodynamic modelling studies of C6, C7, C8 and C9, the two principal protein structures involved in MAC formation have been investigated by scattering. This opens the way for more detailed studies of the proteins and their complexes in the MAC.
(7.2) MATERIALS AND METHODS

(7.2.1) Preparation of C9

The C9 samples were prepared by Dr R.A. Harrison (Smith et al., 1992). The final purified preparation of C9 contained a low level (< 5% by weight) of transthyretin (previously known as prealbumin) but no high molecular weight polymers of C9 could be detected.

Neutron scattering data were collected using buffers containing 0.2 M-NaCl, 20 mM-Na,K phosphate, 1 mM-EDTA, pH 7.0, or 0.5 M-NaCl, 20 mM-Na,K phosphate, 1 mM EDTA, pH 7.0. The neutron samples of C9 were dialysed at 6°C into their buffers containing 0%, 80% or 100% 2H$_2$O for at least 36 hours with four buffer changes. X-ray data were collected based on C9 in buffers containing either 0.2 M-NaCl, 0.02 M-borate, 1 mM CaCl$_2$, 5 mM EDTA, pH 7.5 or 0.15 M-NaCl, 12.5 mM-phosphate, 0.5 mM-EDTA, pH 7.0.

(7.2.2) Neutron and X-ray scattering experiments

Neutron scattering data on C9 were principally obtained in two independent sessions on Instrument D17 at the ILL, Grenoble. Two further sessions on D17 were used to complete data collection on C9 in 100% 2H$_2$O. Sample-to-detector distances of 3.46 m and 1.40 m and a main beam-detector angle of 0° and 20° were used with a neutron wavelength of 1.106 nm. The resulting Q range was 0.05 to 3.25 nm$^{-1}$. Individual sample counting times typically ranged between 3 to 21 min for C9 concentrations between 2.4 to 7.6 mg/ml in 100% 2H$_2$O buffers, and between 26 min to 1.7 h for concentrations between 2.3 to 6.8 mg/ml in 0% 2H$_2$O buffers.

X-ray scattering data were obtained using Station 8.2 at the SRS, Daresbury. Experiments were performed with beam currents of 99 to 130 mA and a ring energy of 2.00 GeV in two sessions. Samples were measured for 10 minutes at concentrations between 2 to 23 mg/ml. The use of a 500-channel quadrant...
detector at sample-to-detector distances of 4.16 m and 3.45 m resulted in Q ranges of 0.11 to 1.61 nm\(^{-1}\) and 0.08 to 2.40 nm\(^{-1}\). Data were only accepted if the subsequent Guinier plots were linear and led to reproducible data in repeated measurements.

Indirect transformation of the scattering data $I(Q)$ into real space $P(r)$ was carried out for both neutron and X-ray data. The R_G and length of C9 can be determined from the whole scattering curve measured out to Q of 3.25 nm\(^{-1}\) (neutrons) or 1.61 nm\(^{-1}\) or 2.40 nm\(^{-1}\) (X-rays). A total of 8 splines (neutrons and X-rays) were used to fit the experimental curves (83 and 113 data points respectively). The maximum dimension D_{max} of C9 for ITP was specified as 15 nm and 20 nm respectively (Chapter 2, 3). The number of points used to define $P(r)$ in real space was 101. The molecular length was determined from $P(r)$ when this became zero at large r.

(7.2.3) Debye sphere modelling of C9

The neutron and X-ray scattering curves for C9 were modelled to large Q using small Debye spheres (Chapters 2 & 3). To constrain the simulations, the unhydrated volume (83.4 nm\(^3\)) of C9 (Table 7.1) was calculated from the amino acid composition (Perkins, 1986). This volume was arbitrarily subdivided into 168 cubes of side 0.792 nm. Overlapping spheres of the same volume as a cube were placed at the centre of each cube. Neutron curve fitting was based on data in 0%, 80% and 100% \(^2\)H\(_2\)O. The dependence of the scattering on the solute-solvent contrast was accounted for by dividing the spheres into an outer hydrophilic region and an inner hydrophobic core. Strictly, the hydrophilic and hydrophobic components should have been attributed matchpoints of 51% \(^2\)H\(_2\)O and 34% \(^2\)H\(_2\)O respectively but because of the simplicity of the model, values of 55% \(^2\)H\(_2\)O and 35% \(^2\)H\(_2\)O were used. The number of spheres assigned to each density was determined from the volume of the hydrophilic amino acids and carbohydrate, and hydrophobic amino acids in the sequence (Chapter 3). A wide range of models were tested on a trial-and-error basis to determine which ones were incompatible with the solution scattering data. Note that this method does not lead to the
Figure 7.2. Effect of transthyretin on the C9 scattering curve.
The scattering curve for the C9 model (———) is compared with the scattering
curve derived from the crystal co-ordinates of transthyretin (— — —) and a
composite scattering curve of C9 and transthyretin, assuming a 5% contribution
by transthyretin and 95% from the C9 model (· · · ·). The small deviation of the C9
plus transthyretin curve from C9 model curve suggests that a contamination of
5% has no significant effect on the C9 scattering curve.

determination of a unique structure as the result of spherical averaging. Standard
wavelength spread and beam divergence corrections were applied to the simulated
neutron curves before these were compared with the experimental curves
(Chapter 3). Since the C9 samples contained low amounts (< 5%) of transthyretin,
control calculations using the X-ray crystallographic co-ordinates of transthyretin
(Blake et al., 1978; Brookhaven protein database reference 2PAB) were carried
out to show that its effects on the scattering curve simulations of C9 were
negligible (Figure 7.2).

X-ray curve fitting for C9 (in a high positive solute-solvent contrast) was
based on the hydrated volume. The total volume of 110.5 nm3 for the 168 Debye
spheres was obtained using a hydration of $0.3 \text{ g H}_2\text{O} / \text{g glycoprotein}$ and an electrostricted water molecule volume of 0.0245 nm^3 (Perkins, 1986) (Chapter 2). The final Debye models were generated with spheres of diameter 1.079 nm (equivalent in volume to cubes of side 0.870 nm).

(7.2.4) **Hydrodynamic modelling of C6, C7, C8 and C9**

Modelling of the sedimentation coefficient $s_{20,w}^0$ for C6, C7, C8 and C9 was based on the hydrated volume as in the X-ray curve fitting. From sequences, the dry volumes of C6, C7 and C8 were calculated as 134.1 nm^3, 119.8 nm^3 and 193.1 nm^3 respectively, assuming that all the potential glycosylation sites were occupied with biantennary complex-type oligosaccharides. The calculated hydrated \tilde{V} for C6, C7, C8 and C9 were 0.720 ml/g, 0.719 ml/g, 0.721 ml/g and 0.722 ml/g respectively (Perkins, 1986). If a small number of hydrodynamic spheres were used, this hydration was replaced by a notional value of $0.39 \text{ g H}_2\text{O/ g glycoprotein}$ in order to compensate for the volume lost in the void spaces between the non-overlapping spheres required for the simulations of f (Chapter 3). Alternatively, the hydrated X-ray model for C9 (168 non-overlapping spheres of diameter 0.870 nm) was employed directly in the simulations. Calculations were performed by the modified Oseen tensor procedure using the program FRCC (Chapters 2 & 3).
Figure 7.3. Guinier analyses of C9 by neutron and X-ray scattering.

The $Q.R_G$ and $Q.R_{XS}$ ranges used for the R_G and R_{XS} determinations are arrowed and indicated by filled symbols. The neutron data were obtained in 0.5 M NaCl buffers, while the X-ray data were obtained in 0.2 M NaCl buffers (Section 7.2). The X-ray curves in (c) and (f) are displaced on the vertical axis for clarity.

(a) and (d). Neutron R_G and R_{XS} Guinier plots respectively for C9 in 100% 2H$_2$O buffers at sample concentrations of 7.3 (o) and 4.7 mg/ml (α).

(b) and (e). Neutron R_G and R_{XS} Guinier plots respectively for C9 in 0% 2H$_2$O buffers at sample concentrations 6.9 (o) and 4.6 mg/ml (α).

(c) and (f). X-ray R_G and R_{XS} Guinier plots respectively for C9 in H$_2$O buffers (after exposure times of 3 min) at a sample concentration of 7.7 mg/ml.
(7.3) RESULTS AND DISCUSSION

(7.3.1) Neutron scattering studies of C9

Neutron scattering was used to determine the gross and internal solution structure of C9 from data in three contrasts at concentrations between 2.4 to 7.6 mg/ml. Some of the earlier C9 samples contained small amounts of non-specific aggregates, identifiable in the scattering analyses by non-linear Guinier plots. These were successfully eliminated by:
(a) leaving the final gel-filtration stage until just prior to dialysis, which was then followed immediately by neutron data collection;
(b) the use of phosphate buffers in 0.5 M NaCl rather than 0.2 M NaCl and
(c) the use of 0% 2H$_2$O rather than 100% 2H$_2$O buffers.
Figures 7.3(a) and 7.3(b) show that the resulting neutron Guinier plots for C9 in 100% 2H$_2$O and 0% 2H$_2$O with 0.5 M NaCl were linear over an acceptable $Q.R_G$ range of 0.6 to 1.5.

Where measurable, the Guinier intensity ($I(0)/c$) and R_G parameters showed no dependence on C9 concentrations between 2.2 to 7.7 mg/ml or buffer compositions in 0.2 M NaCl or 0.5 M NaCl (data not shown). The C9 concentrations were determined using an A_{280} coefficient of 8.37 (1%, 1 cm) (Table 7.1) calculated (Perkins, 1986) from the human sequence (DiScipio et al., 1984; Stanley et al., 1985), assuming that there were 2 triantennary complex-type carbohydrate chains per C9 molecule (Kontermann & Rauterberg, 1989). This composition resulted in an M_r of 66,400, which was comparable with the M_r of 71,000 from SDS-PAGE (Biesecker & Müller-Eberhard, 1980). The 8.6% carbohydrate content by weight was in good agreement with experimental values of 7.8-8.0% (Biesecker & Müller-Eberhard, 1980; DiScipio & Hugli, 1985). The predicted A_{280} value of 8.37 was however 11%-18% lower than literature values of 9.6 (Podack & Tschopp, 1982a) and 9.88 (Monahan et al., 1983; Stewart et al., 1984) based on quantitative amino acid analyses. The M_r for C9 was also calculated from the $I(0)/c$ values measured in H$_2$O buffers to check that the C9 preparations were monomeric (Jacrot & Zaccai, 1981). The M_r of C9 was
Residues

total amino acids	537
total carbohydrate	28
% mass carbohydrate	8.6

M_r

protein	60,700
carbohydrate	5,700
total	66,400
neutron scattering	63,500 ± 3,000

Dry volume (nm3)1 83.4
Overall \bar{V} (ml/g)2 0.722
Overall $\Sigma b/M_r$ in H$_2$O (fm) 0.231
in 2H$_2$O (fm) 0.640

Predicted A_{280} (1%, 1cm)3 8.37
Literature A_{280} 9.6 to 9.88

Pred. matchpoint (% 2H$_2$O)4 42.3
Exp. matchpoint (% 2H$_2$O)
 from $I(0)$ 42.9 ± 0.3
 from $[I(0).Q]$ 43.6 ± 0.5

Stuhrmann analysis

R_{GC} (nm)	3.33 ± 0.03
α_G (x 10^{-5})	35 ± 7
R_{XS-C} (nm)	1.66 ± 0.02
α_{XS} (x 10^{-5})	16 ± 2

Models

| R_{GC} (nm) | 3.37 |
| α_G (x 10^{-5}) | 35 |

Table 7.1. Compositional and scattering data for C9.

Footnotes to Table 7.1

1, 2, 3 & 4: see Table 4.1.

3 Literature determinations of A_{280} are reported in (Podack & Tschopp, 1982a) and (Monahan et al., 1983; Stewart et al., 1984).

determined to be 63,500 ± 3,000 (5 values) from the neutron data, which was in excellent agreement with the value of 66,400 from the composition (Table 7.1). Had the A_{280} values from experimental amino acid analyses been used, the M_r would have been overestimated as 71,000 to 76,000. The neutron contrast variation experiments shown in Figure 7.4(a) resulted in a matchpoint of 42.9 ± 0.3% 2H$_2$O. This was in good agreement with the prediction of 42.3% 2H$_2$O from the amino acid and carbohydrate composition (Table 7.1). In summary, the linear Guinier plots and the agreements with M_r and matchpoint data showed that the scattering curves corresponded to monodisperse preparations of C9, as required for structural analyses.
Figure 7.4. Neutron contrast variation analyses of C9.

A concentration range of 7.6 to 2.4 mg/ml was used. Buffers were either 0.2 M-NaCl or 0.5 M-NaCl in 12 mM phosphate, pH 7.4. In (a) and (b), statistical error bars were shown only when these were large enough to be visible.

(a) Matchpoint determinations of C9 from graphs of $\sqrt{I(0)/cT_s}$ (●) and $\sqrt{[I(Q)Q]_{Q=}0/cT_s}$ (▲) against the volume percentage of 2H$_2$O. The matchpoints were $42.9 \pm 0.3 \%$ 2H$_2$O (17 points) and 43.8 ± 0.5 2H$_2$O (11 points) respectively. The mean data points only are shown for reason of clarity.

(b) Stuhrmann plot of R_G^2 against the reciprocal solute-solvent contrast difference $\Delta \rho^{-1}$. The two buffers used are indicated in the Guinier and cross-sectional plots by ○ and ▲ (0.2 M NaCl) or ● and ▲ (0.5 M NaCl) respectively. The R_G-C at zero $\Delta \rho^{-1}$ was 3.33 ± 0.03 nm and the slope α_G was $35 (\pm 7) \times 10^{-5}$ (19 points). The R_{XS-C} was 1.66 ± 0.02 nm at zero $\Delta \rho^{-1}$ and the slope α_{XS} was $16 (\pm 2) \times 10^{-5}$ (13 points).
The Stuhrmann analysis of the dependence of the neutron R_G data in 0.2 M and 0.5 M NaCl on the solute-solvent contrast resulted in an R_{G-C} of 3.33 ± 0.03 nm at infinite contrast and a positive slope α_G of $35 \pm 7 \times 10^{-5}$ for C9 (Figure 7.4(b)). Calculation of the elongation ratio R_{G-C}/R_O (where R_O is the R_G of the sphere with the same dry volume as C9) gave a value of 1.59 ± 0.01. Since the R_{G-C}/R_O values for typical globular proteins are close to 1.28 (Perkins, 1988), C9 possesses an extended solution structure. Because C9 is elongated, the cross-sectional parameters $[I(Q)Q]_{Q=0}$ and R_{XS} can be obtained from Guinier analyses of ln $[I(Q)Q]$ against Q^2 (Pilz, 1982). As shown in Figures 7.3(d) and 7.3(e), linear cross-sectional plots were readily obtained in an acceptable Q-R_{XS} range of 0.7 to 1.8. Regression of the data in Figure 7.4(a) gave a matchpoint of $43.6 \pm 0.5\% \text{H}_2\text{O}$, in agreement with the theoretical value of $42.5\% \text{H}_2\text{O}$. The cross-sectional radius of gyration at infinite contrast R_{C-XS} was 1.66 ± 0.02 nm and the slope α_{XS} was again positive at $16 \pm 2 \times 10^{-5}$ (Table 7.1).

Approximate molecular dimensions can be determined using simple shape assumptions. By assuming C9 to resemble an elliptical cylinder, the length was calculated as 10.0 ± 0.2 nm from the R_{G-C} and R_{XS-C} values (Chapter 3). Use of the dry volume of 83.4nm^3 as a constraint resulted in axial dimensions of 10.0 nm x 6.4 nm x 1.7 nm for C9. The cross-section of C9 was therefore elongated also. The determination of the length from the intensity ratio, with no shape assumptions, gave a value of 10.1 ± 0.8 nm (13 values), in good agreement with that above.

The values of α_G and α_{XS} can be compared with those published for other glycoproteins once these have been normalised on the basis of its proportionality to R_G^2 and R_{XS}^2. Using α_G values for lysozyme, myoglobin, trypsin, α_1-acid glycoprotein, α_1-antitrypsin and α_1 inhibitor (Stuhrmann & Fuess, 1976; Ibel & Stuhrmann, 1975; S.J. Perkins, unpublished data; Perkins et al., 1985, 1990d; Smith et al., 1990), α_G for C9 was predicted to be of the order $32 \pm 17 \times 10^{-5}$. This was in good agreement with the observed α_G of $35 \pm 7 \times 10^{-5}$ (Figure 7.4(b)). Using α_{XS} values for α_1-antitrypsin, C4, C4u, C4b, C5 and factor H (R_{XS-2}) (Smith et al., 1990; Perkins et al., 1990b, 1990a, 1991a), the predicted value of α_{XS} for C9
would be close to $13 \pm 5 \times 10^{-5}$. This was also in good agreement with the observed α_{XS} for C9 of $16 \pm 2 \times 10^{-5}$. Cl inhibitor (Perkins et al., 1990d) has an exceptionally high α_{XS}, however this has an unusually high content (26% by mass) of extended O-linked and N-linked oligosaccharides located along the long axis of this structure. These comparisons show that C9 contains a similar radial distribution of hydrophilic surface residues and hydrophobic core residues as that found in other soluble glycoproteins.

Use of ITP to convert the scattering curve $I(Q)$ in reciprocal space into its distance distribution function $P(r)$ in real space was applied to three full curves for C9 at concentrations of 7.3, 4.7 and 2.2 mg/ml in 0.5 M NaCl buffers in 100% 2H$_2$O. Using the ITP parameters specified in Figure 7.5(a), the R_G and $I(0)$ values were stable over a Lagrange multiplier range of 0 to -8 for all three curves. The

Figure 7.5. Distance distribution functions $P(r)$ calculations based on the neutron and X-ray $I(Q)$ data for C9.

(a) The neutron $P(r)$ curve corresponds to the solid line with statistical error bars, using a C9 sample at 7.3 mg/ml in a 100% 2H$_2$O buffer with 0.5 M NaCl. The neutron maximum length of C9 lies between 10.5-14 nm, based on a calculation with 8 splines and D_{max} of 15 nm. The X-ray $P(r)$ curve is depicted by the dashed line; this corresponds to C9 at 7.4 mg/ml in a buffer with 0.2 M NaCl. The X-ray maximum length of C9 is estimated as 14 ± 2 nm.

(b) Comparison of the neutron experimental $P(r)$ curve (solid line) with three simulated $P(r)$ curves for two-density V-shaped models of C9 in which the angle between the arms is set as 0^0, 10^0 and 20^0 (dotted or dashed lines), and the densities are set to correspond to negative solute-solvent contrasts. The maximum of $P(r)$ is located at $r = 2.6$ nm, 3.2 nm and 4.5 nm for angles of 0^0, 10^0 and 20^0 respectively.

(c) Comparison of the X-ray experimental $P(r)$ curve (solid line) with the same models for C9 as in (b), now hydrated and density weighted for positive solute-solvent contrasts. The maximum of $P(r)$ is located at $r = 3.0$ nm, 3.6 nm and 5.4 nm for angles of 0^0, 10^0 and 20^0 respectively.
R_G and $I(0)$ values agreed well with the Guinier plots for the respective curves (Table 7.2). The maximum $P(r)$ in the three $P(r)$, which corresponded to the most frequently occurring distance r within C9 was 3.00 to 3.15 nm. The error bars in the calculation of $P(r)$ at large r showed that the maximum dimension of C9 was in a range between 10.5 and 14 nm. These dimensions were comparable to but larger than the two estimates of the length of 10.1 to 10.2 nm above from the Guinier analyses. The difference was attributed to the difficulty in determining a precise cut-off when $P(r)$ approached zero at large r.

<table>
<thead>
<tr>
<th>Curve</th>
<th>Guinier</th>
<th>ITP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_G (nm)</td>
<td>$I(0)$</td>
</tr>
<tr>
<td>1</td>
<td>3.08</td>
<td>1.791</td>
</tr>
<tr>
<td>2</td>
<td>3.14</td>
<td>1.168</td>
</tr>
<tr>
<td>3</td>
<td>2.96</td>
<td>0.526</td>
</tr>
</tbody>
</table>

Table 7.2. Comparison of ITP and Guinier parameters

(7.3.2) X-ray scattering experiments of C9

Synchrotron X-ray experiments were performed with C9 to extend the neutron analyses. C9 was measured at concentrations of 1.8-22.9 mg/ml. However it was found that irradiation by X-rays induced substantial aggregate formation during the 10 min exposure time as indicated by the increase in R_G and $I(0)$ (Figure 7.6). Besides X-rays, it is possible that this aggregation may have been catalyzed by the presence of Zn$^{2+}$ and Cu$^{2+}$ from the brass sample cells used for part of the data collection (Tschopp, 1984b). The mean R_G (4 values) increased from $3.51 ± 0.16$ nm after 1 min to $4.61 ± 0.18$ nm after 10 min (beam currents of 112-130 mA). In another session, the mean R_G (8 values) rose from $3.64 ± 0.25$ nm to $4.03 ± 0.22$ nm after 10 min (beam current 99-105 mA). The non-uniform increase in R_G may be due to the different beam currents, sample buffers and cells (Perspex as opposed to brass) in use. Analyses of irradiated C9 samples by SDS-PAGE showed no difference from the starting material. This suggested that
Figure 7.6. Synchrotron X-ray radiation damage effects observed in the \(R_G \) and \(R_{XS} \) Guinier analyses of C9.

The \(R_G \), \(l(0)/c \), \(R_{XS} \) and \(l(Q)Q/Q/c \) data from each of ten consecutively-recorded time-slices for four C9 samples all at 7.4 mg/ml in 0.2 M NaCl, 0.02 M borate, 1 mM CaCl\(_2\) and 5 mM EDTA, pH 7.5 denoted by o, ●, △ and ▲ are shown in (a), (b), (c) and (d) respectively.

Some form of non-covalent association was induced by the X-ray beam. Since the \(R_G \) and \(l(0) \) values were constant in the first three min of exposure (Figures 7.6(a) and 7.6(b)), only these were used for Guinier analyses. The \(R_G \) Guinier analyses of Figure 7.3(c) were linear. No concentration dependence was observed, and the final mean \(R_G \) value was 3.66 ± 0.13 nm (8 values). These data compare well with the neutron \(R_G \) value in 0% \(^2\)H\(_2\)O buffers (high positive solute-solvent contrast) of 3.51 ± 0.18 nm (5 values) (Figure 7.4(b)).

The X-ray cross-sectional Guinier analyses were linear also (Figure 7.3(f)). The \(R_{XS} \) and \([l(Q)Q]Q=0\) parameters were not affected over time (Figure 7.6(c) & 7.6(d)). The mean \(R_{XS} \) (4 values) was unchanged from 1.82 ± 0.08 nm after 1 min to 1.93 ± 0.07 nm after 10 min. The mean \(R_{XS} \) was 1.84 ± 0.07 nm (15 values), in excellent agreement with the mean neutron \(R_{XS} \) of 1.81 ± 0.03 nm in
0% 2H$_2$O (4 values) (Figure 7.4(b)). The length of C9 from the intensities ratio was 12.3 ± 0.9 nm (8 values), while that from the mean R_G and R_{XS} data assuming the shape of an elliptical cylinder was 11.0 ± 0.7 nm. The molecular dimensions of C9 were determined as 11.0 nm x 7.1 nm x 1.8 nm assuming the shape of an elliptical cylinder of hydrated volume 110.6 nm3.

The ITP calculation of $P(r)$ in H$_2$O (high positive solute-solvent contrast) by X-rays was noticeably different from that of the neutron curve in 100% 2H$_2$O (high negative solute-solvent contrast) (Figure 7.5(a)). The whole of the $P(r)$ curve was shifted to larger r, and the maximum in $P(r)$ was larger at 3.40 to 3.60 nm. The difference between the neutron and X-ray curves was attributed to the hydrophilic nature of C9. As is typical of globular proteins, the more hydrophilic residues in C9 were positioned further away from the centre of scattering densities than the more hydrophobic ones. Hydrophilic amino acids have a higher scattering density than hydrophobic ones and therefore make a stronger contribution to the X-ray $P(r)$ at large r than the neutron $P(r)$. The ITP calculation also showed that the largest dimension of C9 was estimated to fall in a range of 14 ± 2 nm by X-rays, although again a precise cut-off cannot be determined. This dimension was comparable with that estimated from the neutron $P(r)$ curve.

(7.3.3) Scattering curve simulations for C9

The use of small Debye spheres to model the full scattering curve in the Q range between 0.2 to 1.6 nm$^{-1}$ enabled molecular models for C9 to be constructed. These permitted the assessment of possible arrangements of the TSR, LDL and EGF-like domains and PFL region in C9. Initial calculations were based on the assumption that C9 has a structure resembling an elliptical cylinder, using the dimensions determined from Guinier analyses. Good fits for the neutron scattering curves in 0%, 80% and 100% 2H$_2$O buffers and X-ray curves were obtained with a sphere model based on overall dimensions of $10.9 \times 6.8 \times 1.4$ nm (Figure 7.7(a)). This was constructed as an array of $16 \times 10 \times 2$ cubes of side 0.681 nm, from which 14 were removed at each corner, to give a total of 264 spheres (Figure 7.7(b)). The innermost 120 spheres were assigned a scattering densities of
35\% 2H\textsubscript{2}O and the outermost 144 spheres one of 55\% 2H\textsubscript{2}O. This C9 model gave an R_G of 3.31 nm and a Stuhrmann α of 34 x 10^{-5} which were in good agreement with the observed neutron R_{G-C} of 3.33 nm and α of 35 x 10^{-5}. The goodness-of-fit parameter R was 0.009 (0\% 2H\textsubscript{2}O, out to a Q of 0.09 nm$^{-1}$), 0.011 (80\% 2H\textsubscript{2}O) and 0.011 (100\% 2H\textsubscript{2}O) [where the poor counting statistics in 0\% 2H\textsubscript{2}O precluded the inclusion of data beyond Q of 0.9 nm$^{-1}$ in that contrast]. As this model was only 1.4 nm thick it was considered an unrealistic model for a globular protein.

More satisfactory neutron curve fits were obtained by the use of V-shaped models for C9. Sphere models based on 168 cubes of side 0.792 nm were arranged into a two-armed structure, with each arm of length 10.3 nm, 11.1 nm or 11.9 nm (length 13, 14 or 15 spheres) and cross-sectional dimensions 2.4 nm x 2.4 nm (up to 3 x 3 spheres). The two identical arms were joined together at one end, and a series of models were created by separating the arms by angles from 0° to 20°. The internal distribution of hydrophilic and hydrophobic residues was considered, 96 spheres were allocated a scattering density of 55\% 2H\textsubscript{2}O and 72 spheres one of 35\% 2H\textsubscript{2}O (Figure 7.8(a)) (Section 7.2). Using neutron data in 0\%, 80\% and 100\% 2H\textsubscript{2}O, the testing of these nine models showed that of arm length 11.1 nm (14 spheres) with an inter-arm angle of 10° (Figure 7.8(b), Figure 7.9(a), (b) and (c)) gave the best curve fits. This model had a R_{G-C} of 3.37 nm, with individual R_G values of 3.53 nm (0\% 2H\textsubscript{2}O), 3.14 nm (80\% 2H\textsubscript{2}O) and 3.23 nm (100\% 2H\textsubscript{2}O).

![Figure 7.7. An elliptical cylinder model for C9.](image)

(a) Comparison of simulated scattering curves for an elliptical cylinder model with experimental data by X-rays, and neutrons in 0\%, 80\% and 100\% 2H\textsubscript{2}O buffers at C9 concentrations of 7.3, 7.3, 7.3 and 6.9 mg/ml respectively. The Q ranges used to calculate the Guinier R_G and R_{XS} analyses specified in Figure 7.3 are arrowed. Error bars due to data counting statistics are shown when these are large enough to be seen. No error bars are available for X-ray data.

(b) A flat elliptical model for C9 (sphere diameter 0.681 nm) showing the 120 hydrophobic spheres in blue and the 144 hydrophilic spheres in pink. This model has dimensions of 10.9 x 6.8 x 1.4 nm.
Figure 7.8. Sphere modelling of C9.

(a) Face-on view of the two-density neutron model for C9. The 72 hydrophobic and 96 hydrophilic spheres are coloured magenta and cyan respectively.

(b) The scattering model of C9 (sphere diameter 0.792 nm) is shown.
Figure 7.9. Comparisons of the curve simulations for C9 with experimental data. The C9 curve (solid line) calculated from the two-density V-shaped model with an inter-arm angle of 10° shown in Figure 8.8(b) is compared with the experimental curves measured in (a) 100%, (b) 80% and (c) 0% ²H₂O buffers at C9 concentrations of 7.3, 7.3 and 6.9 mg/ml respectively. In (a), scattering curve simulations are shown for V-shaped models of C9 in which the inter-arm angle was set also as 0° and 20° (dotted lines). The Q ranges used to calculate the Guinier R_G and R_{XS} analyses specified in Figure 8.3 are arrowed. Error bars due to data counting statistics are shown when these are large enough to be seen. In (d), the curve fit to the X-ray data is shown (sample concentration 7.3 mg/ml), based on a hydrated one-density V-shaped model with inter-arm angles of 0°, 10° and 20° to follow (a).
and an α_G of 35×10^{-5}. These data agreed very well with the observed values reported in Figures 7.3 and 7.4. The goodness-of-fit parameter R was 0.009 (out to Q of 0.9 nm$^{-1}$), 0.007 and 0.007 respectively for the 0%, 80% and 100% 2H$_2$O curve fits. The length of the arms agreed with the maximum distance calculated from $P(r)$ (Figure 7.5(b)). The quality of the curve fits for the final V-shaped model was thus slightly improved over that for the oblate model. This was particularly so in the Q range above 1.0 - 1.1 nm$^{-1}$ in 80% and 100% 2H$_2$O buffers (Figure 7.9(a) and (b)); note that these buffer contrasts accentuate the hydrophobic structure of C9. Angles of 0° (corresponding to an elliptical cylinder) and 20° clearly deviated from the experimental $P(r)$ and $I(Q)$ curves (Figures 7.5(b) & 7.9(a)). The use of different arrangements of hydrophobic and hydrophilic spheres within the C9 model resulted in poorer agreements with R_G, for example if an internal hydrophobic core was located along the central axis of each arm of C9 the α values in 0% 2H$_2$O were smaller than those in 100% 2H$_2$O.

This neutron model was hydrated and compared with the synchrotron X-ray data. A total of 168 cubes of side 0.870 nm were now used. Since the inclusion of both hydration and two densities (401 e/nm3 and 433 e/nm3 for the hydrophobic and hydrophilic components, relative to 334 e/nm3 for the solvent) have similar effects on the scattering curves (Perkins et al., 1991b), only the hydration level of a single density C9 model was used in the curve fits. The best curve fit for the V-shaped model corresponded to the neutron model of Figure 7.8(b), with hydrated arms of length 12.2 nm and an inter-arm angle of 10°. Other models with angles of 0° and 20° gave large deviations from the experimental $P(r)$ and $I(Q)$ X-ray data (Figures 7.5(c) & 7.9(d)). The R_G and R_{XS} data were fully explained by this modelling. The R was however high at 0.070. This was attributed to the deviations seen beyond Q of 0.9 nm$^{-1}$, which was seen also with the neutron 0% 2H$_2$O curve fit of Figure 7.9(c), and suggested that the hydrophilic regions of C9 is not as well modelled as the hydrophobic regions.
Figure 7.10. Comparison of hydrodynamic models for C6, C7, C8 and C9 of complement.

C9 is modelled as 6 magenta spheres of diameter 3.34 nm. The additional sphere at the N-terminus of C6 is green and 2.54 nm in diameter. The 2 additional spheres at the C-terminus of C6 and C7 are cyan and of diameters 3.96 nm and 3.70 nm respectively. C8 is depicted as a dimer of C9 and the 2 extra white spheres are of diameter 3.34 nm.
Simulations of hydrodynamic data for C6, C7, C8 and C9

Sedimentation coefficients provide an independent measurement of the degree of elongation of C9 in solution. Published values for C9 of $s_{20,w}^0$ are 4.5 S (Podack & Tschopp, 1982b; Tschopp et al., 1984) and 4.7 S (Tschopp, 1984b). A frictional ratio f/f_Q of 1.22 ± 0.05 was calculated assuming an hydrated volume of 110.5 nm3 (hydration 0.39 g H$_2$O / g protein). This is one of the lowest ratios found among the complement proteins (Perkins et al., 1990c).

Hydrodynamic models made from non-overlapping spheres were used to calculate $s_{20,w}^0$ values for C9. Simple models based on 6 spheres of diameter 3.34 nm arranged in a 3 x 2 array (dimensions 10.0 x 6.7 x 3.3 nm) with an inter-arm angles of 0°, 5°, 10°, 15° and 20° gave $s_{20,w}^0$ values of 4.70, 4.60, 4.52, 4.45 and 4.40 S respectively. The best agreement with the published value of 4.5 S was obtained with an angle of 10° between the arms (Figure 7.10). A typical error of ± 0.2 S in the simulation (Chapter 6) corresponded to changes in the length of ± 2 nm. In a second approach, the direct use of the final hydrated X-ray sphere model gave $s_{20,w}^0$ values of 4.77 S, 4.49 S and 4.40 S for angles of 0°, 10° and 20° in that order. Again, there was excellent agreement between the experimental $s_{20,w}^0$ of 4.5 S and the 10° X-ray model. In summary, both sets of calculations showed that the hydrodynamic length of C9 agreed well with the length of 11.1 nm determined by solution scattering modelling.

The sedimentation coefficient for C9 was compared with those for the other homologous proteins which compose the MAC (C6, C7 and C8). The mean of the published $s_{20,w}^0$ values for C6 was 5.7 ± 0.2 S (5.5 S, 5.5 S, 5.6 S, 6.0 S and 5.7 S) (Podack et al., 1976; Podack & Tschopp, 1982a, 1984; Priessner et al., 1985; DiScipio & Gagnon, 1982). That for C7 was taken as 5.4 ± 0.2 S (the mean of 5.3 S, 5.3 S, 5.1 S, 5.6 S and 5.6S). That for C8 was taken as 8.1 ± 0.1 S (the mean of 8.0 S and 8.1 S). The frictional ratios f/f_Q for C6, C7 and C8 were calculated to be 1.34 ± 0.05, 1.31 ± 0.05 and 1.19 ± 0.01 respectively. The frictional ratios for C6 and C7 were slightly larger than that for C9 (1.22 ± 0.05) indicating these proteins to be more elongated than C9. This was as expected from the presence
of 6 and 5 additional domains in C6 and C7 respectively when compared with C9. The f/f_o of the C8αγ-C8β trimeric complex was similar to C9. This suggested that the C8αγ and C8β subunits of C8 associate in a side-by-side interaction (rather than in an end-to-end one), in which the long axes of C8αγ and C8β were parallel and close to each other.

