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Abstract

The majority of methods available to model survival data only deal with right censoring.

However, there are many applications where left, right and/or interval censoring simultane-

ously occur. A methodology that is capable of handling all types of censoring as well as

flexibly estimating several types of covariate effects is presented. The baseline hazard is mod-

elled through monotonic P-splines. The model’s parameters are estimated using an efficient

and stable penalised likelihood algorithm. The proposed framework is evaluated in simulation,

and illustrated using an original data example on time to first hospital infection or in-hospital

death in cirrhotic patients. A peak of risk in the first week since hospitalisation is identified,

together with a non-linear effect of Model for End-Stage Liver Disease (MELD) score. The

GJRM R package, with an implementation of our approach, is freely available on CRAN.
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1 Introduction

Survival data are encountered in many applications and since the pioneering work of Cox (1972)

a great deal of attention has been devoted to developing survival models, and related estimation

techniques, for right-censored event times. However, there are many situations where the data are

simultaneously affected by different types of censoring mechanisms. For example, AIDS trials

are often concerned with determining the incubation period of the HIV virus, defined as the time

elapsed from HIV infection to the onset of AIDS. Since the diagnosis of the disease is usually

based on blood testing, which can only be carried out on a periodic basis, it is impossible to

know exactly what the incubation period is, hence giving rise to interval-censoring (Odell et al.,

1992). Other examples are carcinogenesis studies, such as the Prostate, Lung, Colorectal and

Ovarian Cancer Screening Trial (Wang et al., 2016). For more examples of interval-censored data,

in various fields, we refer the reader to Sun (2006) and Zhang & Sun (2010). The presence of

interval-censored observations does not rule out other types of censoring. In fact, it is perfectly

possible for some patients to have experienced the event of interest before the first screening or,

alternatively, to reach the end of the trial without ever experiencing it, thus generating left- and

right-censored observations, respectively. In many cases, furthermore, it might be additionally

possible to precisely measure the time to event for some subjects, therefore having additionally

uncensored observations. We refer to this situation as mixed censoring (Schick & Yu, 2000), also

referred to as partly interval-censoring, which naturally arises with composite endpoint definitions

which are widespread, especially in the fields of cardiology, internal medicine and oncology. For

instance, event-free survival in cancer studies is defined as the time between primary treatment and

the occurrence of any of a series of cancer-specific complications of events. These might include

events that can be measured precisely (e.g., death) and others that can only be guaranteed to have

occurred in a time interval between two screenings (e.g., leukopenia). A common approach in

the presence of truly uncensored events is to treat the interval censored ones as uncensored at the

upper limit of the interval, that is, at the moment of diagnosis. This is well acknowledged to be a

possible source of bias (e.g., Odell et al., 1992; Fleming et al., 2009).

Our work is motivated by an original application to the evaluation of risk of in-hospital adverse
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events (death or new onset of infection) in cirrhotic patients. Italy, and southern Europe in general,

is a high risk country for multi-drug resistant pathogens, which occur much more commonly in the

form of hospital infections than in community-acquired ones (Merli et al., 2015; Bartoletti et al.,

2018; Piano et al., 2019). Cirrhotic patients, due to compromised liver functionality or as a side

effect of treatment, are additionally oftentimes immunodepressed and hence at higher risk of in-

fections. Our data consist of n = 678 cirrhotic patients who were admitted to Policlinico Umberto

I hospital in Rome, Italy, between 2009 and 2017. Of these, none was infected at admission, none

was taking antibiotics, and none was scheduled for (nor had) major surgery during the hospital

stay. The endpoint is a composite one, where an event is defined as the occurrence of an infection

or death before hospital discharge. Times were recorded from admission. The main scientific

questions with the data at hand revolve around the possibility of an increased risk of infection or

death due to the use of catheterism, paracentesis, and overcrowding of the ward. We would like

to model the effect of these binary predictors after non-parametrically adjusting for the effect of

MELD, a score summarising the progression of liver failure. Indeed, a clearly non-linear effect of

MELD will be discovered, indicating that a simple polynomial effect of this predictor would lead

to misleading inference. Clearly, these data provide uncensored time-to-event in case death (be-

fore infection) is observed, and right-censored data if no event occurs before hospital discharge.

Furthermore, in case an infection is observed, the event time is only known to have occurred be-

tween the last and current assessments (usually within a time span of 12 to 48 hours), therefore

having also interval-censored event times.

