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Abstract
We develop a robust cut finite element method for a model of diffusion in fractured
media consisting of a bulk domain with embedded cracks. The crack has its own pres-
sure field and can cut through the bulk mesh in a very general fashion. Starting from
a common background bulk mesh, that covers the domain, finite element spaces are
constructed for the interface and bulk subdomains leading to efficient computations
of the coupling terms. The crack pressure field also uses the bulk mesh for its repre-
sentation. The interface conditions are a generalized form of conditions of Robin type
previously considered in the literature which allows the modeling of a range of flow
regimes across the fracture. The method is robust in the following way: (1) Stability
of the formulation in the full range of parameter choices; and (2) Not sensitive to the
location of the interface in the background mesh. We derive an optimal order a priori
error estimate and present illustrating numerical examples.

Mathematics Subject Classification 65N30 · 65N12 · 65N15

1 Introduction

The numerical modelling of flow in fractured porous media is important both in envi-
ronmental science and in industrial applications. It is therefore not surprising that it
is currently receiving increasing attention from the scientific computing community.
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Here we are interested in models where the fractures are modelled as embedded sur-
faces of dimension d − 1 in a d dimensional bulk domain. Models on this type of
geometries of mixed dimension are typically obtained by averaging the flow equa-
tions across the width of the fracture and introducing suitable coupling conditions for
the modelling of the interaction with the bulk flow. Such reduced models have been
derived for instance in [1,25,29]. The coupling conditions in these models typically
take the form of a Robin type condition. The physical properties of the coupling enters
as parameters in this interface condition. The size of these parameters can vary with
several orders of magnitude depending on the physical properties of the crack and of
thematerial in the porousmatrix. Thismakes it challenging to derivemethods that both
are flexible with respect to mesh geometries and robust with respect to coupling con-
ditions. A wide variety of different strategies for the discretisation of fractured porous
media flow has been proposed in the literature. One approach is to use a method that
allows for nonconforming coupling between the bulk mesh and the fracture mesh [3],
or even arbitrary polyhedral elements in the bulk mesh in order to be able to mesh the
fractures easily. This latter approach has been developed using discontinuous Galerkin
methods [2], virtual element methods [18] and high order hybridised methods [14].

Herein we will consider an unfitted approach, drawing on previous work [4,11,
13] where flow in fractured porous media was modelled in the situation where the
pressure is a globally continuous function.When using unfitted finite elementmethods,
the bulk mesh can be created completely independently of the fractures. Instead the
finite element space is modified locally to allow for discontinuities across fractures
and interface conditions are typically imposed weakly, or using methods similar to
Nitsche’smethod. For other recent work using unfittedmethodswe refer to [27], where
a stabilized Lagrange multiplier method is considered for the interface coupling and
[15] where a mixed method is considered for the Darcy’s equations both in the bulk
and on the surface.

The upshot here, compared to [11] is that the pressure in the crack has its own
approximation field, allowing accurate approximation of problems where there is a
pressure jump between the bulk and the fracture, and that the interface conditions
are imposed in a way allowing for the full range of parameter values in the Robin
condition, without loss of stability or order of approximation. We use the variant
of the interface modelling considered in [29], that was also recently applied for the
numerical modelling in [2]. In these models we may obtain a wide range of parameter
values in the interface condition and we therefore develop a method which handle the
full range of values and produces approximations with optimal order convergence.
The approach is inspired by the work of Stenberg [26] and may be viewed as a version
of the Nitsche method that can handle Robin type conditions and which converges
to the standard Nitsche method when the Robin parameter tends to infinity. Previous
applications of this approach in the context of fitted finite elements include [22,37].

The finite element spaces are constructed starting from a standard mesh equipped
with a finite element space. For each geometric domain (subdomains and interface) we
mark all the elements intersected by the domain and then we restrict the finite element
space to that set to form a finite element space for each domain. This procedure leads to
cut finite elements and we use stabilization to ensure that the resulting form associated
with the method is coercive and that the stiffness matrix is well conditioned. The
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stabilization is of face or ghost penalty type [6,7,28], and is added both to the bulk and
interface spaces. Previous related work work on cut finite element methods include the
interface problem [21]; overlapping meshes [23]; coupled bulk-surface problems [8,
11,12,20]; mixed dimensional problems [9], and surface partial differential equations
[7,32]. For a general introduction to cut finite element methods we refer to [4].

The outline of the paper is as follows: In Sect. 2 we introduce the model problem,
show an elliptic regularity result which is robust with respect to the critical parameters
in the interface condition, and discuss the relation between our formulation of the
interface conditions and previous work; in Sect. 3 we formulate the cut finite element
method; in Sect. 4 we prove the basic properties of the formulation and in particular
an optimal order a priori error estimate which is uniform in the full range of interface
parameters; and in Sect. 5 we present numerical results.

2 Themodel problem

2.1 Governing equations

LetΩ be a convex polygonal domain inRd , d = 2 or 3, with boundary ∂Ω and exterior
unit normal n. Let Γ be a smooth embedded interface inΩ and let nΓ be a unit normal
toΓ , which partitionsΩ into two subdomainsΩ1 andΩ2 with exterior unit normals n1
and n2. We assume that Γ is a closed surface without boundary residing in the interior
of Ω , more precisely we assume that there is δ0 > 0 such that the distance between
Γ and ∂Ω is larger than δ. We consider for simplicity the case with homogeneous
Dirichlet conditions on ∂Ω .

The problem takes the form: find ui : Ωi → R and uΓ : Γ → R such that

− ∇ · Ai∇ui = fi in Ωi (1)

−∇Γ · AΓ ∇Γ uΓ = fΓ − �n · A∇u� on Γ (2)

n · A∇u + B(u − uΓ ) = 0 on Γ (3)

u = 0 on ∂Ω (4)

Here the jump (or sum) of the normal fluxes is defined by

�n · A∇v� =
2∑

i=1

ni · Ai∇vi (5)

In the interface condition (3), B is a 2 × 2 symmetric matrix valued function with
eigenvalues λi such that λi ∈ [cλ,∞), with cλ a positive constant, which means that
B is uniformly positive definite on Γ ,

cλ‖x‖2R2 ≤ x · B · x ∀x ∈ R
2 (6)
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We also used the notation

n · A∇v =
[
n1 · A1∇v1
n2 · A2∇v2

]
, v − vΓ =

[
v1 − vΓ

v2 − vΓ

]
(7)

and thus in component form (3) reads

[
n1 · A1∇u1
n2 · A2∇u2

]
+ B

[
u1 − uΓ

u2 − uΓ

]
=

[
0
0

]
(8)

The coefficients A1, A2, are smooth uniformly positive definite symmetric d × d
matrices, AΓ is smooth tangential to Γ and uniformly positive definite on the tangent
space of Γ , so that

2∑

i=1

‖∇vi‖2Ωi
+ ‖∇Γ vΓ ‖2Γ �

2∑

i=1

(Ai∇vi ,∇vi )Ωi + (AΓ ∇Γ vΓ ,∇Γ vΓ )Γ (9)

where � denotes less or equal up to a constant. Finally, we assume fi ∈ L2(Ωi ) and
fΓ ∈ L2(Γ ).

Remark 1 Several generalizations are possible on the external boundary. For instance,
we may let the interface intersect the boundary of Ω . In this case we let ν denote the
unit exterior conormal to Γ ∩ ∂Ω , i.e. ν is tangent to Γ and normal to ∂Ω ∩ Γ , and
we assume that ν · n ≥ c > 0 for some constant c so that the interface is transversal
to ∂Ω . We may then enforce the Dirichlet condition uΓ = gΓ on ∂Ω ∩ Γ (see [10])
or some other standard boundary condition.

Remark 2 In practical modeling wemaywant to take the thickness of the interface inte
account. Assuming that the permeability matrix in an interface of thickness t takes the
form

A|Ut/2(Γ ) = Ae
Γ + aeΓ nΓ ⊗ nΓ (10)

where nΓ is a unit normal vector field to Γ ,Ut/2(Γ ) is the set of points with distance
less than t/2 to Γ , ve denotes the extension of a function v on Γ that is constant in
the normal direction, AΓ is the tangential tangential permeability tensor, and finally
aΓ ,n is the permeability across the interface. Also assuming that f = f eΓ and u = ue

in Ut/2(Γ ), the equation on the interface (2) may be modelled as follows

− ∇Γ · t AΓ ∇Γ uΓ = t fΓ − �n · A∇u� on Γ (11)

Note that the last term on the right hand side does not scale with t since it accounts
for flow into the crack from the bulk domains.