The six-sphere model for C9 was used as a basis for hydrodynamic modelling of the homologous proteins C6, C7 and C8 (Figure 7.10). All the extra domains in C6, C7 and C8 (except the first TSR in C6) were found at the C-terminus in the amino acid sequences and therefore were positioned at the end of one of the arms of the C9 model. The additional TSR that was found at the N-terminus of C6 was represented by a single sphere at the end of the other arm of the C9 model. The location of the C8γ subunit in C8 was unknown and the volume of this was combined with those of the additional TSR domains in C8 relative to C9. The volume of the additional spheres corresponded to the volume difference between C9 and each of C6, C7 and C8. The $s_{20,w}^0$ values of the models shown in Figure 7.10 were calculated as 5.6 S for C6, 5.2 S for C7 and 8.1 S for C8. These were in excellent agreement with the above experimental $s_{20,w}^0$ values. The length of the longest dimension of the C6 model was 18.0 nm; this was in satisfactory agreement with the lengths of 14.4 nm and 18 ± 2 nm for C6 that were deduced from electron microscopy (DiScipio & Hugli, 1989; Haefliger et al., 1989). The longest dimension of the C7 model was 17.5 nm; this was also close to the length of 15.1 nm for C7 from electron microscopy (DiScipio et al., 1988). These calculations showed that the solution structure of the domains of C9 were compatible with the hydrodynamic data of C6, C7 and C8 and electron micrographs of C6 and C7 taking into account the extra domains.
C9 was best visualised as a typical mosaic protein found in the complement system, but possessing unique structural features. The two most distinctive properties of C9 are its ability to polymerise (either on its own or in association with C5b-8), and its ability to penetrate lipid bilayers (including cell membranes). Evidence from electron microscopy, tryptic cleavage experiments, and the analysis of monoclonal antibody binding sites (Kusunoki et al., 1990) showed that C9 undergoes a drastic unfolding when polymerised and inserted into membranes [summarised in Podack & Tschopp (1984) and Stanley et al. (1986)]. Differential scanning calorimetry indicated that C9 was already partially unfolded at body temperature and upon binding to the C5b-8 complex on the membrane, C9 could undergo further refolding into a structure compatible with a typical amphipathic membrane protein (Lohner & Esser, 1991).

By the use of solution scattering techniques, free C9 was found to be fully monomeric in solution. An A_{280} of C9 of 8.37 rather than 9.6 to 9.88 gave a correct determination of the M_r of C9 by neutron scattering. It should also be noted that the conventionally-assumed M_r of C9 is reduced by about 11% to 66,400 when calculated from the sequence. In other words, these revised values may affect determinations of the stoichiometry of C9 within the MAC (generally estimated as 12 to 18 copies of C9).

Both the R_G and $P(r)$ scattering calculations as well as the $s_{20,w}^0$ hydrodynamic calculation showed that electron microscopy underestimated the length of free C9. These calculations presented here showed this to be 11 to 12 nm. Electron micrographs of free C9 (Podack & Tschopp, 1982a; DiScipio & Hugli, 1985) had shown that C9 had dimensions of 8.0 x 5.5 nm or 7.0 x 5.0 (\pm 0.7) nm. The fact that these dimensions were less than those found here may result from artefacts caused by electron beam damage, the non-physiological conditions of measurement in vacuo (using stains), or magnification errors. The dimensions of a tubular ring of poly-C9 by electron microscopy were 15 to 16 nm in length with an internal diameter of 9 to 11 nm and an outer diameter of 15 to 22 nm (Podack
of C9 was increased in length from around 11 nm to 16 nm in poly-C9. A ring of 12 to 18 C9 molecules based on the model presented here (diameter 2.38 nm), would give an inner pore diameter of 9.0 to 13.6 nm, in agreement with the electron microscopy and liposome swelling assay (Zalman & Müller-Eberhard, 1990). The solution structure of C9 thus remains compatible with hypotheses that C9 unfolds to form a longer structure in poly-C9.

Of interest is that C9 has a relatively compact structure for a multi-domain protein, as evidenced by the R_G/R_O and f/f_o ratios from scattering and hydrodynamic data. The 11 to 12 nm length of C9 from these solution analyses can be compared with the sizes of the TSR, LDLr, perforin-like and EGF-like moieties in C9. The TSR is of approximate size 4 nm x 1.7 nm x 1.7 nm (Chapter 6; Smith et al., 1991), while the EGF-like domain may be approximately 3.5 nm x 2 nm x 2 nm (Cooke et al., 1987). If domains were spherical (the most compact shape possible), the LDLr domain would be of diameter 2.2 nm, and the perforin-like region would be of diameter 4.6 nm (Chapter 8). The total length of a linear arrangement of these four structures will therefore be between 10.5 to 14.3 nm, depending on the orientation of the TSR and EGF-like domains. While it is possible that these four domains can be contained within an elliptical cylinder of dimensions 10.9 x 6.8 x 1.4 nm (Section 7.3), such a structure appears to be too thin. It is more likely that the LDLr domain and the perforin-like region are non-spherical in shape, and that the long axes of the TSR and LDLr domains are colinear with that of C9. The modelling of C9 as a compact V-shaped structure for C9 becomes plausible, with the perforin-like region located at the angle of the V, and the TSR, LDLr and EGF-like domains placed in the order predicted from the C9 sequence at the ends of the arms. This is further substantiated by antibody binding analyses which suggest that C9 changes conformation around a hinge region located between residues 296 and 528, i.e. in the perforin-like region (Laine & Esser, 1989; Laine et al., 1988).

The initial structural modelling of C6, C7 and C8 (Figure 7.10) suggested that C6, C7, C8 and C9 possess similar structural morphologies of lengths
between 11 nm to 18 nm. The additional length of 7 nm for C6 and C7 when compared to C9 was be attributed to the presence of two SCRs and two FIMs at the C-terminus of these components. The length of an SCR was estimated to be 2.6 to 4.6 nm (Perkins et al., 1991a). If these two adjacent SCRs were positioned lengthwise as found in C1r, C1s, C4BP and factor H, this would account for the increased length of C6 and C7 relative to C9. This means that, even though the length of the FIM is unknown, the two FIMs of C6 and C7 may be located in a compact conformation relative to the two SCRs within these proteins such that the overall length of C6 and C7 is not increased further.

In electron micrographs, a crevice on one face of C9 has been reported by DiScipio & Hugli (1985), even though these authors were not able to detect a bilobal V-shaped structure for C9. This would be consistent with the C9 model shown in Figure 7.8(b). Some experimental evidence for a V-shaped structure was found in the analyses of Figures 7.5 and 7.9. Even though the scattering analyses were constrained by the volume calculated from the primary structure, and were compatible with hydrodynamic modelling, it should be noted that other scattering-equivalent models may offer equally satisfactory curve fits (e.g. models with two arms of different lengths). Relatively few parameters are uniquely determined from solution scattering data, and this is due to the fact that the data are spherically averaged because of the random orientations of the scattering macromolecules.

Neutron scattering probed the internal structure of C9, and interestingly showed that this had a radial distribution of hydrophilic and hydrophobic residues that is typical of soluble glycoproteins. This accounts for its solubility in aqueous media, i.e. the three cysteine-rich TSR, LDLr and EGF-like domains are all in contact with the aqueous phase. This internal structure is similar to C5 (Perkins et al., 1990b), which also participates in the MAC after activation to C5b. The good curve fits for C9 in Figure 7.9 were obtained with the distribution of hydrophilic and hydrophobic residues as shown in Figure 7.8(a). The implication of this distribution is that the unfolding of the C9 structure would expose the more hydrophobic region of this structure, thus facilitating contact with lipids.
CHAPTER 8.

STRUCTURAL STUDIES ON THE DOMAINS OF C9
C9 is the major constituent of the membrane attack complex formed in the terminal stages of complement-mediated cell lysis. Free C9 is a water-soluble, hydrophilic protein, while polymerized C9 is amphipathic and binds to detergent (Biesecker & Müller-Eberhard, 1980; Tschopp et al., 1982, 1984; Chapter 7). C9 and the four other late complement components C6, C7, C8α and C8β exhibit structural, functional and antigenic similarities (DiScipio et al., 1984, 1988; Stanley et al., 1985; Rao et al., 1987; Howard et al., 1987; DiScipio & Hugli, 1989; Chakravarti et al., 1989; Haefliger et al., 1987, 1989). All these proteins possess multi-domain structures based on 4 to 12 distinct structural motifs (Figure 1.1).

All of the late complement components have a common region of cysteine-rich independently-folded domains, the TSR, the LDLr domain and the EGF-like domain. The TSR and LDLr domains comprise most of the N-terminal C9a fragment of C9. C9a is known to be hydrophilic and has no membrane-binding properties (Biesecker et al., 1982; Ishida et al., 1982; DiScipio et al., 1984). The TSR is found also in thrombospondin and properdin (Lawler & Hynes, 1986; Goundis & Reid, 1988), and its structural properties have been analyzed in Chapter 6. The LDLr repeat type A was originally identified in the LDL receptor protein (Yamamoto et al., 1984) but no structural studies on this domain have been reported to date. The EGF motif is found as a single entity and also in several mosaic proteins (Carpenter & Cohen, 1990; Carpenter & Wahl, 1990). The putative EGF-like domain in C9 is located at the C-terminus (Stanley et al., 1985; Stanley & Herz, 1987). The molecular structure of human EGF and several analogues have been determined by 2D-NMR spectroscopy (Cooke et al., 1987, 1990; Montelione et al., 1987; Kohda et al., 1988; Mayo et al., 1989; Brown, S.C. et al., 1989; Selander et al., 1990; Kline et al., 1990). Since human EGF is water-soluble, it is possible that the EGF domain in C9 is also hydrophilic, however no general structural analyses on the EGFs found in the complement components have been reported. The EGF is very stable to denaturation by heat and acid (Carpenter & Wahl, 1990; Holladay et al., 1976) and in some proteins may act to stabilize neighbouring domains (Pigott et al., 1991).
Between the LDLr and EGF domains in these five complement proteins, there is a region which is virtually devoid of Cys residues. This region shows strong sequence similarities to perforin and the C9b fragment has similar membrane-binding activities (Ishida et al., 1982; Shiver et al., 1986). C9 and perforin share many functional similarities, for example, the cross-reaction of certain antibodies between the two proteins, both polymerize in the presence of Zn$^{2+}$, the lytic activity of both proteins is suppressed by lipoproteins and the polymerization of C9 and the lytic activity of perforin is abolished at low pH (Young et al., 1986; Tschopp & Jongeneel, 1988; Tschopp & Nabholz, 1990; Tschopp & Masson, 1987). In this perforin-like region, possible α-helix structures have been identified (Stanley & Herz, 1987; Peitsch et al., 1990) that may be implicated in the formation of trans-membrane channels but there is little experimental evidence for this.

The consensus averaging of structural properties for the EGF, LDLr and PLR sequences permits the most prominent structural features to be identified. Together with similar analyses of the TSR (Chapter 6) the EGF, LDLr and TSR domains in C9 and other related proteins are shown to be hydrophilic and dominated by β-sheet structures. Analyses of the PLR showed that this is hydrophilic also, and contains both α-helix and β-sheet structures. The results of this study will facilitate further structural and functional investigations of the late complement components.
(8.2) MATERIALS AND METHODS

(8.2.1) Sequence alignments

The 99 EGF sequences shown in Figure 8.1 are in the order: human, rat and mouse EGF or EGF precursor (Bell et al., 1986; Simpson et al., 1985; Scott et al., 1983), human and rat transforming growth factor-α (Derynck et al., 1984; Lee et al., 1985), human, mouse, pig and baboon urokinase (Nagai et al., 1985; Degen et al., 1987; Nagamine et al., 1984; Au et al., 1990), human tissue plasminogen activator (Degen et al., 1986), human factor VII (O'Hara et al., 1987), human and bovine factor IX (Yoshitake et al., 1985; Katayama et al., 1979; McMullen et al., 1983), human and bovine factor X (Kaul et al., 1986; Enfield et al., 1980, McMullen et al., 1983), human factor XII (Cool et al., 1985), human and bovine protein C (Plutzky et al., 1986; Long et al., 1984), human and bovine protein S precursor (Hoskins et al., 1987; Dahlbäck et al., 1986), bovine protein Z (Hojrup et al., 1985), human EGF-like (Ciccodicola et al., 1989), human thrombospondin precursor (Hennessy et al., 1989), human uromodulin (Pennica et al., 1987), human, mouse and bovine thrombomodulin (Suzuki et al., 1987; Dittman & Majerus, 1989; Jackman et al., 1986), human complement components C1r and C1s (Leytus et al., 1986a; McKinnon et al., 1987), C6 (DiScipio & Hugli, 1989; Chakravarti et al., 1989; Haefliger et al., 1989), C7 (DiScipio et al., 1988), C8α (Rao et al., 1987), C8β (Haefliger et al., 1987; Howard et al., 1987) and C9 (DiScipio et al., 1984; Stanley et al., 1985), mouse and trout C9 (Stanley & Herz, 1987), human and mouse perforin (Lichtenheld & Podack, 1989; Shinkai et al., 1988; Lowrey et al., 1989; Trapani et al., 1990) and rat cytolysin (Ishikawa et al., 1989).

In the order shown in Figure 8.5, the 74 LDLr sequences correspond to human, rabbit and rat LDLr (Yamamoto et al., 1984, 1986; Lee et al., 1989), human LDLr-related protein (Herz et al., 1988), human GP330 (pathogenic autoantigen in Heymann nephritis) (Raychowdhury et al., 1989) and the complement component factor I (Catterall et al., 1989). Other proteins with LDLr sequences are cited above. Likewise, in Figure 8.7, the 10 PLR sequences were aligned, based on the above protein sequences.
(8.2.2) Structural analyses of sequences

Sequences were aligned both manually and also with the use of guidelines provided by the automatic multiple sequence alignment program MULTAL (Taylor, 1990). Alignments were achieved by maximising the occurrence of identical or chemically homologous residues in these sequences (Chapter 3). Gaps were minimised in order to facilitate the averaging of structural properties. The consensus length was determined from the number of residues occurring in more than 50% of the sequences in the alignment. Exon structures where available, were used to define domain boundaries (Craik et al., 1982; Traut, 1988). The exon structures for EGF domains in porcine urokinase, human tpa, human factor IX, human factor X, human protein C, human EGF precursor, and human thrombospondin have been determined (Nagamine et al., 1984; Ny et al., 1984; Yoshitake et al., 1985; Leytus et al., 1986b; Plutzky et al., 1986; Bell et al., 1986; Wolf et al., 1990). Only one exon structure was available for the LDLr domain which was human LDLr (Südhof et al., 1985).

Consensus secondary structure predictions using the Robson and Chou-Fasman methods (Chapter 3) were based on the alignments of Figures 8.1, 8.5 and 8.7. The original and updated Robson parameter sets for the α-helix, β-sheet, β-turn and random coil conformations were compared for the EGF and LDLr alignments (Garnier et al., 1978; Gibrat et al., 1987; Garnier & Robson, 1989). The 99 EGF, 74 LDLr and 10 PLR predictions were averaged using FORTRAN software (PREDRB and PREDCF: Chapter 3, Perkins et al., 1988). The averaged hydropathy was calculated using the Kyte & Doolittle (1982), Eisenberg et al. (1984), Hopp & Woods (1981) and Parker et al. (1986) hydrophilicity or hydrophobicity scales (Chapter 3).
(8.3) RESULTS AND DISCUSSION

(8.3.1) Consensus analysis of the mammalian EGF domain

The EGF domain was generally defined by the positioning and connectivities of the six Cys residues. The fourth and fifth Cys were almost always separated by just one residue with the exceptions of the first and second putative EGF-like domains of human thrombospondin, where the separation was by two residues. Disulphide bridge connectivities were known only for the five structures determined by 2D-NMR (human EGF, rat EGF, mouse EGF, bovine factor X, human tgf-α) and C1s (Hess et al., 1991) where the Cys residues were connected in the order 1 to 3; 2 to 4 and 5 to 6.

A total of 99 mammalian EGF sequences from 5 single domain proteins and 40 multi-domain proteins were aligned (Figure 8.1). Their lengths were defined by known exon structures for 7 proteins (20 domains) (Section 8.2). The exon boundaries of EGF domains in these proteins from other species were assumed to be homologous. The other domains were truncated by removal of flanking Cys residues or excessive length. Other mammalian EGF sequences have been reported in laminin, proteoglycans, cytotactin, entactin, GMP-140, and other multi-domain proteins, and also from non-mammalian sources (Carpenter & Wahl, 1990). The aim of this analysis was to determine the putative EGF domain structures in the complement components C1r, C1s, C6, C7, C8α, C8β and C9 by comparison with EGF structures determined by 2D-NMR spectroscopy.

The lengths of the EGF domains were found to be very variable and ranged from 59 residues (the third EGF domain in LDLr) to 36 residues (the fifth EGF domain in thrombomodulin). The lengths were split into 6 regions of deletions or insertions (segments a to f). Three EGF groups could be defined on the basis of the size of the four large loops 1 to 4 located between the six Cys residues (Table 8.1 & Figure 8.4). In Group A (34 sequences) the loops corresponded approximately in size to those of the five EGF sequences for which a 2D-NMR molecular structure was available (Figures 8.1 & 8.2). MULTAL analyses also grouped these
GROUP A

<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
<th>Hydropathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu egf</td>
<td>NSDSEC</td>
<td>LLB</td>
</tr>
<tr>
<td>rat egf</td>
<td>NSNTGEC</td>
<td>LLB</td>
</tr>
<tr>
<td>mo egf</td>
<td>NSYPCGEC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu tgf-a</td>
<td>VVSHFNC</td>
<td>LLB</td>
</tr>
<tr>
<td>rat tgf-a</td>
<td>VVSHFNC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu urokinase</td>
<td>SNC</td>
<td>LLB</td>
</tr>
<tr>
<td>mo urokinase</td>
<td>SNC</td>
<td>LLB</td>
</tr>
<tr>
<td>pig urokinase</td>
<td>SNC</td>
<td>LLB</td>
</tr>
<tr>
<td>baboon urokinase</td>
<td>SNC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu tpa</td>
<td>SE</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein C.1</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein C.1</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein C.1</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein S.1</td>
<td>VNAIDDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein S.1</td>
<td>VNAISDC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein C.2</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein C.2</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein C.2</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein S.2</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein S.2</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein S.2</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein C.3</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein C.3</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein C.3</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein S.3</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein S.3</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein S.3</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu 'spondin 1</td>
<td>VCKPRNPC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu 'spondin 2</td>
<td>VCKPRNPC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu 'spondin 3</td>
<td>VCKPRNPC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu uromodulin 1</td>
<td>DTSEARK</td>
<td>LLB</td>
</tr>
<tr>
<td>hu uromodulin 1</td>
<td>DTSEARK</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein C.1</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein C.1</td>
<td>DGDC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu 'spondin 2</td>
<td>VCKPRNPC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu 'spondin 3</td>
<td>VCKPRNPC</td>
<td>LLB</td>
</tr>
</tbody>
</table>

GROUP B

<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
<th>Hydropathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu F VII</td>
<td>DDQLIC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu F IX</td>
<td>VTCL</td>
<td>LLB</td>
</tr>
<tr>
<td>bo F X</td>
<td>TRKLCL</td>
<td>LLB</td>
</tr>
<tr>
<td>bo F X</td>
<td>TRKLCL</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein C.2</td>
<td>EVPSLNC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein C.2</td>
<td>EVPSLNC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein C.2</td>
<td>EVPSLNC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein S.2</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu protein S.4</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein S.4</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>bo protein S.4</td>
<td>VIDECC</td>
<td>LLB</td>
</tr>
<tr>
<td>hu 'spondin 2</td>
<td>HPLRDLCS</td>
<td>LLB</td>
</tr>
<tr>
<td>hu 'spondin 3</td>
<td>HPLRDLCS</td>
<td>LLB</td>
</tr>
<tr>
<td>hu ldlr 1</td>
<td>GTCLDLX</td>
<td>LLB</td>
</tr>
<tr>
<td>rab ldlr 1</td>
<td>ATECN</td>
<td>LLB</td>
</tr>
<tr>
<td>rat ldlr 1</td>
<td>KTNCLX</td>
<td>LLB</td>
</tr>
<tr>
<td>bo ldlr 1</td>
<td>ATECN</td>
<td>LLB</td>
</tr>
<tr>
<td>hu egf pr 1</td>
<td>EOKLC</td>
<td>LLB</td>
</tr>
<tr>
<td>mo egf pr 1</td>
<td>KDEPCL</td>
<td>LLB</td>
</tr>
<tr>
<td>hu 'spondin 2</td>
<td>KEVPCAC</td>
<td>LLB</td>
</tr>
</tbody>
</table>

239
Figure 8.1. Alignment of 99 mammalian EGF sequences found in the complement components and other proteins.

These are divided into six segments labelled a to f (Table 8.1). The 99 sequences are subdivided into three Groups A, B and C (see text). Here and in Figures 8.5 and 8.7, Cys residues are underlined. Four regions of polypeptide between four Cys residues and the CXC tripeptide are designated loops 1 to 4. Repeated EGF domains within one multidomain protein are numbered sequentially starting from the N-termius, but are located in the Figure according to the lengths of the loops 1 to 4. A summary of the consensus hydropathy of the residue (B, hydrophobic; L, hydrophilic) is shown above the sequences for each Group. Hu 'spondin is human thrombospondin and hu 'modulin is human thrombomodulin. (mo = mouse, bo = bovine, rab = rabbit).
Figure 8.2. Summary of five EGF or TGF-α secondary structures determined by 2D-NMR spectroscopy.

The Group A sequences (upper) are aligned to permit identification of the corresponding secondary structures beneath these. The three disulphide bridges are numbered 1 to 3 beneath the sequences to indicate their connectivity. β, β-sheet; α, α-helix; t, β-turn; c, coil. Structures were taken as follows: human EGF, Cooke et al., 1987, 1990; rat EGF, Mayo et al., 1989; mouse EGF, Montelione et al. 1987; factor X_1 EGF, Selander et al, 1990; human TGF-α, Brown et al., 1989, and Kline et al., 1990. Another mouse EGF NMR structure was reported by Kohda et al. (1988) in which three fewer residues were assigned as β. While several structures have been reported for α-TGF by different groups, that in Kline et al. (1990) has been refined by distance geometry methods. The consensus NMR structure is compared with the two predictions from the average of 89 Groups A and B sequences (Figures 3(a) and 3(b)) and with Group C.
sequences together which suggested that these were closely related. Group B (55 sequences) included the EGFs from C1r and C1s, and formed the other major group of sequences sorted by MULTAL. Group C (10 sequences) corresponded to the putative EGF found in perforin and the late complement components C6, C7, C8α, C8β and C9. MULTAL showed that Group C formed two subsets based on the complement and perforin sequences but no clear correlation with either of Group A and Group B was found.

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop 1</td>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>loop 2</td>
<td>5</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>loop 3</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>loop 4</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 8.1. The average number of residues in loops 1 to 4 of the EGF domain for Groups A, B and C.

Analyses of Groups A and B show that these were of similar sizes but the consensus length (39 residues compared to 43 residues), mean length (42.9 ± 4.8 residues compared to 44.4 ± 5.4 residues) and dry volume (Chothia, 1975) (5.7 ± 0.8 nm³ compared to 6.0 ± 0.8 nm³) of these two groups were slightly different. The EGFs of Group C had a consensus length of 40 residues, mean length of 39.9 ± 0.3 residues and the smallest dry volume of 5.3 ± 0.2 nm³. Table 8.1 lists the lengths of the four loops for each group. The major difference between Groups A and B lies in the length of loop 4. Loops 2 and 3 in Group C are of very different lengths to either of the other groups. Depending on the protonation state of His residues (0 or +1), the EGF has a negative mean net charge of -1.3 to -2.6 (± 3.3) (Group A) or -1.5 to -2.8 (± 2.8) (Group B). However the EGFs of Group C are positively charged with a net charge of 1.3 to 2.4 (± 2.0). The 58-65% conserved charged residues 36 and 38 primarily occur in Group B, not Group A where they are merged at position 38, and this may be correlated with the increased size of loop 4 in Group B.

Since Groups A and B exhibited the closest similarities, residue conservation over a consensus length of 44 residues averaged over 89 sequences
<table>
<thead>
<tr>
<th>Segment</th>
<th>Position</th>
<th>Residue</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (1-5)</td>
<td>5</td>
<td>Cys</td>
<td>88</td>
<td>(99%)</td>
</tr>
<tr>
<td>b (6-12)</td>
<td>10</td>
<td>Gly, Ala, Ser</td>
<td>30 + 1 + 14</td>
<td>(51%)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Cys</td>
<td>89</td>
<td>(100%)</td>
</tr>
<tr>
<td>c (13-21)</td>
<td>16</td>
<td>Cys</td>
<td>89</td>
<td>(100%)</td>
</tr>
<tr>
<td>d (22-27)</td>
<td>21</td>
<td>Gly, Ala, Ser</td>
<td>37 + 4 + 4</td>
<td>(51%)</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Gly, Ala, Ser</td>
<td>20 + 2 + 24</td>
<td>(52%)</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Phe, His, Tyr, Trp</td>
<td>17 + 6 + 35 + 2</td>
<td>(67%)</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Cys</td>
<td>86</td>
<td>(97%)</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Gly, Ala, Ser</td>
<td>89</td>
<td>(100%)</td>
</tr>
<tr>
<td>e (28-32)</td>
<td>30</td>
<td>Gly, Ala, Ser</td>
<td>72 + 1 + 1</td>
<td>(83%)</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>Phe, His, Tyr, Trp</td>
<td>33 + 1 + 36 + 4</td>
<td>(83%)</td>
</tr>
<tr>
<td>f (33-44)</td>
<td>33</td>
<td>Ile, Leu, Val</td>
<td>1 + 32 + 2</td>
<td>(76%)</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>Asp, Glu</td>
<td>39 + 4</td>
<td>(65%)</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>Gly, Ser</td>
<td>53 + 5</td>
<td>(65%)</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>Arg, His, Lys</td>
<td>16 + 8 + 28</td>
<td>(58%)</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Cys</td>
<td>88</td>
<td>(99%)</td>
</tr>
<tr>
<td>LDLr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (1-5)</td>
<td>5</td>
<td>Cys</td>
<td>73</td>
<td>(99%)</td>
</tr>
<tr>
<td>b (6-14)</td>
<td>10</td>
<td>Phe, His, Tyr, Trp</td>
<td>68 + 2 + 1 + 1</td>
<td>(97%)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Cys</td>
<td>74</td>
<td>(100%)</td>
</tr>
<tr>
<td>c (15-38)</td>
<td>15</td>
<td>Gly, Ala, Ser</td>
<td>43 + 1 + 11</td>
<td>(74%)</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Cys</td>
<td>73</td>
<td>(99%)</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Ile, Leu, Val</td>
<td>55 + 5 + 11</td>
<td>(96%)</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Phe, Tyr, Trp</td>
<td>7 + 4 + 38</td>
<td>(66%)</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Cys</td>
<td>74</td>
<td>(100%)</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Asp</td>
<td>56</td>
<td>(76%)</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Gly, Ala, Ser</td>
<td>51 + 1 + 3</td>
<td>(74%)</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Asp, Glu</td>
<td>28 + 14</td>
<td>(57%)</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Asp, Glu</td>
<td>68 + 3</td>
<td>(96%)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Cys</td>
<td>74</td>
<td>(100%)</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>Asp, Glu</td>
<td>66 + 1</td>
<td>(91%)</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>Gly, Ala, Ser</td>
<td>38 + 2 + 3</td>
<td>(58%)</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Ala, Ser</td>
<td>1 + 67</td>
<td>(92%)</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Asp</td>
<td>74</td>
<td>(100%)</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>Glu</td>
<td>74</td>
<td>(100%)</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>Cys</td>
<td>74</td>
<td>(100%)</td>
</tr>
</tbody>
</table>

Table 8.2: Survey of the Frequency of Residues in the EGF and LDLr domains

All residues or residue groups present in over 50% of the 89 EGF (Groups A and B) or 74 LDLr sequences are noted here. The numbering of the EGF residues corresponds to the consensus of Groups A and B in Figure 8.2. Chemically homologous residues are defined (Taylor, 1986) as follows: Tiny, G, A, S; Aliphatic, I, L, V; Aromatic, F, H, Y, W; Positive, R, H, K; Negative, D, E.

were summarized in Table 8.2. Sixteen residues were conserved to 50% or better, although only the six Cys residues were conserved to 97% or better. Comparison of Groups A and B with Group C shows that of these sixteen conserved residues only the six Cys residues and residues 30 and 37 were similarly conserved in Group
C. Tyr31 (or other aromatic substitutions) was highly conserved throughout Groups A and B and is thought to be involved in hydrogen bonding between β-sheets. This was poorly conserved in the complement components, only C9 contained an aromatic group at this position. This shows again that the EGFs of Group C are distinct from those of Groups A and B. Interestingly the tripeptide NGG (and chemically homologous versions of this) was found in segment c in Group A, in segment b in Group B and in the merged b/c segment in Group C.

Two other independent classifications of EGF sequences have been proposed by Appella et al. (1988) and Rees et al. (1988). The EGF Types 1 and 2 of Appella et al. (1988) correspond to Group A here. Their EGF Type 3 corresponds partly to Group B here, in which Appella et al. (1988) have assumed a different disulphide bridge connectivity within the EGF, the existence of which is not favoured by the results of Hess et al. (1991). The three EGF types distinguished by Rees et al. (1988) is based on the presence or absence of β-hydroxyaspartate or β-hydroxyasparagine and other conserved residues, however here these are distributed in both Groups A and B. Campbell et al. (1990) and Dudgeon et al. (1991) have suggested that an EGF is defined by the existence of the six Cys residues, together with three almost completely conserved Gly residues (positions 14, 30 and 37) and an aromatic residue (position 31). The present analyses suggest that residue conservation in the EGF is weaker than previously thought (e.g. Gly-14 is not conserved in the EGF sequences of Group B). In summary, an EGF structure is most generally defined by three conserved disulphide bridges connected according to the scheme 1-3, 2-4 and 5-6, and located within a sequence of about 50 residues in length, and such a structure can be subclassified in a variety of ways.

Given the similarities between the Groups A and B sequences, the Robson (using both the 1978 and 1987 parameter sets) and Chou-Fasman consensus structure predictions of Groups A and B together were summarised in Figures 8.3(a) to 8.3(c). Only β-biased Robson predictions were used since all five NMR structures were very similar and exhibited β-strands connected by turns (Figure 8.2). The averaged secondary structure from the 5 NMR structures was found to
Figure 8.3. Consensus secondary structure predictions for the EGF motif.
(a), (b) and (c) Robson 1987 and 1978 propensity set and Chou-Fasman analyses for the 89 EGF sequences of Groups A and B respectively (■; α-helix; ●; β-sheet; *; β-turn). The coil predictions in the Robson analysis are only shown [v in (a)] when significant for reason of clarity.
consist of 38% β-strand, 54% turn and 8% coil. The structure predictions for Groups A + B resulted in 45% β-strand and 55% turn (Robson 1978); 43% β-strand, 45% β-turn and 11% coil (Robson 1987); and 20% β-strand; 20% α-helix; 60% turn (Chou-Fasman). The consensus NMR structure exhibited five β-strands interspersed by turns. All three predictions (Figure 8.3(a) to 8.3(c)) suggest that there are four clear segments of turn structures t₁-t₄ in 60-80% of the sequences, interspersed with β-strands b₁-b₄ (Robson) or two β-strands b₁-b₂ and two α-helices (Chou-Fasman). The 1978 Robson predictions gave the best agreement with the NMR structures, while the Chou-Fasman prediction qualitatively differs from the observed structure. In Group C only two of the four main NMR-observed β-strands were predicted, in segments d and f. These differences suggest that the EGF of Group C may be structurally distinct from the 2D-NMR structure of the EGF.

Hydropathy analyses of the EGF in Groups A, B and C were carried out using an average value from four different hydrophilicity or hydrophobicity scales (Section 8.2). The most frequently occurring maxima in the four hydropathy profiles were assigned as hydrophilic or hydrophobic (Figure 8.1). The hydropathy profiles for Groups A and B were similar suggesting that both Groups possess similar surfaces in contact with water. In contrast, different hydropathy patterns were observed for Group C. This was particularly evident in the β-strand of the large loop 2 region which had a hydrophobic character.

The 2D-NMR structure for human EGF can be used to rationalise the appearance of gaps and insertions in the EGF sequences. The EGF motif can be most generally defined as a central core of four Cys residues (Cys-12, -16, -25 and -27 in Table 8.2) whose α-carbon atoms are positioned in a near-tetrahedral arrangement with sides of length 0.4 - 0.8 nm (Figure 8.4). Cys-5 and Cys-40 are attached to this core to define the remainder of the EGF structure. This well-defined disulphide-linked core structure forms attachment points for the sequence segment loops 1 to 4 (Figure 8.1). The main sequence restriction imposed by the existence of this central core appears to be that Cys-25 and Cys-27 are almost always separated by one residue. Although number of consensus sequences for the
Figure 8.4. Schematic view of the α-carbon co-ordinates of human EGF (Cooke et al., 1987).

Residue numbering follows that for Table 8.2. The six cysteine residues are numbered in yellow and the three disulphide bridges are drawn as a single yellow bond. The central tetrahedral core of Cys-12, Cys-16, Cys-25 and Cys-27 can be seen. The sequence loops are coloured as follows: loop 1, green; loop 2, brown; loop 3, white; loop 4, magenta.
EGF domain have been proposed, the loop structures between the Cys residues are all of variable length. For the EGF family of mitogens, a consensus sequence of CX_7 CX_{4-5} CX_{10-13} CX CX_8 C of length 36-40 residues was proposed (Carpenter & Wahl, 1990) or more specifically, X_n CX_7 CX_{2-3} G CX CX_{10-13} CX CX_3 Y X G X R C X_4 L X_n (Carpenter & Cohen, 1990). For other EGF sequences, the consensus sequence was even more variable, CX_{4-14} CX_{3-8} CX_{4-14} CX CX_8 \mathrm{_{14-14}} C (Carpenter & Wahl, 1990). Examination of the 2D-NMR structure shows that, while loops 1 and 2 extend into a similar region of space, no steric restrictions apply for loops 3 and 4. In the sequences of Figure 8.1, this offers an explanation of how loop 1 can vary in size between 1 to 14 residues, loop 2 from 3 to 12 residues, loop 3 from 1 to 14 residues, and loop 4 from 8 to 14 residues. In Group C, for steric reasons, the large size of loop 2 may be correlated with the small size of loops 1 and 3 (Table 8.1). The range of conformational possibilities offered by such a structure makes it possible to appreciate how the two EGF Groups A and B can arise.