Remark 3 We comment on how our interface condition (3) relates to the condition in
[29] and later reformulated, see [2], in terms of averages and jumps of the bulk fields
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across the interface. The interface conditions in [29], Eqs. (3.18) and (3.19), take the
form

ξn1 · A1∇v1 − (1 − ξ)n2 · A2∇v2 = α(vΓ − v1) (12)

ξn2 · A2∇v2 − (1 − ξ)n1 · A1∇v1 = α(vΓ − v2) (13)

where ξ and α are parameters. The parameter α is related to physical properties of the
interface as follows

α = 2aΓ ,n

t
(14)

where aΓ ,n is the permeability coefficient across the interface Γ and t is the thickness
of the interface, see (3.8) in [29]. In matrix form we obtain

[
ξ ξ − 1

ξ − 1 ξ

] [
n1 · A1∇v1
n2 · A2∇v2

]
+

[
α 0
0 α

] [
v1 − vΓ

v2 − vΓ

]
= 0 (15)

which leads to

B = 1

2ξ − 1

[
ξ 1 − ξ

1 − ξ ξ

] [
α 0
0 α

]
= α

2ξ − 1

[
ξ 1 − ξ

1 − ξ ξ

]
(16)

We note that we have the eigen pairs

Be1 = α

2ξ − 1︸ ︷︷ ︸
λ1

e1, Be2 = α︸︷︷︸
λ2

e2 (17)

with the corresponding eigen vectors defined by

e1 = 1√
2

[
1
1

]
and e2 = 1√

2

[
1

−1

]
(18)

and thus B is positive definite for ξ > 1/2, singular for ξ = 1/2, and indefinite for
ξ < 1/2. It is therefore natural to consider the case when α > 0 and ξ > 1/2. We
remark that when α tends to infinity (zero) both eigenvalues tend to infinity (zero)
and when ξ tends to 1/2 from above one eigenvalue tends to infinity. It is therefore
important to construct a method which is robust in the full range λi ∈ (0,∞) of
possible values for the two eigenvalues.

To see the relation to the formulation of the interface conditions in [2] we first note
that we have the expansions

[
n1 · A1∇v1
n2 · A2∇v2

]
= 2−1/2�n · A∇� e1 + 21/2〈〈n · A∇v〉〉 e2 (19)

[
v1 − vΓ

v2 − vΓ

]
= 21/2(〈〈v〉〉 − vΓ ) e1 + 2−1/2�v� e2 (20)
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where the jumps and averages of the bulk fields across the the interface are defined by

�n · A∇v� =
2∑

i=1

ni · Ai∇vi , �v� = v1 − v2 (21)

〈〈n · A∇v〉〉 = 1

2
(n1 · A1∇v1 − n2 · A2∇v2), 〈〈v〉〉 = 1

2
(v1 + v2) (22)

Using the expansions (19) and (20) together with (17) and matching the coefficients
associated with each eigenvector we obtain the interface conditions

�n · A∇v� + 2α

2ξ − 1
(〈〈v〉〉 − vΓ ) = 0 (23)

〈〈n · A∇v〉〉 + α

2
�v� = 0 (24)

which are precisely the conditions used in [2].

Remark 4 The geometry of the interface may be generalized in several ways, which
is needed in practical modeling of systems of cracks. For instance, we may consider
bifurcating cracks where a so called Kirchhoff condition holds along the intersection,
cracks that meet the boundary, and cracks which are piecewise smooth. We refer to
[5,8,11,24], for details on how to construct CutFEM for bifurcating cracks and how to
handle the Kirchhoff condition weakly in a systematic manner. The regularity of the
exact solution may be locally lower due to nonconvex corners and edges and therefore
there may be a need for adaptive mesh refinement. More difficult to handle are cracks
with boundary in the interior of the domain since they may lead to singularities in the
bulk field, see [16,17], and furthermore the geometry of the crack tip plays an important
since it determines the boundary conditions at the crack tip see [30] for details. The
properties of the solutions to problems with crack boundaries are interesting future
research topics. We do however remark that the finite element method may be directly
extended to cracks with boundaries if we assume a homogeneous Neumann condition
at the crack tip, see [31] for numerical studies using a simpler but related method.

2.2 Weak form

Define the function spaces

V = V1 ⊕ V2 ⊕ VΓ (25)

Vi = {vi ∈ H1(Ωi ) : v = 0 on ∂Ω ∩ ∂Ωi } i = 1, 2 (26)

VΓ = H1(Γ ) (27)

and let v ∈ V denote the vector v = (v1, v2, vΓ ). We will also use the notation Ṽ
for functions v ∈ V such that vi ∈ H

3
2+ε(Ωi ), i = 1, 2, and vΓ ∈ H

3
2+ε(Γ ), with
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ε > 0. Using partial integration on Ωi we obtain

2∑

i=1

( fi , vi )Ωi (28)

=
2∑

i=1

(−∇ · Ai∇ui , vi )Ωi (29)

=
2∑

i=1

(Ai∇ui ,∇vi )Ωi − (ni · Ai∇ui , vi )∂Ωi (30)

=
2∑

i=1

(Ai∇ui ,∇vi )Ωi (31)

−(ni · Ai∇ui , vi − vΓ )∂Ωi∩Γ − (ni · Ai∇ui , vΓ )∂Ωi∩Γ (32)

=
2∑

i=1

(Ai∇ui ,∇vi )Ωi − (n · A∇u, v − vΓ )Γ − (�n · A∇u�, vΓ )Γ (33)

=
2∑

i=1

(Ai∇ui ,∇vi )Ωi + (B(u − uΓ ), v − vΓ )Γ (34)

+(AΓ ∇Γ uΓ ,∇Γ vΓ )Γ − ( fΓ , vΓ )Γ (35)

Thus we arrive at the weak problem: find u = (u1, u2, uΓ ) ∈ V such that

A(u, v) = L(v) ∀v ∈ V (36)

where the forms are defined by

A(u, v) =
2∑

i=1

(Ai∇ui ,∇vi )Ωi (37)

+(AΓ ∇Γ uΓ ,∇Γ vΓ )Γ + (B(u − uΓ ), v − vΓ )Γ (38)

L(v) =
2∑

i=1

( fi , vi )Ωi + ( fΓ , vΓ )Γ (39)

2.3 Existence, uniqueness, and regularity

Introducing the energy norm

�v�2 =
2∑

i=1

‖v‖2H1(Ωi )
+ ‖vΓ ‖2H1(Γ )

+ ‖v − vΓ ‖2B,Γ (40)
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on V , we directly find using a Poincaré inequality and the Cauchy–Schwarz inequality
that the form A is coercive and continuous

�v�2 � A(v, v), A(v,w) � �v� �w� (41)

Furthermore, L is a continuous functional on V and it follows from the Lax–Milgram
Lemma that there is a unique solution in V to (36).

Lemma 1 In the case considered here where Γ is a smooth, closed interface the model
problem (36) satisfies the elliptic regularity estimate

‖u1‖H2(Ω1)
+ ‖u2‖H2(Ω2)

+ ‖uΓ ‖H2(Γ ) � ‖ f1‖Ω1 + ‖ f2‖Ω2 + ‖ fΓ ‖Γ (42)

Under the additional assumption that B is a constant matrix and Ai = ai I[d×d]
i = 1, 2 and AΓ = aΓ I[(d−1)×(d−1)] with ai ∈ R

+ and I[d×d] the identity matrix,
then the constant in (42) is independent of the coefficients of B.

Remark 5 The assumptions that Ai = ai I[d×d] and B is constant along Γ can
be relaxed to smoothly varying coefficients, with additional technical work. See
“Appendix C” for the case of variable B with uniformly bounded derivatives. We
have not included the full analysis of the general case in the manuscript to keep the
presentation at a reasonable level of complexity.

To prove (42) we first recall a partial integration formula from [19], see Eq. 3.1.1.1
on p. 134. For completeness we include a proof based on tangential calculus, which
is in line with the notation used in this paper, in “Appendix A”.

Lemma 2 Let ω ⊂ R
d be a domain with C2 boundary ∂ω and exterior unit normal n.

For w ∈ [H2(ω)]d it holds

(∇ · w,∇ · w)ω = (w ⊗ ∇,∇ ⊗ w)ω + 2(wn, divTwT )∂ω (43)

+(wT , wT )κ,∂ω + (wn, wn)tr(κ),∂ω (44)

Here w = wT + wnn is the decomposition of w into the tangential and normal
components of the vector field w in an open neighborhood of the boundary; κ =
∇ ⊗ n = ∇2ζ is the tangential curvature tensor of ∂ω and ζ is the signed distance
function of ∂ω such that n = ∇ζ ; and divT (w) = tr(w⊗∇T ) is the surface divergence
on ∂ω.

Proof of Lemma 1 The proof consists of three steps: (1) Use the Lax–Milgram lemma
to show existence and B independent stability in H1. (2) Show that the H1 solution is
in fact in H2. (3) Apply the partial integration identity (43) to derive a B independent
estimate for the H2 norm.

We will neglect the exterior boundary and focus our attention on the interface
condition. The extension to the convex polygonal exterior boundary can be handled
using standard techniques, see [19, Theorem4.3.1.4] for a proof in the two dimensional
case. For brevity we will also employ the notation ∇nv = n · ∇v in the proof.
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Step 1. Using the Lax–Milgram lemma there is a unique solution (u1, u2, uΓ ) ∈
H1(Ω2) ⊕ H1(Ω1) ⊕ H1(Γ ), which satisfies the energy bound

2∑

i=1

‖ui‖2H1(Ωi )
+ ‖uΓ ‖2H1(Γ )

+ ‖u − uΓ ‖2B,Γ �
2∑

i=1

‖ fi‖2Ωi
+ ‖ fΓ ‖2Γ (45)

with hidden constant independent of B.

Step 2. Since ui ∈ H1(Ωi ), i = 1, 2, and uΓ ∈ H1(Γ ) we have B(u − uΓ )|Γ ∈
[H 1

2 (Γ )]2 and using (3), ∇nu ∈ [H 1
2 (Γ )]2. This means that the right hand side of

(2) is in L2 and hence uΓ ∈ H2(Γ ) by elliptic regularity. Considering once again (3)
we see that in each subdomain the solution coincides with a single domain solution

with a Robin condition with data in H
1
2 (Γ ) on Γ . By the elliptic regularity of the

Robin problem we can then conclude that ui ∈ H2(Ωi ) and therefore (u1, u2, uΓ ) ∈
H2(Ω1) ⊗ H2(Ω2) ⊗ H2(Γ ).

Step 3. Setting ω = Ωi and wi = a
1
2
i ∇ui in the partial integration identity (43) and

summing the contributions from Ω1 and Ω2 we obtain

2∑

i=1

ai‖Δui‖2Ωi
=

2∑

i=1

ai‖∇2ui‖2Ωi
+ 2

2∑

i=1

(ai∇nui ,ΔΓ ui )∂Ωi∩Γ (46)

+
2∑

i=1

(ai∇Γ ui ,∇Γ ui )κ,Γ +
2∑

i=1

(ai∇nui ,∇nui )tr(κ),Γ (47)

Recalling that aiΔui = fi and rearranging the terms we

2∑

i=1

ai‖∇2ui‖2Ωi
+ 2

∑2

i=1
(ai∇nui ,ΔΓ ui )∂Ωi∩Γ

︸ ︷︷ ︸
I

(48)

≤
2∑

i=1

a−1
i ‖ fi‖2Ωi

+
2∑

i=1

|(ai∇Γ ui ,∇Γ ui )κ,Γ |︸ ︷︷ ︸
IIi

+
2∑

i=1

|(ai∇nui ,∇nui )tr(κ),Γ |︸ ︷︷ ︸
IIIi

(49)

We now proceed with estimates from below of term I , and estimates of IIi and IIIi .
We let C denote a generic constant non necessarily the same in all occurrences.

Term I . Adding and subtracting uΓ we get

I =
2∑

i=1

(ai∇ni ui ,ΔΓ (ui − uΓ ))∂Ωi +
2∑

i=1

(ai∇ni ui ,ΔΓ uΓ )∂Ωi (50)

= −(B[u − uΓ ],ΔΓ [u − uΓ ])Γ +
2∑

i=1

(�a∇nu�,ΔΓ uΓ )Γ (51)
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= (∇Γ B[u − uΓ ],∇Γ [u − uΓ ])Γ +
2∑

i=1

(aΓ ΔΓ uΓ + fΓ ,ΔΓ uΓ )Γ (52)

≥ ‖∇Γ [u − uΓ ]‖2B,Γ + aΓ

1

2
‖ΔΓ uΓ ‖2Γ − 1

2
a−1
Γ ‖ fΓ ‖2Γ (53)

Here we used the assumption that B is constant, which gives

− (B[u − uΓ ],ΔΓ [u − uΓ ])Γ = (∇Γ (B[u − uΓ ]),∇Γ [u − uΓ ])Γ (54)

= (B∇Γ [u − uΓ ],∇Γ [u − uΓ ])Γ (55)

= ‖∇Γ [u − uΓ ]‖2B,Γ (56)

For the second term

(aΓ ΔΓ uΓ + fΓ ,ΔΓ uΓ )Γ ≥ aΓ ‖ΔΓ uΓ ‖2Γ − ‖ fΓ ‖Γ ‖ΔΓ uΓ ‖Γ (57)

≥ 1
2aΓ ‖ΔΓ uΓ ‖2Γ − 1

2a
−1
Γ ‖ fΓ ‖2Γ (58)

Term IIi . Using interpolation [35, Proposition 3.1] followed by the trace inequality

‖w‖Hs (Γ ) ≤ C‖w‖Hs+1/2(Ωi )
, s > 0 (59)

we get

IIi = |(ai∇Γ ui ,∇Γ ui )κ,Γ | (60)

≤ ‖κ‖L∞(Γ )(ai∇Γ ui ,∇Γ ui )Γ (61)

≤ Cai‖ui‖H3/2(Γ )‖ui‖H1/2(Γ ) (62)

≤ Cai‖ui‖H2(Ωi )
‖ui‖H1(Ωi )

(63)

≤ 1

4
ai‖ui‖2H2(Ωi )

+ Cai‖ui‖2H1(Ωi )
(64)

Term IIIi . Again using interpolation and then by applying the trace inequalities (59)
and

‖∇ni ui‖H−1/2(Γ ) ≤ C(‖∇ui‖2Ωi
+ ‖Δui‖2Ωi

)1/2 (65)

we get

IIIi = |ai (∇nui ,∇nui )tr(κ),Γ | (66)

≤ ‖tr(κ)‖L∞(Γ )ai (∇nui ,∇nui )Γ (67)

≤ Cai‖∇nui‖H1/2(Γ )‖∇nui‖H−1/2(Γ ) (68)

≤ Cai‖∇ui‖H1(Ωi )
(‖∇ui‖2Ωi

+ ‖Δui‖2Ωi
)1/2 (69)

≤ 1

4
ai‖ui‖2H2(Ωi )

+ Cai (‖∇ui‖2Ωi
+ ‖Δui‖2Ωi

) (70)

Here we used the estimate ‖∇nui‖Γ ≤ C‖∇ui‖Ωi , which we prove in “Appendix B”.
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Conclusion. Starting from (49) and using the estimate (53) to bound term I from below
and estimates (64) and (70) to bound terms IIi and IIIi from above we obtain

2∑

i=1

ai‖∇2ui‖2Ωi
+ ‖∇Γ [u − uΓ ]‖2B,Γ + 1

2
aΓ ‖ΔΓ uΓ ‖2Γ − 1

2
a−1
Γ ‖ fΓ ‖2Γ (71)

≤
2∑

i=1

a−1
i ‖ fi‖2Ωi

+
2∑

i=1

1

4
ai‖ui‖2H2(Ωi )

+ Cai‖ui‖2H1(Ωi )
(72)

+
2∑

i=1

1

4
ai‖ui‖2H2(Ωi )

+ Cai (‖∇ui‖2Ωi
+ ‖Δui‖2Ωi

) (73)

Reorganizing the terms and using the identity aiΔui = fi , and writing ‖ui‖2H2(Ωi )
=

‖∇2ui‖2Ωi
+ ‖ui‖2H1(Ωi )

we get

2∑

i=1

ai‖∇2ui‖2Ωi
+ ‖∇Γ [u − uΓ ]‖2B,Γ + aΓ ‖ΔΓ uΓ ‖2Γ (74)

≤ 1

2
a−1
Γ ‖ fΓ ‖2Γ +

2∑

i=1

Ca−1
i ‖ fi‖2Ωi

+
2∑

i=1

Cai‖ui‖2H1(Ωi )
(75)

� a−1
Γ ‖ fΓ ‖2Γ +

2∑

i=1

(1 + a−1
i )‖ fi‖2Ωi

(76)

where we used the energy stability (45) in the final step, and the hidden constant
depends on the trace constants and the curvature constant κ .