(8.3.2) Consensus analysis of the LDLr domain

A total of 74 LDLr sequences from 13 proteins were aligned (Figure 8.5). The mean length was 41.2 ± 2.6 and the consensus length was 39 residues (Figure 8.5). These were split into three significant regions of deletions or insertions (segments a to d). Of these 39 residues, 19 positions are conservatively occupied in over 50% of the 74 sequences (Table 8.2); 13 of these are conserved to better than 90%. All six Cys residues Cys-5, Cys-12, Cys-17, Cys-24, Cys-30 and Cys-39 were 99-100% conserved. These hydrophobic Cys residues together with Phe-10, Ile/Val-18, and Trp-22 suggested that all the LDLr domains had a well-defined hydrophobic core. Since the first LDLr domain in Factor I contained only four Cys residues, this was suggestive that Cys-5 and Cys-17 were bridged in the LDLr domain.

The averaged physical properties of the LDLr domain were computed from Figure 8.5. The dry volume of 68 LDLr domains (Chothia, 1975; Perkins, 1986) was determined to be 5.38 ± 0.31 nm³. This excluded the domains containing large insertions (5th LDLr domain of the LDL receptor and the 8th, 14th and 31st...
Hydropathy analysis

Chou-Fasman prediction

Factor I 1

Factor I 2

Robson prediction

ldlr related

rdlr 1 rat

rdlr 2 rat

rdlr 3 rat

rdlr 4 rat

rdlr 5 rat

rdlr 6 rat

rdlr 7 rat

rdlr 8 rat

rdlr 9 rat

rdlr 10 rat

rdlr 11 rat

rdlr 12 rat

rdlr 13 rat

rdlr 14 rat

rdlr 15 rat

rdlr 16 rat

rdlr 17 rat

rdlr 18 rat

rdlr 19 rat

rdlr 20 rat

rdlr 21 rat

rdlr 22 rat

rdlr 23 rat

rdlr 24 rat

rdlr 25 rat

rdlr 26 rat

rdlr 27 rat

rdlr 28 rat

rdlr 29 rat

rdlr 30 rat

rdlr 31 rat

rdlr 32 rat

rdlr 33 rat

rdlr 34 rat

rdlr 35 rat

rdlr 36 rat

rdlr 37 rat

rdlr 38 rat

rdlr 39 rat

rdlr 40 rat

rdlr 41 rat

rdlr 42 rat

rdlr 43 rat

rdlr 44 rat

rdlr 45 rat

rdlr 46 rat

rdlr 47 rat

rdlr 48 rat

rdlr 49 rat

rdlr 50 rat

rdlr 51 rat

rdlr 52 rat

rdlr 53 rat

rdlr 54 rat

rdlr 55 rat

rdlr 56 rat

rdlr 57 rat

rdlr 58 rat

rdlr 59 rat

rdlr 60 rat

rdlr 61 rat

rdlr 62 rat

rdlr 63 rat

rdlr 64 rat

rdlr 65 rat

rdlr 66 rat

rdlr 67 rat

rdlr 68 rat

rdlr 69 rat

rdlr 70 rat

rdlr 71 rat

rdlr 72 rat

rdlr 73 rat

rdlr 74 rat

rdlr 75 rat

rdlr 76 rat

rdlr 77 rat

rdlr 78 rat

rdlr 79 rat

rdlr 80 rat

rdlr 81 rat

rdlr 82 rat

rdlr 83 rat

rdlr 84 rat

rdlr 85 rat

rdlr 86 rat

rdlr 87 rat

rdlr 88 rat

rdlr 89 rat

rdlr 90 rat

rdlr 91 rat

rdlr 92 rat

rdlr 93 rat

rdlr 94 rat

rdlr 95 rat

rdlr 96 rat

rdlr 97 rat

rdlr 98 rat

rdlr 99 rat

rdlr 100 rat
The subset of the 9 LDLr domains in the complement proteins had a similar volume of 5.17 ± 0.16 nm3. The cluster of negatively charged residues at the C-terminus of the domain (29Asp-Cys-X-Asp-Gly-Ser-Asp-Glu36) implicated in ligand binding (Yamamoto et al., 1984) was well conserved. Summation of the charged groups showed that 73 of the 74 LDLr domains were negatively charged. Depending on whether the His residues were protonated or not, the average net charge ranged from -3.6 to -4.5 (± 1.8). In the complement LDLr domains, the average net charge was higher at -4.9 to -5.1. In the LDLr protein, this highly negatively charged domain interacts electrostatically with the positively charged ligands apoprotein B and apoprotein E of LDL (Südhof et al., 1985). It was proposed that the homologous domain in the complement components also acted as a binding site (Scott, 1989; Tschopp & Masson, 1987). Since C9 acts as both a receptor and a ligand during polymerisation, presumably there must be a positively charged domain analogous to Apo-B/E. Stanley & Herz (1987) found that residues 415 to 425 in human C9 had homology with the apo-E binding site for the LDL receptor and there were several neighbouring positively charged residues.

The averaged Robson and Chou-Fasman structure predictions are shown in Figures 8.6(a) to 8.6(c). Robson calculations were made with decision constants corresponding to unbiased, α-biased and β-biased secondary structures (Chapter 2). All three predictions show very high amounts of turn conformations, 99% β-turn, 1% β-sheet; 82% β-turn, 18% α-helix; and 77% β-turn, 23% β-sheet respectively. The Chou-Fasman calculation gave a prediction of 72% β-turn, 5%

Figure 8.5. Alignment of 74 LDLr sequences found in the complement components and other proteins.

The sequence is divided into four segments labelled a to d (Table 8.2). The consensus Robson and Chou-Fasman secondary structure predictions are shown above the sequences (β, β-sheet; α, α-helix; t, β-turn), together with the consensus hydropathy of the residue (B, hydrophobic; L, hydrophilic). X: residues unreported in the GP330 protein sequence (Raychowdhury et al., 1989).
Figure 8.6. Consensus secondary structure predictions for the LDLr motif.

(a), (b) and (c) Robson 1987 and 1978 propensity set and Chou-Fasman analyses for the 74 LDLr sequences (■; α-helix; ●; β-sheet; ✶; β-turn). The coil predictions in the Robson analysis are only shown [v in (a)] when significant for reason of clarity.
\(\alpha \)-helix and 23\% \(\beta \)-sheet (Figure 8.6(c)) which compared well with the \(\beta \)-biased Robson prediction. Predictions of \(\alpha \)-helix of 1 to 3 residues long were discounted since the minimum length of an \(\alpha \)-helix is 4 residues (Kabsch & Sander, 1983). The \(\alpha \)-biased Robson prediction suggested a single \(\alpha \)-helix between residues 35 to 38 (data not shown), while the Chou-Fasman prediction did not indicate \(\alpha \)-helices longer than 1 residue (Figure 8.6(c)). The occurrence of \(\alpha \)-helices in the LDLr was not favoured by these predictions.

Figures 8.6(a) to 8.6(c) show that over 50\%-60\% of the LDLr predictions favour regions of \(\beta \)-turn or loop conformations between residues 1 to 8 (t\(_1\)), 12 to 15 (t\(_2\)), and 24 to 39 (t\(_3\)), interspersed with two \(\beta \)-strands which occur approximately between residues 9 to 11 (b\(_1\)), and 16 to 23 (b\(_2\)). The three regions of sequence gaps and insertions occur in the regions of turn predictions as expected. The total amino acid composition of the 3008 residues in Figure 8.5 was computed and showed that the eight most abundant residues were Cys (14.6\%), Asp (13.1\%), Ser (8.5\%), Gly (8.1\%), Glu (6.7\%), Arg (5.5\%), Asn (5.2\%) and Pro (5.1\%). This composition was consistent with the high amount of turns predicted for this domain. Wilmot & Thornton (1988) reported that in a type I turn Asp, Asn, Ser and Cys were preferred at the first position \(i \), Asp, Ser, Thr and Pro at \(i+1 \), Asp, Ser, Asn and Arg at \(i+2 \), and Gly, Trp and Met at \(i+3 \), while in a type II turn Pro was preferred at position \(i+1 \), Gly and Asn at \(i+1 \), and Gln and Arg at \(i+3 \).

The averaged hydropathy profiles were calculated for the 74 LDLr sequences. Use of the above four hydrophilicity or hydrophobicity scales indicated that, of the 39 residue positions, 9 were predominantly hydrophobic (this includes all six Cys residues), and at least 9 were predominantly hydrophilic (this includes the five most conserved Asp/Glu positions: Table 8.2). The three non-Cys hydrophobic residues were all located in the two predicted \(\beta \)-strands. The mean hydropathy was separately calculated for the 9 complement LDLr sequences to show that just these 9 hydrophobic positions were principally conserved, while variability was observed in the positions of the most hydrophilic residues. This suggests that while the LDLr domains have a common hydrophobic core, they possess a range of hydrophilic surfaces that determines its functional role.
Ten sequences for the PLR in the late complement components were aligned (Figure 8.7) manually and using MULTAL. The mean length of the PLR was 355.7 ± 12.4 residues, the consensus length was 364 residues and the mean dry volume was 51.4 ± 1.9 nm3. Of the 364 residues, 107 were conserved in 60-100% of the sequences (Figure 8.7). The perforin and cytolysin sequences generally differed from the complement ones in the first 90 residues (Tschopp & Nabholz, 1990). The highest conservation occurred in two 47-residue segments between residues 178 and 224 and between residues 291 to 337. These two regions contain 29 of the 30 residues or residue groups that are 90-100% conserved in the 10 sequences. The first region has been proposed to contain the possible membrane-spanning regions of C9 (Figure 8.7; Stanley & Herz, 1987; Peitsch et al., 1990).

The average of the secondary structure predictions was computed, based on the Robson (unbiased) and Chou-Fasman methods (Figure 8.7). The 1978 Robson prediction gave 40% α-helix, 16% β-sheet, 21% β-turn and 23% coil, while the Chou-Fasman prediction gave 58% α-helix, 21% β-sheet and 21% β-turn. FT-IR spectroscopy indicated that C9 has appreciable amounts of α-helix as well as β-sheet (S.J. Perkins, unpublished results) and circular dichroism indicated the presence of 24% α-helix and 32% β-sheet in C9 (Tschopp et al., 1982). Since

Figure 8.7. Alignment of 10 PLR sequences found in the complement components and other proteins.

The secondary structure prediction by the Robson and Chou-Fasman methods are shown beneath the sequences (β, β-sheet; α, α-helix; t, β-turn; c, coil), together with the mean Kyte-Doolittle calculation of the most hydrophobic or hydrophilic residues. This is denoted B or L respectively when this index is less than -1 or greater than +1 respectively, according to the Kyte & Doolittle (1982) scale. Possible membrane-interacting regions of the PLR are marked by + (Stanley & Herz, 1987) and x (Peitsch et al., 1990) above the sequences.
secondary structure predictions of the TSR, LDLr and EGF domains suggest the presence of only \(\beta \)-sheet and \(\beta \)-turn, this \(\alpha \)-helical component of C9 was assigned to the PLR.

Hydropathy analyses by all four methods resulted in the identification of large numbers of hydrophilic and hydrophobic residues. For example, the Kyte-Doolittle analysis (Figure 8.7) showed that, of the 364 residues, 40\% were markedly hydrophilic while 17\% were markedly hydrophobic. No extensive hydrophobic regions that might form membrane-spanning helices were identified (DiScipio et al., 1984; Stanley et al., 1985) which should be of at least 20 residues (Lear et al., 1988). The two conserved segments (residues 178-224 and 291-337) also exhibited similar amounts, i.e. 34-38\% hydrophilic and 21-23\% hydrophobic residues (with one conserved charged group at His210). The total net charge of the 10 PLRs varies between -2 to +25 (or between -8 to +9 if the protonation of His is discounted).
The four most abundant domain types found in the principal complement components are the SCR, the TSR, the EGF and the LDLr, respectively (Perkins et al., 1990c). Averaged secondary structure predictions have now been carried out for 101 SCR, 31 TSR, 99 EGF and 74 LDLr sequences (Perkins et al., 1988, 1989; Chapter 6; Section 8.3). All four domains contain β-sheet and β-turn structures. Such β-structures are also found in the immunoglobulin (Ig) folds of IgG and IgM antibodies (length ca: 110 residues) which are involved in the classical pathway activation of complement. Tertiary structures are known for the SCR and EGF from 2D-NMR studies (Barlow et al., 1991a,b), and for variable- and constant-type Ig folds from crystallography. Provided that β-structure had already been identified by spectroscopic means or other independent evidence, the 1978 β-biased Robson predictions were the most successful in identifying the β-strands in the averaged structure prediction. On a residue-for-residue basis, the agreement of the prediction with experimental structures was 69% for the SCR, 69-71% for the EGF, 56-58% for the variable Ig fold of IgG (Perkins et al., 1989), and 71-78% for the constant Ig fold in the α3 domain of MHC Class I (Tysoe-Calnon et al., 1991). These figures can be compared with the 50-60% accuracies of such predictions for single sequences (Argos, 1989). Summation of the averaged predicted secondary structures for the TSR, LDLr, PLR and EGF in C9 gives 29% α-helix, 22% β-sheet, 32% β-turn and 17% coil by the 1978 Robson method, and 47% α-helix, 21% β-sheet and 32% β-turn by the Chou-Fasman method. It is however necessary to confirm these predictive analyses by experimental techniques such as FT-IR, and such analyses are in progress. The circular dichroism result of 24% α-helix and 32% β-sheet for C9 (Tschopp et al., 1982) are in reasonable agreement with these results. The main advantage of consensus averaging is to smoothen and group together the most significant predicted structures. All of the predictions bear an overall resemblance to the observed secondary structure.

Limited structure predictions for human C6, C7, C8α, C8β and C9 have been reported, in many cases for single sequences only (Stanley et al., 1986;
The secondary structure of residues 1-470 of C6 was predicted to be predominantly \(\beta\)-sheet and \(\beta\)-turn in the TSR and LDLr domains and more \(\alpha\)-helical in the PLR. A Kyte and Doolittle hydrophobicity profile suggested that although residues 1-470 were predominantly hydrophilic in nature, regions which were predicted to be hydrophobic occurred in the PLR (Chakravarti et al., 1989). C7 was found to be also dominated by \(\beta\)-sheets and \(\beta\)-turns and a small amount of \(\alpha\)-helix was found in the middle and the C-terminus of the sequence and also was predominantly hydrophilic (DiScipio et al., 1988). C8a is mainly hydrophilic but contains a prominent hydrophobic region in the PLR which may act as an \(\alpha\)-helical transmembrane domain (Rao et al., 1987). C8\(\beta\) is also largely hydrophilic although a number of regions were identified as forming putative amphipathic \(\beta\)-structures (Howard et al., 1987). The average secondary structures for human, mouse and trout C9 were: \(\alpha\)-helix, 30% and \(\beta\)-sheet, 18% by the Chou-Fasman method (Stanley & Herz, 1987).

Other structural properties of the TSR, EGF and LDLr domains can be summarised. The LDLr sequences are well-defined in length and can be readily analysed as a single group of sequences, while the TSR and EGF sequences are variable in length and each can be subdivided into 3 distinct subgroups. Residue conservation is highest in the LDLr sequences. Generally, the Groups 1 + 3 TSR and Group C EGF motifs are positively charged, while the Groups A + B EGF and the LDLr motifs are negatively charged, and the SCR and Group 2 TSR motifs are uncharged.

In terms of the structural properties of C9, two further general results were obtained. Firstly, despite widely-held assumptions that the late complement components and perforin contain a region which is homologous to a EGF-like domain, it is clear that the EGF motifs in these proteins are structurally distinct from the classical EGF structure. Evidence for this was found in much reduced sequence homology and residue conservation in Group C, as well as in differences in the net charges, structure predictions and hydropathy analyses. In order to determine whether or not this group of putative EGFs belong to this superfamily, it will be necessary to verify their disulphide bridge connectivities, as well as to
embark on 3-D structural studies of these EGFs. Secondly, all regions of C9 possess hydrophilic structures. Apart from a hydrophobic segment in the putative EGF of C9, there are no clear indications of hydrophobic α-helices or β-strands which will interact with or span membranes.

The role of the three cysteine-rich domains in C9 may be two-fold. Firstly, cysteine-rich domains are likely to be very stable due to the disulphide bridges and are therefore ideal as rigid, binding domains. It has been proposed that during the assembly of the MAC, poly-C9 and polyperforin, domains with a negative and positive charge distribution are of functional importance in the binding of the molecules (Tschopp & Masson, 1987). Secondly, the cysteine-rich domains may confer a certain amount of stability of the perforin domain. It is thought that the EGF domain in the endothelial leukocyte adhesion molecule-1 acts to stabilize the lectin domain which mediates cell adhesion (Pigott et al., 1991).
CHAPTER 9.

CONCLUSIONS
The majority of the complement components are multi-domain proteins. The determination the complete protein structure requires the detailed knowledge of the structure of each individual domain and also the arrangement of these domains in space. High resolution techniques such as X-ray crystallography and 2 dimensional NMR have been used to ascertain the structures of the C3a and C5a fragments (Huber et al., 1980; Nettlesheim et al., 1988; Zuiderweg et al., 1989), factor D (Narayana et al., 1991a, b), several serine proteases (e.g. trypsin (Bode & Schwager, 1975)), α₁-antitrypsin (Löbermann et al., 1984) (homologous to the serpin domain of C1 inhibitor), 2 SCR domains in factor H (Barlow et al., 1991a, b; Norman et al., 1991) and the EGF protein and its homologs (Cooke et al., 1987, 1990) (Chapters 1 & 2). Obviously much more work is needed if the tertiary structures of all the domains found in the complement components are to be determined.

The most powerful techniques used to study the arrangement of the domains at the present time are those of neutron and X-ray small-angle solution scattering. The M_r degree of oligomerization and the degree of elongation can be determined. Large conformational changes can also be detected. Simple structural models can be built based on known tertiary structures or electron micrographs. Secondary structure prediction methods (Garnier et al., 1978; Chou & Fasman, 1978) are useful to ascertain the degree of homology of a domain of unknown structure with one of known structure and allow physical attributes such as the average volume to be determined.

The R_G is a measure of molecular elongation, such that the larger the R_G, the more elongated the molecule. The ratio R_G/R_O compares the R_G of a molecule with the R_G of a sphere of the same volume. The average value for this ratio from the analysis of 47 proteins was found to be $1.28 ± 0.10$ (Perkins, 1988). As can be seen from Table 9.1, this ratio for the complement components and associated proteins (IgG and IgM) and their fragments, is approaching 2. This indicates that in solution, complement proteins have highly elongated structures. An independent verification of this is shown by the sedimentation coefficients and the frictional ratios f/f_o also shown in Table 9.1.
<table>
<thead>
<tr>
<th>Name</th>
<th>R_G (nm)</th>
<th>R_G/R_Q</th>
<th>$S_{20,w}^0$</th>
<th>f/f_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1q</td>
<td>12.8</td>
<td>3.2</td>
<td>10.2</td>
<td>1.91</td>
</tr>
<tr>
<td>C1r$_2$</td>
<td>8 ± 1</td>
<td>2.8</td>
<td>7.1</td>
<td>1.45</td>
</tr>
<tr>
<td>C1s$_2$</td>
<td>8 ± 1</td>
<td>3.6</td>
<td>4.5</td>
<td>1.36</td>
</tr>
<tr>
<td>C1r$_2$C1s$_2$</td>
<td>17</td>
<td>4.7</td>
<td>8.7</td>
<td>1.82</td>
</tr>
<tr>
<td>C1</td>
<td>12.6</td>
<td>2.6</td>
<td>15.2-16.2</td>
<td>1.79</td>
</tr>
<tr>
<td>IgM human</td>
<td>12.17 ± 0.34</td>
<td>2.4</td>
<td>17.7</td>
<td>1.78</td>
</tr>
<tr>
<td>IgM mouse</td>
<td>12.47 ± 0.35</td>
<td>2.4</td>
<td>(17.7)</td>
<td>1.77</td>
</tr>
<tr>
<td>Fc$_e$ human</td>
<td>6.15 ± 0.26</td>
<td>1.6</td>
<td>11.4</td>
<td>1.64</td>
</tr>
<tr>
<td>IgM-S human</td>
<td>6.10 ± 0.36</td>
<td>1.6</td>
<td>7.4</td>
<td>1.47</td>
</tr>
<tr>
<td>Fab$_{12}$ human</td>
<td>4.93 ± 0.09</td>
<td>1.9</td>
<td>6.2</td>
<td>1.36</td>
</tr>
<tr>
<td>Fab$_{12}$ mouse</td>
<td>4.82 ± 0.12</td>
<td>1.8</td>
<td>(6.2)</td>
<td>1.41</td>
</tr>
<tr>
<td>Fab human</td>
<td>2.94 ± 0.09</td>
<td>1.6</td>
<td>3.7</td>
<td>1.14</td>
</tr>
<tr>
<td>Fab mouse</td>
<td>2.90 ± 0.11</td>
<td>1.5</td>
<td>(3.7)</td>
<td>1.17</td>
</tr>
<tr>
<td>α1-antitrypsin</td>
<td>2.61 ± 0.02</td>
<td>1.3</td>
<td>3.3-3.45</td>
<td>1.32</td>
</tr>
<tr>
<td>C1 inhibitor</td>
<td>4.85 ± 0.01</td>
<td>2.3</td>
<td>3.67-3.7</td>
<td>1.54</td>
</tr>
<tr>
<td>C3</td>
<td>5.1 ± 0.1</td>
<td>1.7</td>
<td>7.0-7.3</td>
<td>1.40</td>
</tr>
<tr>
<td>C3c</td>
<td>4.8 ± 0.1</td>
<td>1.8</td>
<td>5.5-6.7</td>
<td>1.37</td>
</tr>
<tr>
<td>C3dg</td>
<td>2.7 ± 0.2</td>
<td>1.5</td>
<td>2.6</td>
<td>1.35</td>
</tr>
<tr>
<td>C4</td>
<td>4.9 ± 0.04</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4c$_1$</td>
<td>4.9 ± 0.03</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4d$_2$</td>
<td>2.7 ± 0.01</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>4.9 ± 0.1</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4BP</td>
<td>13</td>
<td>3.2</td>
<td>10.7-11.2</td>
<td>1.89</td>
</tr>
<tr>
<td>Properdin (dimer)</td>
<td>7.3 ± 1.6</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(trimer)</td>
<td>10.7 ± 0.5</td>
<td>3.8</td>
<td>5.2-5.5</td>
<td>1.95</td>
</tr>
<tr>
<td>C6</td>
<td>5.5-6.0</td>
<td></td>
<td></td>
<td>1.34</td>
</tr>
<tr>
<td>C7</td>
<td>5.1-5.6</td>
<td></td>
<td></td>
<td>1.31</td>
</tr>
<tr>
<td>C8α, C8β</td>
<td>8.0-8.1</td>
<td></td>
<td></td>
<td>1.19</td>
</tr>
<tr>
<td>C9</td>
<td>3.33 ± 0.03</td>
<td>1.6</td>
<td>4.5-4.7</td>
<td>1.22</td>
</tr>
<tr>
<td>Factor H</td>
<td>12.6 ± 0.3</td>
<td>3.6</td>
<td>5.5-5.6</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Table 9.1. Elongation parameters of some of the complement components and associated proteins.

R_G/R_Q ratios and f/f_o ratios are calculated from sequences.

The table is based upon Table 1 in Perkins et al., 1990c. The values for IgM and its fragments are from Perkins et al., 1991a and factor H (assumed to be a dimer) from Perkins et al., 1991b. Properdin and the late complement components are published in Chapters 6 & 7.

Theoretical scattering curves can be calculated from models created by a trial-and-error procedure from small Debye spheres (Chapters 2 & 3) and compared with the experimentally derived scattering curves. The Debye sphere models for the complement proteins so far determined are shown in Figure 1. Although these models are not unique, they are constrained by the dry volume calculated from the primary structure, and the R_G and molecular dimensions determined from the experimental scattering curves.
Secondary structure predictions have been performed on the SCR, EGF, TSR, LDLr, PLR, vWF and the SP domains (Chapters 6 & 8; Perkins et al., 1988; Perkins & Smith, unpublished data). All these domains have large amounts of \(\beta \)-strand and \(\beta \)-turn. The PLR and the vWF also contain significant amounts of \(\alpha \)-helix.

In multi-domain mosaic proteins, it is generally presumed that each domain is associated with a specific function. When the serpin domain of \(\text{C} \) \(1 \) inhibitor binds to the serine protease domain of \(\text{C} \) \(1 \)r and \(\text{C} \) \(1 \)s, the N-terminal domain of \(\text{C} \) \(1 \) inhibitor may block the accessibility of the SCR domains of \(\text{C} \) \(1 \)r and \(\text{C} \) \(1 \)s. Hydrodynamic modelling methods show that in complexes formed between \(\text{C} \) \(1 \) inhibitor and \(\text{C} \) \(1 \)r and \(\text{C} \) \(1 \)s, the N-terminal domain is found close to the two SCR domains (Perkins, 1990). In the W-model, S-model or 8-model for \(\text{C} \) \(1 \) (Chapter 1), the two SCR domains in each of \(\text{C} \) \(1 \)r and \(\text{C} \) \(1 \)s interact with the collagenous stalks of \(\text{C} \) \(1 \)q. The steric hindrance offered by the N-terminal domain of \(\text{C} \) \(1 \) inhibitor in the region of these SCR domains in these complexes will prevent their binding to \(\text{C} \) \(1 \)q and also prevent the binding of \(\text{C} \) \(2 \) and \(\text{C} \) \(4 \) binding to \(\text{C} \) \(1 \)r and \(\text{C} \) \(1 \)s after these have reacted with \(\text{C} \) \(1 \) inhibitor.

By analogy with structural studies on the formation of \(\text{C} \) \(3 \)b from \(\text{C} \) \(3 \) and \(\text{C} \) \(4 \)b from \(\text{C} \) \(4 \), \(\text{C} \) \(5 \)b will be of similar length to \(\text{C} \) \(5 \) which is 18 nm long (Figure 9.1) (Perkins & Sim, 1986; Perkins et al, 1990b). This length is similar to the overall

Figure 9.1 Debye sphere models of components of the complement cascade.
The structures of \(\text{C} \) \(1 \) inhibitor (Chapter 4) (Smith et al., 1990; Perkins et al., 1990d), \(\text{C} \) \(5 \) (Chapter 5) (Perkins et al., 1990b), properdin (Chapter 6) (Smith et al., 1991) and \(\text{C} \) \(9 \) (Chapter 7) (Smith et al., 1992) are presented in this thesis. The structure of and interactions between IgG, IgM and \(\text{C} \) \(1 \)r, \(\text{C} \) \(1 \)s with \(\text{C} \) \(1 \)q were proposed in Perkins (1985), Perkins et al. (1991b) and Perkins & Nealis (1989). The structures of \(\text{C} \) \(3 \) and \(\text{C} \) \(4 \) were determined by Perkins & Sim (1986) and Perkins et al. (1990a). \(\text{C} \) \(4 \)BP and monomeric factor H models were presented in Perkins et al. (1986) and Perkins et al. (1991a).
length of C6 and C7. The function of C5b may be to act as an extended template for complex formation with C6. The length of C5b is sufficient to interact with the two SCR and FIM domains of length 7 nm at the C-terminus of C6 (DiScipio & Hugli, 1989; Haefliger et al., 1989) and also with the C9-like segment of C6 in order to facilitate the unfolding of C6. The unfolded C6 structure would in turn be able to unfold sequentially the homologous proteins C7, C8 and n copies of C9, leading to MAC formation and insertion into membranes. Electron microscopy data on complexes formed between C5b6 and C7 have been discussed by DiScipio et al. (1988) and these authors propose that the final form of these complexes possess highly extended structures. Solution scattering data on C6, C7 and C8 and their complexes with C5b in conditions close to physiological will extend structural knowledge of these complexes.

Properdin has a monomer length is 26 nm and associates with C3b, which is of maximum length 18 nm (Figure 9.1) (Perkins & Sim, 1986; Perkins et al., 1990a; Ikai et al., 1990). C3b interacts with properdin within a 34-residue segment of C3b (Figure 5.5) (Daoudaki et al., 1988), which if in a maximally extended conformation would be of length 12 nm. These considerations show that it is reasonable to expect that for steric reasons more than one C3b molecule can interact with each of P2, P3 and P4 in agreement with evidence from Pangburn (1989) who showed that the specific activity of properdin decreases in the order P4 > P3 > P2.

C9 contains 4 domains, the TSR, LDLr, PLR and EGF-like domain. C9 was successfully modelled as a V-shaped structure. It is presumed that the TSR, LDLr and the EGF domains lie at the ends to the V, whilst the PLR occurs at the angle between the two arms. Such V-shaped models can explain the unfolding of C9 when this is polymerised or inserted into membranes (Stanley et al., 1986). The comparison of C9 and perforin is suggestive that the N-terminal TSR and LDLr domains protect the EGF domain and PLR of free C9 when this is secreted or circulating in plasma, which otherwise would be inserted into membranes. This is the case with perforin in the presence of Ca^{2+} when it is secreted by cytotoxic cells (Tschopp & Nabholz, 1990). This suggests that the EGF domain and PLR are
implicated with the insertion of C9 into membranes, and this only occurs when the TSR and LDLr domain structure of C9 is unfolded to expose a more hydrophobic surface. Such an unfolding has been shown from electron microscopy (Podack & Tschopp, 1982a, b). The affinity of the C9b fragment for lipids also argues in favour of a membrane attachment role for the EGF domain and PLR (Biesecker et al., 1982; Ishida et al., 1982). In addition to this, it has been proposed that the LDLr domain facilitates the polymerization of C9, as evidenced from the use of the monoclonal antibody M34 and the use of LDLr inhibitors (Stanley et al., 1986; Haefliger et al., 1987). In fact, the existence of multiple copies of TSR and LDLr domains in properdin and factor I of the complement activation pathways is suggestive that these play a role in protein-protein interactions in the formation of the MAC from C6, C7, C8 and C9.

Solution structure analyses of the other members of the complement cascade are underway. More high resolution studies on individual domains need to be established to enable an accurate determination of the domain arrangement within a protein structure. Once complete protein structures have been elucidated, solution scattering can be used to study complexes formed between proteins, which are the crux of the complement cascade.

Barlow, P.N., Norman, D.G., Pearce, J.M., Horne, T.J., Steinkasserer, A., Sim,
Bell, G.I., Fong, N.M., Stempien, M.M., Wormsted, M.A., Caput, D., Ku, L., Urdea,
1009-1012.
Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D.,
128. (Abstr.)
Biol. 121, 339-356.
Blundell, T.L. & Johnson, L.N. (1976) Protein Crystallography, pp. 428-429,
Bock, S-C., Skriver, K., Nielsen, E., Thøgersen, H-C., Wirman, B., Donaldson, V.H.,
Eddy, R.L., MarrIan, J., RadziejewskA, E., Huber, R., Shows, T.B. &
268

272

274

276

Lee, L.Y., Mohler, W.A., Schafer, B., Freudenberger, J.S., Byrne-Connolly, N.,

4855-4863.

Leytus S.P., Foster, D.C., Kurachi K., & Davie E.W. (1986b) Biochemistry 25,
5098-5102.

455.

Physiol. Chem. 363, 1377-1388.

531-556.

U.S.A. 81, 5653-5656.

Chem. 264, 16214-16221.

Lowrey, D.M., Aebischer, T., Olsen, K., Lichtenheld, M., Rupp, F., Hengartner,

Chem. 259, 13851-13856.

Narayana, S.V.L., Kilpatrick, J.M., El-Kabbani, O., Babu, Y.S., Bugg, C.E.,
Narayana, S.V.L., Carson, M., DeLucas, L., Moore, D., Bugg, C.F., Kilpatrick,
Nave, C., Helliwell, J.R., Moore, P.R., Thompson, A.W., Worgan, J.S., Greenall,
R.J., Miller, A., Burley, S.K., Bradshaw, J., Pigram, W.J., Fuller, W.,
260, 10936-10943.
Norman, D.G., Barlow, P.N., Baron, M., Day, A.J., Sim, R.B. & Campbell, I.D.
Okada, H., Nagami, Y., Takahashi, K., Okada, N., Hideshima, T., Takizawa, H. &
257-261.
856-862.

Seya, T., Okada, M., Matsumoto, M., Hong, K., Kinoshita, T. & Atkinson, J.P.
Trapani, J.A., Kwon, B.S., Kozak, C.A., Chintamaneni, C., Young, J.D., & Dupont,

Wetsel, R.A., Lundwall, A., Davidson, F., Gibson, T., Tack, B.F. & Fey, G.H.
Whitehead, A.S., Soloman, E., Chambers, S., Bodmer, W.F., Povey, S. & Fey, G.
Yamamoto, T., Davies, C.G., Brown, M.S., Schneider, W.J., Casey, M.L.,
Science 232, 1230-1237.
Biochemistry 24, 3736-3750.
U.S.A. 83, 6975-6979.
Structural comparisons of the native and reactive-centre-cleaved forms of \(\alpha_1 \)-antitrypsin by neutron- and X-ray-scattering in solution

Kathryn F. SMITH,*† Richard A. HARRISON‡ and Stephen J. PERKINS*†§

*Department of Biochemistry and Chemistry and †Department of Protein and Molecular Biology, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, U.K., and ‡Molecular Immunopathology Unit, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, U.K.