3 A robust finite element method

3.1 Themesh and finite element spaces

To formulate the finite element method we introduce the following notation:

– Let Th,0 be a quasiuniform mesh on Ω with mesh parameter h ∈ (0, h0]. Define
the active meshes

Th,i = {T ∈ Th,0 : T ∩ Ωi �= ∅} i = 1, 2 (77)

Th,Γ = {T ∈ Th,0 : T ∩ Γ �= ∅} (78)

associated with the bulk domains Ωi , i = 1, 2, and the interface Γ , and the
domains covered by the meshes

Oh,i = ∪T∈Th,i i = 1, 2, Oh,Γ = ∪T∈Th,Γ
(79)
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– Let
Th,i (Γ ) = {T ∈ Th,i : T ∩ Γ �= ∅} (80)

– Let Fh,i be the set of all interior faces in Th,i associated with an element in
Th,i (∂Ωi ) = {T ∈ Th,i : T ∩ ∂Ωi �= ∅}.

– Let Fh,Γ be the set of all interior faces in Th,Γ and Kh,Γ = {K = T ∩ Γ : T ∈
Th,Γ }.

– Let Vh,0 be the space of continuous piecewise linear functions on Th,0 and define

Vh,i = Vh,0|Th,i i = 1, 2, Vh,Γ = Vh,0|Th,Γ
(81)

and
Vh = Vh,1 ⊕ Vh,2 ⊕ Vh,Γ (82)

For Vh,1 we also impose the homogeneous boundary condition on ∂Ω strongly,
i.e., we require v = 0 on ∂Ω .

3.2 Standard formulation

The standard finite element method takes the form: find uh = (uh,1, uh,2, uh,Γ ) ∈
Vh = Vh,1 ⊕ Vh,2 ⊕ Vh,Γ such that

AS
h (uh, v) = L(v) ∀v ∈ Vh (83)

Here the form AS
h is defined by

AS
h = A + sh (84)

where sh is a stabilization term of the form

sh = sh,1 + sh,2 + sh,Γ (85)

with
sh,i (v,w) =

∑

F∈Fh,i

hF‖ζ(Ai )‖∞,F ([n · ∇v], [n∇w])F i = 1, 2 (86)

where ζ(X) denotes the maximum eigenvalue of the matrix X ,

sh,Γ (v,w) =
∑

F∈Fh,Γ

hF‖ζ(AΓ )‖∞,F∩Γ ([n · ∇v], [n · ∇w])Fh,Γ
(87)

+
∑

T∈Th,Γ

h2K ‖ζ(AΓ )‖∞,K∩Γ (nΓ · ∇v, nΓ · ∇w)T∩Γ (88)

where for a face sharing two elements T1 and T2 the jump [n · ∇v] is defined by

[n · ∇v] = n1 · ∇v1 + n2 · ∇v2 (89)

where ni is the exterior normal to ∂Ti and vi = v|Ti .
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3.2.1 Properties of the stabilization terms

The rationale for the design of the stabilizing terms is that they improve the stability,
while remaining consistent for sufficiently smooth solutions.

Accuracy relies on the following consistency property that is immediate from the

definitions above. For any function v ∈ H
3
2+ε(Oh,i ) there holds sh,i (v,w) = 0 for

all w ∈ Vh,i + H
3
2+ε(Oh,i ), i = 1, 2. For any function v ∈ H

3
2+ε(Oh,Γ ), such that

nΓ · ∇v = 0 on Γ there holds sh,Γ (v,w) = 0 for all w ∈ Vh,Γ + H
3
2+ε(Oh,Γ ).

The stability properties arewell knownandwecollect them in the followingLemma.

Lemma 3 There are constants such that

‖∇v‖2Ai ,Oh,i
� ‖∇v‖2Ai ,Ωi

+ ‖v‖2sh,i
i = 1, 2 (90)

and
‖∇Γ v‖2AΓ ,Oh,Γ

� ‖∇Γ v‖2AΓ ,Γ + ‖v‖2sh,Γ
(91)

where we introduced the (semi) norm ‖v‖2sh = sh(v, v).

Proof See [6,7,28], with minor modifications to account for the varying coefficients.

Remark 6 Observe that the hidden constants in Lemma 3 depend on the variation of
the Ai and AΓ .

Remark 7 The finite element methods we develop in this paper directly extends to
higher continuous piecewise polynomial spaces with the modification that the sta-
bilizing terms controls jumps in higher derivatives across faces and for the surface
stabilization higher order normal derivatives must be added, see [28] for full details.

3.3 Robust formulation

The stabilizing terms ensure robustness irrespective of the intersection of the fracture
and the mesh, but they do not counter instabilities due to degenerate B. Our aim is to
design a formulation which is robust in the case when the eigenvalues of B degenerate.
Indeed as we saw above as ξ approaches 1/2, λ1 blows up. For clarity we recall the
abstract boundary condition

n · A∇v + B(v − vΓ ) = 0 (92)

where we now assume that the matrix B is a positive definite symmetric 2× 2 matrix
with eigenvalues λi and eigenvectors ei , such that λi ∈ (0,∞) and thus one or both
eigenvalues may become very large or small. To handle this situation we instead
enforce

B−1n · A∇v + (v − vΓ ) = 0 (93)

weakly using a modified Nitsche method. This approach was originally developed in
[26] where fitted finite element approximation of Robin conditions were considered.
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Derivation of an Alternative Weak Form. As before we have the identity

L(v) =
2∑

i=1

(Ai∇ui ,∇vi )Ωi + (AΓ ∇Γ uΓ ,∇Γ vΓ )Γ

︸ ︷︷ ︸
=:A1(u,v)

−(n · A∇u, v − vΓ )Γ (94)

= A1(u, v) − (n · A∇u, v − vΓ )Γ (95)

where we introduced the bilinear formA1 for brevity. To enforce the interface condi-
tions we proceed as follows

L(v) = A1(u, v) − (n · A∇u, v − vΓ )Γ (96)

= A1(u, v) + (n · A∇u, B−1(n · A∇v))Γ (97)

− (n · A∇u, B−1(n · A∇v) + (v − vΓ ))Γ (98)

= A1(u, v) + (n · A∇u, B−1(n · A∇v))Γ (99)

− (n · A∇u, B−1(n · A∇v) + (v − vΓ ))Γ (100)

− (B−1(n · A∇u) + (u − uΓ ), n · A∇v)Γ (101)

+ (B−1(n · A∇u) + (u − uΓ ), τ (B−1(n · A∇v) + (v − vΓ )))Γ (102)

where the last two terms are zero due to the interface condition and the resulting form
on the right hand side is symmetric. Furthermore, τ is a stabilization parameter (a
2 × 2 matrix) of the form

τ =
2∑

i=1

τi ei ⊗ ei , τi = λiβ

λi h + β
i = 1, 2 (103)

where β is a positive parameter and we recall that λi and ei are the eigenvalues and
eigenvectors of B. The parameter β is chosen so that

‖n‖2A,∞,Γ =
2∑

i=1

‖ni‖2Ai ,∞,Γ � β (104)

where ‖w‖Ai ,∞,Γ = ‖(w · Ai · w)1/2‖∞,Γ . We next show some technical estimates
for the stabilization parameter, in particular, we show that τ is uniformly bounded as
a function of λi ∈ (0,∞).

Lemma 4 For all eigenvalues λi ∈ (0,∞), i = 1, 2, of B, the following estimates
related to the stabilization parameter τ hold

‖B−1τ B−1 − B−1‖L∞(Γ ) ≤ h

β
(105)

‖(B−1τ − I )τ−1/2‖L∞(Γ ) ≤
(
h

β

)1/2

(106)
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‖τ‖L∞(Γ ) ≤ β

h
(107)

Proof First we recall that for any symmetric matrix D it holds

‖D‖Rd � max
i

|γi | (108)

where γi are the eigenvalues of D. To prove (105)wewrite B in terms of its eigenvalues
λi and eigenvectors ei ,

B =
2∑

i=1

λi ei ⊗ ei (109)

and using the definition (103) of τ we obtain the identity

B−1τ B−1 − B−1 =
2∑

i=1

(
τi

λi
− 1

)
1

λi
ei ⊗ ei (110)

Here we have the following estimate of the eigenvalues

∣∣∣∣

(
τi

λi
− 1

)
1

λi

∣∣∣∣ =
∣∣∣∣

(
β

λi h + β
− 1

)
1

λi

∣∣∣∣ = h

λi h + β
≤ h

β
(111)

which in view of (108) completes the verification of (105). Next, for (106) we have

(B−1τ − I )τ−1/2 =
2∑

i=1

(
τi

λi
− 1

)
1

τ
1/2
i

ei ⊗ ei (112)

and
∣∣∣∣∣

(
τi

λi
− 1

)
1

τ
1/2
i

∣∣∣∣∣ =
∣∣∣∣∣

(
β

λi h + β
− 1

) (
λi h + β

λiβ

)1/2
∣∣∣∣∣ (113)

= λi h

λi h + β

(
λi h + β

λiβ

)1/2

=
(

λi h

λi h + β

)1/2 (
h

β

)1/2

≤
(
h

β

)1/2

(114)

which proves (106). The final bound (107) is a direct consequence of the definition of
τ and the estimate

λiβ

λi h + β
≤ λiβ

λi h
≤ β

h
(115)

Remark 8 The choice of τi can be further refined as follows

τi = λiβi

λi h + βi
i = 1, 2 (116)
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with
2∑

j=1

‖n j‖2A j ,∞,Γ |ei j |2 � βi (117)

where ei = [ei1 ei2]T . This approach is beneficial in situations where the components
of ei are very different and there is a large difference between the ‖n j‖2A j ,∞,Γ with
j = 1 and j = 2.