\(\alpha_1 \)-Antitrypsin is the best-characterized member of the serpin (serine-proteinase inhibitor) superfamily. Its solution structure was studied by high-flux neutron-scattering and synchrotron X-ray-scattering. Neutron data show that its absorption coefficient \(\mu_{\text{n}} \) is 5.4. The neutron radius of gyration \(R_g \) is 2.61 nm, characteristic of a moderately elongated structure, and its cross-sectional \(R_c \) is 1.34 nm. The internal inhomogeneity of scattering densities within \(\alpha_1 \)-antitrypsin is high at \(29 \times 10^{-5} \). The X-ray \(R_g \) is 2.91 nm, in good agreement with the neutron \(R_g \) of 2.82 nm in \(\text{H}_2\text{O} \). This \(R_g \) is unchanged in reactive-centre-cleaved \(\alpha_1 \)-antitrypsin. These parameters are also unchanged at pH 8 in sodium/potassium phosphate buffers up to 0.6 m. The neutron and X-ray curves for native \(\alpha_1 \)-antitrypsin were compared with Debye simulations based on the crystal structure of reactive-centre-cleaved (papain) \(\alpha_1 \)-antitrypsin. After allowance for residues not visible in the crystallographic electron-density map, and rejoining the proteolytised site between Met-358 and Ser-359 by means of a relatively minor conformational re-arrangement, good agreement to a structural resolution of 4 nm is obtained with the neutron data in two contrasts and with the X-ray data. The structures of the native and cleaved forms of \(\alpha_1 \)-antitrypsin are thus similar within the resolution of solution scattering. This places an upper limit on the magnitude of the presumed conformational changes that occur in \(\alpha_1 \)-antitrypsin on reactive-centre cleavage, as indicated in earlier spectroscopic investigations of the Met-358–Ser-359 peptide-bond cleavage. Methods for scattering-curve simulations from crystal structures are critically assessed. The \(R_g \) data lead to dimensions of 7.8 nm \(\times 4.9 \) nm \(\times 2.2 \) nm for native \(\alpha_1 \)-antitrypsin. The high internal inhomogeneity and the asymmetric shorter semi-axes of 4.9 nm and 2.2 nm suggest that the three oligosaccharide chains of \(\alpha_1 \)-antitrypsin are essentially freely extended into solvent in physiological conditions. This conclusion is also supported by the Debye simulations, and by modelling based on hydrodynamic parameters.

INTRODUCTION

The human serine-proteinase inhibitors of plasma show a remarkable degree of sequence homology and have been grouped together in a superfamily termed serpins (serine-proteinase inhibitor). The most abundant member of this superfamily in plasma is \(\alpha_1 \)-antitrypsin (\(\alpha_1 \)-AT) (M, 51 500), sometimes termed \(\alpha_1 \)-proteinase inhibitor (Carrell et al., 1982). Other members include antithrombin III (Chandra et al., 1986; Kurachi et al., 1981), \(\alpha_1 \)-antichymotrypsin (Chandra et al., 1986), ovalbumin (Bao et al., 1987), \(\beta \)-plasminogen activator (Ny et al., 1986), \(\alpha_1 \)-antiplasmin (Lijnen et al., 1985), and the C1 inhibitor component of complement (Bock et al., 1986). \(\alpha_1 \)-AT exhibits its highest affinity towards neutrophil elastase (Travis & Salvesen, 1983). In a healthy individual, \(\alpha_1 \)-AT is present at a plasma concentration of 1.3 mg/ml (Jeppsson et al., 1978), but this substantially increases under inflammatory conditions, and is sometimes much decreased in disease. It acts by presenting a reactive site as an ideal substrate to the proteolytic enzyme, and a stable stoichiometric 1:1 complex is formed with the enzyme to inhibit it. This reactive site is the Met-358–Ser-359 peptide bond, which is situated 37 residues from the C-terminus of \(\alpha_1 \)-AT (Carrell et al., 1980; Johnson & Travis, 1978). Under certain conditions in vivo, a proteolytically modified form of \(\alpha_1 \)-AT, in which the reactive site is cleaved, is produced by abortive interaction with many proteinases. This 'split' \(\alpha_1 \)-AT is no longer able to inhibit proteinases. Inhibition by proteolytic cleavage may be important for the regulation of the inhibitor molecule (Carrell et al., 1982; Carrell & Owen, 1985).

Split \(\alpha_1 \)-AT is a more stable form of the protein and has a known crystal structure (Löbermann et al., 1982, 1984). Its secondary structure contains three \(\beta \)-sheets and eight \(\alpha \)-helices.

Since the newly formed C- and N-termini at Met-358 and Ser-359 lie at opposite ends of the molecule and are separated by 7 nm, a significant conformational change must have occurred on cleavage. Using e.d. and fluorescence, Bruch et al. (1988) confirmed that the secondary structures of the native and split forms of four serpins (included \(\alpha_1 \)-AT) were significantly different. However, no experimental data are available on whether the conformational transition is a localized or a more global re-arrangement of the structure.

Neutron-scattering and synchrotron X-ray-scattering in solution are techniques that are able to provide structural information under physiological conditions to nominal resolutions of 2–4 nm (Perkins, 1988a,b). In principle, therefore, any large conformational change between the native and split forms of \(\alpha_1 \)-AT should be detectable by both techniques. In addition, they enable comparisons of the physiological structure with those observed in higher phosphate concentrations, including 2.5 M, that from which split \(\alpha_1 \)-AT was crystallized. The scattering curves determined experimentally under physiological conditions can also be compared quantitatively with scattering curves.
were prepared for scattering studies by repeating the gel filtration and reconcentrated to approx. 20 mg/ml. Immediately before the peak fraction(s) were retained. These were pooled and applied to a Sephadex G-150 column to remove any aggregates that had formed. A further addition of (NH₄)₂SO₄ was made (160 g/l; final saturation 72%), and the precipitate was collected by centrifugation. This second precipitate was redisolved in 0.1 M-Tris/HCl buffer, pH 8.1, containing 5 mM-EDTA and 5 mM-NaCl, then dialysed exhaustively against the same buffer. Only the peak fraction(s) were retained. These were pooled and dialysed against 1.0 M-NaCl. (The 1.0 M-NaCl wash was necessary to remove a proteinase that otherwise co-purified with cq-AT and hence the potential for dimerization, demonstrated that, as expected, the C-terminal peptide (residues 359–394) was retained after dialysis, but the small N-terminal peptides Glu-Pro-Gln-Gly and Asp-Ala-Ala-Gln-Lys-Thr-Asp were lost. The sequence analysis also showed that native cq-AT remains intact, as expected.)

Collection of neutron data for cq-AT was initially performed in 12 mM-sodium phosphate buffer, pH 7.0, containing 0.2 mM-EDTA and 0.2 mM-NaCl. X-ray data were measured in a range of concentrations from 50 mM-phosphate up to the crystallization buffer 2.5 mM-sodium/potassium phosphate buffer, pH 8.0 (Löbermann et al., 1982). K₂HPO₄/3H₂O was dissolved to 3.0 mM in ¹H₂O or ²H₂O, back-titrated with stirring at room temperature to pH 8.0 by additions of known amounts of Na₂HPO₄/2H₂O, and diluted to its final desired phosphate concentration. The cq-AT samples were dialysed against the appropriate buffers with stirring at 4°C and with four changes over at least 36 h. Optical absorbances were recorded at 280 nm immediately afterwards, and the scattering data were obtained within the following 24–48 h. SDS/PAGE analysis of samples before and after scattering analysis showed that they had the expected band patterns, and that no radiation-induced damage or non-specific proteolysis had occurred.

Neutron- and X-ray-scattering experiments

Neutron data were obtained on Instrument D17 at the Institut Laue Langevin in Grenoble, France. Guinier data were based on a sample-to-detector distance of 3.44 m and a wavelength λ of 1.095 nm (Q range of 0.016–0.615 nm⁻¹, where Q = 4π sinθ/λ and 2θ is the scattering angle). Data at large Q were obtained by using a sample-to-detector distance of 1.41 m and λ of 1.095 nm (Q range of 0.045–1.451 nm⁻¹). Samples were measured in rectangular quartz Hellma cells of path thickness 1 mm for 0% ²H₂O buffers (200 µl) and 2 mm for 70%, 80% and 100% ²H₂O buffers (400 µl) at 20°C. Counting times were 3–16 min in ²H₂O buffers and 1–6 h in ¹H₂O buffers. Data reduction in Grenoble utilized standard software and procedures (RNILS, SPOLLY, RQUIM and RPOLT; Ghosh, 1981; Perkins et al., 1990), and the final analyses in London employed the interactive Guinier and large-angle plotting program SCTPL2 (Perkins et al., 1990).

X-ray data were obtained on the Synchrotron Radiation
The low-angle solution scattering cameras at Station 2.1 (beam currents of 61 mA to 52 mA) and Station 8.2 (261 mA to 75 mA) were used (Towns-Andrews et al., 1989) in a total of four sessions. At Station 2.1, the detector-to-sample distance was 2.52 m, with a wavelength of 0.155 nm (Q range of 0.189-3.206 nm⁻¹). At Station 8.2 the detector-to-sample distances of 2.605 m, 2.608 m and 3.83 m and the wavelength of 0.159 nm resulted in Q ranges of 0.051-1.534 nm⁻¹ and 0.039-1.012 nm⁻¹ respectively. Fresh wet slightly stretched rat tail collagen (diffraction spacing of 67 nm) was used to calibrate the detector Q axis. Samples were contained in round Perspex [poly(methyl methacrylate)] cells with a volume of 20 μl, a path thickness of 1 mm and mica window thicknesses close to 10 μm, data collection times to reduce the occurrence of background subtraction errors. Data were measured in ten separate time slices as a check for radiation damage, after which the ten curves were averaged. Data reduction was performed by using OTOKO source, and final data analyses utilized SCTPL2 conjointly with Analyses of Guinier data.

Analyses of Guinier data

At small Q, the Guinier equation gives the radius of gyration Rg and the forward scattering at zero scattering angle I(0) (Perkins, 1988a,b):

\[\ln I(Q) = \ln I(0) - Q^2 R_g^2 / 3 \]

In a given solute–solvent contrast, Rg measures the degree of elongation of a glycoprotein. If this structure is sufficiently elongated, the Rg of the cross-sectional structure Rxs and the cross-sectional intensity at zero angle [I(Q) · Q^2]q=0 are obtained from:

\[\ln [I(Q) · Q^2] = \ln [I(Q) · Q^2]_{q=0} - R_{xs} · Q^2 / 2 \]

The matchpoint is obtained from a graph of \(\sqrt{I(0)/c} \) against \% H₂O (T is the sample transmission; c is the sample thickness), and from the cross-sectional analyses by using \(\sqrt{[I(Q) · Q^2]_{q=0}} / c T_f \). Experimental matchpoints can be compared with the amino acid sequence on the basis of the unhydrated shape of \(\alpha \)-AT, the use of crystallographic volumes (non-hydrated) and the 10% non-exchange of the main-chain amide protons (Perkins, 1986). The dependence of the Rg on the internal scattering densities within \(\alpha \)-AT is given by the Stuhrmann equation (Ibel & Stuhrmann, 1975):

\[R_g^2 = R_c^2 + \alpha / \Delta \rho - \beta / \Delta \rho^2 \]

where \(\Delta \rho \) is the difference in scattering density \(\rho \) between the solute and solvent. In Fig. 3(b), Rg is the Rg at infinite contrast and corresponds to the intercept at zero \(\Delta \rho \), while the slope \(\alpha \) reflects the radial distribution of scattering-density inhomogeneities. The subscripts G and XS correspond to the overall and cross-sectional Guinier analyses. If the outermost scattering densities are higher than those nearer the centre, \(\alpha \) will be positive. \(\beta \) corresponds to the distance between the centres of two distinct components of very different scattering densities and is negligible for glycoproteins. All linear-regression analyses of \(\alpha \)-AT. If this resembles an elliptical cylinder, its length L = 2√[(Rg^2 - Rxs^2)]. From the intensity parameters, \(L = \pi · I(0) / [I(Q) · Q^2]_{q=0} \). The two shorter semi-axes A and B are obtained from the total dry (neutrons) or hydrated (X-rays) volume V = \pi AB L and Rxs = (A^2 + B^2)^{1/2}. For X-ray data, the volume of the hydration shell is calculated assuming 0.3 g of water/g of glycoprotein and 0.0245 nm³ per water molecule (Perkins, 1986).

Debye sphere modelling

Small spheres were used to model the scattering curves with the use of the Debye equation (Perkins & Weiss, 1983; Perkins, 1985). The crystal co-ordinates of \(\alpha \)-AT were subdivided into cubes of side 0.608 nm such that their total volume is the dry volume of the crystallographically visible residues. The curve simulations were based on the overlapping spheres of volume 0.608 nm³ set at the centre of each cube. The sphere diameter is 0.754 nm, which is much less than the highest nominal resolution 2π/Qmax of the curve, i.e. 4.3 nm for Qmax = 1.45 nm⁻¹ (Fig. 5). The contrast-dependence was modelled by subdividing the 291 outermost spheres into an outer hydrophilic surface region of 163 spheres and an inner core of 128 spheres on the basis of the volumes of these two components. From compositions, the neutron-scattering densities of the two regions should be assigned as 49.4% H₂O and 31.6% H₂O respectively (Perkins, 1986). It was found more effective to use instead 60% H₂O and 30% H₂O respectively. This model was converted into the hydrated X-ray model by expanding the co-ordinates by 1.10, which was derived from the cube root of the ratio of the hydrated and dry volumes. The cube size is now 0.668 nm. For X-rays, the outermost spheres correspond to the hydration shell as well as the carbohydrate and hydrophilic amino acid residues. Electron densities were taken as 334 e/nm³ for solvent, 435 e/nm³ for the outermost 216 spheres of the model, and 389 e/nm³ for the innermost 75 spheres.

The Rg value is calculated from:

\[R_g^2 = \sum_{i=1}^{n} (R_i^2 + r_i^2) \]

for n spheres, each with an Rg and located at a distance r from the centre of mass of the model. The Stuhrmann \(\alpha \) value is calculated from:

\[\alpha = n^{-1} \sum_{i=1}^{n} (\rho_i - \rho_m) r_i^2 \]

where \(\rho_i \) is the scattering density of the sphere and \(\rho_m \) is the mean scattering density. The full Debye curve is calculated from Robins et al. (1973):

\[I(Q) / I(0) = g(Q) \left(n_1^0 \rho_1^2 + n_2^0 \rho_2^2 + 2 \sum_{j=1}^{m} A_{j1}^0 \sin Q \cdot r_j \right) \]

\[+ 2 \sum_{j=1}^{m} A_{j2}^0 \sin Q \cdot r_j \]

\[+ 2 \rho_m^2 \sum_{j=1}^{m} A_{j1}^m \sin Q \cdot r_j \]

\[+ 2 \rho_m^2 \sum_{j=1}^{m} A_{j2}^m \sin Q \cdot r_j \]

where the model is constructed from \(n_1 \) and \(n_2 \) spheres of different scattering densities \(\rho_1 \) and \(\rho_2 \); \(g(Q) = 3(\sin Q \cdot R \cdot R \cdot R \cdot \cos Q \cdot R \cdot R) / Q^4 \cdot R^4 \) (the squared-form factor of the spheres of radius R); \(A_{j1}^0 \) and \(A_{j2}^0 \) and \(A_{j1}^m \) and \(A_{j2}^m \) are the number of distances r. For that increment of j between the spheres 1 and 2 and 1 and 2 in that order; m is the number of different distances r. Before comparison with the experimental neutron-scattering curves, the calculated curve incorporated corrections for the wavelength spread of 10% on Instrument D17 and the beam divergence in radians (Cusack, 1981; Perkins & Weiss, 1983), based on the empirical parameters of 16% and 0.016 radians (Cusack, 1981). Since the X-ray cameras utilize point collimation, the calculated and experimental I(Q) curves are directly comparable without corrections. To facilitate quantitative comparisons...
Hydrodynamic modelling of α_1-AT

Frictional coefficients f are calculated from:

$$f = \frac{M_v(1 - \frac{\nu}{\rho_w})}{N_A}$$. $\frac{s_{p,0}}{s_{p,0}}$

where ν is the partial specific volume, ρ_w is the density of water at 20 °C, N_A is Avogadro's constant, and $s_{p,0}$ is the sedimentation coefficient. Frictional ratios f/f_0 are calculated by using $f_0 = 6\pi\eta r$, in which the macromolecule is assumed to be a hydrated sphere of radius r. The value of ν is derived from the consensus volumes data set of Perkins (1986), which is based on the sum of the electrostricted water shell volume and the dry volume. Frictional coefficients were calculated by using non-overlapping spheres by the modified Oseen tensor procedure of Bloomfield (Garcia de la Torre & Bloomfield, 1977a, b; Perkins, 1989). The crystal structure was subdivided into 31 dry cubes of side 1.216 nm such that the overall dimensions are close to those of the co-ordinates. Since relatively few spheres are used, allowance for the void spaces between the non-overlapping spheres is necessary. The effective triaxial lengths of the model

RESULTS AND DISCUSSION

Neutron-scattering of native α_1-AT in physiological buffers

Fig. 1(a) shows that, under physiological conditions, neutron-scattering in 100% 2H$_2$O gave good linear Guinier plots for native α_1-AT in an acceptable Q^2 R_G range of 0.3-1.1. Dilution series for α_1-AT in the range $c = 2.4$ to 13.7 mg/ml (Fig. 2) showed that the R_G increased by 20% ; sedimentation experiments also gave a similar result (Kress & Laskowski, 1973). The extrapolation to zero c gave an R_G of 2.40 ± 0.03 nm for 12 mM-sodium phosphate buffer, pH 7.0, containing 1 mM-EDTA and 0.2 M-NaCl and 2.37 ± 0.03 nm for 50 mM-sodium/potassium phosphate buffer, pH 8.0. No dependence
Fig. 2. Concentration-dependence of the R_g of native α_1-AT
The R_g values were measured by neutron-scattering in 100% $^2\text{H}_2\text{O}$ in 50 mM-sodium/potassium phosphate buffer, pH 8.0 (O), in 0.50 M-sodium/potassium phosphate buffer, pH 8.0 (●), and in 12 mM-sodium phosphate buffer, pH 7.0, containing 1 mM-EDTA and 0.2 M-NaCl (△). The R_g at zero α_1-AT concentration was obtained from linear regression with the use of MINITAB.

was observed for the $I(0)/c$ parameter (results not shown). At larger scattering angles, good cross-sectional Guinier plots were also obtained. Fig. 1(b) shows that the mean of 1.22 nm was obtained in a satisfactory $Q - R_{Xs}$ range of 0.8–1.8.

This concentration-dependence is unusual for plasma glycoproteins. From their analysis of the crystal structure, Löbemann et al. (1984) have proposed that α_1-AT probably has a large dipole moment, since the acidic and basic charged groups are positioned asymmetrically on the structure. To test whether this was the source of the concentration-dependence, a further dilution series of α_1-AT was studied in 0.50 M-sodium/potassium phosphate buffer, pH 8.0. As a control, the values of $I(0)/cT$ and $[I(Q) - I_{0o,c}]T/cT$ were calculated and found to be independent of phosphate concentration, as expected. Fig. 2 shows a diminished dependence of the R_g on phosphate concentration, and the extrapolated R_g of 2.39 ± 0.03 nm is within error of those for 12 mM-sodium phosphate buffer, pH 7.0, containing 1 mM-EDTA and 0.2 M-NaCl and 50 mM-sodium/potassium phosphate buffer, pH 8.0. The concentration effect on R_g is thus attributed to the interactions of the dipole moments of different molecules.

Full contrast variation of native α_1-AT was carried out in 0%, 70%, 80%, and 100% $^2\text{H}_2\text{O}$. To verify that the neutron data correspond to monomeric α_1-AT, its relative molecular mass M_r was determined from the $I(0)/c$ value in 0% $^2\text{H}_2\text{O}$ (Jacrot & Zaccai, 1981), where c was calculated from the absorption coefficient $A_{280,1cm}$ of 5.0–5.4 (Bundy & Mehl, 1959; Kress & Laskowski, 1973; Bruch et al., 1988). By using an M_r of 51500 (calculated from sequence data), $I(0)/c$ gave an A_{280} determination of 5.4±0.2, in good agreement with Bruch et al. (1988), and showing also that α_1-AT is monomeric in solution. It may be noted that the molecular composition of α_1-AT leads to too low a predicted A_{280} of 3.86; it is, however, known that deviations from the calculation can occur when the A_{280} is less than 10 (Wetlauer, 1962; Edelhoch, 1967; Perkins, 1986). The neutron matchpoint was determined for comparison with that predicted from the sequence. In Fig. 3(a) the matchpoint was determined as 49.4 ± 1.1% $^2\text{H}_2\text{O}$, which agrees well with a prediction of 40.3% $^2\text{H}_2\text{O}$ (Table 1). The limited cross-sectional data of $\sqrt{[I(Q) - I_{0o,c}]T/cT}$ (four points in two contrasts; results not shown) gave a comparable matchpoint of 42.1 ± 1.2% $^2\text{H}_2\text{O}$. It is concluded that neutron-scattering 'visualizes' α_1-AT as a non-hydrated monomeric macromolecule.

The contrast-variation R_g data were analysed in the Stuhrmann plot of Fig. 3(b). At infinite contrast R_{g-c} was determined to be 2.61 ± 0.02 nm. The elongation ratio R_{g-c}/R_g is thus 1.35 (where R_g is the R_g of the sphere of the same dry volume as α_1-AT), which is close to the average of 1.28 ± 0.10 found for many globular proteins (Perkins, 1988). The corresponding R_{Xs} analysis gave an R_{Xs-c} of 1.34 ± 0.01 nm. The slopes α were strongly positive, where α_0 is $29 \times 10^{-5} ± 5 \times 10^{-5}$ and α_{Xs} is $13 \times 10^{-5} ± 1 \times 10^{-5}$. It is concluded that the surface regions in α_1-AT have a higher scattering density than those near the core. Since the hydrophilic amino acid and carbohydrate residues have a mean matchpoint of 49.4% $^2\text{H}_2\text{O}$, while hydrophobic amino acid residues have one of 31.6% $^2\text{H}_2\text{O}$, hydrophilic residues are seen to be predominant in the outer regions of the α_1-AT structure, as expected.

Some notable differences are seen on comparison of α_1-AT with α_1-acid glycoprotein (M, 38000; 44% carbohydrate; Perkins et al., 1985). α_1-Acid glycoprotein has a compact conformation in low-salt buffers with an R_g/R_0 ratio of 1.32 and an α_0 of $7 \times 10^{-6} ± 2 \times 10^{-6}$, whereas its expanded form in high-salt buffers (where the oligosaccharide chains are extended into solution) has an R_g/R_0 ratio of 1.67 and an α_0 of $43 \times 10^{-4} ± 4 \times 10^{-5}$. The α_0 of $29 \times 10^{-5} ± 5 \times 10^{-5}$ for α_1-AT is considerably larger than that for the compact form of α_1-acid
glycoprotein, even when allowance is made for the difference in R_{ac} in the precision of measurement of α or in the ratio of hydrophilic to hydrophobic residues (54:46 for α_1-AT and 68:32 for α_2-acid glycoprotein). Since α is proportional to α_1^2 (see the Materials and methods section), these data suggest that the oligosaccharide chains on α_1-AT are extended into solution under physiological conditions.

The Guinier analyses at infinite contrast lead to estimates of the triaxial dimensions of α_1-AT (see under 'Analyses of Guinier data' in the Materials and methods section). The ratio of intensities gives a length L of 7.6 ± 0.5 nm (four values), in agreement with an L of 7.8 ± 0.1 nm from the R_{ac} data. α_1-AT is thus determined to be 7.8 nm × 4.9 ± 0.1 nm × 2.2 ± 0.1 nm in size. The reported crystallographic dimensions of 6.7 nm × 3.2 nm × 3.2 nm (Löbermann et al., 1984) should be increased to 7.2 nm × 3.4 nm × 3.4 nm to correspond to the correct total volume of α_1-AT. Even though the shorter axes of the protein component are more similar in the crystal structure, molecular graphics showed that the three oligosaccharide sites of α_1-AT are located in such a way that one short axis will be significantly longer if the oligosaccharide chains are extended into solution. The Guinier data thus support the suggestion of extended oligosaccharide conformations.

X-ray scattering of native and split α_1-AT in high-phosphate buffers

Synchrotron X-ray-scattering was employed to compare (i) the physiological structure with that in high concentrations of phosphate, (ii) the native and split structures of α_1-AT, and (iii) the hydrated structure with the dry one seen by neutron-scattering. Figs. 1(c) and 1(d) show that excellent R_{ac} and R_{xs} Guinier plots were obtained for both native and split α_1-AT in 50 mm-sodium/potassium phosphate buffer, pH 8.0. The concentration-dependence of the R_{ac} values is visible also in Fig. 1(c). Occasionally a slight time-dependent aggregation of α_1-AT was detected by an increase in $R_2(Q)$ at a very low Q. Its occurrence was facilitated by increased beam currents just after beam refills, increased phosphate concentration, and the prior presence of trace aggregates or the use of native α_1-AT. Accordingly the ten timeslices of each run were examined to check that the Guinier parameters were unaffected.

Data collection in sodium/potassium phosphate buffers up to 1.2 M were affected by worsening sample transmissions with increased phosphate concentrations, and satisfactory signal-to-noise ratios could be obtained only up to 0.6 m-sodium/potassium phosphate buffer, pH 8.0 (Fig. 4). Data analyses showed that, unlike the corresponding neutron data in 100% 2H$_2$O, the $R(0)/c$ values increase (results not shown). This appears to reflect the different solute–solvent scattering density and radiation in use. This dependence decreased with increase in the phosphate concentration, and the $R(0)/cT$ and $[R(0) - Q_{ac}]/cT$ data after extrapolation to zero c were constant within error in the different phosphate buffers (results not shown), thus confirming the good quality of the Guinier data. The R_{ac} values exhibited a statistical spread comparable in magnitude with the observable R_{ac}-dependence on α_1-AT concentration, which is attributed to fluctuations in the background subtraction. Accordingly the mean R_{ac} from each experiment is reported in Fig. 4. No concentration-dependence is seen for the R_{xs} data, and mean values are again given in Fig. 4.

As the phosphate concentration is increased to 0.6 M, no change is seen in the R_{ac} or R_{xs} values of native α_1-AT, showing that the structure is stable under these conditions. Three different experiments in 50 mm-sodium/potassium phosphate buffer, pH 8.0, gave R_{ac} values of 2.80 ± 0.09 nm, 2.93 ± 0.06 nm and 3.00 ± 0.04 nm. These are similar to but slightly larger than the neutron R_0 of 2.82 ± 0.03 nm in water, since both experiments correspond to positive solute–solvent contrasts, but the X-ray data now reflect a hydration shell surrounding α_1-AT. Likewise, two experiments gave 'hydrated' R_{xs} values of 1.73 ± 0.19 nm (19 values) and 1.82 ± 0.13 nm (seven values) that are slightly larger than the neutron 'dry' R_{xs} value of 1.53 ± 0.10 nm measured in 2H$_2$O in 12 mm-sodium phosphate buffer, pH 7.0, containing 1 mm-EDTA and 0.2 m-NaCl. The corresponding data for split α_1-AT are also shown in Fig. 4, and no difference in R_0 or R_{xs} from the native form is observed. This suggests that the conformational transition between the native and split forms of α_1-AT involves only a localized re-arrangement of the protein structure, and that the loss of the N-terminal peptides (see the Materials and methods section) has a negligible effect on the structure.

Molecular modelling of α_1-AT

The scattering data were compared directly with the crystal structure of split α_1-AT (Löbermann et al., 1984) by converting the latter into a Debye sphere model for scattering-curve simulations (see the Materials and methods section). Only 374 of the 394 amino acid residues are present in the structure, since Gly–1–Asp–19 and Lys–394 are not visible in the electron-density map. This protein structure was subdivided into the equivalent unhydrated volume of 246 cubes of side 0.608 nm, which facilitates the representation of the oligosaccharide chains as a single cube for each residue (Perkins et al., 1985). Both tetragonal and hexagonal split α_1-AT co-ordinates were taken from the Protein Data Bank (Bernstein et al., 1977). After addition of hydrogen atom co-ordinates (Perkins, 1982), and with the use of a unit weighting of atoms, the R_{ac} of these structures was calculated as 2.12 nm and 2.13 nm respectively by using $R_{ac} = \sum_{i} r_i^2/\epsilon$, where r_i is the distance of each atom from the centre of gravity. This agrees with the R_{ac} of 2.15 nm calculated from the sphere model. Since the two co-ordinate sets gave very similar results, only the tetragonal model was used further.

Carbohydrate and the N-terminal residues were added to the model. The three N-linked oligosaccharides at Asn-46, Asn-83 and Asn-247 were assumed to be biantennary with 11 residues each (Vaughan et al., 1982). Although only partly visible, the
Table 1. Compositional and scattering data for α-AT

<table>
<thead>
<tr>
<th>Amino acid residues:</th>
<th>Carbohydrate residues:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>394</td>
</tr>
<tr>
<td>Volume (nm³)</td>
<td>57.4</td>
</tr>
<tr>
<td>Carbohydrate residues:</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
</tr>
<tr>
<td>Volume (nm³)</td>
<td>7.9</td>
</tr>
<tr>
<td>Total Mₐ from sequence</td>
<td>51 500</td>
</tr>
<tr>
<td>Percentage carbohydrate by mass</td>
<td>14.1</td>
</tr>
<tr>
<td>Overall θ (ml/g)</td>
<td>0.732</td>
</tr>
<tr>
<td>Neutron data in ¹H₂O in 12 M-0.61-1.42 nm⁻¹</td>
<td>Predicted neutron matchpoint (% ²H₂O)</td>
</tr>
<tr>
<td>Predicated neutron matchpoint (% ²H₂O)</td>
<td></td>
</tr>
<tr>
<td>Experimental matchpoint (% ²H₂O)</td>
<td></td>
</tr>
<tr>
<td>From f(0)</td>
<td>40.3±1.1</td>
</tr>
<tr>
<td>From f(0)</td>
<td>42.1±1.2</td>
</tr>
<tr>
<td>Sturmann analysis</td>
<td></td>
</tr>
<tr>
<td>R₀ (nm)</td>
<td>2.61±0.02</td>
</tr>
<tr>
<td>Rₓ (nm)</td>
<td>29×10⁻⁴+5×10⁻⁵</td>
</tr>
<tr>
<td>Rₓₐ (nm)</td>
<td>1.34±0.01</td>
</tr>
<tr>
<td>Rₓₛ</td>
<td>13×10⁻⁴+1×10⁻⁵</td>
</tr>
</tbody>
</table>

* The dry volume is taken from Chothia (1975) (amino acids) and Perkins (1986) (carbohydrates) and used in matchpoint and modelling calculations. The carbohydrate composition is calculated assuming two biantennary and one triantennary oligosaccharides.
† Partial specific volumes θ were calculated from the consensus volume set of Perkins (1986) and are close to those determined by the Cohn & Edsall (1943) compilation. These values were used in sedimentation simulations.
‡ Calculated from the content of tyrosine, cysteine and tryptophan residues by the Wetlaufer (1962) procedure and rescaled by using a factor of 1.03 (Perkins, 1986). Literature determinations of Aₐₐₐₐ are reported in Bundy & Mehl (1959), Kress & Laskowski (1973) and Bruch & et al., (1988).
§ Calculated by using the assumption of the non-exchange of 10% of the main-chain peptide hydrogen atoms (Perkins, 1986).
Fig. 6. Comparative views of the crystal structure and models for αχ-AT

(a) The α-carbon co-ordinates of tetragonal split αχ-AT are shown (Löbermann et al., 1984). The α-carbon atoms of Asn-46 and Asn-83 are on the +z face of the structure and are indicated by larger spheres, and their associated carbohydrate residues where visible in the electron-density map are numbered as shown. That for Asn-46 is on the −z face. Residues Met-358 and Ser-359 are arrowed. (b) The final extended Debye sphere model for native αχ-AT is shown in the same orientation as in (a), as employed for curves 1 and 2 of Figs. 5(a), 5(b) and 5(c) (see the text). The three oligosaccharide groups are shown in an extended conformation (curve 1) and are assumed to possess biantennary structures. For comparison, the compact conformation (curve 2) is shown also. (c) The hydrodynamic model for native αχ-AT is depicted also in the same orientation. The protein core is represented by 32 spheres of diameter 1.69 nm. In the extended model, each of the three carbohydrate chains is represented by eight spheres of diameter 0.95 nm. The compact model is shown as 36 spheres of diameter 1.69 nm. It should be noted that (i) the mean distance between the αχ-AT molecules in a 20 mg/ml solution of αχ-AT is 16 nm; (ii) the maximum length of the extended model shown in (b) is 11 nm; (iii) the oligosaccharide chains extend by 3.5 to 3.9 nm from the protein surface; (iv) the upper and lower structures in (b) and (c) as shown are displaced by 13 nm.

were relocated to rejoin Met-358 and Ser-359 on the protein surface. The R_g of the native αχ-AT model is increased by 0.03 nm, which is not detectable experimentally.

The curve-fitting to the neutron and X-ray data for native αχ-AT in three contrasts is summarized by curves 1 and 2 in Fig. 5. The model with extended carbohydrate chains gives the three good curve fits for native αχ-AT. The residual R is 0.006, 0.017 and 0.011 in that order for (a), (b) and (c) in Fig. 5. The calculations based on the compact carbohydrate model give worsened curve fits, as shown by visual inspection of the curves in Fig. 5 and the R of 0.010, 0.019 and 0.028. This is clearest in Fig. 5(c), since this contrast corresponds to the strongest contribution of carbohydrate to the scattering curve. In positive contrasts, X-rays result in better signal-to-noise ratios at large Q than neutrons. The $R_{g,c}$ of the extended carbohydrate model (curve 2) gives worsened agreement, with an $R_{g,c}$ of 2.36 nm. The $α$ of the extended model is 29×10^{-3}, which is in better agreement with the $α$ of $29 \times 10^{-3} \pm 5 \times 10^{-4}$ by experiment (Table 1) than that of the compact model with an $α$ of 20×10^{-4}. The density-weighted X-ray R_g of the extended model is 2.97 nm, in good agreement with the experimental X-ray values of 2.80 to 3.00 nm (Fig. 4). It is concluded that the solution structure of native αχ-AT is similar to that seen in the crystal structure if the carbohydrate and N-terminal moieties are in extended conformations.

Two sets of control calculations indicate the importance of incorporating the internal scattering density and hydration into these models.