The robust finite element method. Find uh ∈ Vh such that

AR
h (uh, v) = AR(uh, v) + sh(uh, v) = L(v) ∀v ∈ Vh (118)

where

AR(v,w) (119)

= A1(v,w) + (n · A∇v, B−1(n · A∇w))Γ (120)

−(n · A∇v, B−1(n · A∇w) + (w − wΓ ))Γ (121)

−(B−1(n · A∇v) + (v − vΓ ), n · A∇w)Γ (122)

+(B−1(n · A∇v) + (v − vΓ ), τ (B−1(n · A∇w) + (w − wΓ )))Γ (123)

It follows by the design of AR that for a sufficiently smooth exact solution u ∈ Ṽ of
the problem (36) there holds

A(u, v) = AR(u, v) = L(v), ∀v ∈ (V ∩ H2(Ω1 ∪ Ω2 ∪ Γ ) + Vh (124)

As a consequence we immediately get the Galerkin orthogonality

Lemma 5 Let u ∈ Ṽ be the solution of (36) and uh ∈ Vh the solution of (118) then
there holds

AR(u − uh, v) = sh(uh, v) ∀v ∈ Vh (125)

Proof The proof follows by combining (124) and (118).

4 Error estimates

4.1 The energy norm

We introduce the energy norm

� v�2
h =

2∑

i=1

‖∇vi‖2Ai ,Ωi
+ h‖∇vi‖2Ai ,Γ

+ ‖v‖2sh (126)

+‖∇Γ vΓ ‖2AΓ ,Γ + ‖v − vΓ ‖2τ,Γ (127)

where ‖w‖2ψ,ω = ∫
ω

ψw2 is the ψ weighted L2 norm over the set ω.
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4.2 Interpolation error estimates

We begin by introducing interpolation operators and derive the basic approximation
error estimates. Then collecting the estimates we show an interpolation error estimate
in the energy norm (126). The basic idea in the construction of the interpolation
operators is to use an extension of the solution outside of the domain and then employ
a syandard weak type interpolation operator. The extension operator is stable with
respect to Sobolev norms.

The Scott–Zhang interpolant.Given a mesh Th covering a domain Oh and the space of
piecewise linear continuous finite elements Wh , a Scott–Zhang interpolation operator
πh,SZ : H1(Ωh) → Wh satisfies the element wise estimate

‖v − πh,SZv‖Hm (T ) � h2−m‖v‖H2(N (T )), m = 0, 1 (128)

whereN (T ) is the set of all elements in Th,i that share a node with T . More precisely,
we employ a Scott–Zhang interpolation operator that averages on all elements sharing
a node for interior nodes, and for nodes at the boundary ∂Ω the average is taken over all
faces on the boundary sharing the node leading to exact preservation of homogeneous
boundary conditions. See [33] for further details.

Bulk domain fields. It is shown in [34, Section 2.3, Theorem5] that there is an extension
operator Ei : Hs(Ωi ) → Hs(Rd), not dependent on s ≥ 0, which is stable in the
sense that

‖Eivi‖Hs (Rd ) � ‖vi‖Hs (Ωi ) (129)

We define the interpolation operator πh,i : H1(N (Th,i )) → Vh,i by

πh,ivi = πh,i,SZ Eiv (130)

where πh,i,SZ : H1(N (Th,i )) → Vh,i is the Scott–Zhang interpolant and N (Th,i ) is
the set of elements sharing a node with an element in Th,i . We then have the error
estimate

‖vi − πh,iv‖Hm (Ωi ) � h2−m‖vi‖H2(Ωi )
m = 0, 1 (131)

Proof Using the notation ρi = vi − πh,ivi we obtain

‖ρi‖Hm (Ωi ) � ‖ρi‖Hm (Th,i ) � h2−m‖Eiui‖H2(N (Th,i ))
� h2−m‖ui‖2H2(Ωi )

(132)

where we used the interpolation error estimate (128) and finally the stability (129) of
the extension operator Ei .

Interface field. Let pΓ : Uδ(Γ ) → Γ be the closest point mapping from the tubular
neighborhood Uδ(Γ ) = {x : dist(x, Γ ) < δ} to Γ , which is well defined for all
δ ∈ (0, δ0] for some δ0 > 0.Define the extension operator EΓ : L2(Γ ) → L2(Uδ(Γ ))

by EΓ v = v ◦ pΓ . Since Γ is smooth we have the stability estimate

‖EΓ vΓ ‖Hs (Uδ(Γ )) � δ1/2‖vΓ ‖Hs (Γ ) (133)
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Observe also that since nΓ ·∇EΓ vΓ = 0 by construction, and then assuming s > 3/2
in (133), we see that

sh,Γ (EΓ vΓ ,w) = 0, ∀w ∈ Vh,Γ + H
3
2+ε(Oh,Γ ) (134)

We define the interpolation operator πh,Γ : H1(Γ ) → Vh,Γ by

πh,Γ vΓ = (πh,Γ ,SZ EΓ vΓ )|Oh,Γ
(135)

Here πh,Γ ,SZ : H1(N (Th,Γ )) → Vh,Γ is the Scott–Zhang interpolation operator
defined on the setN (Th,Γ ) of all elements that share a node with an element in Th,Γ .
We also note that there is δ ∼ h such that

N (Th,Γ ) ⊂ Uδ(Γ ) (136)

We have the error estimate

‖v − πh,Γ v‖Hm (Γ ) � h2−m‖v‖H2(Γ ) m = 0, 1 (137)

Proof Using the element wise trace inequality

‖w‖2Γ ∩T � h−1‖w‖2T + h‖∇w‖2T w ∈ H1(T ) (138)

see [23,36], we obtain after summation over all elements T ∈ Th,Γ ,

‖w‖2Γ � h−1‖w‖2Th,Γ
+ h‖∇w‖2Th,Γ

w ∈ H1(Th,Γ ) (139)

Applying (139) with w = ∇m
Γ ρ gives

‖∇m
Γ ρ‖2Γ � h−1‖∇mρ‖2Th,Γ

+ δ‖∇m+1ρ‖2Th,Γ
(140)

� (h−1h2(2−m) + hh2(1−m))‖EΓ v‖2H2(N (Th,Γ ))
(141)

� (h−1h2(2−m) + hh2(1−m))‖EΓ v‖2H2(Uδ(Γ ))
(142)

� δ(h−1h2(2−m) + hh2(1−m))‖EΓ v‖2Γ (143)

� h2(2−m)‖v‖2H2(Γ )
(144)

where we used, the interpolation error estimate (128), the inclusion (136), and the
stability (133) of the extension operator EΓ .

We finally define the interpolation operator πh : V → Vh as follows

πhv = (πh,1E1v1, πh,2E2v2, πh,Γ EΓ vΓ ) (145)
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Lemma 6 There is a constant not dependent on the matrix B, in the interface condition
(3), such that

�v − πhv�h � h

(
2∑

i=1

‖vi‖H2(Ωi )
+ ‖vΓ ‖H2(Γ )

)
(146)

Proof Let v − πhv = ρ be the interpolation error. Using the triangle inequality,
the estimate τ � h−1, see (107), and the fact that the coefficients Ai are uniformly
bounded, we obtain

� ρ�2
h =

2∑

i=1

‖∇ρi‖2Ai ,Ωi
+ h‖∇ρi‖2Ai ,Γ

(147)

+‖∇Γ ρΓ ‖2AΓ ,Γ + ‖ρi − ρΓ ‖2τ,Γ + ‖ρ‖2sh (148)

�
2∑

i=1

‖∇ρi‖2Ωi︸ ︷︷ ︸
Ii

+ h‖∇ρi‖2Γ + h−1‖ρi‖2Γ︸ ︷︷ ︸
I Ii

+‖ρi‖2sh,i︸ ︷︷ ︸
I I Ii

(149)

+ ‖∇Γ ρΓ ‖2Γ + h−1‖ρΓ ‖2Γ︸ ︷︷ ︸
I V

+‖ρΓ ‖2sh,Γ︸ ︷︷ ︸
V

(150)

We proceed with estimates of the terms on the right hand side. Using (131) we directly
have

Ii = ‖∇ρi‖2Ωi
� h2‖vi‖H2(Ωi )

(151)

Next using the trace inequality

‖w‖2Γ � δ−1‖w‖2Uδ(Γ )∩Ωi
+ δ‖∇w‖2Uδ(Γ )∩Ωi

w ∈ H1(Uδ(Γ ) ∩ Ωi ) (152)

with δ ∼ h we get

I Ii = h‖∇ρi‖2Γ + h−1‖ρi‖2Γ (153)

� δ−1h‖∇ρi‖2Uδ(Γ )∩Ωi
+ δh‖∇2ρi‖2Uδ(Γ )∩Ωi

(154)

+ δ−1h−1‖ρi‖2Uδ(Γ )∩Ωi
+ δh−1‖∇ρi‖2Uδ(Γ )∩Ωi

(155)

� δ−1h−1‖ρi‖2Ωi
+ (δh−1 + δ−1h)‖∇ρi‖2Ωi

+ δh‖∇2ρi‖2Ωi
(156)

� h2‖vi‖2H2(Ωi )
(157)

where we at last used (131). For Term I V , applying (137) yields,

I V = h‖∇ρi‖2Γ + h−1‖ρi‖2Γ �
2∑

m=0

h2(m−1)‖∇mρi‖2Ωi
(158)
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Term IIIi is estimate using the element wise trace inequality

‖w‖2F � h−1‖w‖2T + h‖∇w‖2T (159)

which gives

IIIi = ‖ρi‖2sh,i
�

∑

F∈Fh,i

h‖[n · ∇ρi ]‖2F (160)

�
∑

F∈Fh,i

‖∇ρi‖2Th,i (F) + h‖∇2ρi‖2Th,i (F) � ‖v‖2Hm (Oh,i )
(161)

where Th,i (F) is the set of two elements that share the face F . In a similar way show
that

V = ‖ρΓ ‖2sh,Γ
� ‖v‖2Hm (Oh,i )

(162)

see [7,28] for details.

4.3 Continuity and coercivity

We utilize the bounds on the stabilization parameter τ provided by Lemma 4 to prove
continuity and coercivity of the form Ah .

Lemma 7 There is a constant independent of the eigenvalues of B, such that for all
v,w ∈ Ṽ + Vh,

AR
h (v,w) � �v�h �w�h (163)

There is a constant independent of the eigenvalues of B, such that for all v ∈ Vh,

�v�2
h � AR

h (v, v) (164)

Proof (163). Starting from the definition (119), expanding the terms inAR , and using
Cauchy–Schwarz we obtain

AR(v,w) =
2∑

i=1

(Ai∇vi ,∇wi )Ωi + (AΓ ∇Γ vΓ ,∇Γ wΓ )Γ (165)

+ ((n · A∇v), (B−1τ B−1 − B−1)(n · A∇w))Γ (166)

+ ((n · A∇v), (B−1τ − I )(w − wΓ ))Γ (167)

+ ((n · A∇w), (B−1τ − I )(v − vΓ ))Γ (168)

+ ((v − vΓ ), τ (w − wΓ ))Γ (169)
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≤
2∑

i=1

‖∇vi‖Ai ,Ωi ‖∇wi‖Ai ,Ωi + ‖∇Γ vΓ ‖AΓ ,Γ ‖∇Γ wΓ ‖Ai ,Γ (170)

+‖n · A∇v‖Γ ‖B−1τ B−1 − B−1‖L∞(Γ )‖n · A∇w‖Γ (171)

+‖n · A∇v‖Γ ‖(B−1τ − I )τ−1/2‖L∞(Γ )‖w − wΓ ‖τ,Γ (172)

+‖n · A∇w‖Γ ‖(B−1τ − I )τ−1/2‖L∞(Γ )‖v − vΓ ‖τ,Γ (173)

+‖v − vΓ ‖τ,Γ ‖w − w‖τ,Γ (174)

= � (175)

Using the estimates (105)–(106) we obtain

� ≤
2∑

i=1

‖∇vi‖Ai ,Ωi ‖∇wi‖Ai ,Ωi + ‖∇Γ vΓ ‖AΓ ,Γ ‖∇Γ wΓ ‖AΓ ,Γ (176)

+β−1h‖n · A∇v‖Γ ‖n · A∇w‖Γ (177)

+β−1/2h1/2‖n · A∇v‖Γ ‖w − wΓ ‖τ,Γ (178)

+β−1/2h1/2‖n · A∇w‖Γ ‖v − vΓ ‖τ,Γ (179)

+‖v − vΓ ‖τ,Γ ‖w − w‖τ,Γ (180)

≤
2∑

i=1

‖∇vi‖Ai ,Ωi ‖∇wi‖Ai ,Ωi + ‖∇Γ vΓ ‖AΓ ,Γ ‖∇Γ wΓ ‖AΓ ,Γ (181)

+ (β−1‖n‖2A,∞,Γ )h1/2‖∇v‖A,Γ h
1/2‖∇w‖Γ (182)

+ (β−1‖n‖2A,∞,Γ )1/2h1/2‖∇v‖A,Γ ‖w − wΓ ‖τ,Γ (183)

+ (β−1‖n‖2A,∞,Γ )1/2h1/2‖∇w‖A,Γ ‖v − vΓ ‖τ,Γ (184)

+‖v − vΓ ‖τ,Γ ‖w − w‖τ,Γ (185)

� �v�h �w�h (186)

where we used the bound β−1‖n‖2A,∞,Γ � 1, see (104). By the Cauchy–Schwarz
inequality we have sh(v,w) � �v�h �w�h .

(164). To prove the coercivity we have the identity

AR
h (v, v) =

2∑

i=1

(Ai∇vi ,∇vi )Ωi + (AΓ ∇Γ vΓ ,∇Γ vΓ )Γ + sh(v, v) (187)

+ ((n · A∇v), (B−1τ B−1 − B−1)(n · A∇v))Γ (188)

+ 2((n · A∇v), (B−1τ − I )(v − vΓ ))Γ (189)

+ ((v − vΓ ), τ (v − vΓ ))Γ (190)

≥
2∑

i=1

‖∇vi‖2Ai ,Ωi
+ ‖∇Γ vΓ ‖2AΓ ,Γ + ‖v‖2sh (191)

−β−1‖n‖2A,∞,Γ h‖∇v‖2A,Γ (192)
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− 2(β−1‖n‖2A,∞,Γ )1/2h1/2‖∇v‖A,Γ ‖v − vΓ ‖τ,Γ (193)

+‖v − vΓ ‖2τ,Γ (194)

We conclude the argument as usual by estimating the negative terms as follows

β−1‖n‖2A,∞,Γ h‖∇v‖2A,Γ + 2(β−1‖n‖2A,∞,Γ )1/2h1/2‖∇v‖A,Γ ‖v − vΓ ‖τ,Γ

(195)

≤ 3β−1‖n‖2A,∞,Γ h‖∇v‖2A,Γ + 1

2
‖v − vΓ ‖2τ,Γ (196)

≤ 3β−1‖n‖2A,∞,Γ CI

(
2∑

i=1

‖∇vi‖2Ai ,Ωi
+ ‖v‖2sh,i

)
+ 1

2
‖v − vΓ ‖2τ,Γ (197)

≤ 1

2

(
2∑

i=1

‖∇vi‖2Ai ,Ωi
+ ‖v‖2sh,i

)
+ 1

2
‖v − vΓ ‖2τ,Γ (198)

Here we used the inverse estimate

h‖∇vi‖2Ai ,Γ
≤ CI (‖∇vi‖2Ai ,Ωi

+ ‖v‖2sh,i
) (199)

which follows from the inverse bound

h‖∇vi‖2Ai ,Γ ∩T � h‖∇vi‖2Γ ∩T � ‖∇vi‖2T � ‖∇vi‖2Ai ,T (200)

together with (90), and finally, we chose β large enough to guarantee that

3β−1‖n‖2A,∞,Γ CI ≤ 1

2
(201)

We conclude that

AR
h (v, v) ≥ 1

2
� v�2

h (202)

which completes the proof.

4.4 A priori error estimates

In this section we prove error estimates for the approximate solution uh .