(a) Given the large $α$ values, it is necessary to incorporate the internal inhomogeneity of scattering densities in the neutron simulations (see the Materials and methods section). If this is neglected, it leads to simulated curves at large Q that underestimate the neutron $I(Q)$ data in negative contrasts in 2H$_2$O (curve 3 of Fig. 5a; R of 0.020) and overestimate those in positive contrasts in 2H$_2$O (curve 3 of Fig. 5b; R of 0.017). (b) Likewise the X-ray simulations require an adequate hydration shell of 0.3 g of water/g of αχ-AT in addition to the internal inhomogeneity of electron densities. Calculations for the dry model gave curves that generally overestimated the X-ray $I(Q)$ data (curve 3 of Fig. 5c; R of 0.035). Too great a hydration of 0.67 g of water/g of αχ-AT leads to worsened agreements beyond $Q = 1 \text{ nm}^{-1}$ (curve 4 of Fig. 5c; R of 0.028). The poorer fits of curves 4 in Figs. 5(a) and 5(b) (R of 0.024 and 0.029 respectively) show that hydration is not appropriate for neutron curve modelling.

As an independent test of the αχ-AT solution models, hydrodynamic models were derived from the crystal structure in order to calculate the frictional coefficient (see the Materials and methods section). The sedimentation coefficient $s_{20,w}$ of αχ-AT has been reported as 3.3 S, 3.41 S and 3.45 S (Bundy & Mehl, 1959; Shamash & Rimon, 1966; Kress & Laskowski, 1973). The frictional coefficient is thus 6.7×10^{-8}–7.0 $\times 10^{-8}$ g/cm per s. From this the frictional ratio f_f/f_g is calculated as 1.29–1.35, to show that this has a moderately elongated structure, in agreement with the conclusion from the $R_{g,c}/R_g$ ratio of 1.35. The 31 hydrodynamic spheres for the protein core are of diameter 1.69 nm. One more was added to allow for the N-terminus. Each carbohydrate moiety was represented by eight spheres of diameter 0.95 nm in the extended model (Fig. 6c). In the compact model, these were replaced by four spheres of diameter 1.69 nm. The frictional coefficients are 7.2×10^{-8} and 6.4×10^{-8} g/cm per s respectively for the extended and compact models, which are greater than and less than the estimated experimental range. This suggests that the carbohydrate of αχ-AT exists in a range of
extended conformations, and is consistent with the Debye modelling.

Conclusions

Large conformational and stability changes have been reported between the native and split forms of α1-AT (Löbermann et al., 1984; Carrell & Owen, 1985; Bruch et al., 1988). No evidence for a gross conformational change was found by solution scattering. This is explicable in terms of the observation by Löbermann et al. (1984) that, if β-strand 4A (residues 343–358) is removed from the centre of β-sheet A to re-form native α1-AT, the structural integrity may largely be conserved. In the modelling, this change corresponds to the relocation of just seven spheres of hydration, and is consistent with the Debye on the centre of β-sheet A to re-form native α1-AT, the structural integrity may largely be conserved. In the modelling, this change corresponds to the relocation of just seven spheres of hydration, and is consistent with the Debye

REFERENCES

Garcia de la Torre, J. & Bloomfield, V. A. (1977a) Biopolymers 16, 1747–1761

Garcia de la Torre, J. & Bloomfield, V. A. (1977b) Biopolymers 16, 1779–1793

Received 24 August 1989/19 October 1989; accepted 24 October 1989
Conformational Transition between Native and Reactive Center Cleaved Forms of α1-Antitrypsin by Fourier Transform Infrared Spectroscopy and Small-Angle Neutron Scattering

Parvez I. Haris,1 Dennis Chapman,1 Richard A. Harrison,§ Kathryn F. Smith,1,11 and Stephen J. Perkins*1,11

Departments of Protein and Molecular Biology and of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, U.K., and Molecular Immunopathology Unit, MRC Centre, Hills Road, Cambridge CB2 2QH, U.K.

Received November 1, 1989; Revised Manuscript Received December 12, 1989

ABSTRACT: α1-Antitrypsin (α1-AT) is the best-characterized member of the serpin superfamily of plasma proteins. Protease inhibitor members of this family undergo a characteristic reactive-center cleavage during expression of their inhibitory activity. The physical basis of this transition in α1-AT from the stressed native conformation to the more stable reactive center cleaved (split) form was studied by Fourier transform infrared (FT-IR) spectroscopy and neutron scattering. The FT-IR spectra show that, while split α1-AT has three intense well-resolved components associated with the presence of antiparallel β-sheet and α-helix conformations, the amide I band of native α1-AT has only one intense component, associated with the presence of β-sheet structure. 1H–2H exchange within the polypeptide backbone, studied by FT-IR and NMR spectroscopy, shows that the native form undergoes greater exchange than the split form. Under the same conditions, neutron scattering shows no differences in the radius of gyration Rg of the native and the split forms. In contrast, in high concentrations of phosphate approaching those used for crystallization, the native form (unlike the split form) undergoes dimerization. These data indicate that the conformational transition largely involves localized secondary and tertiary structure rearrangements. We propose that the energetically stressed native α1-AT structure is the consequence of a significantly reduced number of hydrogen bonds in secondary structure components and that reactive-site cleavage between Met358 and Ser359 is the key for the development of the fully hydrogen bonded more stable serpin structure.

Members of the serpin superfamily, which includes many plasma proteinase inhibitors, present a reactive site as an ideal substrate to the target proteinase (Carrell & Travis, 1985). After reaction, a stable stoichiometric 1:1 complex between substrate to the target proteinase (Carrell & Travis, 1985).

NEUTRON SCATTERING

The preparation of α1-AT and the characterization of the samples is described in Smith et al. (1990). The FT-IR, NMR, and neutron samples were dialyzed over 36 h into sodium potassium phosphate buffers ranging from 0.05 to 1.80 M in 100% 2H2O at 6 °C with four changes of buffers. Infrared spectra were recorded on a Perkin-Elmer 1750 Fourier transform infrared spectrometer equipped with a TGS detector. A Perkin-Elmer Model 7300 data station was used for data acquisition, storage, and analysis. Spectral conditions [defined more fully in Haris et al. (1986) and Perkins et al. (1988)] were as follows: α1-AT concentration 23–25 mg/mL on the basis of A280 (1%, 1 cm) of 5.4; 400 scans (1-h accumulation); spectral resolution 4 cm−1; sample thickness of 50 μm using a Teflon spacer. Spectral deconvolution was performed with the Perkin-Elmer ENHANCE function (Haris et al., 1986), which is analogous to the method developed by Kauppinen et al. (1981), using deconvolution parameters of σ = 8 (half-width at half-height) and k = 2.25. The second-derivative spectra were calculated over a 13-cm−1 range.

Neutron scattering data were measured at 20 °C on the small-angle scattering instrument D17 at the Institut Laue Langevin, Grenoble, with a wavelength λ of 1.105 nm.
FIGURE 1: Fourier transform infrared spectroscopy of native and split αr-AT. Panels a, b, and c correspond to the absorbance, deconvoluted, and second-derivative spectra of native αr-AT in that order; panels d, e, and f correspond likewise to split αr-AT. The absorbance and second-derivative spectra are shown for samples recorded in 0.05 (—), 0.50 (—), and 1.25 M (—) sodium potassium phosphate buffers in 2H2O at 20 °C. The increase in signal intensity at 1500 cm⁻¹ for native αr-AT in 0.50 and 1.25 M phosphate buffers is attributed to the presence of trace amounts of ¹H₂O. The deconvoluted spectra were recorded in 0.05 M sodium potassium phosphate buffers; the peaks are not fully labeled for reason of clarity but are similar to those in the second-derivative spectra.

(wavelength spread Δλ/λ of 10%) and a sample-detector distance of 3.396 m to correspond to a Q range of 0.07–0.60 nm⁻¹ (Q = 4π sin θ/λ; 2θ = scattering angle). Data collection employed 2 mm thick Hellma cells. Analyses followed standard procedures, which utilized backgrounds based on the scattering of the buffer dialyze, cadmium, H₂O, and an empty Hellma quartz cell and measurements of sample and buffer transmissions (Ghosh, 1989; Perkins et al., 1990; Smith et al., 1990). The radius of gyration Rg and the forward scattering at zero scattering angle I(0) were determined from plots of ln I(Q) vs Q² with the Guinier equation (Glatter & Kratky, 1982): ln I(Q) = ln I(0) – Rg²Q²/3 in the Q range 0.15–0.58 nm⁻¹ except for native αr-AT above 1.2 M phosphate, where it was 0.15–0.41 nm⁻¹.

RESULTS AND DISCUSSION

Panels a and d of Figure 1 show the Fourier transform infrared spectra of native and split αr-AT. The amide I maxima in both cases is centered at 1636 cm⁻¹. The feature at 1568–1570 cm⁻¹ corresponds to absorption from carboxylate side chains. The 1516-cm⁻¹ component is normally attributed to tyrosine side chain absorption. The frequency of the main amide I band for both samples is consistent with the presence of a predominantly β-sheet structure in αr-AT (Surewicz & Mantsch, 1988; Haris et al., 1986). However, native and split αr-AT differ in that additional features near 1650 and 1693 cm⁻¹ are present in the split form. These were reproducibly observed in 0.05, 0.50, and 1.25 M phosphate (and also in 0.80, 1.60, and 1.80 M phosphate; not shown). The second-derivative spectra of the two forms in panels c and f of Figure 1 emphasize the differences more clearly. The main β-sheet feature at 1633–1634 cm⁻¹ is visible in both forms. The split form shows considerably more intense β-sheet and α-helix bands at 1694 and 1652 cm⁻¹, and the band at 1633 cm⁻¹ is broader. The bands near 1650 and 1690 cm⁻¹ have been attributed to α-helix and antiparallel β-sheet structures, respectively (Haris et al., 1986; Olinger et al., 1986). For both native and split αr-AT, similar weaker features were generally observed near 1646, 1662, and 1674–1682 cm⁻¹. The feature visible in the native form near 1646 cm⁻¹ most likely corresponds to disordered structures. Those near 1662 and 1674–1682 cm⁻¹ probably correspond to turn structures, although overlap from β-sheet and 310 helices may also occur. The use of deconvolution for resolution enhancement led to very similar results (Figure 1b,e).

The FT-IR spectroscopic results clearly show that the α-helical and antiparallel β-sheet content has significantly increased after reactive-site cleavage of αr-AT. Methods for the quantitative assessment of the differences seen between the two forms of αr-AT by curve fitting of the amide I band are however insufficiently accurate at the present time (Mantsch et al., 1989). Inspection of the crystal structure of split αr-AT (32% α-helix; 40% β-sheet) suggests that in native αr-AT strand A4 is withdrawn from β-sheet A (Löbermann et al., 1984). The formation of about 20–30 additional hydrogen bonds in the largely antiparallel β-sheet A of split αr-AT would account for the appearance of the band at 1694 cm⁻¹. The increase in α-helix content after cleavage is however unexpected. In the crystal structure, in linear sequence, helices A and B flank strand B6, helices D, E, and F alternate with strands A2, A1 and A3, and helices H and I flank strand A6. The infrared data suggest that in the native molecule either these helices are not formed or they are considerably distorted along their length at the same time that β-sheet A is incompletely formed. Thus, after reactive-site cleavage, a concerted drive toward the formation of stable, fully hydrogen bonded α-helix and β-sheet structures results in a molecule (split αr-AT) of increased stability.

The intensity of the amide II band at 1552 cm⁻¹ monitors the residual ¹H–²H exchange of backbone NH protons. Panels
downfield of (trimethylsilyl)propionic acid. The aromatic proton signals from 27 Phe, 13 His, 6 Tyr, and 2 Trp residues were assigned the chemical shift scale set relative to the 1H_02H signal at 4.695 ppm decoupling and 3 s between pulses. The spectral resolution was to the envelope between 6.3 and 8.0 ppm and the amide proton signals dialysis into 2H_2O, this is 15% lower for the native form than a and d of Figure 1 show that, after identical, simultaneous

![chemical shift graph](attachment:image.png)

FIGURE 2: 400-MHz 1H NMR spectra of native and split α_1-AT at 30 °C in 0.05 M sodium potassium phosphate buffers in 2H_2O (concentrations 23–25 mg/mL). The downfield region is shown, with the chemical shift scale set relative to the 1H_02H signal at 4.695 ppm downfield of (trimethylsilyl)propionic acid. The aromatic proton signals from 27 Phe, 13 His, 6 Tyr, and 2 Trp residues were assigned to the envelope between 6.3 and 8.0 ppm and the amide proton signals to that between 8.0 and 9.9 ppm. 256 scans were recorded with water decoupling and 3 s between pulses. The spectral resolution was improved with a sine bell squared routine.

a and d of Figure 1 show that, after identical, simultaneous dialysis into 2H_2O, this is 15% lower for the native form than for the split form. In the deconvoluted spectra of Figure 1b,c, a peak at 1550 cm$^{-1}$ is visible for split α_1-AT but not for native α_1-AT. These indicate that $^1H-^1H$ exchange is more extensive in the native form, as might be expected for a more open structure. This was confirmed by 400-MHz 1H NMR spectroscopy (Figure 2) on the same samples used in Figure 1b,c. Integration of the spectra downfield of the 195 aromatic proton signals shows that while 11% of the 377 NH protons are nonexchanged in native α_1-AT this increases to 19% in split α_1-AT. The greater exchange in native α_1-AT is consistent with a reduced content of ordered secondary structures. [Other NMR spectral differences between the two forms include the observation of narrower line widths in split α_1-AT (Figure 2) and rearranged patterns in the ring current shifted methyl proton signals at the high-field end of the spectra. Both of these are consistent with the existence of structural and dynamic differences between the two forms of α_1-AT.]

The magnitude of the observed changes in backbone structure (Figure 1; Bruch et al., 1988) suggests that native and split α_1-AT may have different gross structures. This was investigated by small-angle neutron scattering. The R_g and $I(0)/cT_s$ Guinier parameters from dilution series are dependent on α_1-AT concentrations c between 0.05 and 0.50 M phosphate. The values after extrapolation to zero c are shown in Figure 3. No difference could be detected between the native and split forms of α_1-AT up to 0.80 M phosphate, even though for other proteins such as hemoglobin (Conrad et al., 1969), aspartate transcarbamylase (Moody et al., 1979), and hexokinase (McDonald et al., 1979) the appropriate conformational changes after ligation are detectable from Guinier analyses. The folded tertiary structures of native and split α_1-AT are thus essentially similar, and this places an upper limit on the structural changes in the polypeptide backbone indicated by FT-IR, circular dichroism (CD), and NMR spectroscopy (Smith et al., 1990).

Final experiments were performed at high phosphate concentrations approaching those used for crystallization. The FT-IR data in 1.25 M (Figure 1), 1.60 M, and 1.80 M phosphate show no significant difference from those in 0.05 M, 0.50 M (Figure 1), and 0.80 M phosphate. However, the neutron data (Figure 3) show that above 1 M phosphate the $I(0)/c$ data rise to double the low-phosphate values for native α_1-AT but are unchanged for the split form. This shows that native α_1-AT forms dimers in 1.8 M phosphate. The corresponding R_g data for native α_1-AT rise in parallel. While the structure of split α_1-AT is unaffected by high phosphate, the association of native α_1-AT indicates that the surface properties of several amino acid residues are significantly different.

Conclusions

Neutron scattering shows that under physiological conditions the gross folded structures of native and split α_1-AT are similar. However, within the secondary and tertiary structures of both forms of α_1-AT, subtle but marked structural differences were identified by use of FT-IR spectroscopy and neutron scattering. CD and NMR spectroscopic studies (Figure 2; Bruch et al., 1988; Gettins & Harten, 1988) have also shown that there are conformational differences between the native and split forms of other members of the serpin superfamily. These data are supported by monoclonal antibodies with different epitopic specificities which bind either to native or to split α_1-AT (Zhu & Chan, 1987). In earlier studies, the stabilization of split α_1-AT has generally been discussed in terms of the localized relief of strain caused by cleavage of the Met358–Ser359 bond within a stressed surface-exposed polypeptide loop (Löbermann et al., 1984; Carrell & Travis, 1985; Carrell & Owen, 1985; Bruch et al., 1988), although Löbermann et al. (1984) have noted that strain in a molecule is generally thought to be distributed
changes in the spectral properties of the polypeptide backbone that are observed by FT-IR spectroscopy can be directly assigned to the formation of well-defined hydrogen bonds in α-helices and β-sheets in split α1-AT. The magnitude of these changes for two forms of a water-soluble protein measured under physiological conditions is unusual. Our data suggest that split α1-AT is stabilized relative to the native form by a more complete hydrogen bonding of its secondary structure (particularly α-helical). The lability of the native serpin structure is consequent on a far more extensive degree of stress than has previously been supposed.

ACKNOWLEDGMENTS

We thank the Wellcome Trust for support and the Science and Engineering Research Council for beamtime at the Institut Laue Langevin, Grenoble. We are grateful to Dr. J. Feeney and Dr. C. Bauer for use of the 400-MHz 1H NMR spectrometer at the National Institute of Medical Research, Mill Hill, London, and Dr. A. de Geyer for support at ILL.

REFERENCES

Two-domain Structure of the Native and Reactive Centre Cleaved Forms of C1 Inhibitor of Human Complement by Neutron Scattering

Stephen J. Perkins, Kathryn F. Smith, Supavadee Amatayakul
David Ashford, Thomas W. Rademacher, Raymond A. Dwek
Peter J. Lachmann and Richard A. Harrison
Two-domain Structure of the Native and Reactive Centre Cleaved Forms of Cl Inhibitor of Human Complement by Neutron Scattering

Stephen J. Perkins†, Kathryn F. Smith
Departments of Biochemistry and Chemistry and Protein and Molecular Biology
Royal Free Hospital School of Medicine
Rowland Hill Street, London NW3 2PF, U.K.

Supavadee Amatayakul, David Ashford, Thomas W. Rademacher
Raymond A. Dwek
Glycobiology Unit, Department of Biochemistry
University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.

Peter J. Lachmann and Richard A. Harrison
MRC Molecular Immunopathology Unit, MRC Centre
Hills Road, Cambridge CB2 2QH, U.K.

(Received 14 November 1989; accepted 20 April 1990)

The Cl inhibitor component of human complement is a member of the serpin superfamily, and controls Cl activation. Carbohydrate analyses showed that there are seven O-linked oligosaccharides in Cl inhibitor. Together with six N-linked complex-type oligosaccharides, the carbohydrate content is therefore 26% by weight and the molecular weight (M_r) is calculated as 71,100. Neutron scattering gives an M_r of 76,000 (± 4000) and a matchpoint of 41.8 to $42.3\% \text{H}_2\text{O}$, in agreement with this carbohydrate and amino acid composition. Guinier plots to determine the radius of gyration R_G were biphasic. Neutron contrast variation of CT inhibitor in $\text{H}_2\text{O}-\text{D}_2\text{O}$ mixtures gave an overall radius of gyration R_G at infinite contrast of 4.85 nm, from analyses at low Q, and a cross-sectional R_G of 1.43 nm. The reactive centre cleaved form of Cl inhibitor has the same M_r and structure as the native molecule. The length of Cl inhibitor, 16 to 19 nm, is far greater than that of the putative serpin domain. This is attributed to an elongated structure for the carbohydrate-rich 113-residue N-terminal domain. The radial inhomogeneity of scattering density, α, is large at 50×10^{-5} from the R_G data and 28×10^{-5} from the cross-sectional analysis, and this is accounted for by the high oligosaccharide content of Cl inhibitor. The scattering data were modelled using small spheres. A two-domain structure of length 18 nm based on two distinct scattering densities accounted for all the contrast variation data. One domain is based on the crystal structure of α_1 antitrypsin (7 nm \times 3 nm \times 3 nm). The other corresponds to an extended heavily glycosylated N-terminal domain of length 15 nm, whose long axis is close to the longest axis of the serpin domain. Calculation of the sedimentation coefficient $s^0_{20,w}$ for Cl inhibitor using the hydrodynamic sphere approach showed that a two-domain head-and-tail structure with an M_r of 71,000 and longest axis of 16 to 19 nm successfully reproduced the $s^0_{20,w}$ of 3.7 S. Possible roles of the N-terminal domain in the function of Cl inhibitor are discussed.

† Author to whom correspondence should be addressed, in the Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, U.K.
1. Introduction

The complement system comprises a family of plasma and cell-surface glycoproteins that operate as a cascade and play a major role in immune defence mechanisms. The classical pathway of complement activation is initiated by the first component, C1, which reacts largely with immune complexes of IgM or IgG immunoglobulins bound to foreign material (Cooper, 1985; Reid, 1986; Schumaker et al., 1987). The unrestrained activation of C1 would cause excessive consumption of C2 and C4, thus C1 is regulated by C1 inhibitor (Harpel, 1976; Sim & Reboul, 1981; Cooper 1985; Davis, 1988). This protease inhibitor, present at about 0.20 mg/ml in plasma, forms stable 1:1 complexes with the C1r and C1s subcomponents of C1 to prevent further complement activation. Complex formation is characterized by the irreversible cleavage of the peptide bond at Arg444-Thr445 in the reactive centre of C1 inhibitor (Salvesen et al., 1985). Conformational changes after cleavage lead to a much more stable protein structure (Bruch et al., 1988; Pemberton et al., 1989). While C1 inhibitor is the only known inhibitor of C1r and C1s, it is also a critical regulatory component of the coagulation, fibrinolytic and kinin-releasing systems, and its absence or inactivation by "non-productive" cleavage of the Arg444-Thr445 peptide bond is important in certain disease states (Davis, 1988).

Compositional studies of C1 inhibitor are required to understand the mechanism of control of C1 activation in serum. C1 inhibitor is a member of the serpin superfamily (serine protease inhibitor) of serum inhibitors (Davis et al., 1986; Bock et al., 1986). Its M_r has been estimated as 98,000 to 116,000 by gel electrophoresis and ultracentrifugation analyses (Pensky et al., 1961; Haupt et al., 1970; Reboul et al., 1977; Nilsson & Wiman, 1982; Harrison, 1983). However, the sequence shows that the mature protein M_r is only 52,300 and it has been suggested that this implies a carbohydrate content as high as 49% (Boek et al., 1986). This is not supported by previous carbohydrate analyses, which found a total of 33% to 35% by mass (Haupt et al., 1970; Harrison, 1983). The structure of the N-linked and O-linked oligosaccharides have been determined, but not their total amounts (Strecker et al., 1985). Accordingly, further carbohydrate analyses were performed in order to define the composition of C1 inhibitor.

Structural data are required also to understand the function of C1 inhibitor. Sedimentation data for C1 inhibitor give $s_{20,w}^0$ values mostly at 3.7S (Schultze et al., 1962; Haupt et al., 1970; Reboul et al., 1977; Chesne et al., 1982) from which highly elongated structures have been deduced (Odermatt et al., 1981; Perkins, 1985). Electron microscopy suggested that C1 inhibitor has an elongated two-domain "head-and-tail" structure (Odermatt et al., 1981), and microcalorimetry experiments supported this two-domain structure (Lennick et al., 1985). The crystal structure of the homologous serpin α_1-antitrypsin can be used to model the C-terminal 365 amino acid residues (Löbermann et al., 1984; Bock et al., 1986; Harrison, 1989), which probably corresponds to the "head" of C1 inhibitor. The "tail" is therefore the heavily glycosylated N-terminal 113 amino acid residues, with a presumed length of anywhere between 26 nm and 53 nm. The structure of the N-terminal domain is poorly understood; indeed, the functional consequences of this domain are wholly unknown (Davis, 1988).

Neutron scattering is an effective multiparameter tool for structural studies of glycoproteins (Perkins et al., 1985; Smith et al., 1990). Contrast variation in H$_2$O$-^2$H$_2$O mixtures will identify the overall structure under conditions close to physiological, in which the internal arrangement of protein and carbohydrate can be allowed for (Perkins, 1988a, b). The conformational transition between the native and reactive centre cleaved proteins can be monitored. The two-domain model for C1 inhibitor can be compared quantitatively with the crystal structure of α_1-antitrypsin (Löbermann et al., 1984; Smith et al., 1990), where molecular models for C1 inhibitor can be developed. Possible roles for the heavily glycosylated N-terminal domain for the function of C1 inhibitor are discussed.

2. Materials and Methods

(a) Preparations of the native and reactive centre cleaved forms of C1 inhibitor

C1 inhibitor was prepared from human plasma according to the method of Harrison & Lachmann (1986) and either used fresh or stored frozen at -70°C until required. If frozen, samples were prepared for scattering studies by gel filtration on Sepharose 6B in 12 mm-sodium phosphate, 200 mm-NaCl, 1 mm-EDTA, pH 7.0. The peak fraction(s) at about 10 mg/ml were then dialysed against the same buffer, filtered through a 0.2 pm filter (Gelman) into sterile glass or plastic vials, and held at 4°C until required for analysis. Two forms of C1 inhibitor were used in analysis. The native form showed a single band on SDS/polyacrylamide gel electrophoresis (Laemmli, 1970), and was fully active against C1s and plasmin. The split form of C1 inhibitor was generated subsequent to isolation by the action of an unidentified protease(s). Gel electrophoresis (Laemmli, 1970) and high-pressure liquid chromatography analyses of this showed it to have been split at 2 sites, one at or close to the reactive centre exposed loop, and the other close to the amino terminus of the protein, generating fragments indistinguishable from those generated by Pseudomonas aeruginosa elastase (Pemberton et al., 1989). The sites of cleavage were confirmed by amino-terminal sequence analysis (performed by Dr L. Packman at the Protein Sequencing Facility, Department of Biochemistry, University of Cambridge) of the cleaved material both before and after dialysis against scattering buffers. This indicated that cleavage had occurred between Ser441 and Val4442 in the reactive centre and, in approximately equimolar amounts, either between Met31 and Leu32 or between Leu32 and Phe33 in the amino-terminal region. While the C-terminal peptide, containing the reactive centre residues, was fully retained in the dialysed cleaved molecule, partial (up to 30%) loss of the amino-terminal 31/32 residues may have...
occurred, although the nature of the residues at the amino terminus of the protein (N-P-N(CHO)-A-T-S-S-S) make this difficult to quantify precisely. Samples were reanalysed by gel electrophoresis subsequent to solution scattering studies, and no differences before or after the scattering experiments were detected. In addition, native CT inhibitor after the scattering experiments had an unaltered specific activity against active-site titrated plasmin.

(b) Carbohydrate analysis of CT inhibitor

The methods for the release of N-linked oligosaccharides by hydrazinolysis and their subsequent analysis have been described (Ashford et al., 1987). Enzyme digestion of oligosaccharides with neuraminidase (Arthrobacter ureafaciens) and β-N-acetylhexosaminidase (Jack bean) have also been described (Parekh et al., 1987). O-linked oligosaccharides were released and reduced by alkaline sodium borohydride treatment using a modification of the method described by Mizuochi et al. (1980). Typically, 2-5 mg of CT inhibitor was treated with 250 μl of 0·6 M-sodium [3H]borohydride (360 mCi/mmol, New England Nuclear) in 0·05 M-sodium hydroxide for 20 h at 50°C with shaking. The mixture was cooled to 4°C and 12 μl of acetic anhydride was added. After 10 min, an additional 12 μl of acetic anhydride was added and the reaction allowed to proceed at room temperature for a further 10 min. This addition and incubation was repeated twice more. The reaction mixture was adjusted to approximately pH 6 by dropwise addition of 1 M-acetic acid, and then applied to a 1 ml column of Dowex AG50x12 (H+ form, Bio-Rad). The column was eluted with 5 column volumes of distilled water. The eluate was filtered through a 0·5 μm Teflon filter and evaporated to dryness. Borate was removed by repeated evaporation (5x) with methanol (300 μl). The sample was then subjected to descending paper chromatography for 48 h with butan-1-ol/ethanol/water (4:1:1, by vol).

For quantification of the number of O-linked chains on CT inhibitor, lactose was added prior to the alkaline borohydride treatment. After isolation of the reduced, radio-labelled oligosaccharides from paper chromatography, they were treated with neuraminidase and subjected to high-voltage electrophoresis in pyridine/acetic acid/water (3:1:378, by vol.) buffer, pH 5·4 at 30°C for 45 min. The neutral oligosaccharides remaining at the origin were eluted with water and applied to a Bio-Gel P-4 high-resolution gel filtration system. Radioactive fractions eluting from 1 to 5 glucose units, by comparison with the internal isomaltobiose-saccharide standards, were pooled together. Lactitol was separated from reduced O-glycans by high-voltage electrophoresis in borate buffer (Ashford et al., 1987). The radioactive areas were eluted from the electrophoretogram and quantified by liquid scintillation counting. A portion of the Bio-Gel P-4 pool was also subjected to the procedure for reducing-terminal monosaccharide determination (Ashford et al., 1987). The radioactive areas of the resulting electrophoretogram corresponding to glucitol and N-acetylgalactosaminitol were quantified by integration of the radioactive peaks detected by the linear analyser. Corrections in the quantification were made for trace contaminants in the lactitol and for background.

c) Neutron data collection and analyses

Neutron data were collected on Instrument D17 at the Institut-Laue-Langevin, Grenoble. Guinier radius of gyration \(R_G \) data were based on a sample to detector distance of 3·46 m and neutron wavelengths of 1·385 to 1·395 nm or 1·400 nm, corresponding to a \(Q \) range (\(Q = 4\pi \sin \theta/\lambda \), where \(\theta \) is the scattering angle) of 0·033 to 0·486 nm\(^{-1} \). Data at larger \(Q \) were obtained with a sample to detector distance of 1·40 m, wavelengths of 1·001 to 1·004 nm, and main beam to detector angles of 0° and 19·89° to give \(Q \) ranges of 0·13 to 1·60 nm\(^{-1} \) and 0·8 to 3·6 nm\(^{-1} \). Instrument D11 with a sample to detector distance of 10·5 m and wavelength of 1·00 nm was used to obtain a lower \(Q \) range of 0·0019 to 0·220 nm\(^{-1} \). Samples were dialysed at 6°C with stirring into 12 mM-sodium phosphate, 200 mM-NaCl, 1 mM-EDTA (pH 7·0 in 0%, 80% or 100% \(\text{H}_2\text{O} \) solutions with 4 changes over 36 to 48 h). All neutron data were recorded at 20°C. Concentrations were measured using an absorption coefficient \(A_{\text{em}} \) of 3·6 (Harrison, 1953; Salvesen et al., 1985). Data reduction was based on standard Grenoble software (Ghosh, 1981), and the final analyses in London were based on SCTPL (Perkins & Sym, 1986). Statistical analyses were performed using MINITAB (version 6.1) on a microcomputer (Ryan et al., 1985).

At small \(Q \), the Guinier equation gives the radius of gyration \(R_G \) and the forward scattering at zero scattering angle \(I(0) \) (Guinier & Fournet, 1955):

\[
I(Q) = I(0) - R_G^2 Q^2/3.
\]

In a given solute–solvent contrast, \(R_G \) measures the degree of elongation of a glycoprotein. If this structure is sufficiently elongated, the \(R_G \) of the cross-sectional structure \(R_{X\!\!S} \) and the cross-sectional intensity at zero angle \(I(Q) \times Q \) are obtained from:

\[
I(Q) = I(0) - R_G^2 Q^2/3.
\]

The matchpoint is obtained from a graph of \(\sqrt{I(0)/cT}\) against % \(\text{H}_2\text{O} \) (\(T_t \) is sample transmission, \(c \) is concentration), and from the cross-sectional analyses using \(I(Q) \times Q \). Experimental matchpoints can be compared with the amino acid sequence on the basis of the unhydrated shape of \(\text{AT} \), the use of crystallographic volumes (unhydrated), and the 10% non-exchange of the main-chain amide protons (Perkins, 1986). The contrast variation analysis of the arrangement of carbohydrate and protein is based on the Sturmann equation (Ibel & Stuhrmann, 1975):

\[
R_G = R_{X\!\!S} + \beta_G \Delta \rho - \alpha_G \Delta \rho^2,
\]

where \(R_G \) and \(R_{X\!\!S} \) are the radii of gyration of the macromolecule and its cross-section at infinite contrast, \(\beta_G \) and \(\beta_{X\!\!S} \) measure the corresponding radial inhomogeneity of scattering densities, and \(\Delta \rho \) is the reciprocal solvent–solute contrast difference. The terms in \(\beta_G \) and \(\beta_{X\!\!S} \) measure the displacement of the centre of scattering density as the contrast is varied. From the term in \(\beta \), the distance \(\Delta \) between the centres of 2 components of distinct scattering densities \(\rho_1 \) and \(\rho_2 \) and volumes \(V_1 \) and \(V_2 \), respectively, can be calculated; however, 3 parameter-weighted least-squares fitting of the data in Fig 3(b) showed that this was not measurable.

The neutron-scattering curve \(I(Q) \) in reciprocal space can be transformed into real space \(P(r) \) by use of the indirect transformation procedure (ITP) method (Glatter, 1982). This required the full scattering curve to 3·6 nm\(^{-1} \). It offers an alternative calculation of the \(R_G \) and the length \(L \) for CT inhibitor. The 75 experimental \(I(Q) \) data points (in 3 subdomains to correspond to the 3 D17 configurations) were best fitted using 10 to 15 cubic splines, which were transformed into 101 points of the-
...spheres of 2 distinct scattering densities to follow on the dry volume of the glycoprotein (Chothia, 1975; 0-0112 rad at Instrument D17.

Modelling of the neutron-scattering curves was based on the dry volume of the glycoprotein (Chothia, 1975; Perkins, 1986), and used Debye simulations based on spheres of 2 distinct scattering densities to follow described procedures (Perkins & Weiss, 1983; Perkins, 1985; Smith et al., 1990). Modelling of the sedimentation coefficient $s_{0, o}$ was based on the hydrated volume, which corresponds to the sum of the volumes of the dry glycoprotein and the hydration shell (assuming a hydration of 0.3 g H$_2$O/g glycoprotein and an electrostricted water molecule volume of 0.0245 nm3), and this leads to a partial specific volume \bar{v} of 0.721 ml/g for CI inhibitor (Perkins, 1986). When hydrodynamic spheres are used, this hydration is increased to 0.39 g in order to compensate for the void spaces between the non-overlapping spheres (Perkins, 1986). Calculations were performed using the program GENDIA (Garcia de la Torre & Bloomfield, 1977a, b).

(d) Modelling of the structure of CI inhibitor

Modelling of the neutron-scattering curves was based on the dry volume of the glycoprotein (Chothia, 1975; Perkins, 1986), and used Debye simulations based on spheres of 2 distinct scattering densities to follow described procedures (Perkins & Weiss, 1983; Perkins, 1985; Smith et al., 1990). Modelling of the sedimentation coefficient $s_{0, o}$ was based on the hydrated volume, which corresponds to the sum of the volumes of the dry glycoprotein and the hydration shell (assuming a hydration of 0.3 g H$_2$O/g glycoprotein and an electrostricted water molecule volume of 0.0245 nm3), and this leads to a partial specific volume \bar{v} of 0.721 ml/g for CI inhibitor (Perkins, 1986). When hydrodynamic spheres are used, this hydration is increased to 0.39 g in order to compensate for the void spaces between the non-overlapping spheres (Perkins, 1986). Calculations were performed using the program GENDIA (Garcia de la Torre & Bloomfield, 1977a, b).

3. Results and Discussion

(a) Carbohydrate analyses of CI inhibitor

Carbohydrate analyses were carried out to confirm the structure(s) of the N-linked oligosaccharides and to quantify the number of O-linked oligosaccharides bound to CI inhibitor. While the protein sequence (Bock et al., 1986) indicates six occupied N-linked glycosylation sites, the situation for the O-linked chains is less clear.

High-voltage electrophoresis of the N-linked oligosaccharides of CI inhibitor, released by hydrazinolysis and reduced with NaB$_3$H$_4$, indicated that 96.6% of the oligosaccharides carried at least one negative charge (Fig. 1(a)). The distribution of charged species was consistent with a mixture of mono- and di-sialylated biantennary oligosaccharides (A-1 and A-2) and mono-, di- and tri-sialylated triantennary oligosaccharides (A'-1, A'-2 and A-3). The relative proportions of these components were: A-1, 14-9%; A-2, 58-1%; A'-1, 21%; A'-2, 51%; A-3, 16-4%. Electrophoresis of the charged N-linked oligosaccharides after treatment with neuraminidase showed that all the charged components were converted to neutral species and remained at the origin. Therefore the only charged moiety was sialic acid. Bio-Gel P-4 gel filtration chromatography of the neuraminidase-treated oligosaccharides gave the elution profile shown in Figure 1(b). The major peak eluted at 13.5 glucose units and minor components eluted at 14.5, 16.5, 17.5 and 18.5 glucose units. These peaks were pooled as shown in Figure 1(b). The relative proportions of each pool were as follows: I, 20%; II, 65%; III, 9.3%; IV, 20.6%; V, 61.6%. The characteristic elution profile positions on Bio-Gel P-4 (Yamashita et al., 1982) indicated that peak a was a tetra-antennary oligosaccharide, peaks b and c were tri-antennary oligosaccharides (peak b core fucosylated), and peaks d and e were bi-antennary oligosaccharides (peak d core fucosylated). These oligosaccharide assignments were confirmed using sequential exoglycosidase sequencing (data not shown).

High-voltage electrophoresis of a portion of the radioactive oligosaccharides obtained by treatment of CI inhibitor with alkaline sodium 3Hboro-hydrate in the presence of lactose, showed negatively charged material with a similar mobility to sialyl-lactose and authentic NeuNAc2-3(6)Galβ1-3GalNAc in addition to lactitol. When the charged material was treated with neuraminidase and subjected to electrophoresis, the radioactivity remained at the origin and was therefore neutral, confirming that only sialylated charged species were present (data not shown). The bulk of the radioactive oligosaccharides were then treated with neuraminidase, subjected to electrophoresis and the resulting neutral oligosaccharides were subjected to Bio-Gel P-4 gel filtration. The chromatogram showed a series of peaks eluting at 3.5 and 2.5 glucose units and a minor peak eluting at 4.4 glucose units (data not shown). The peak at 2.5 glucose units corresponds to lactitol and that at 3.5 to Galβ1-3GalNAc. Insignificant amounts of N-linked oligosaccharides were present. Acid hydrolysis of the pooled fractions from one to five glucose units confirmed that the only reducing-terminal monosaccharides present were N-acetylglactosaminol and glucitol. These data taken together are consistent with the finding of Streckert et al. (1985) that the O-linked oligosaccharides of CI inhibitor are predominantly NeuNAc2-3(6)Galβ1-3GalNAc.

Inclusion of lactose in the alkaline borohydride treatment allowed measurement of the ratio of this standard to the released O-linked sugars (see Table 1). Two methods of quantification both gave a value of approximately seven O-linked oligosaccharides per molecule of CI inhibitor.

The addition of six N-linked and seven O-linked oligosaccharides with the structures determined above to the peptide M_r of 52,800 leads to an M_r of 71,000 (Table 2), of which 26% is carbohydrate. This content is less than, but is comparable with, the determinations of 33% to 35% by Haupt et al. (1970) and Harrison (1983). The presence of seven O-linked oligosaccharides is consistent with the seven glycosylation sites reported at Ser42, Thr26, Thr49, Thr61, Thr66, Thr70 and Thr74 during sequencing (Bock et al., 1986). It is also clear that the total M_r is 32% less than the generally accepted value of 104,000. Most M_r determinations have been based on SDS/polyacrylamide gel electrophoresis, and values ranging from 98,000 to 116,000 have been reported (Pensky et al., 1961; Haupt et al., 1970; Harpel & Cooper, 1975; Reboul et al., 1977; Nilsson & Wiman, 1982; Harrison, 1983). It is well known that the presence of carbohydrate causes glycoproteins to migrate abnormally in SDS/
polyacrylamide gel electrophoresis and therefore give apparently higher M_r values (Gordon, 1975). This could account for the discrepancy with the SDS/polyacrylamide gel results. However, SDS/polyacrylamide gel electrophoresis of deglycosylated Cl inhibitor (Harrison, 1983) or the product of cell-free-translation of Cl inhibitor mRNA (Tosi et al., 1986; Reboul et al., 1987) gives apparent M_r...
Table 1
Quantification of the number of O-linked oligosaccharides released from CT inhibitor by alkaline sodium borohydride

<table>
<thead>
<tr>
<th>Oligosaccharides</th>
<th>Radioactivity/cts/min</th>
<th>Molar ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligosaccharides</td>
<td>Radioactivity/mole (cts/min) Molar ratio</td>
<td></td>
</tr>
<tr>
<td>Lactitol</td>
<td>2.85 x 10^12</td>
<td>1.00</td>
</tr>
</tbody>
</table>

After separation of the oligosaccharides by borate electrophoresis, the radioactive areas were eluted and the radioactivity measured by liquid scintillation counting.

After acid hydrolysis and separation of the reducing terminal monosaccharides by borate electrophoresis, the radioactive peak areas were obtained by integration.

The number of mol of O-linked glycan/mol of CT inhibitor are calculated for different molecular weights of CT inhibitor and are given in parentheses.

values of 78,000, 64,000 and 65,000 in that order. These are higher than the protein mass of 52,800 calculated from the sequence, and may reflect restricted SDS binding and unfolding of the unusual repeating tetrapeptide sequence Glx-Pro-Thr-Thr in the N-terminal domain of the protein.

(b) Neutron R_G Guinier analyses of CT inhibitor

Neutron scattering was applied to both native and split CT inhibitor. The split form is inactive, and differs from the native form by two main-chain breaks, either between Met31 and Leu32 or Leu32 and Phe33, and Ser441 and Val442; the last pair is in the reactive site loop, close to the physiological cleavage site at Arg444-Thr445 (Pemberton et al., 1989). While the C-terminal peptide (M_r 4400) remains associated with the major CT inhibitor fragment, a partial loss of up to 30% of those at the N terminus (M_r 3200) has probably occurred (see Materials and Methods).

The neutron Guinier analyses on CT inhibitor were based on three independent preparations of each of the native and split forms studied between concentrations of 2 and 14 mg/ml. All experiments showed biphasic Guinier R_G plots (Fig. 2(a)). The R_G could be analysed in the lowest linear Q^2 range in Figure 2(a) between Q values 0.08 and 0.22 nm^-1 on Instrument D17, and the data were confirmed using Instrument D11 at lower Q (see Materials and Methods). The R_G and I(0)/c values increase by approximately 15% and 30%, in that order, on dilution from 14 mg/ml in all contrasts, and this is similar to that observed for another serpin, α_1-antitrypsin (Fig. 2 of Smith et al., 1990). A concen-
tration dependence was also reported for C1 inhibitor by sedimentation (Haupt et al., 1970). Since the serpin domain of C1 inhibitor has a net charge of +6, while the N-terminal domain has a net charge of −20, it is likely that the molecule contains a dipole and that the concentration dependence is the result of interparticle interference phenomena (Guinier & Fournet, 1955).

$I(0)/c$ provides compositional information on M_r and is a control of the measurements. For the native and split forms, their values were the same within error in all contrasts. For the split form, it is inferred that both the C-terminal cleaved peptide and the bulk of the N-terminal peptides (up to 9% of the total M_r) remain associated with the parent structure, in agreement with sequence analyses (Haupt et al., 1970). Since C1 inhibitor is elongated, cross-sectional R_{xs} analyses could be performed (Pilz, 1982). Linear plots of $\ln(I(Q)\times Q)$ versus Q^2 were found in the Q range 0.67 to 1.30 nm\(^{-1}\) (Fig. 2(b)). No concentration dependence of the R_{xs} or $I(0)Q\times Q \times Q$ parameter was observed, nor was any difference seen between the native and split forms of C1 inhibitor (data not shown). Contrast variation gave a matchpoint of $42.2(\pm 0.5)$% 2H\(_2\)O, which is consistent with the predicted value of $41.0(\pm 0.5)$% 2H\(_2\)O calculated from the composition (Perkins, 1986).

R_g provides overall structural data. For the two forms of C1 inhibitor, the R_g values were similar (and also for the R_{xs} data, see below). This shows that the structural rearrangement between the two forms is relatively localized, as already discussed for α_1-antitrypsin (Smith et al., 1990), even though crystallographic studies show that a significant conformational change must have occurred on cleavage of the reactive centre (Löbermann et al., 1984). Evidence that this change occurs too in C1 inhibitor was demonstrated by circular dichroism (Bruch et al., 1988) and heat stability (Pemberton et al., 1989).

The Stuhrmann dependence of R_g on the contrast (Fig. 3(b)) provides information on the external and internal structure of C1 inhibitor. At infinite contrast the $R_{g,C}$ of 4.85(±0.01) nm corresponds to an elongation ratio $R_{g,C}/R_g$ of 2.27, where R_g is the R_g of the sphere with the same dry volume as C1 inhibitor. The value of this ratio is 1.35 for the homologous serpin α_1-antitrypsin (Smith et al., 1990). C1 inhibitor is therefore much more elongated than α_1-antitrypsin. The difference is attributed to the large N-terminal domain of C1 inhibitor, the analogue of which is not found in the sequence of α_1-antitrypsin. The positive slope α_g of the Stuhrmann plot shows that the internal structure of C1 inhibitor is dominated by a higher scattering density on its surface than in its inner core. Calculations show that this corresponds to hydrophilic surface regions of protein and carbohydrate and a hydrophobic core of protein (Perkins et al., 1981; Perkins, 1986). Even though α_g is less accurately determined than $R_{g,C}$, the α_g of 59(±3) x 10\(^{-5}\) is comparable with those measured for α_1-acid glycoprotein (Perkins et al., 1986) and α_1-antitrypsin (Smith et al., 1990) after rescaling these data on the basis that a is proportional to R_c.

(c) Neutron analyses of C1 inhibitor at large Q

Since C1 inhibitor is elongated, cross-sectional R_{xs} analyses could be performed (Pilz, 1982). Linear plots of $\ln(I(Q)\times Q)$ versus Q^2 were found in the Q range 0.67 to 1.30 nm\(^{-1}\) (Fig. 2(b)). No concentration dependence of the R_{xs} or $I(0)Q\times Q$ parameter was observed, nor was any difference seen between the native and split forms of C1 inhibitor (data not shown). Contrast variation gave a matchpoint of $42.2(\pm 0.5)$% 2H\(_2\)O, which is consistent with the predicted value of $41.0(\pm 0.5)$% 2H\(_2\)O (Table 2). The Stuhrmann plot of R_{xs} versus Q gave a $R_{xs,C}$ of 1.43(±0.02) nm and an α_{xs} of 29(±2) x 10\(^{-5}\) (Fig. 3(b)). The predicted value of α_{xs} is in the range 3×10^{-5} to 13×10^{-5}, which is considerably less than the observed α_{xs} of 29×10^{-5}. (Note that the contrast dependence of R_{xs} is clearly visible in Fig. 2(b)). The cross-sectional structure of C1 inhibitor is thus strongly dominated by the carbohydrate component.
The dry volume is calculated from the crystallographic residue volumes of Chothia (1975) and Perkins (1986). The matchpoint is determined as NeuNAc12Gal13GalNAc25Man18Fuc1, and that of Cys108 in the N-terminal domain. Cys406 and Glu19 in the α-antitrypsin crystal structure were replaced by the N-terminal domain (Asn1 to Ser113) in C1 inhibitor. The N-terminal domain was modelled as an extended protein structure of 69 spheres, initially with a total length of 23 spheres and 14.0 nm, for four reasons.

(1) Scattering shows that the overall length of α1-antitrypsin of 7.0 to 7.8 nm (Smith et al., 1990) is increased to 16 to 19 nm in C1 inhibitor.

(2) A Robson secondary structure prediction (Garnier et al., 1978) of the N-terminal 113 residues indicates relatively low amounts of α-helix (17%), and β-sheet (16%), and high amounts of β-turn (25%) and coil (41%).

(3) Of the 113 residues, 61% are hydrophilic and there are ten glycosylation sites, which is compatible with a high exposure to solvent.

(4) Of the 113 residues, 15 are proline, mostly between Pro62 to Pro104, which is high compared to an average of 5-2% in proteins (Dayhoff, 1978).

The six N-linked oligosaccharides were modelled as extended bi-antennary structures (Strecker et al., 1985) of 11 spheres each, even though Figure 1 shows that one-sixth of the structures are tri-antennary oligosaccharides, and that possibly one site is occupied uniquely with this tri-antennary class. The seven O-linked oligosaccharides were represented by three spheres each. In the N-terminal domain the oligosaccharides were arbitrarily positioned along the protein core according to their occurrence in the primary sequence (Fig. 5).

Information on the relative orientation of the serpin and N-terminal domains in C1 inhibitor was provided by the position of Cys406 and Cys183 of C1 inhibitor in the crystal structure of α1-antitrypsin. These form disulphide bridges with Cys101 and Cys108 in the N-terminal domain. Cys406 and
Figure 4. Indirect transformation (Glatter, 1982) of the scattering curves \(I(Q) \) for CI inhibitor. The experimental \(P(r) \) curve corresponds to data on native CI inhibitor at 14 mg/ml in 100% \(^2\text{H}_2\text{O} \), based on 69 \(I(Q) \) points extending to \(Q = 3\times1 \text{ nm}^{-1} \), fitted using 10 B-splines, and transformed using an assumed maximum length of 20-2 nm. The error margins of the transformation are shown for the experimental curve. The 25 x 3 model curve is based on the model shown in Fig. 5, as calculated for the 100% \(^2\text{H}_2\text{O} \) contrast, based on 99 \(I(Q) \) points extending to \(Q = 1-6 \text{ nm}^{-1} \), fitted using 10 B-splines, and transformed using a maximum length of 25-25 nm. The \(r \) values corresponding to the positions of the main peak in \(P(r) \) and where \(P(r) \) becomes zero are arrowed. The 34 x 2 and 17 x 4 models are inset.

Cys183 are located on the \(-z\) face of the crystal structure, on helix D and on the loop connecting helix I and strand A5, and constrain the N terminus domain to lie along the \(+x\) direction of the crystal structure starting from His20 (the \(+x\) model). The long axes of the two domains lie in similar directions.

The contrast dependence of the scattering was incorporated by subdividing the model into 243 surface hydrophilic spheres and 152 core hydrophobic spheres, which were assigned matchpoints of 60% and 30% \(^2\text{H}_2\text{O} \), respectively (Smith et al., 1990). Figure 5 shows that good agreements with the experimental curves in three contrasts were obtained. The residual \(R \) (defined by Smith et al. (1990), by analogy with crystallography) is low at 0.020 (0% \(^2\text{H}_2\text{O} \)), 0.011 (80%) and 0.012 (100%). The \(R_G \) in the three contrasts are 5-03 nm, 4-61 nm and 4-71 nm, in good agreement with the experimental values of 5-05 nm, 4-60 nm and 4-71 nm (Fig. 3(b)). The modelled \(R_{G,C} \) and \(\alpha_G \) of 4-87 nm and \(54 \times 10^{-5} \) agree well with the experimental values of 4-85 nm and 59 \times 10^{-5}. Transformation of \(I(Q) \) into \(P(r) \) gave a maximum dimension of 17-8 nm for the 100% \(^2\text{H}_2\text{O} \) model, together with a major peak at 2-5 nm, in good agreement with the
Figure 5. Curve fitting for the Debye sphere models of CI inhibitor. The 395-sphere +x model (shown on the right) leads to simulations that account for the scattering curves of native CI inhibitor in 0%, 80%, and 100% 2H2O (see the text). Statistical errors in the neutron data are indicated by full (80%, 100% 2H2O) or half (0% 2H2O) error bars. The N-terminal domain is 23 spheres in length and 3 spheres in cross-section. Since 6 spheres in the N-terminal domain overlapped with the serpin domain in this orientation, and had to be deleted, the N-terminal domain was increased in length from 23 to 25 spheres to conserve the total volume. The sphere model is shown in the same orientation as that of the crystal structure and the Debye scattering model for α1-antitrypsin in Smith et al. (1990).

The experimental $P(r)$ curve (Fig. 4). A two-domain structure for CI inhibitor therefore accounts for its scattering properties.

Other models for CI inhibitor were tested. Firstly, four alternative +x models for the protein core were constructed, based on sphere lengths and cross-sections of 68 × 1, 34 × 2, 17 × 4 and 8 × 9, and lengths 41 nm, 21 nm, 10 nm and 5 nm. Their R_G values were 12±1 nm, 6±2 nm, 3±7 nm and 2±9 nm, in that order, and are clearly different from the experimental R_G value of 4±5 nm. The $P(r)$ calculated for the 34 × 2 and 17 × 4 models resulted in maximum lengths of 22±8 nm and 13±2 nm, respectively, which clearly differ from the error margin of the experimental $P(r)$ in Figure 4, and show that these models can be excluded. The length of CI inhibitor in solution is therefore well identified by scattering.

Finally, in other models, the N-terminal domain was repositioned relative to the serpin domain in the –x, –y and –z directions. Even when the R_G was adjusted to be close to 4±5 nm, slightly worse curve fits compared to those of Figure 5 were obtained. While the +x direction is favoured by the modelling, this is not unambiguous.

(e) Hydrodynamic simulations of CI inhibitor

For CI inhibitor, the sedimentation coefficient $s_{20,w}$ has been reported as 3·67, 3·7, 3·8 and 4·3 S (Schultze et al., 1962; Haupt et al., 1970; Reboul et al., 1977; Chesne et al., 1982). This leads to a moderately high frictional ratio f/f_0 of 1·54, which shows that CI inhibitor is elongated in solution, as already inferred from electron microscopy (Odermatt et al., 1981) and the present neutron data.

Given the M_r and the $s_{20,w}$, the length L of the structure is determined as the only unknown if this can be approximated by a rod-like cylinder (eqn (77) of Garcia de la Torre & Bloomfield, 1981). For an M_r of 71,100 and an $s_{20,w}$ of 3·7 S, L was found to be 26 nm. An alternative length calculation using eight hydrodynamic spheres of diameter 3·1 nm arranged in a straight line gave 25 nm (Garcia de la Torre & Bloomfield, 1981; Perkins, 1989b). Both are substantially less than the first estimates of 55 to 60 nm and 38 to 44 nm from hydrodynamic data also using the cylinder approach (Odermatt et al., 1981; Perkins, 1985). This results from the decrease in M_r to 71,100 from the previously accepted value of 98,000 to 116,000. However, the revised length of 25 to 26 nm is still significantly greater than the neutron length of 16 to 19 nm. This suggests that the use of hydrodynamic cylinders is not satisfactory.

The hydrodynamic structure of α1-antitrypsin has been successfully modelled (Smith et al., 1990) using 32 spheres of diameter 1·69 nm for the protein and 24 spheres of diameter 0·95 nm for the oligosaccharide chains. This model was adapted to the CI inhibitor structure by (1) relocating the extended N-linked oligosaccharides found at Asn46 and Asn83 in α1-antitrypsin to Glu132 and Gly147 to correspond to the positions of Asn216 and Asn231 in CI inhibitor; (2) removing one sphere to correspond to the Asn83—Ile93 loop in α1-antitrypsin that is deleted in CI inhibitor; (3) adding seven spheres of diameter 1·69 nm to the N-terminal sphere of α1-antitrypsin to give a 1 × 1 × 8 array aligned in the +x direction to represent the protein core of the N-terminal domain; (4) adding three extended N-linked and seven O-linked oligosaccharides to the N-terminal domain using spheres of diameter 0·95 nm. The 107 spheres (Fig. 6(a)) are of overall length 15 nm, and give a calculated $s_{20,w}$ of 3·5 S.
Extended oligosaccharides

Compact oligosaccharides

(a) (b)

Figure 6. Hydrodynamic models for Cl inhibitor. The oligosaccharides are shown either (a) in an extended or (b) in a compact conformation. Both give $s_{20,w}$ values that agree with experiment. Protein spheres: 1-69 nm diameter; carbohydrate spheres: 0-95 nm diameter.

Another model with 50 spheres of diameter 1-69 nm (Fig. 6(b)) and length 18 nm in which the oligosaccharides are merged with the protein gave an $s_{20,w}$ of 3-8 S. Both models agree with the experimental values of 3-67 to 3-8 S and the neutron modelling. Since experimental $s_{20,w}$ values are usually known to within ±0-2 S, and the simulations usually agree to within ±0-2 S (Perkins, 1989), the oligosaccharide conformation cannot be identified. In conclusion, the hydrodynamic properties of Cl inhibitor are well explained in terms of a two-domain head-and-tail structure, but not by a cylinder.

4. Conclusions

The combination of the neutron and hydrodynamic solution data on Cl inhibitor with the crystal structure of a_1-antitrypsin (Löbemann et al., 1984) and the corresponding solution studies on a_1-antitrypsin (Smith et al., 1990) has led to an improved characterization of its two-domain structure. Structural evidence for the distinct existence of the serpin domain was obtained from the successful curve fitting of Figure 5, the hydrodynamic modelling, and possibly also from R_g in the biphasic Guinier R_g analyses of Figure 2. The structure of the N-terminal domain is heavily glycosylated and extended, as deduced from the overall length of 16 to 19 nm of Cl inhibitor in relation to a_1-antitrypsin, as well as the contrast variation data (Figs 2(b) and 3(b)). Electron microscopy had suggested that Cl inhibitor is much longer at 33 to 36 nm (Odermatt et al., 1981); however, it is possible that artifacts were introduced in the course of that study, for example, through sample denaturation or magnification errors. Previously, lengths of 55 to 60 nm and 38 to 44 nm had been estimated from hydrodynamic data (Odermatt et al., 1981; Perkins, 1985). Here it has been shown that these large values are the result of an erroneous M_i and the unjustified assumption that Cl inhibitor has a cylindrical structure. Figure 7 shows that the final length of 16 to 19 nm for Cl inhibitor is now similar to lengths of 17 to 20 nm determined for its substrates Clr and Cls (Villiers et al., 1985; Weiss et al., 1986; Perkins & Nealis, 1989).

Cl is a complex of two subcomponents Clq and Clr$_2$Cls_2. Clq recognizes the Fc domains of aggregated IgG and binds to them. Clq has a hexameric structure formed from six part-collagenous, part-globular subunits with the appearance of a “bunch of tulips” (Fig. 7). The enzymic activity of Cl resides in the tetramer Clr$_2$Cls_2. It is thought that Clr$_2$Cls_2 has an elongated asymmetric X-shape structure (Weiss et al., 1986; Perkins & Nealis, 1989). Several models for their association to form Cl have been proposed (Schumaker et al., 1987; Perkins, 1989a), where Clr$_2$Cls_2 either is intertwined between the six stalks of the Clq structure or is placed fully on the outside of the six Clq stalks. For reason of the requirement of steric accessibility of the serine proteinase and short consensus repeat (Fig. 7, SCR) domains in Cls and Clr to C4, the substrate of Cl, the second model has been preferred (Cooper, 1985; Perkins, 1985; Perkins et al., 1990). The comparisons in Figure 7 show that the interaction of the serpin domain with the serine protease domain is most readily understood in models where Clr$_2$Cls_2 is placed outside the six Clq stalks, such as in the W-model (Perkins, 1985, 1989a). Once Clq is attached via its heads to immune aggregates, it is likely that the size of up to four serpin domains would be too bulky to penetrate within the cone of Clq stalks. This access is required by the intertwined S- and 8-models for the Cl
Figure 7. Molecular models of several early components of complement derived from solution scattering. The C1q structure (Perkins, 1985) is hexameric and binds a tetramer of C1r and C1s, of which a monomer is shown (Perkins & Nealis, 1989). The C1 inhibitor model from Fig. 5 is also shown. This C1 complex is able to activate C4 of complement, for which a schematic model of its 2-domain structure is shown, to indicate the size of C4 (Perkins et al., 1990). The domain structures of these components are indicated: C1q, 6 collagenous stalks and globular heads; C1r, C1s: the C domains I to VI are the interaction domain (I, II and III), 2 “short consensus repeat” (SCR) domains (IV and V), and a serine proteinase domain (VI); C1 inhibitor: serpin domain and N-terminal domain; C4 can be represented by the juxtaposition of the C4c and C4d domains. Sphere diameters: C1q, 119 nm; C1r, C1s, 100 nm; C1 inhibitor, 608 nm; C4, 80 nm.

complex, since these postulate that the four protease domains in C1 reside within the C1q cone (Colomb et al., 1984; Schumaker et al., 1986).

One possible function for the N-terminal domain of C1 inhibitor is that this blocks the accessibility of the non-proteolytic domains I to V in C1r and C1s after the serpin domain of C1 inhibitor has bound to the proteinase domain VI. Hydrodynamic calculations (S. J. Perkins, unpublished results) show that, in the complexes of C1 inhibitor with C1r and C1s, the N-terminal domain of C1 inhibitor is close to the two SCR domains of C1r and C1s (Fig. 7). It is possible from the W-model for C1 (or in the other models proposed for C1) that the two SCR domains IV and V in each of C1r and C1s and/or the interaction domains I to III interact with the collagenous stalks of C1q in the C1q complex with C1r2C1s2. Once C1 inhibitor has reacted with C1r and C1s, it is reasonable to propose that the N-terminal domain mediates the reduction in the binding affinity of inhibited C1r and C1s for C1q. This frees C1q for reaction with the C1q receptor (Reid, 1986). It is also possible that the short consensus repeat domains in C1s interact also with C4. Since it would be necessary to reduce the affinity of C4 for C1s after reaction of the latter with C1 inhibitor, steric hindrance offered by the N-terminal domain of C1 inhibitor would provide a requisite mechanism.

Financial support from the Wellcome Trust is gratefully acknowledged. The Oxford Glycobiology Unit is supported by the Monsanto Company. We thank Dr J. Torbet for generous instrumental support at the Institute-Laue-Langevin, Grenoble, Mr A. S. Nealis for computational support, Dr P. A. Pemberton for the assays with active-site titrated plasmin, and Dr K. S. Aulak for the high-pressure liquid chromatography analysis of split C1 inhibitor.

References
Structural Homologies of Component C5 of Human Complement with Components C3 and C4 by Neutron Scattering†

Stephen J. Perkins,*,† Kathryn F. Smith,‡ Adam S. Nealis,§ Peter J. Lachmann,§ and Richard A. Harrison§

Department of Biochemistry and Chemistry and Department of Protein and Molecular Biology, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, U.K., and Molecular Immunopathology Unit, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, U.K.

Received April 11, 1989; Revised Manuscript Received September 14, 1989

ABSTRACT: The complement component C5 is one of a family of structurally related plasma proteins that includes components C3 and C4. Activation of C5 is the initial step in the formation of the membrane attack complex of complement. Analysis of the solution structure of C5 and comparisons with similar analyses of the structures of C3 and C4 are reported here. Neutron solution scattering gave an M_r for C5 of 201 000, which demonstrates that C5 is monomeric in solution. The radius of gyration R_G of C5 at infinite contrast is 4.87 nm and corresponds to an elongated structure. The longest length of C5 was determined to be at least 15–16 nm from three calculations on the basis of the R_G, the scattering intensity at zero angle $I(0)$, and the indirect transformation of the scattering curve into real space. Comparison of the R_G and contrast variation data and indirect transformations of the scattering curves for C3, C4, and C5 show that these have very similar structures. Comparisons of the C5 scattering curve with Debye small-sphere models previously employed for C4 and C3 show that good curve fits could be obtained. Unlike previous studies that have suggested significant differences, these experiments indicate that, while C5 differs from C3 and C4 in its activation and inactivation pathways, significant structural homology exists between the native proteins, as might be predicted from their high (and similar) sequence homology.

Complement, a multicomponent cascade system found in plasma, plays a major role in the humoral immune system (Reid, 1986). Activation of the early components of the classical and alternative pathways by proteolytic cleavages generates C5 convertase activity. The convertases activate C5 in its activation and inactivation pathways, significant structural homology exists between the native proteins, as might be predicted from their high (and similar) sequence homology.

β. In contrast, C4 has three chains, α, β, and γ. Activation of C5 is brought about by cleavage of the peptide bond between residues 74 and 75 of the α chain, releasing C5a (Nilsson et al., 1975). C5a is the most potent of the three anaphylatoxins C3a, C4a, and C5a formed by the complement cascade. Despite the sequence homology, the genes for C3, C4, and C5 are found on different chromosomes (Carroll et al., 1984; Whitehead et al., 1982; Wetsel et al., 1988). While not as abundant as C3 and C4, C5 at 0.15 mg/mL is still one of the more abundant complement components in plasma. C3 and C4, but not C5, have a highly reactive internal β-cysteinylglycylthiolester bond in a region of high sequence homology. During activation, this enables C3b and C4b to form covalent bonds to target surfaces (Law et al., 1980). Since there is no thiolester bond in C5, C5b is unable to form a covalent bond to a surface. Thus, C5b in the presence of C6 forms a fluid-phase C5b6 bimolecular complex, and this in association with C7 expresses a membrane-binding site (Podack et al., 1978).

In this study, comparisons between the solution structures of C3, C4, and C5 are made. Electron microscopy of C5 depicts a multilobal, irregular ultrastructure of dimensions of 10.4 nm × 14.0 nm × 16.8 nm (DiScipio et al., 1983); different
dimensions have, however, been reported for C3 and C4 (Smith et al., 1982, 1984; Dahlbäck et al., 1983). Limited solution scattering data on C3, C4, and C5 suggested that despite their sequence homologies they had dissimilar R_G values (Österberg et al., 1984, 1988). In this study, extensive neutron scattering experiments on the external and internal structure of C5 are critically compared with similar studies on C3 and C4 (Perkins & Sim, 1986; Perkins et al., 1990). Together, the neutron data show that C3, C4, and C5 are more homologous in their physical structures than previously believed.

Materials and Methods

(a) Sample Preparations. C5 was prepared from 3.5 L of human plasma from normal, healthy donors essentially as described in Harrison and Lachmann (1986), with the following modifications. Plasma was taken from donors over a period of 2 weeks prior to C5 preparation, EDTA and benzamidine were added to final concentrations of 5 mM, and the plasma was stored frozen at -70 °C until required. After passage through lysine-Sepharose, the plasma pool was dialyzed [by using a Pellicon ultrafiltration cassette (Millipore) equipped with a 5 ft2, 10 000 nominal molecular weight limit, polysulfone membrane] against 5 mM sodium potassium phosphate, 5 mM EDTA, 5 mM benzamidine, and 50 mM NaCl, pH 7.0, and loaded onto a 10-L DEAE-Sepharose column equilibrated in the same buffer. The protein was eluted with a gradient (25 L each side) to 300 mM NaCl, and C5, eluting early in the gradient, was detected by double diffusion in agarose against a rabbit anti-human C5 antiserum. C5-containing fractions were pooled, concentrated to 150 mL, dialyzed against 20 mM sodium potassium phosphate, 10 mM EDTA, 5 mM benzamidine, and 300 mM NaCl, pH 7.0, and gel-fil tered on Sepharose CL-6B (Pharmacia; 6-L column). C5-containing fractions were detected as described above, pooled, and dialyzed against 20 mM sodium potassium phosphate and 100 mM KCl, pH 7.0, before being loaded onto a hydroxyapatite column (Bio-Rad HTP; 600 mL bed volume, 30 × 5.5 cm column) equilibrated in the same buffer. C5 was eluted with a gradient (2.5 L each side) to 2.0 M KCl. Antigenic analysis showed that the small amount of C3 that was contained in the DEAE-Sepharose C5 pool and which co- chromatographed with C5 on Sepharose CL-6B was not eluted from hydroxylapatite by KCl. SDS-PAGE analysis showed the C5 to be greater than 95% pure and to have the anticipated two-chain structure. The C5 pool from hydroxylapatite was concentrated to approximately 10 mg/mL and dialyzed against PBS/5 mM sodium azide. Initial neutron scattering studies were performed on freshly prepared C5. Prior to analysis, these were dialyzed against buffer A (see below), filtered through a 0.2-μm filter (ACRO LC13; Gelman Sciences) into 3.0- or 4.8-mL sterile evacuated glass vials (Mallinckrodt Diagnostica Holland B.V., Petten, Holland) and held at 4 °C. Subsequent studies were performed on C5 that had been stored frozen at -70 °C in 1-mL (10 mg) aliquots. These samples were prepared for scattering studies by gel filtration on Sepharose 6B in 12 mM sodium phosphate, 200 mM NaCl, and 1 mM EDTA, pH 7.0. The peak fraction(s) only were re-concentrated to about 10 mg/mL and then dialyzed against the same buffer before (ACRO LC13) filtration and storage as described above. Samples were reanalyzed by SDS-PAGE subsequent to solution scattering studies, and no differences pre- and postscattering were detected.