Theorem 1 Let u ∈ Ṽ be the solution of (36) and uh ∈ Vh be the solution of (118).
Then there is a constant not dependent on the matrix B in the interface condition (3)
such that

�u − uh�h � h

(
2∑

i=1

‖ui‖H2(Ωi )
+ ‖uΓ ‖H2(Γ )

)
(203)
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Under the assumption that B is a constant positive definite matrix and Ai = ai I[d×d]
for i = 1, 2, and AΓ = ai I[(d−1)×(d−1)] we also have the estimate

�u − uh�h � h

(
2∑

i=1

‖ fi‖L2(Ωi )
+ ‖ fΓ ‖L2(Γ )

)
(204)

with constant independent of B.

Proof First we decompose the error in the approximation error and the discrete error
u − uh = u − πhu + πhu − uh and note that by the triangle inequality

� u − uh�h � �u − πhu �h + � πhu − uh �h . (205)

The first term on the right hand side is bounded by (146). For the second term on the
right hand side, using coercivity (164), Galerkin orthogonality (125), and continuity
(163) we obtain

� πhu − uh�
2
h � AR

h (πhu − uh, πhu − uh) (206)

= AR(πhu − u, πhu − uh) + sh(πhu, πhu − uh) (207)

� �πhu − u �h �πhu − uh �h . (208)

In the last inequality we used that if ue = (Eu1, Eu2, EΓ uΓ ) ∈ Ṽ then

sh(πhu, πhu−uh) = sh(πhu−ue, πhu−uh) � �πhu−u�h �πhu−uh �h . (209)

Thus

� u − uh�h � �u − πhu�h � h

(
2∑

i=1

‖ui‖H2(Ωi )
+ ‖uΓ ‖H2(Γ )

)
(210)

where we used the interpolation error estimate (146). To conclude we apply the regu-
larity estimate (42).

Corollary 1 nder the same assumptions as for Theorem 1 there holds

sh(uh, uh) � h

(
2∑

i=1

‖ui‖H2(Ωi )
+ ‖uΓ ‖H2(Γ )

)
. (211)

Proof Using the triangle inequality we see that

‖uh‖sh ≤ ‖πhu‖sh + ‖πhu − uh‖sh (212)
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The second term on the right hand side is bounded by the arguments of Theorem 1.
For the first term on the right hand side recall that by the consistency properties of sh
and the construction of πhu there holds

sh(πhu, πhu) = sh(u
e − πhu, ue − πhu). (213)

We conclude the proof by applying (161) and (162).

The following error estimate in the L2-norm also holds.

Theorem 2 Let u ∈ Ṽ be the solution of (36) and uh ∈ Vh be the solution of (118).
Assume that B is a constant positive definite matrix and Ai = ai I[d×d] for i = 1, 2,
and AΓ = ai I[(d−1)×(d−1)]. Then there holds

‖uh − u‖Ω + ‖uh,Γ − uΓ ‖Γ � h2
(

2∑

i=1

‖ fi‖L2(Ωi )
+ ‖ fΓ ‖L2(Γ )

)
(214)

Proof For ψi ∈ L2(Ωi ) and ψΓ ∈ L2(Γ ), let ϕ = (ϕ1, ϕ2, ϕΓ ) ∈ Ṽ be the weak
solution to

A(v, ϕ) =
2∑

i=1

(ψΩi , vi )Ωi + (ψΓ , vΓ )Γ ∀v ∈ V (215)

Then using the regularity result (42) we have

‖ϕ1‖H2(Ω1)
+ ‖ϕ2‖H2(Ω2)

+ ‖ϕΓ ‖H2(Γ ) � ‖ψΩ‖Ω + ‖ψΓ ‖Γ (216)

with constant independent of B. Let e = (u1 − u1,h, u2 − u2,h, uΓ − uΓ ,h) be the
error and observe that using (124),

(ψΩ, u1 − u1,h)Ω1 + (ψΩ, u2 − u2,h)Ω2 + (ψΓ , uΓ − uh,Γ )Γ (217)

= A(e, ϕ) = AR(e, ϕ) (218)

Applying now the Galerkin orthogonality (125) we see that

AR(e, ϕ) = AR(e, ϕ − πhϕ) + AR(e, πhϕ) (219)

= AR(e, ϕ − πhϕ) + sh(uh, πhφ) (220)

= AR(e, ϕ − πhϕ) + sh(e, φ − πhφ) (221)

= AR
h (e, ϕ − πhϕ) (222)

By the continuity (163) we can bound the right hand side,

AR
h (e, ϕ − πhϕ) � �e �h �ϕ − πhϕ�h (223)
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Fig. 1 Elevation of the computed
solution on a particular mesh
(for α = 1, ξ = 1)

Then applying the approximation (146) and the regularity (216) we have

(ψΩ, u1 − u1,h)Ω1 + (ψΩ, u2 − u2,h)Ω2 + (ψΓ , uΓ − uh,Γ )Γ � h � e�h (224)

We conclude by applying Theorem 1 in the right hand side and taking the supremum
over the functions (ψ1, ψ2, ψΓ ) such that

∑2
i=1 ‖ψi‖2Ωi

+ ‖ψΓ ‖2Γ = 1.

5 Numerical examples

In this section we illustrate the properties of the model andmethod by presenting some
numerical results. In all examples we used β = 10 as a stabilization parameter.

5.1 Convergence and robustness with respect to conditioning

We consider a simple example with known exact solution: the domain (0, 1)×(0, 1) is
cut in half along a vertical line at x = 1/2. We take A1 = A2 = AΓ = I and choose a
problemwith exact solution u = x(1−x)y(1− y). This solution corresponds (without
coupling) to the source terms

fi = 2x(1 − x) + 2y(1 − y) i = 1, 2 (225)

Since the normal derivative of the exact solution is zero at x = 1/2, it does not con-
tribute to the source term on the interface. We choose fΓ = 1/2 corresponding to
uΓ = y(1 − y)/4, and thus uΓ = u at x = 1/2. We apply zero Dirichlet boundary
conditions on u and on uΓ (imposed on the boundary of the band of elements inter-
sected by (1/2, y)). This is now the solution of (1)–(4) independent of B. A sample
discrete solution is shown in Fig. 1 with uΓ shown as a red line.We did not impose gra-
dient jumps on the band (second term in sh,Γ ), normal stabilization proved sufficient
in this case.
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Fig. 2 Convergence in L2(Ω) and in L2(Γ ) for varying α with ξ = 1. Dashed line has inclination 1:2
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Fig. 7 Elevation of the solution on Ω and the band containing Γ for γ = 0
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Fig. 8 Elevation of the solution on Ω and the band containing Γ for γ = 10−2

Fig. 9 Elevation of the solution on Ω and the band containing Γ for γ = 1

In Figs. 2, 3, 4 and 5 we show convergence for different choices of parameters in
different norms. The method is completely robust with optimal convergence for all
choices. In Fig. 6 we show the variation of the condition number (left) with respect to
mesh refinement and choice of α. The condition number is O(h−2) as expected and
does not grow with α. We also show (right) the effect of using the non-robust method
(83) which shows a linear dependece on α on a fixed mesh, while no such effect is
present in the robust method. This robustness is important since α physically depends
on the crack width [29] which is expected to be small.

5.2 Effect of gradient jump stabilization

This example is taken from [29] with domain is (0, 2) × (0, 1) with Dirichlet data
u = 1 at x = 2 and u = 0 at x = 0. Homogeneous Neumann data were applied at
y = 0 and y = 1. Data were fi = fΓ = 0, A1 = A2 = I and AΓ = aΓ d I with
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Fig. 10 Computational mesh
with interface indicated

Fig. 11 Elevation for d = 10−2

aΓ = 2 × 10−3 for 1/4 < y < 3/4, aΓ = 1 elsewhere, and with t = 0.01 (the
thickness of the crack). Following [29] we then set α = 2aΓ /d.