Four different buffers were used in neutron data collection: A (200 mM NaCl, 12 mM sodium phosphate, 1 mM EDTA, pH 7.0); B (50 mM NaCl, 12 mM sodium phosphate, 1 mM EDTA, pH 7.0); C (3.1 mM diethylbarbituric acid, 0.9 mM sodium barbitone, 145 mM NaCl, 0.83 mM MgCl$_2$, or 0.25 mM CaCl$_2$, 20 μM ZnSO$_4$); D (buffer C diluted 1 in 4, except for ZnSO$_4$, which remained at 20 μM). Buffer A was predominantly used, and dialyses were performed as in Perkins et al. (1990). The composition is calculated from the full 1654-residue sequence of human C5 (Wetsel et al., 1988; R. A. Wetsel, unpublished results). All four putative carbohydrate binding sites at Asn-705, -875, -1079, and -1593 in the human sequence (following the mouse sequence numbering; Wetsel et al., 1987) are occupied by biantennary complex type oligosaccharides, giving a 4.5% oligosaccharide content by mass. DiScipio et al. (1983) reported this content to be 2.7% by mass. The absorption coefficient A^{inc} for human C5 has been estimated as 10.8 (DiScipio et al., 1983) or 10.2 (Österberg et al., 1988), and their mean is used here. Calculation of the absorption coefficient (Perkins, 1986) gives 10.9, in good agreement with DiScipio et al. (1983).

(b) Neutron Scattering Measurements. Neutron experiments were performed on instrument D17 at the Institut Laue-Langevin, Grenoble, in five independent sessions. Guinier data were obtained by using a sample-to-detector distance of 3.45-3.46 m and wavelengths λ of 1.30-1.60 nm, giving a Q range of 0.0053-0.049 nm$^{-1}$ (where $Q = 4\pi \sin \theta/\lambda$ and θ is the scattering angle). Data at larger Q were obtained with a sample-to-detector distance of 1.40 m, a main beam-detector axis angle of 0° or 20°, and wavelengths of 0.99-1.00 nm, giving a Q range of 0.23-3.36 nm$^{-1}$. Data reduction followed standard procedures (Ghosh, 1981; Perkins et al., 1990). Linear regressions of the match point and Stuhmann graphs were analyzed by microcomputer using the statistics program MINITAB (version 6.1). The molecular modeling of the C5 neutron curves utilized the methods in Perkins and Weiss (1983), Perkins and Sim (1986), and Perkins et al. (1990).

The use of the indirect transformation procedure (ITP) method (Glatter, 1982) enables the neutron scattering curves $I(Q)$ to be transformed into real space $P(r)$. This calculation requires measurement of the whole scattering curve to large Q, ca. 4 nm$^{-1}$, and offers an alternative calculation of the radius of gyration R_G and the length L for C5. While 20-25 splines should be used to fit the 75 experimental data points of Figure 4a, only 10 splines were used here because of the limited counting statistics at large Q. The maximum length (which can be up to 50% larger than the expected length L) was specified as 20 nm on the basis of the L calculations from the Guinier R_G analyses; control calculations on the basis of maximum lengths of 17 nm gave similar results. The number of points used to define $P(r)$ in real space was 101.

Results and Discussion

(a) Neutron Scattering Data on C5. Neutron contrast variation experiments were performed on human C5 at concentrations between 1.8 and 7.9 mg/mL in 0%, 70%, 80%, and 100% H$_2$O buffers. Linear Guinier analyses were successfully obtained (Figure 1a), from which the intensity $I(0)$ and the radius of gyration R_G were derived in a suitable Q_R range of 0.6-1.5. Linear cross-sectional analyses to obtain $[I(Q)-Q^2I_Q]/Q^2$ and R_{xs} values were obtained in the Q_R_{xs} range 0.7-1.4 (Figure 1b). Buffers A-D were used (Materials and Methods) with ionic strengths of 0.22, 0.07, 0.15, or 0.04 M. The two higher salt buffers A and C did not yield data that differed significantly from the average. In the two lower salt buffers, C5 showed evidence of aggregation, so these data were not considered further. In the higher salt buffers, while the $I(0)/c$ (c is the concentration) and R_G values exhibit minor decreases with concentration (results not shown), this was not
The volume percent of C5 was calculated from the human C5 sequence (Materials and Methods). This shows that the absorption coefficient of a dilution series for C5. The vertical displacements of the curves reflect sample concentrations at 5.4, 3.9, and 1.9 mg/mL in (a) and 3.9 and 1.9 mg/mL in (b). The R0 fits and ORG values are reported by using an ORG value of 4.87 nm (Q range of 0.12-0.30 nm−1) and those for ORXS with an ORXS value of 2.34 nm (Q range of 0.31–0.58 nm−1). A slight decrease of the R0 with concentration is observable in (a) and in other percent 2H2O buffers, but was not significant in terms of the error of the R0 determination in Table I.

![Figure 1](image1.png)

Figure 1: Neutron Guinier plots of human complement C5 in 100% 2H2O buffers: (a) Guinier plots and (b) cross-sectional Guinier plots of a dilution series for C5. The vertical displacements of the curves reflect sample concentrations at 5.4, 3.9, and 1.9 mg/mL in (a) and 3.9 and 1.9 mg/mL in (b). The R0 fits and ORG values are reported by using an ORG value of 4.87 nm (Q range of 0.12-0.30 nm−1) and those for ORXS with an ORXS value of 2.34 nm (Q range of 0.31–0.58 nm−1). A slight decrease of the R0 with concentration is observable in (a) and in other percent 2H2O buffers, but was not significant in terms of the error of the R0 determination in Table I.

![Figure 2](image2.png)

Figure 2: Stuhrmann analyses of the contrast variation experiments for human C5. The R02 and ORXS2 data are plotted against the reciprocal solvent–solute contrast difference Δρ−1. The symbols correspond to the four buffers used (Materials and Methods) as follows: A, •; B, •; C, △; D, ▲. The regressed line based on the R02 values gives an R0 of 4.87 ± 0.03 nm and a slope α of (13 ± 8) × 10−3. For the ORXS2 data, R0 is 2.35 ± 0.03 nm and α is (13 ± 4) × 10−3.

Significant, so all the R0 data are given in Figure 2.

Molecular masses M were determined from the I(0)/c data for the samples in 0% 2H2O in high-salt buffers. The mean of four measurements is 201 000 ± 9000, which is within error of 194 000 calculated from the human C5 sequence (Materials and Methods). This shows that the absorption coefficient of 10.5 used to derive concentrations is satisfactory and that C5 is monomeric in solution. A plot of [I(0)/ctTs]1/2 against volume percent 2H2O gives the neutron match point (t is the sample thickness; Ts is the sample transmission). An excellent straight line was obtained, which give a match point of 40.9 ± 0.4% 2H2O by linear regression analyses of 33 values in 4 contrasts. The corresponding cross-sectional plot of [I(0)/Q]1/2 against percent 2H2O yielded a match point of 41.5 ± 0.4% 2H2O. Both of these are in reasonable agreement with the match point of 40.6% 2H2O predicted (Perkins, 1986) from the human C5 sequence. They support the validity of the R0 and R0x analyses in Figure 2.

To characterize the shape of C5 and its internal structure, the contrast dependence of the structural data was analyzed by using Stuhrmann plots of R02 and R0x2 against the reciprocal solvent–solute contrast difference Δρ−1 (Figure 2). The radii of gyration at infinite contrast R0 and R0x were found to be 4.87 and 2.35 nm. The elongation ratio R0x/R0 was calculated as 1.61 (where R0 is the R0 of the sphere of the same dry volume as C5: 248 nm3). This is significantly larger than the value of 1.28 ± 0.10 found in a survey of many globular proteins by X-ray scattering (Perkins, 1988b) and shows that C5 is elongated in shape with one triaxial dimension that is longer than the other two. The radial inhomogeneity of scattering density α is positive at 13 × 10−5 in both Stuhrmann plots. This is evidence that C5 has the spatial distribution of amino acids that is typical of soluble globular proteins.

The dimensions of C5 can be calculated from the R0 and R0x data and also from the I(0)/c data (Perkins et al., 1990). By use of the data in 100% 2H2O, the length L of the longest axis of C5 (assuming an elliptical cylinder) was determined as 14.9 ± 0.5 nm from the R0 and R0x data. From the ratio πI(0)/I(Q)Q−0.5 L is found to be 15.7 ± 1.1 nm.

X-ray scattering curves for C5 were obtained by using the synchrotron radiation source at Daresbury (Perkins et al., 1990). In Guinier analyses, the final R0 and R0x values were based on Q ranges of 0.18–0.30 and 0.31–0.60 nm−1, respectively, which are slightly more restricted than those of Figure 1. Only those spectra that could be analyzed by the criteria of linear Guinier plots were used. These resulted in data that were fully consistent within error with those from neutron scattering (Table I).

(b) Comparisons of C5 with C3 and C4 of Complement. Scattering data analyses relating to the presumed homology between C3, C4, and C5 are presented in Table I. The present X-ray and neutron data on C5 are compared with data previously obtained for C3 and C4 and their fragments (Perkins & Sim, 1986; Perkins et al., 1990). C3u and C4u correspond to C3 and C4 with hydrolyzed thiolester bonds, while C3(a+b) and C4(a+b) correspond to activated C3 and C4 in which the two fragments continue to be associated. By both X-ray and neutron scattering, the R0 and R0x values of C3, C3u, C3(a+b), C4, C4u, C4(a+b), and C5 were found to be the same.
The intraparticle distance distribution function $P(r)$ for C5 (--) and C3u (----) is shown after normalization for concentration. These were calculated from the curve fits in (a). The $P(r)$ curves for C5 and C3u are seen to be very similar. For C5, a R_G of 4.89 nm was calculated over the range of $-8.0 \leq \lambda_{opt} \leq 0.0$, where λ_{opt} is the Lagrange stabilization parameter used in ITP. For C3u, R_G is 4.77 nm over a similar range of λ_{opt}.

The model is constructed from two distinct domains (Table II) which correspond to C4d and C4c and which are set at a non-porous standard deviation of ±1.1 nm. The reported standard deviations are ±1.1 to ±1.3 nm. See Figure 4 for the possible arrangement of the two domains.

Table II: Comparisons of Electron Microscopy Studies on C3, C4, and C5 with the Debye Solution Scattering Model

<table>
<thead>
<tr>
<th>triaxial dimensions (nm)</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>cobra venom factor*</td>
<td>8.2 × 13.7</td>
</tr>
<tr>
<td>C4b</td>
<td>9 × 17</td>
</tr>
<tr>
<td>C3b, C4b</td>
<td>6.5 × 7.5 × 12.5</td>
</tr>
<tr>
<td>C5</td>
<td>10.4 × 14.0 × 16.8</td>
</tr>
</tbody>
</table>

*The cobra venom factor is a structural analogue of C3c. The reported standard deviations are ±1.1 to ±1.3 nm. See Figure 4 for the possible arrangement of the two domains.
closely homologous. This is fully consistent with the complete sequences that have been recently published for C3, C4, and C5 (de Bruijn & Fey, 1985; Belt et al., 1984; Wetsel et al., 1987, 1988). The comparisons of the C3, C4, and C5 sequences show that these can be readily aligned, and the location of cysteinyl residues and the hydrophathy plots for C3, C4, and C5 are very similar (Nonaka et al., 1985; Wetsel et al., 1987).

This result is in contrast to previous electron microscopy studies on these complement components, as summarized in Table II (Smith et al., 1982, 1984; Dahlbäck et al., 1983). It was reported that C3, C4, and C5 possess globular structures which could be subdivided into at least two and at most four or five domains and with dimensions that differ by several nanometers. Calculation of the volume of the C3b and C4b images is comparable with values of 241 to 244 nm3 calculated from their sequences, while that of C5 gives a volume that is 5 times larger than the sequence volume of 250 nm3. At least one of the dimensions of C5 may be overestimated. These differences are most likely to result from the nonphysiological conditions of the measurements and perhaps magnification errors. In relation to the limited scattering data reported by Österberg et al. (1984, 1988) on C3, C4, and C5, their R_g values of C3u, C4u, and C5 were found to be similar at 5.0–5.3 nm, in agreement with our data. However, their R_g values for C3 and C4 were as low as 4.25 nm, and their α values for C3, C4, and C5 varied between $–100 \times 10^{-5}$ and 55×10^{-5}. These differences are best explained by the limited data that were available in these studies. For example, the range of the R_g data in Figure 2 shows that repeated measurements of the scattering curves, preferably in different buffers and protein concentrations, are necessary for a safer interpretation of the experiments.

Structural information on the three small homologous anaphylatoxins C3a, C4a, and C5a has been obtained by using protein crystallography, model building, and proton NMR (Huber et al., 1980; Greer, 1985, 1986; Nettesheim et al., 1987) and neutron diffraction (Nilsson, U. R., Mandle, R. J., & McConnell-Mapes, J. A. (1975) Int. J. Biol. Macromol. 10, 15-20.

C5 is the component upon which the membrane attack complex of complement is assembled. Since this complex is inserted into membranes, the degree to which the C5 structure is hydrophobic becomes relevant. Al Salih et al. (1982, 1988) interpreted observations of the behavior of C5 on phenyl-Se-pharose chromatography and the effects of trypsin digestion as evidence for hydrophobic surface regions on C5. Furthermore, DiScipio et al. (1983) suggested that the aggregation of C5b seen on activation of C5 was the result of the exposure of hydrophobic sites; the observation of such aggregates is supported by our preliminary neutron studies on C5b. It should, however, be noted that activation of C5 in the absence of C6 is nonphysiological and that neither C5b nor C5b6 binds to membranes. The ternary complex with C7 is required before membrane binding occurs, and it is likely that the membrane binding site of the complex lies on C7. The contrast variation data on C5 show that this has a similar internal structure to those of C3 and C4 (Table I) with hydrophilic residues found on average furthest from the core, as indeed found for globular proteins (Perkins, 1988a,b). This is to be expected since all three are water soluble and have similar ratios of hydrophobic and hydrophilic residues. The scattering data thus limit the extent to which the surface of C5 can be considered hydrophobic and, in contrast to deductions made from other biochemical investigations, rule out any significant region of surface hydrophobicity.

ACKNOWLEDGMENTS

Dr. C. Nave and Dr. J. Torbet are thanked for generous instrumental support, Dr. O. Glatter and Dr. R. P. May are thanked for the use of the rtp and makite programs, and Dr. R. A. Wetsel is thanked for the use of the human C5 sequence.

Registry No. C5, 80295-53-0; C3, 80295-41-6; C4, 80295-48-3.

REFERENCES

Neutron and X-ray Scattering Studies on the Human Complement Protein Properdin Provide an Analysis of the Thrombospondin Repeat

Kathryn F. Smith,* Kathleen F. Nolan,† Kenneth B. M. Reid,‡ and Stephen J. Perkins***

Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, U.K., and MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.

Received February 15, 1991; Revised Manuscript Received May 22, 1991

Abstract: Properdin is a regulatory glycoprotein of the alternative pathway of the complement system of immune defense. It is responsible for the stabilization of the C3 convertase complex formed between C3b and the Bb fragment of factor B. Neutron and X-ray solution scattering experiments were performed on the dimeric and trimeric forms of properdin. These have R_G values of 9.1 and 10.7 nm, respectively. The scattering curves were compared with Debye sphere modeling simulations for properdin. Good agreements were obtained for models similar to published electron micrographs showing that the properdin trimer has a triangular structure with sides of 26 nm. Such a structure also accounted for sedimentation coefficient data on properdin. Primary structure analyses for mouse and human properdin have shown that this contains six homologous motifs known as the thrombospondin repeat (TSR), which is the second most abundant domain type found in the complement proteins. Sequences for these 12 TSRs were aligned with 19 others found in thrombospondin and the late complement components. Three distinct groups of TSRs were identified, namely, the TSRs found in thrombospondin and properdin, the TSRs mostly found at the N-terminus of the late complement components, and the TSRs found at the C-terminus of the late components. Averaged secondary structure predictions suggested that all three groups contain similar backbone structures with two amphipathic turn regions and one hydrophilic β-strand region. The mean dimensions of the TSRs of properdin in solution were determined to be approximately 4 nm \times 1.7 nm \times 1.7 nm, showing that these are elongated in structure.

The components of the complement system provide a major nonadaptive immune defense mechanism for its host (Reid, 1986; Law & Reid, 1988). These are activated in response to the challenge of foreign material in plasma. Complement activation proceeds through a series of limited proteolytic steps in one of two largely independent pathways, the classical and alternative pathways. The latter operates via a C3 "tick-over" mechanism, where the molecular structure of the target cell initiates an amplification loop (Lambris, 1990). Properdin is involved in the regulation of the alternative pathway by binding to and stabilizing the C3/C5 convertase complexes, C3b-Bb and C3b$_r$-Bb (Fearon & Austen, 1975; Medicus et al., 1976; Farries et al., 1987), and also by inhibiting the cleavage of C3b by factor I in the presence of factor H as a cofactor by interfering with the ability of factor I to bind C3b (Farries et al., 1988a). Properdin binds to the C-terminal region of the α-chain of C3 between residues 1402 and 1435 (Lambris et al., 1984; Daoudaki et al., 1988). There is also evidence that properdin binds to the Ba domain of factor B in order to facilitate the cleavage by factor D to form the C3 convertase complex, with the concomitant release of Ba (Farries et al., 1988b).

Mouse and human properdin each consist of a single polypeptide chain of 441-442 amino acids (Goundis & Reid, 1988; Nolan & Reid, 1990; Nolan et al., 1991a,b) with an apparent molecular weight of 55000 when examined under dissociating conditions with or without reduction of disulfide bridges. Human properdin also contains up to 10% by weight of complex-type N-linked carbohydrate, corresponding to one or two oligosaccharides per monomer (Minta & Lepow, 1974; Farries...
domain found in thrombospondin (the thrombospondin repeat; TSR) have been identified in properdin, together with an N-terminal and C-terminal region (Goundis & Reid, 1988).

In human properdin, each TSR is coded by a separate exon, except that the C-terminal segment also has half of the sixth TSR (Nolan et al., 1991b). Each TSR is about 58 residues in size. While circular dichroism experiments did not identify any α-helix or β-sheet structures (Smith et al., 1984), Fourier transform infrared spectroscopy indicated evidence for β-sheet and β-turn structures in the TSRs, and secondary structure predictions suggested that the β-turns could be correlated with the high proportions of Gly, Pro, Cys, and Ser residues in properdin (Pangburn et al., 1989).

The availability of the TSR sequences in these proteins now permits the computation of an optimal sequence alignment and structural information (Perkins, 1986) from the human sequence. This analysis is independently verified by the use of hydrodynamic spheres to simulate experimental sedimentation coefficients. By these means, the arrangements of TSR domains in properdin P2 and P3 is determined, together with an assessment of its structure in the late complement components.

MATERIALS AND METHODS

Solution Scattering Measurements on Properdin

Neutron-scattering data were obtained in four independent sessions on instruments D11 (Ibel, 1976) and D17 at the Institut Laue Langevin, Grenoble, France. Samples were measured at 20 °C in rectangular quartz Hellma cuvettes of 2-mm path length for samples in 80% and 100% 2H2O buffers and 1-mm path length for samples in H2O buffers. These were also used for 280-nm absorbance measurements. Sample and buffer transmissions were measured in all cases for use in data re-

content by weight. The latter is compatible with a biochemical value of 23.4 calculated by Nolan and Reid (1990). The properdin samples showed a single band of approximately 55 000 in molecular weight on SDS-PAGE, in reducing conditions both before and after the solution scattering experiments. After solution scattering, the properdin samples did not exhibit significant changes in their original functional activity in an assay involving the lysis of rabbit red blood cells by a reagent dependent upon the addition of purified properdin (Reid, 1981).

Scattering Data Analyses. At small Q values, analyses of the scattering curves by the Guinier equation give \(R_g \), the radius of gyration (which is a measure of macromolecular elongation), and \(I(0) \), the forward-scattered intensity at zero Q (Glatter & Kratky, 1982):

\[
\ln I(Q) = \ln I(0) - R_g^2 Q^2 / 3
\]

Absolute \(M_r \) values are obtained from the neutron \(I(0)/cT \) values measured in \(H_2O \) buffers, in which systematic errors of measurements are minimized (Jacrot & Zaceki, 1981). Relative \(M_r \) values are obtained from the X-ray \(I(0)/c \) data provided that the buffer has the same electron density (Kratky, 1963). If one of the molecular dimensions is much larger than the other two, the radius of gyration of the cross section \(R_{XS} \) and the cross-sectional intensity at zero angle \(|I(Q)|Q = 0 \) are obtained in a larger Q range than that used in the \(R_g \) analyses:

\[
\ln [I(Q)] = \ln [I(Q)]Q = 0 - R_{XS}^2 Q^2 / 2
\]

In contrast variation studies, the neutron scattering match point of the protein (at which it is invisible: \(I(0) = 0 \)) is obtained experimentally from a plot of \(\sqrt{I(0)/cT} \) against percent \(H_2O \) (where \(T \) is the sample transmission and \(t \) is the path length). This can also be calculated from amino acid and carbohydrate compositions from sequence data, assuming that the protein volume is unhydrated with 10% of nonexchange of main-chain NH protons (Perkins, 1986). Generally, \(R_g \) values depend on the scattering density of the solvent, since different constituents within the protein have different scattering densities. This is described by a simplified form of the Stuhrmann equation (Ibel & Stuhrmann, 1976; Perkins, 1988a,b):

\[
R_g^2 = R_C^2 + \alpha / \Delta \rho
\]

where \(R_C \) is the \(R_g \) at infinite contrast, \(\Delta \rho \) is the difference in scattering density \(\rho \) between the solute and solvent, and \(\alpha \) is the radial inhomogeneity of scattering density fluctuations within the protein. \(\alpha \) is positive if the outermost scattering densities are higher than those nearer the center.

In London, the neutron and X-ray scattering analyses were performed jointly by using a common interactive analysis and plotting program SCPL3 (Perkins & Sim, 1986; A. S. Nealis and S. J. Perkins, unpublished software). Results were processed as a spreadsheet with Lotus 1-2-3 version 2.01 (Lotus Development, U.K.). Statistical analyses were performed with MINITAB version 6.1 (Ryan et al., 1985). Graphs were created with SIGMAPLOT version 3.1 (Jandel Scientific).

Modeling of Scattering and Hydrodynamic Data for Properdin. Calculations of scattering curves employed small overlapping Debye spheres to follow standard procedures (Glatter & Kratky, 1982) in application to neutron and synchrotron X-ray scattering data (Perkins & Weiss, 1983; Perkins, 1985; Perkins & Sim, 1986). To constrain the simulations, the unhydrated volume (66.8 nm\(^3\)) of properdin was calculated by using standard crystallographic volumes for amino acids and carbohydrates (Chothia, 1975; Perkins, 1986) for the 442 amino acid residues (Nolan et al., 1991a) and 28 presumed carbohydrate residues per monomer. This volume was subdivided into 128 cubes with sides of 0.8 nm per monomer in an array of 32 \(\times 2 \times 2 \) cubes for the simulations, and the total length of the monomer was 25.6 nm, in agreement with electron microscopy. The overlapping spheres of the same volume as the cubes were positioned at the centers of the 128 cubes. Neutron data corresponded largely to this unhydrated volume, since the hydration shell that surrounds the macromolecule is invisible by neutron contrast variation (Perkins, 1986). This means that partial specific volumes \(\bar{v} \) are larger if calculated from neutron match points instead of by densitometric means. Neutron curve fitting was based on data in 0\% \(H_2O \) and in 80\% and 100\% \(H_2O \) to correspond to high positive and high negative solute–solvent contrasts, respectively. A trial-and-error procedure was employed to test a wide range of different sphere models in order to determine which ones could be ruled out by the scattering data. Note that this method does not lead to the determination of a unique structure, although all the possible models are constrained by the total volume. The simulated neutron curves were corrected for wavelength spread and beam divergence (Cusack, 1981; Perkins & Weiss, 1983).

X-ray curve fitting (in a high positive solute–solvent contrast) is based on the hydrated volume. The total volume of 88.8 nm\(^3\) per monomer was calculated as the sum of the dry volume and a hydration volume based on a standard hydration of 0.3 g of \(H_2O \)/gram of glycoprotein and an electrostricted water molecule volume of 0.0245 nm\(^3\) in place of the free water volume of 0.0299 nm\(^3\) (Perkins, 1986). This model was subdivided into 128 spheres as above, and the final Debye models were generated on the basis of cubes of side 0.885 nm.

Modeling of the sedimentation coefficient \(S_{20,w} \) was based on the hydrated volume of 88.8 nm\(^3\) as in the X-ray curve fitting. The frictional coefficient \(f \) was calculated from

\[
f = M_r(1 - \bar{v} S_{20,w}) / (N_A \bar{v} S_{20,w})
\]

where \(\bar{v} S_{20,w} \) is the density of water at 20 °C and \(N_A \) is Avogadro's constant. The \(\bar{v} \) of properdin is calculated as 0.710 mL/g from its composition, with the consensus volumes in Perkins (1986) that allow for glycoprotein hydration. Calculations of \(f \) were performed by the modified Oseen tensor procedure using the program OENDIA (García de la Torre & Bloomfield, 1977a, 1977b) and a low number of spheres. Hydrodynamic spheres required for the simulations of \(f \) do not overlap. In order to compensate for the volume of the void spaces between these nonoverlapping spheres, it was necessary to increase the total volume by resetting the hydration of 0.3 g of \(H_2O \)/gram of glycoprotein to 0.39 g (Perkins, 1989). The properdin monomer was formed from a line of 10 spheres with a sphere diameter of 2.644 nm, giving a total length of 26.44 nm, in accord with the length from electron microscopy.

Sequence Alignments and Secondary Structure Predictions. A total of 31 TSR sequences from 11 proteins were aligned manually and also with guidelines provided by the automatic multiple sequence alignment program MULTAL (Taylor, 1990). In the order shown in Figure 5, these were human thrombospoindin (3 TSRs) (Lawler & Hynes, 1986; Wolf et al., 1990), mouse thrombospoindin (2 of 3 TSRs) (Bornstein et al., 1990), mouse properdin (6 TSRs) (Goundis & Reid, 1988),
human properdin (6 TSRs) (Nolan et al., 1991a), thrombospordin-related anonymous protein (TRAP) from *Plasmodium falciparum* (1 TSR) (Robson et al., 1988), the late complement components human C6 (3 TSRs) (DiScipio & Hugli, 1989; Chakravarti et al., 1989; Haefliger et al., 1989), human C7 (2 TSRs) (DiScipio et al., 1988), human C8α (2 TSRs) (Rao et al., 1987), human C8β (2 TSRs) (Haefliger et al., 1987; Howard et al., 1987), human C9 (1 TSR) (DiScipio et al., 1984; Stanley et al., 1985), mouse C9 (1 TSR), and trout C9 (2 TSRs) (Stanley & Herz, 1987).

Secondary structure predictions based on the alignment of Figure 5 utilized the Robson and Chou–Fasman methods (Garnier et al., 1978; Chou & Fasman, 1978). The 31 predictions were averaged with the FORTRAN programs PREDDB7 and PREDCF (Perkins et al., 1988). Both programs produced the percentage frequency at which each residue was found in the helix, extended, turn, or coil conformation and the corresponding graphical output, while PREDDB7 also gave the averaged total score in centitans.

RESULTS

Small-Angle Solution Scattering of P2 **and** P3. In order to obtain solution structure data on the arrangement of the six TSRs in properdin, P2, P3, and P4 were studied by neutron scattering in three contrasts at concentrations between 0.3 and 1.2 mg/mL. Scattering data were, however, only accessible for P2 and P3 on instruments D11 and D17, since P4 was found to possess too elongated a structure. In addition, P3 could only be studied in 100% H2O buffers on D17 for reason of the lower neutron flux on D17, since only this buffer has a sufficiently low background. Guinier plots for P2 and P3 were linear over a Q range of 0.07–0.19 nm⁻¹ (Figure 1). This Q range was thus employed for Guinier fits in acceptable QR₀ ranges of 0.5–1.4 (P2) and 0.7–2.0 (P3).

Neutron contrast variation analysis of P3. A concentration range of 0.5–1.2 mg/mL was used. Buffers were either 0.15 M NaCl or 0.2 M NaCl in phosphate (●) (see Materials and Methods) or 0.5 M NaCl, 0.2 M glycine and 12 mM phosphate, pH 7.4 (○). (a) Match point determination of P3 from a graph of \(\sqrt{I(0)/cT} \) against the volume percentage of \(^2\)H₂O. Regression gave a match point of 41.8 ± 1.9% \(^2\)H₂O, corresponding to the intersection with the dashed line. (b) Stuhrmann plot of \(R_G^2 \) against the reciprocal solute-solvent contrast difference \(\Delta \rho \). The solid line corresponds to the mean \(R_G \) of 10.7 ± 0.5 nm. The dashed-dotted line corresponds to the regressed line and gives an \(R_G \) of 11.0 nm at zero \(\Delta \rho \) (dashed line) and a slope \(\alpha \) of \(4 \times 10^{-3} \). Statistical error bars from the Guinier analyses are shown.

Analyses of the Guinier neutron intensity I(0)/c or radius of gyration \(R_G \) parameters showed that no dependences on protein concentrations or buffer compositions were observed (Figure 2). As a further check of the Guinier data, the molecular weights \(M_r \) for P2 and P3 were calculated from the I(0)/c values measured in H₂O buffers, on the basis of an \(A_{280} \) coefficient of 23.9 (see Materials and Methods). The \(M_r \) values of 80000 ± 20000 (P2, one value) and 150000 ± 30000 (P3, two values) were in satisfactory agreement with the expected values from the primary sequence of 108 200 and 162 300, respectively. This calculation required the total of scattering lengths \(\sum b \) in properdin normalized by the \(M_r \) and this gave a \(\sum b/M_r \) of 0.2237 fm in H₂O solutions, which is a typical value for globular proteins. For P3, contrast variation showed that its match point was 41.8 ± 1.9% \(^2\)H₂O (nine data points; Figure 2a). This agreed well with the prediction of 43.9% \(^2\)H₂O from the amino acid and carbohydrate composition. For P3, the limited availability of three data points in 0% and 100% buffers gave a comparable match point of 39.3 ± 1.2% \(^2\)H₂O. The linear Guinier plots and the above agreements with known compositions showed that the scattering curves corresponded to monodisperse preparations of P2 and P3, as required for structural analyses.

The overall structure of P3 is analyzed in Figure 2b, which shows the dependence of the neutron \(R_G \) data on the contrast.
The simulated curves were corrected for beam divergence and wavelength spread. The samples were at concentrations of 0.43, 0.40, and 1.1 mg/mL, respectively. Guinier R_Q analyses were carried out in the Q range of 0.05-0.19 nm$^{-1}$. Error bars due to data counting statistics are shown.

As a result of low concentrations, the statistical errors of the R_Q data were high. Even though an R_C of 11.0 ± 0.1 nm and a positive slope α of $(4 ± 1) \times 10^{-3}$ for P$_3$ could be determined from the nine values in Figure 2b by MINITAB analyses, the final R_Q analysis was based on the mean R_Q of 10.7 ± 0.5 nm. For P$_2$, the mean R_Q value was 7.3 ± 1.6 nm from three measurements. Calculation of the elongation ratio R_Q/R_0 (where R_0 is the R_Q of the sphere with the same dry volume as P$_2$ or P$_3$) gave values of 3.0 ± 0.7 and 3.8 ± 0.2 for P$_2$ and P$_3$, respectively. Since the R_Q/R_0 values for typical globular proteins are close to 1.28 (Perkins, 1988b), both P$_2$ and P$_3$ possess highly extended structures in solution, in common with many other complement components (Perkins et al., 1990a). In such cases, Guinier analyses of $\ln (I(Q))/Q^2$ should provide the corresponding cross-sectional parameters $I(Q)$ and R_XS. However, such plots were affected by poor signal-noise or buffer subtraction problems. The R_XS was estimated to be of the order of 0.6 ± 0.2 nm from data measured in 100% 2H$_2$O buffers.

Synchrotron X-ray experiments were performed with P$_2$, P$_3$, and P$_4$ at concentrations of 0.29-0.89 mg/mL in order to extend the neutron analyses. Scattering curves were accepted for analyses if linear Guinier plots were obtained in Q ranges of 0.05-0.10 to 0.18-0.20 nm$^{-1}$ (Figure 1a). As before, data for P$_4$ could not be analyzed. The mean R_Q values were 9.1 ± 0.6 nm for P$_2$ (two values) and 11.6 ± 0.9 nm for P$_3$ (four values). The ratio of $I(0)/c$ values for P$_2$/P$_3$ was 1.00:1.49 (±17%), which is the value expected from their relative molecular weights. These data corresponded to measurements in high positive solute-solvent contrasts and as such could be compared with the neutron R_Q values in 0% 2H$_2$O buffers. Good agreements were found with the neutron R_Q of 9 ± 2 nm for P$_2$ (one value) and 11.5 ± 0.4 nm for P$_3$ (two values) in H$_2$O, thus corroborating these analyses. However, there was evidence from time frame analyses of the P$_3$ data for on-going aggregation during beam exposure (to which the R_Q data were insensitive), and these data were therefore not utilized in the curve-fitting analyses below.

Simulations of Scattering Curves for P$_3$. The use of small Debye spheres in molecular models permitted the interpretation of the scattering data for P$_3$ that were measured in the larger Q range between 0.2 and 1.1 nm$^{-1}$. From this, possible arrangements of the TSRs and the properdin monomers in P$_3$ could be deduced. Electron micrographs (Smith et al., 1984) had reported that properdin existed as cyclic structures, on the basis of a monomer that is 26 nm in length and 2.5-3 nm in width. These dimensions, however, led to a volume that is 2-3 times larger than that calculated from the composition. Here, a model for the monomer was taken to be 26 nm in length, with a width constrained by a dry volume close to 66.8 nm3 (see Materials and Methods).

P$_2$ was most successfully modeled as three linear rods (32 spheres spaced 0.80 nm apart) with a circular cross section (2 × 2 spheres) that were arranged as the sides of an equilateral triangle. The dry volume of each rod was 65.5 nm3. This dry model had an R_Q of 10.9 nm, in very good agreement with the observed mean neutron R_Q of 10.7 ± 0.5 nm. The simulated neutron curves agreed well with the neutron data in 100%, 80%, and 0% 2H$_2$O (Figure 3), with satisfactory R values of 0.026, 0.047, and 0.059, respectively. R is a goodness-of-fit parameter that was defined in Smith et al. (1990). The view of this model is in good accord with observed electron micrographs of P$_3$.

Three other cyclic and extended models for P$_3$ were tested against the solution data. The use of an asymmetric cross section of 1 × 4 spheres in the triangular model led to worsened curve fits at large Q values (R of 0.036 in place of 0.026). The use of a circular ring of circumference 96 spheres and cross-section 2 × 2 spheres led to an R_Q of 12.6 nm that was significantly larger than the experimental value and to worsened curve fits in the Q range between 0.2 and 0.4 nm$^{-1}$, although the curve fits at large Q were similar. Y-shaped models were tested in which the sides of the triangle were brought into contact with each other to result in a three-armed structure, such that the TSRs within each monomer were positioned in contact with TSRs in the neighbouring monomer. Here, however, the R_Q value was much reduced to 8.1 nm, and the curve fits deteriorated (R of 0.032 in place of 0.026). These poorer curve fits with alternative arrangements of properdin monomers supported the proposal of a triangle model as the likely solution structure for P$_3$.

Simulations of Sedimentation Data for Properdin. For properdin, sedimentation coefficients $s_{20,w}$ of 5.0 S (DiScipio, 1982), 5.2 S (Minta & Kunar, 1976), and 5.1-5.3 S (Pensky et al., 1968) have been reported. These authors were not able to resolve P$_2$, P$_3$, and P$_4$ by ultracentrifugation. These $s_{20,w}$

FIGURE 3: Neutron scattering curve simulations for P$_3$. The curve calculated from the model shown to the right (sphere diameter 0.8 nm; monomer of 32 × 2 × 2 spheres) is compared with the experimental curves measured in 100%, 80%, and 0% 2H$_2$O buffers. The simulated curves were corrected for beam divergence and wavelength spread. The samples were at concentrations of 0.43, 0.40, and 1.1 mg/mL, respectively. Guinier R_Q analyses were carried out in the Q range of 0.05-0.19 nm$^{-1}$. Error bars due to data counting statistics are shown.
elgation of the P3, P4, and P5 structures in solution. Simulations were performed with hydrodynamic sphere models to calculate the $s_{20,w}$ values of the models determined by solution scattering. The best agreements were based on a monomer length of 26 nm, constructed from a line of 10 spheres of diameter 2.644 nm. The P2, P3, and P4 models were represented by two parallel lines, an equilateral triangle, and a square, respectively (Figure 4a). The predicted $s_{20,w}$ values were 5.08, 4.98, and 5.21 S in that order. The similarity of these values explained why the three forms cannot be distinguished by ultracentrifugation. These agreements are evidence that the length of the monomer was very close to that of 26 nm determined by solution scattering and electron microscopy. Calculations based on other lengths for the monomer showed that a typical error of ±0.2 S in the simulation (Perkins, 1989) corresponded to changes in the monomer length of ±2 nm.

Classification of TSR Sequences. In order to characterize the properties of a TSR within the properdin monomer, 31 full TSR sequences were aligned in Figure 5. This analysis was improved in comparison to that given in Perkins et al. (1989) because the intron/exon boundaries of the human and mouse thrombospondin genes (Wolf et al., 1990; Bornstein et al., 1990) and the human properdin gene (Nolan et al., 1991b) have been determined. These define the start and end of each TSR (Craik et al., 1982; Traut, 1988). The start of the TSR

![Figure 4](image.png)

Figure 4: Low-resolution models of properdin. (Upper) Hydrodynamic models for tetrameric, trimeric, and dimeric properdin, based on spheres of diameter 2.644 nm. (Lower) The Debye model for properdin, trimeric, and dimeric properdin, based on spheres of diameter 2.644 nm. The Debye model for properdin is shown in comparison with a simple two-domain model for complement component C3 from solution scattering analyses (Perkins et al., 1990b). It is stressed that such scattering curve models are only equivalent to the experimentally observed curves. While they do not correspond to a unique structure determination, the models will indicate the relative sizes of P3 and C3.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>C6 N (human)</th>
<th>TRAP (human)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombospondin (human)</td>
<td>SDSADDGSPSNPSERTSCTS</td>
<td>KGQTVGASGL</td>
</tr>
<tr>
<td>Thrombospondin (mouse)</td>
<td>SADDGSPSNPSERTSCTS</td>
<td>KGQTVGASGL</td>
</tr>
<tr>
<td>Properdin (human)</td>
<td>SADDGSPSNPSERTSCTS</td>
<td>KGQTVGASGL</td>
</tr>
<tr>
<td>Properdin (mouse)</td>
<td>SADDGSPSNPSERTSCTS</td>
<td>KGQTVGASGL</td>
</tr>
<tr>
<td>C6 N (human)</td>
<td>SDSADDGSPSNPSERTSCTS</td>
<td>KGQTVGASGL</td>
</tr>
</tbody>
</table>

Figure 5: Alignment of 31 sequences for the thrombospondin repeat. A residue conservation greater than 70% within a group of sequences is denoted by * above the sequences, which are shaded if these are Cys residues. Residues conserved to better than 90% in all 31 sequences are indicated by ** above the sequences, and all are shaded. Putative glycosylation sites are underlined and indicated by g beneath the sequences. IQQ and RDG peptides are shown in the first and fourth sequences, and the last sequence, respectively. The averaged secondary structure prediction by the Robson and Chou-Fasman methods for the 31 sequences is shown beneath the sequences (b, b-sheet; a, a-helix; t, turn; c, coil). The letter is underlined if the prediction occurs in over 75% of the 31 sequences. To the right, the charge found in each TSR is given assuming that the charged residues are D, E, R, and K; the bracketed figures correspond to the assumption that H is charged also, which, at a blood pH of 7.4, is not likely to be significant.

<table>
<thead>
<tr>
<th>Group 2</th>
<th>C6 N (human)</th>
<th>C7 N (human)</th>
<th>C8a N (human)</th>
<th>C8b N (human)</th>
<th>C9 N (mouse)</th>
<th>C9 N (trot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 (human)</td>
<td>INCLEGPGPSGDCP</td>
<td>INCLEGPGPSGDCP</td>
<td>INCLEGPGPSGDCP</td>
<td>INCLEGPGPSGDCP</td>
<td>INCLEGPGPSGDCP</td>
<td>INCLEGPGPSGDCP</td>
</tr>
<tr>
<td>C3 (human)</td>
<td>VDCSQGQESNPSRSTDA</td>
<td>TYRKS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
</tr>
<tr>
<td>C4 (human)</td>
<td>VDCSQGQESNPSRSTDA</td>
<td>TYRKS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
</tr>
<tr>
<td>C5 (human)</td>
<td>VDCSQGQESNPSRSTDA</td>
<td>TYRKS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
</tr>
<tr>
<td>C6 (human)</td>
<td>VDCSQGQESNPSRSTDA</td>
<td>TYRKS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
</tr>
<tr>
<td>C7 (human)</td>
<td>VDCSQGQESNPSRSTDA</td>
<td>TYRKS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
</tr>
<tr>
<td>C8a (human)</td>
<td>ADGDWSKPSNPSRSTDA</td>
<td>GQKTV</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
</tr>
<tr>
<td>C8b (human)</td>
<td>ADGDWSKPSNPSRSTDA</td>
<td>GQKTV</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
</tr>
<tr>
<td>C9 (human)</td>
<td>ADGDWSKPSNPSRSTDA</td>
<td>GQKTV</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
</tr>
<tr>
<td>C9 (trot)</td>
<td>ADGDWSKPSNPSRSTDA</td>
<td>GQKTV</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
<td>RBSLSQYVGQXGS</td>
</tr>
</tbody>
</table>
of structural properties (Taylor, 1986; Perkins et al., 1988), the use of the automated multiple sequence alignment program MULTAL (Taylor, 1990). In order to facilitate the ordering of structural properties (Taylor, 1986; Perkins et al., 1988), gaps were minimized and homology was maximized between conserved or conservatively replaced residues. Figure 5 shows that eight residues were greater than 90% conserved in the 31 TSRs (Trp-conserved or conservatively replaced residues). Figure 5 shows gaps were minimized and homology was maximized between sequences led to five contiguous peptide segments and four gap/insertion regions as indicated in Figure 5, of which the first segment (residues 1-17) exhibited the highest residue conservation in group 1.

A possible connectivity scheme for the three principal disulfide bridges in TSRs may be proposed from the alignment. It is likely that Cys-18 is linked to Cys-57 since both were missing in group 3 when compared to groups 1 and 2. Inspection of the four remaining Cys residues showed suggestively that Cys-41 and Cys-51 were both missing in the last TSR of human and mouse properdin, and therefore these appeared to be bridged in other sequences. Accordingly, Cys-14 may be linked either to Cys-29 (groups 1 and 3) or Cys-3 (group 2 and similar Cys residues in the C6 N1 and TRAP sequences of group 1). This scheme implied that Cys-7 in group 3 is unlinked within the TSR.

A total of nine putative NxT or NxS glycosylation sites were identified. An IQQ motif [factor XIII binding; Bale et al. (1985)] was found in human and mouse thrombospondin. An RGD motif [cell surface receptor binding; Yamada (1989)] was found in trout C9 (Stanley & Herz, 1987). The structural motif WSNWS was found in 14 TSRs, occurring once or twice in all the protein sequences of groups 1, 2, and 3 except for those of TRAP and trout C9; this motif exists also in the cytokine hematopoietin receptor superfamilly (Cosman et al., 1990). Within several TSRs in group 1 (but not in groups 2 or 3), a motif CSVTCGxGxxRxR is found that is thought to function as a sulfated glycoconjugate-binding domain in properdin (Holt et al., 1990), although this motif is only conserved in full in the TRAP sequence and in three of the thrombospondin sequences.

The average of the 31 secondary structure predictions was computed, based on the Robson (β biased) and Chou–Fasman methods. Closely similar predictions to those reported previously (Perkins et al., 1989) were obtained. The total percentages of the four or three conformations present were identical. By the Robson method, these were α-helix, 0%; β-sheet, 38%; turn, 57%; and coil, 5%. The Chou–Fasman method gave α-helix, 16%; β-sheet, 18%; and turn, 66%. Again, two regions of high turn propensities could be identified (t1 and t2; residues 1-22 and 32-42) and one region of β-sheet (b1; residues 23-31). While the two turn regions contained both hydrophilic and hydrophobic residues, nine out of the ten residues in the b1 region were found to be hydrophilic. Further examination of the individual structure predictions supported the subdivision of TSRs into three groups. Unlike groups 1 and 3, residues 1-5 in group 2 were predicted as β-sheet. The predictions suggested that the b1 region had different lengths, namely residues 23-28 in group 1, residues 19-35 in group 2, and residues 22-26 in group 3.

DISCUSSION

Structure of Monomers in Properdin. Despite the low properdin concentrations, the use of high-flux beam sources (in particular at the Institut Laue Langevin) led to successful measurements of solution scattering curves. These were the most fruitful for the trimer P3, which is the most abundant oligomer. Curve fitting was most successfully carried out in terms of open triangular structures in solution conditions close to physiological, with overall dimensions that were highly similar to the length of 26 nm reported on the basis of electron microscopy. Flexibility between the TSRs in each properdin monomer cannot, however, be ruled out by the scattering data.

One biochemical insight into the properties of properdin has been gained in this study. The calculated A290 coefficient of 23.9 from the primary structure is one-third higher than previously reported by biochemical determinations, as also reported in the calculation of Nolan and Reid (1990). Tests of this revised value led to satisfactory M values by solution scattering. This revision also implies that previous estimates of the concentration of properdin in plasma, initially 20-25 μg/mL (Minta et al., 1973) and then 5.7 μg/mL (Pangburn, 1989), should now be revised to 4.2 μg/mL.

Properdin has a high isoelectric point greater than 9.5. This is readily correlated with the excess of positive charges (R, K) over negative charges (D, E) in five of the six TSRs in the human sequence (Figure 5). It is possible that these charges may offer an explanation of these open cyclic structures, since the TSRs may repel each other. The three forms of properdin, P0, P3, and P4, once isolated do not reequilibrate into a mixture. The structural studies suggest that the monomers associate between alternate N-terminal and C-terminal peptides at each end of each monomer. Inspection of their sequences suggest that the stability of these oligomers may be mediated by ionic interactions between up to 22 opposite charges in these regions.

The significance of the P4 structure is shown by comparisons with the sizes of other proteins with which it interacts (Figure 4). The monomer length is 26 nm. This associates with C3b, which is of maximum length 18 nm (Perkins & Sim, 1986; Perkins et al., 1990b; Iki et al., 1990). C3b interacts with properdin within a 34-residue segment of C3b (Daoudaki et al., 1988), which if in a maximally extended conformation would be of length 12 nm. These considerations show that it is reasonable to expect that for steric reasons more than one C3b molecule can interact with each of P0, P3, and P4. In fact, Pangburn (1989) showed that the specific activity of properdin decreases in the order P4 > P3 > P2.

Structure of TSRs in Properdin. Structural information on TSRs have been deduced from this study. Since TSRs exist in single copies in the late complement components, and since the multiple TSRs in thrombospondin and five out of the six TSRs in properdin are encoded by separate exons, it can be inferred that each TSR constitutes an independently folded protein structure. While TSRs are the second most abundant complement sequence motif, analysis shows that these may be subdivided into three groups. In contrast, the most abundant complement motif, the short complement (or consensus) repeat, is readily considered as a single group of sequences (Perkins et al., 1988).

The TSRs in these three groups exhibit distinct differences in Cys contents, lengths, and overall charges. Since similar locations for gaps and insertions could be proposed in the 31 TSR sequences (Figure 5), the protein backbone structure is expected to be similar in all three groups, even though the TSR
In support of this premise, only minor differences were seen between the groups in the structure predictions. The principal characteristics of the three groups are summarized:

(i) Group 1, which included the thrombospondin and properdin sequences and interestingly the first N-terminal TSR of C6, contained complex arrangements of between four and seven Cys. These occurred most frequently at Cys-14, -18, -29, -41, -51, and -57. The TSR was 58 residues in length, 19 of which were conserved to better than 70%. The properdin TSRS generally displayed two to four positive charges on average, depending on the ionization state of about two His residues per TSR.

(ii) Group 2 corresponded to the N-terminal TSRS of the late complement components except for that above in C6. These contained six Cys as in group 1, except that Cys-29 is replaced by Cys-3. Most notably, the well-conserved Trp-5, Cys-29, and Gly-43 residues in group 1 were poorly conserved in group 2, while several well-conserved residues, 33-37, in group 2 do not have their counterpart in group 1. The average length of the group 2 TSR was 55 residues, 23 of which were conserved to better than 70%. These TSRS were generally uncharged.

(iii) Group 3 corresponded to the C-terminal TSRS of the late components. This group contained five Cys residues at Cys-7, -14, -29, -41, and -51. This group exhibited the highest residue conservation and the shortest sequences; the average length was 47 residues, 25 of which were conserved to better than 70%. While Trp-5, Cys-29, and Gly-43 are now well conserved as in group 1, many conserved residues in group 3 have no counterpart in group 1. These TSRS exhibited low positive charges.

To interpret the solution scattering analyses, the dry volume of each TSR can be calculated from amino acid compositions (Perkins, 1986). The average volume of the TSRS of group (excepting TRAP), group 2, and group 3 without carbohydrates were 8.2 ± 0.6, 7.6 ± 0.6, and 6.3 ± 0.3 nm³, respectively. If the TSR were spherical, its diameter would be 2.5, 2.4, and 2.3 nm, respectively, in the three groups. The average volume for human and mouse properdin of the N- and C-terminal polypeptides was found to be 6.64 ± 0.18 and 4.16 ± 0.08 nm³, respectively. If spherical, these would have diameters of 2.4 and 2.0 nm, respectively.

The length of a properdin monomer is 26 nm. If each of the six group 1 TSRS found in properdin are assumed to be spherical in shape, together with the N-terminal and C-terminal peptides, the sum of the eight diameters gives a total length of 19 nm if all eight structures were positioned in a linear arrangement. Since this length is notably shorter than the observed length, this shows that the TSR has an elongated structure. Its length can range between 3.25 and 4.3 nm, respectively. Since this length is notably shorter than 70%. While Trp-5, Cys-29, and Gly-43 are now well conserved as in group 1, many conserved residues in group 3 have no counterpart in group 1. These TSRS exhibited low positive charges.

To interpret the solution scattering analyses, the dry volume of each TSR can be calculated from amino acid compositions (Perkins, 1986). The average volume of the TSRS of group (excepting TRAP), group 2, and group 3 without carbohydrates were 8.2 ± 0.6, 7.6 ± 0.6, and 6.3 ± 0.3 nm³, respectively. If the TSR were spherical, its diameter would be 2.5, 2.4, and 2.3 nm, respectively, in the three groups. The average volume for human and mouse properdin of the N- and C-terminal polypeptides was found to be 6.64 ± 0.18 and 4.16 ± 0.08 nm³, respectively. If spherical, these would have diameters of 2.4 and 2.0 nm, respectively.

ACKNOWLEDGMENTS

We thank the Wellcome Trust for support and the Science and Engineering Research Council for use of the Synchrotron Research Source (Daresbury) and the Institut Laue Langevin (Grenoble). Mr. A. S. Nealis, Ms. J. Parsons, and Drs. W. Bras, A. de Geyer, D. Goundis, and J. Torbet are gratefully thanked for support and assistance. A preliminary account of this work was given at the 65th Biochemical Society Meeting, July 17-19, 1990, Aberdeen, U.K.

Registry No. Properdin, 11016-39-0.

REFERENCES

Molecular modelling strategies in application to complement

STEPHEN J. PERKINS,* KATHYRN F. SMITH and ADAM S. NEALIS

Departments of Biochemistry and Chemistry, and Protein and Molecular Biology, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, U.K.

Introduction

The complement cascade is composed of a family of plasma proteins whose role is to eliminate foreign particles or organisms [1]. The classical pathway of complement is activated via C1 by antibody recognition, while the alternative pathway is triggered if the foreign object has a suitable recognition site to assist the amplified self-activation of complement. In all, the cascade contains about 20 plasma components. If the domain is small enough, direct, it has disadvantages in being prone to artefacts due to random proteolysis during crystallization.

The most powerful method for the study of overall domain structures at present is X-ray and neutron solution scattering [2, 3]. This multiparameter technique investigates structures under physiological conditions. Molecular masses and the degree of oligomerization can be determined, large conformational changes can be identified and the results can be compared quantitatively with those from other physical methods (Table 1 and Fig. 1). It is more advantageous than hydrodynamic sedimentation measurements which offer only a measure of macromolecular elongation. Even though electron microscopy has the ability to view structures directly, it has disadvantages in being prone to artefacts caused either by the need to work in vacuo, the use of stains, electron beam damage, magnification errors or possible difficulties in interpretation.

The study of individual molecular structures within each domain is dependent on the domain in question. For example, crystal structures are known for the serine proteases (trypsin [4], chymotrypsin, etc.), the serine protease inhibitors (α-antitrypsin, [5]) and the anaphylatoxins (C3a, [6]). These can be used as the starting point for atomic models of other structurally homologous domains in the complement components. If the domain is small enough, two-dimensional n.m.r. in combination with distance geometry, energy and molecular dynamics calculations can yield a three-dimensional structure. This has been successfully applied to the epidermal growth factor [7] and the short consensus repeat or short complement repeat (SCR) [8].

Both these high-resolution methods can be powerfully complemented by the use of protein structure prediction methods [9] and Fourier transform infrared (f.t.i.r.) spectroscopy [10]. These methods are more general in that they rely only on available abundant sequence data and standard preparative-scale quantities of the complement components in solution without limitations of molecular mass.

(i) Secondary structure predictions based on primary sequences and the Robson or Chou–Fasman methods are accurate to only 50–60% on a residue-by-residue basis. Both methods are based on statistical analyses of known protein

Received 15 June 1990
Table 1. Structures of some of the complement components

<table>
<thead>
<tr>
<th>Name</th>
<th>Molecular mass*</th>
<th>Number of domains</th>
<th>Radius of gyration, R_g (nm)</th>
<th>R_g/R_o ratio</th>
<th>Sedimentation coefficient, $s_{20,w}$ (S)</th>
<th>Frictional ratio, f/f_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1q</td>
<td>457000</td>
<td>12: head, stalk</td>
<td>12.8</td>
<td>3.2</td>
<td>10.2</td>
<td>1.91</td>
</tr>
<tr>
<td>C1r</td>
<td>172000</td>
<td>12: SP, SCR, EGF, RS</td>
<td>8</td>
<td>2.8</td>
<td>7.1</td>
<td>1.45</td>
</tr>
<tr>
<td>C1s</td>
<td>79000</td>
<td>6: SP, SCR, EGF, RS</td>
<td>8</td>
<td>3.6</td>
<td>4.5</td>
<td>1.36</td>
</tr>
<tr>
<td>C1r2C1s2</td>
<td>330000</td>
<td>24: SP, SCR, EGF, RS</td>
<td>17</td>
<td>4.7</td>
<td>8.7</td>
<td>1.82</td>
</tr>
<tr>
<td>C1</td>
<td>787000</td>
<td>36: C1q + C1r2C1s2</td>
<td>12.6</td>
<td>2.6</td>
<td>15.2-16.2</td>
<td>1.79</td>
</tr>
<tr>
<td>α1-antitrypsin</td>
<td>52000</td>
<td>1: Serpin</td>
<td>2.61</td>
<td>1.3</td>
<td>3.3-3.45</td>
<td>1.32</td>
</tr>
<tr>
<td>C1 inhibitor</td>
<td>71000</td>
<td>2: Serpin, N-terminus</td>
<td>4.85</td>
<td>2.3</td>
<td>3.67-3.8</td>
<td>1.54</td>
</tr>
<tr>
<td>C3, C3u, C3(a+b)</td>
<td>187000</td>
<td>3: C3a, C3c, C3dg</td>
<td>5.1</td>
<td>1.7</td>
<td>7.0-7.3</td>
<td>1.40</td>
</tr>
<tr>
<td>C3c</td>
<td>137000</td>
<td>1: C3c</td>
<td>4.8</td>
<td>1.8</td>
<td>5.5-6.7</td>
<td>1.37</td>
</tr>
<tr>
<td>C3dg</td>
<td>39000</td>
<td>1: C3dg</td>
<td>2.7</td>
<td>1.5</td>
<td>2.6</td>
<td>1.35</td>
</tr>
<tr>
<td>C4, C4u, C4(a+b)</td>
<td>197000</td>
<td>3: C4a, C4c, C4d</td>
<td>4.9</td>
<td>1.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C4c</td>
<td>291000</td>
<td>2: C4c</td>
<td>4.9</td>
<td>1.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C4d</td>
<td>41000</td>
<td>1: C4d</td>
<td>2.7</td>
<td>1.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C5</td>
<td>194000</td>
<td>3: C5a, 'C5c', 'C5d'</td>
<td>4.9</td>
<td>1.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C4BP</td>
<td>491000</td>
<td>56: SCR</td>
<td>13</td>
<td>3.2</td>
<td>10.7-11.2</td>
<td>1.89</td>
</tr>
<tr>
<td>Properdin (dimer)</td>
<td>108000</td>
<td>12: TSR</td>
<td>9§</td>
<td>3.7§</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Properdin (trimer)</td>
<td>162000</td>
<td>18: TSR</td>
<td>11§</td>
<td>3.9§</td>
<td>5.2-5.5</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Molecular masses, R_g/R_o ratios and f/f_0 ratios are calculated from sequences.

†From neutron scattering in conditions of infinite contrast except for C4BP and properdin, X-ray data for several of these proteins support these determinations.

§Studied in the form assuming seven α-chains.

§Provisional values.

(a) Fig. 1. *Comparison of models from X-ray and neutron scattering curve analyses*

(a) Proteins involved in the activation and control of C1. Scattering models for C1q, C1r, C1s and C1 inhibitor [11] are compared with a schematic model for the Fab and Fc domains in IgG. The Fab domains interact with antigenic surfaces. The Fc domains in aggregates of IgG interact with the C1q heads. C1r-C1s2 binds to the C1q stalks to give the C1 complex, and is autoactivated to C1r2C1s2; this leads to the cleavage of C2 and C4 of complement. Control of C1 is mediated by the C1 inhibitor, in which the serpin domain binds to the serine proteinase domain. (b) Activation and control of C3 and C4. C3 and C4 are the two most abundant complement components and scattering shows that they are structurally homologous to each other as expected from sequence data [13, 14]. These structures can be represented by two large domains C3c/C3dg and C4c/C4d that can be modelled by ellipsoids as shown (although the accuracy of these models should not be overrated). These form C3b and C4b in that order on removal of the small C3a and C4a anaphylatoxins. A large conformational change relative to C3 and C4 is detectable by solution scattering, the magnitude of which is represented by the two possible models shown for C3b and C4b. Factor I cleaves C3 (in the presence of factor H as cofactor) and C4 (in the presence of the C4b binding protein: C4BP) into C3c and C3dg, and C4c and C4d. Both factor H and C4BP are constructed from highly extended arrangements of SCR domains, as shown in the solution model for C4BP [12].
crystal structures. Improvements can therefore be obtained by averaging many predictions based on the alignment of a large number of sequences. This average will emphasize significant features that arise in the predictions, and will minimize errors from sequence misalignments.

(ii) The prediction analyses can be tested by f.t.i.r. spectroscopy. Study of the f.t.i.r. amide I band reflects primarily the C=O stretching vibration of amide groups coupled to the in-plane NH bending and CN stretching modes, and is therefore sensitive to the local environment of N–H hydrogen bonding with C=O groups, i.e. the protein secondary structure. The advantages of this technique over c.d. are (a) the absence of problems in defining a spectral base line; (b) different bands in the f.t.i.r. spectrum can be clearly resolved; (c) it is not affected by the presence of high amounts of disulphide bridges found in the SCR and the thrombospondin repeat (TSR); (d) amide proton exchange rates and large conformational changes can be followed.

Neutron and X-ray solution scattering

At the smallest scattering angles, Guinier plots give the radius of gyration, \(R_G \). This is a measure of macromolecular elongation. The \(R_C/R_O \) ratio compares the \(R_C \) of a sphere of the same volume. For 47 globular proteins with molecular masses between 10^4 and 10^6 kDa, the average \(R_C/R_O \) is approximately constant at 1.28 ± 0.10 [2]. In distinction, Table 1 shows that large deviations with \(R_C/R_O \) values close to 2 or more occur in the complement components, even in those with as few as 2 or 3 domains. This shows that, in conditions close to physiological, the complement components possess highly extended domain structures. Independent confirmation of this is obtained from sedimentation coefficients and the frictional ratios, \(f/f_0 \), calculated from these, even though these are less sensitive than the corresponding \(R_C/R_O \) ratios (Table 1).

Guinier analyses in combination with the sample concentration lead to molecular masses, \(M_c \). Neutron scattering was used to confirm that the \(M_c \) of the heavily glycosylated C1 inhibitor structure is closer to 71 000 kDa than the value of about 100 000 kDa observed by SDS/PAGE [11]. In the case of C4BP, an erroneous absorption coefficient at 280 nm was identified by X-ray scattering [12]. The C4c fragment of C4 was shown to be dimeric and not monomeric as believed originally [13].

Analyses of the scattering curves in the full range of scattering angles accessible by experiment is carried out by modelling using small spheres in the Debye equation (Fig. 1). By a trial-and-error procedure, these models are used to calculate curves that are equivalent to the experimental scattering curves. Comparison of the sphere models with the sizes of the individual domains identifies the disposition of the domains within each complement component. Even though solution scattering does not identify unique structures, the modelling is in practice much constrained by the knowledge of which domains are present in the complement component under study and their sizes, and is thus a highly useful method.

Gross conformational changes can be identified by scattering, as exemplified by the conversion of C3 and C4 to C3b and C4b respectively in Fig. 1(b), where the two domains in the latter form a more compact arrangement [13, 14].

Sequence analyses and Fourier transform infrared spectroscopy

The most abundant domain found in the complement components is the SCR. Twelve of the soluble and membrane-bound complement components contain 97 SCRs, totalling 145 copies in all allowing for the presence of multiple copies in heptameric C4BP. The alignment of 101 sequences found in complement and non-complement proteins showed that its average length is 61 residues. Of these, 19 are totally or conservatively conserved in over half the sequences. Secondary structure predictions [15] proposed a clear alternation of four \(\beta \)-strands and four \(\beta \)-turns between residues 21–51 in the 61-residue repeat in the majority of sequences. Factor H contains wholly 20 SCRs. That these predictions were significant was indicated by the observation of two clear bands at 1638 cm\(^{-1}\) and 1680 cm\(^{-1}\) in the second derivative f.t.i.r. spectrum of 15–30 mg/ml factor H in \(^2 H_2 O \) which can be assigned to anti-parallel \(\beta \)-strands. Likewise a third band at 1661 cm\(^{-1}\) could be assigned to turn structures.

The second most abundant complement domain is the TSR. Six complement components are found to contain 15 TSRs, of which multiple copies exist in the dimeric, trimeric and tetrameric forms of properdin. The first study of up to 23 aligned sequences shows that this is on average 58 residues in length, with 21 positions being totally or conservatively conserved in 60% or more of sequences. In properdin, about 80% of the structure contains TSRs. F.t.i.r. spectroscopy of properdin in \(^2 H_2 O \) shows that there are two major bands at 1676 cm\(^{-1}\) and 1633 cm\(^{-1}\), which can be assigned in that order to substantial amounts of \(\beta \)-turn and \(\beta \)-strand structures, even though the protein concentrations are low at 0.7–1.2 mg/ml. The predictions suggest that there are 57–66% \(\beta \)-turn and 18–38% \(\beta \)-sheet structures in a typical TSR, which is consistent with the f.t.i.r. spectra [16].

Similar experiments are in progress on the von Willebrand factor (vWF) domain, which corresponds to the type A domain found in the plasma protein with the same name, and which is present in four complement components. Here the alignment of 46 similar sequences (average length 202 residues) revealed that residue conservation is generally low, but that a clear pattern of alternating amphiphilic \(\alpha \)-helices and hydrophobic \(\beta \)-strands could be detected (S. J. Perkins & K. F. Smith, unpublished work). The alignment of four sequences found in a domain specific to C1r and C1s (RS) shows that this is composed of 13% \(\alpha \)-helix, 30% \(\beta \)-sheet and 37% turn [17].

F.t.i.r. spectroscopy can also be used to detect large conformational changes. It was shown that the less stable native form of the serpin domain has a much reduced content of \(\alpha \)-helix and \(\beta \)-sheet than the more stable but physiologically inactive reactive-centre-split form. It was proposed that the stabilization of the split form is achieved by a more complete hydrogen bonding in its secondary structure than the native form [18].

Conclusions

At the present time, over half of the soluble complement components have been successfully analysed by solution scattering. Work is in progress with the remaining components. Molecular masses range from 39 000 to 787 000 kDa, and the number of domains range between 1 and 56. Fig. 1 and Table 1 illustrate that these generally have highly extended domain structures.

The joint use of both the predictive and f.t.i.r. techniques make it possible to identify secondary structures in the SCR, TSR and vWF domains. This will assist in the location of the strategic amino acid residues that may usefully be targeted for site-specific mutagenesis and antigenic peptide experiments designed to explore the function of each domain. Other domains are likewise under investigation.
A new approach to designing active analogues of proteins

JULIA A. EMBER,* NILS L. JOHANSEN† and TONY E. HUGLI*

*Department of Immunology, Research Institute of Strippis Clinic, La Jolla, CA 92037, U.S.A. and †Novo Industries A/S, Bagsvaerd, Denmark DK-2880

Over the past ten years numerous peptide analogues of C3a have been designed with the purpose of mimicking C3a function and understanding the receptor interactions at the molecular level. The initial observation identified a synthetic octapeptide (Ala-Ser-His-Leu-Gly-Leu-Ala-Arg) that exhibited 1% of the activity of C3a (human) [1]. The analogue peptide derived from the C-terminus of C3a (C3a 70–77) defined the effector site on the natural factor. The biological specificity of the octapeptide was exactly that of C3a. It was later found that elongation of the C-terminal fragment C3a from 8 to 21 residues led to marked enhancement of activity [2]. Based on the tendency of the 21-residue synthetic C3a peptide to assume a helical conformation in dilute trifluoroethanol, it was concluded that the conformation of this analogue contributed to the high activity. In fact, synthetic C3a (57–77) exhibited nearly equivalent spasmogenic activity to the intact natural factor C3a.

Strategic design of the C3a analogue peptides to enhance helix content and amphipathy served to maintain activity while the incorporation of helix-breaking residues, such as proline, significantly reduced activity [3]. These results led to the conclusion that regular conformation in the C-terminal region of C3a was requisite for optimal activity. At the time, we surmised that the C-terminal helix may contribute to a specific membrane effect. We concluded that C3a analogue peptides insert themselves into the lipid phase of the biomembrane and thereby alter the association between peptide and receptor from a three-dimensional to a two-dimensional reaction, as has been proposed for supra-agonists luteinizing hormone releasing hormone by Schwzyzer et al. [5]. Insertion of the C3a analogue peptides in the biomembrane would increase the effective concentration of the molecule and would result in only an apparent enhanced activity. This was a reasonable explanation for the enhanced activity of a peptide analogue of C3a (Nap-Ahx-Y-R-R-G-R-A-A-A-L-G-L-A-R) that has little resemblance to the fully active natural C3a fragment C3a 57–77 (C-N-Y-E-L-R-R-Q-H-A-R-A-S-H-L-G-L-A-R).

We questioned whether the hydrophobic group at the N-terminus of C3a analogues enhanced activity in a non-specific manner as proposed by Gerardy-Schahn et al. [4] or perhaps this effect had a specific component. When a series of peptides was synthesized based on the C-terminal C3a sequence and the hydrophobic tryptophan group was substituted for Ahx, Nap or Fmoc, we observed a progressive (10- to 15-fold) increase in the activity as these peptides were lengthened from a decapeptide to a pentadecapeptide. We also noted that two N-terminal tryptophanyl groups were more effective than just one. Biological data corresponding to approximately 50 C3a analogue peptides has recently been reported [6].

Peptides longer than 15 or 16 residues exhibited decreased activity indicating an optimal length for maximally active peptides. This result was inconsistent with a non-specific membrane effect. We concluded that C3a analogue peptides with an N-terminal hydrophobic group of optimal size represented a unique structure that mimics the essential receptor interactions of C3a, and that the hydrophobic group contributes directly to receptor binding. The model peptide W-W-G-K-K-Y-R-A-S-H-L-G-L-A-R has several residue replacements (underlined) compared with the C3a sequence (see Fig. 1), but the main feature is the N-terminal Trp-Trp-sequence. This model peptide is 10–15 times as active as human C3a and exhibits only C3a specific functions. When the conformation of the C-terminal region of C3a was elucidated by X-ray analysis [7], helical structure was evident from residue 49 to 72 in C3a. Analysis of C3a in solution by n.m.r. [8] indicated that the C-terminal helix terminates earlier than in the crystalline structure, becoming irregular at about residue 65 to 66. The helical region just N-terminal to the residue 65 defines an amphiphilic structure...