To show the effect of stabilization, we chose to scale sh,i and sh,Γ by a parameter
γ . We retained β = 10 and normal stabilization on the band. In Figs. 7, 8 and 9 we
show the effect of the parameter γ . When γ = 0 the jump in diffusion on the interface
leads to slight instabilities at y = 1/4 and y = 3/4 which are visible to the eye. These
are less pronounced for γ = 10−2 and not significant for γ = 1. The overall solution
agrees with that of [29].
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Fig. 12 Elevation for d = 10−3

Fig. 13 Elevation for d = 10−4

5.3 Physical effect of crack width

Finally, we show the effect of the crack width with respect to the solution. We used a
domain (0, 1) × (0, 1) with a quarter circle crack, shown on the computational mesh
in Fig. 10. The data were A1 = 5 I (inside the circle) A2 = I (outside the circle)
and aΓ = 0.1 with definitions as in Example 5.2. Dirichlet data u = 1 at x = 1 and
u = 0 at x = 0 were used (also on the band) and homogeneous Neumann data on
the remaining boundaries. In Figs. 11, 12 and 13 we see the effect of decreasing the
interface width by one order of magnitude between figures. The solution rapidly tends
to a continuous state.
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A Proof of Lemma 2

We recall that ω ⊂ R
d is a domain with C2 boundary ∂ω and we shall show that for

w ∈ [H2(ω)]d it holds

(∇ · w,∇ · w)ω = (w ⊗ ∇,∇ ⊗ w)ω + 2(wn, divTwT )∂ω (226)

+(wT , wT )κ,∂ω + (wn, wn)tr(κ),∂ω (227)

Here w = wT + wnn is the decomposition of the vector field w into the tangential
and normal components in an open neighborhood Uδ(∂ω) consisting of points in ω

with distance less than some δ > 0 of the boundary and the normal field on ∂ω is
extended to Uδ(∂ω) by composition with the closest point mapping associated with
∂ω. Furthermore, κ = ∇ ⊗ n = ∇2γ is the tangential curvature tensor of ∂ω, γ

is the signed distance function associated with ∂ω such that n = ∇γ . The surface
divergence divT (w) on ∂ω is defined by divT (w) = tr(w ⊗ ∇T ).

Proof Using partial integration we obtain

(∇ · w,∇ · w)ω = −(w,∇(∇ · v))ω + (wn,∇ · w)∂ω (228)

= −(w, (∇ ⊗ w) · ∇)ω + (wn,∇ · w)∂ω (229)

= (w ⊗ ∇,∇ ⊗ w)ω −(w, (∇ ⊗ w) · n)∂ω + (wn,∇ · w)∂ω︸ ︷︷ ︸
�

(230)

where we employed the identity

∇(∇ · w) = (∇ ⊗ w) · ∇ (231)

To evaluate the boundary contribution � we first note that using the product rule

∇wn = ∇(w · n) = (∇ ⊗ w) · n + (∇ ⊗ n) · w = (∇ ⊗ w) · n + κ · w (232)
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and thus

(∇ ⊗ w) · n = ∇wn − κ · w (233)

We also note that if w = wT is tangential we have wn = 0 and

(∇ ⊗ wT ) · n = −κ · wT (234)

which also imply

n · (∇ ⊗ wT ) · n = (∇nwT ) · n = 0 (235)

Using (233) the boundary contribution takes the form

� = −(w, (∇ ⊗ w) · n)∂ω + (wn,∇ · w)∂ω (236)

= (w, κ · w)∂ω −(w,∇wn)∂ω + (wn,∇ · w)∂ω︸ ︷︷ ︸
��

(237)

Continuing �� and writing w = wT + wnn we get

�� −(w,∇wn)∂ω + (wn,∇ · w)∂ω (238)

= −(wnn,∇wn)∂ω + (wn,∇ · (wnn))∂ω (239)

−(wT ,∇wn)∂ω + (wn,∇ · wT )∂ω (240)

= −(wnn,∇wn)∂ω + (wn, (∇ · wn)n + wn∇ · n)∂ω (241)

−(wT ,∇wn)∂ω + (wn,∇ · wT )∂ω (242)

= (wn, tr(κ)wn)∂ω −(wT ,∇wn)∂ω + (wn,∇ · wT )∂ω︸ ︷︷ ︸
���

(243)

where we used the product rule ∇ · (wnn) = (∇wn)n + wn∇ · n, and the identity
∇ · n = tr(n ⊗ ∇) = tr(κ). Finally, for the last term ���, we split the gradient ∇w

in its tangential and normal components ∇w = ∇Tw + n∇nw and starting from the
definition of the divergence as the trace of the derivative of w we get

∇ · wT = tr(wT ⊗ ∇) (244)

= tr(wT ⊗ ∇T ) + tr(wT ⊗ n∇n) (245)

= divTwT + n · (wT ⊗ ∇) · n︸ ︷︷ ︸
=0

(246)

= divTwT (247)

where divT is the tangential divergence and we used (235). Finally, using Green’s
formula

−(divTwT , v)∂ω = (wT ,∇T v)∂ω (248)
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on the closed boundary ∂ω we obtain

��� = −(wT ,∇Twn)∂ω + (wn,∇ · wT )∂ω (249)

= 2(divT (wT ), wn)∂ω (250)

which concludes the proof.

B Proof of A trace inequality

We shall prove the trace inequality

‖∇nv‖H1/2(Γ ) � ‖∇v‖H1(Ωi )
(251)

We begin by introducing some notation. Let γ be the signed distance function associ-
atedwithΓ , letUδ(Γ ) be the tubular neighborhood consisting of points x with distance
|γ (x)| less than δ to Γ , let p be the closest point mappingUδ(Γ ) → Γ , and recall that
since Γ is smooth there is δ0 > 0 such that p is a well defined function onUδ0(Γ ). Let
ψδ : Ωi → [0, 1]be a nonnegative smooth cut off functionwith support inUδ(Γ )∩Ωi ,
such that ψ = 1 on Γ and ‖ψ‖L∞(Ωi ) ≤ Cδ−1. Let ne = n ◦ p be the extension of
n toUδ0(Γ ) and using the definition ‖v‖H1/2(Γ ) = infw∈H1(Ωi ),w=vonΓ ‖w‖H1(Ωi )

of
the H1/2(Γ ) norm we conclude that taking w = ψδne · ∇ui we have the inequality

‖n · ∇ui‖2H1/2(Γ )
≤ ‖ψδn

e · ∇ui‖2Ωi
+ ‖∇(ψδn

e · ∇ui )‖2Ωi
(252)

Since ‖ψδ‖L∞(Ωi ) ≤ 1 and ‖ne‖L∞(Uδ0 (Γ ))∩Ωi = 1 we have

‖ψδn
e · ∇ui‖2Ωi

≤ ‖∇ui‖2Ωi
(253)

and using the product rule followed by the triangle inequality and standard estimates

‖∇(ψδn
e · ∇ui )‖2Ωi

≤ ‖∇ψδ‖L∞(Uδ(Γ )∩Ωi )‖∇ui‖2Ωi
(254)

+‖∇ne‖L∞(Uδ(Γ )∩Ωi )‖∇ui‖2Ωi
+ ‖∇2ui‖2Ωi

(255)

≤ C2δ−2‖∇ui‖2Ωi
+ C2

κ‖∇ui‖2Ωi
+ ‖∇2ui‖2Ωi

(256)

� ‖∇ui‖2H1(Ωi )
(257)

where C denotes a generic constant and we used the properties of the cut off function.
Finally, to compute Dne we recall that the closest point mapping takes the form
p(x) = x − γ (x)ne(x), and using the chain rule together with the fact that ∇γ = ne

we get
Dne = DnDp = Dn(I − ne ⊗ ne − γ Dne) (258)

Rearranging terms and using the fact that Dn = κ we get

(I + γ κ)Dne = κ(I − ne ⊗ ne) = κ (259)
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since κ is tangential and therefore

Dne = (I + γ κ)−1κ (260)

For γ ≤ δ, with δ small enoughwehave ‖Dne(x)‖ � ‖κ(p(x)‖ � 1,which completes
the proof.

C Variable interface coefficient in the regularity estimate

We show that the regularity estimate (42) also holds for a variable coeffcient Bin the
interface condition such that B ∈ [W 1∞(Γ )]2×2. We replace identities (54)–(56) with
the following estimate

(B[u − uΓ ],ΔΓ [u − uΓ ])Γ = ((B[u − uΓ ]) ⊗ ∇Γ , [u − uΓ ] ⊗ ∇Γ )Γ (261)

= (B([u − uΓ ] ⊗ ∇Γ ), [u − uΓ ] ⊗ ∇Γ )Γ (262)

+((∇Γ ⊗ B)[u − uΓ ],∇Γ ⊗ [u − uΓ ])Γ (263)

≥ ‖[u − uΓ ] ⊗ ∇Γ ‖2B,Γ (264)

−‖(∇Γ ⊗ B)B−1‖L∞(Γ )‖[u − uΓ ]‖B,Γ ‖[u − uΓ ] ⊗ ∇Γ ‖B,Γ (265)

≥ 1

2
‖[u − uΓ ] ⊗ ∇Γ ‖2B,Γ − 1

2
‖(∇Γ ⊗ B)B−1‖2L∞(Γ )‖[u − uΓ ]‖B,Γ

(266)

Here we note that the negative term on the right hand side can be estimated using the
energy norm and using the fact that B is positive definite (6) we also have ‖(∇Γ ⊗
B)B−1‖L∞(Γ ) � c−1

λ ‖(∇Γ ⊗ B)‖L∞(Γ ).
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