At present, survival models with the simultaneous presence of different types of censoring can

be easily handled through accelerated failure time (parametric) models. Cox regression with mixed

censoring is computationally cumbersome (Satten, 1996; Goggins et al., 1998), although an effi-

cient implementation can be found in Anderson-Bergman (2017). There are works which proposed

estimating flexible survival models under mixed censoring and in the following we mention the

perhaps most relevant to this paper. Recent articles include Liu et al. (2018) who proposed gener-

alised survival models to estimate covariate effects flexibly while accounting for the monotonicity

constraint on the survival function via a penalty term. Li & Ma (2019) employed a primal-dual
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interior point algorithm to estimate additive hazards models with parametric covariate effects and

non-negative constraints on the hazards via M-splines. Szabo et al. (2020) proposed a sieve max-

imum likelihood two-step estimation procedure based on polynomial splines for the accelerated

hazards model. Wang et al. (2016) introduced an EM algorithm to estimate proportional hazards

(PH) models that estimate covariate effects parametrically, and use monotone splines to approx-

imate the cumulative baseline hazard function. The literature on survival modelling is vast and

some interesting developments and R implementations are discussed in Fauvernier et al. (2019)

and Komarek et al. (2005), and many models incorporated in the survival package. These,

however, do not allow for either mixed censoring or flexible baseline and covariate effects via

penalised regression splines.

Building on Marra & Radice (2020a), we present in this work a flexible parametric methodol-

ogy that is capable of handling simultaneously all types of censoring, estimating covariate effects

via additive predictors, and modelling the baseline hazard by means of monotonic P-splines. The

proposed link-based survival additive model yields the widely used PH and proportional odds

(PO) models as special cases. Importantly, the modelling framework avoids numerical integra-

tion, which may lead to unstable and slow computations. The resulting additive model is very

flexible. Modelling the baseline hazard by means of monotonic P-splines is more efficient and

parsimonious than using a non-parametric hazard as in Cox models, and at the same time much

more flexible than making strong parametric assumptions as in Accelerated Failure Time (AFT)

models. Parameter estimation is based on a penalised maximum likelihood approach with auto-

matic multiple smoothing parameter selection, which allows for stable and efficient computations.

Note that the closest approach to ours is that by Liu et al. (2017, 2018), however, as opposed to

our proposal, these authors impose monotonicity via a penalty term and, as they point out, their

algorithm requires improvements when it comes to multidimensional smoothing parameter esti-

mation. In order to facilitate the use of the developments in this article in industry and academia,

as well as enhance reproducible research, our methods are available within the GJRM package

(Marra & Radice, 2020b) for the R (R Development Core Team, 2020) software.

The rest of the paper is organized as follows. Model formulation and parameter estimation are
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discussed in Sections 2 and 3, with further details provided in Section 4. A simulation study is

presented in Section 5, and the results obtained by applying the proposed modelling framework to

real data are discussed in Section 6. The final section concludes the paper with some directions of

future research.

2 Model formulation

The link-based additive survival models discussed below are essentially based on three ingredi-

ents: the survival function, a link function and an additive predictor. Although the key intuition

behind this construction is provided by Younes & Lachin (1997), the model presented here is

more flexible and is based on Marra & Radice (2020a). Let Ti have a conditional survival function

generically denoted by S(ti|xi;β) = P (Ti > ti|xi;β) ∈ (0, 1), where xi is a generic vector of

patient characteristics that has an associated coefficient vector β ∈ R
w with w given by the length

of β. Then a link-based additive survival model can be written as

g [S(ti|xi;β)] = ηi(ti, xi; f(β)), (1)

where g : (0, 1) → R is a monotone and twice continuously differentiable link function with

bounded derivatives and hence invertible, and ηi(ti, xi; f(β)) ∈ R is an additive predictor, defined

in more detail in the next paragraph, which includes a baseline function of time (or a stratified set

of functions of time) to model the baseline hazard, and several types of covariate effects. f(β) is

a vector function of β whose main role is to impose a monotonicity constraint when evaluating

the baseline function of time contained in the additive predictor; this is discussed in detail in

Section 3. A simple rearrangement of (1) yields S(ti|xi;β) = G {ηi(ti, xi; f(β))}, where G is

the inverse link function. The cumulative hazard and hazard functions, H and h, are defined as

H(ti|xi;β) = − log [G {ηi(ti, xi; f(β))}] and

h(ti|xi;β) = −G′ {ηi(ti, xi; f(β))}
G {ηi(ti, xi; f(β))}

∂ηi(ti, xi; f(β))

∂ti
, (2)

5



where G′ {ηi(ti, xi; f(β))} = ∂G {ηi(ti, xi; f(β))} /∂ηi(ti, xi; f(β)). Table 1 displays the functions

g, G and G′ implemented for this work.

Model Link g(S) Inverse link g−1(η) = G(η) G′(η)
Prop. hazards ("PH") log {− log(S)} exp {− exp(η)} −G(η) exp(η)

Prop. odds ("PO") − log
(

S
1−S

)

exp(−η)
1+exp(−η) −G2(η) exp(−η)

probit ("probit") −Φ−1(S) Φ(−η) −φ(−η)

Table 1: Link functions implemented in GJRM. Φ and φ are the cumulative distribution and density functions of

a univariate standard normal distribution. The first two functions are typically known as log-log and -logit links,

respectively. These are the same as those in Liu et al. (2018).

Let us now consider the construction of ηi where in this paragraph, for the sake of simplicity,

the dependence on covariates and parameters has been dropped. Since ti can be treated as a

regressor, we define an overall covariate vector zi made up of xi and ti. The main benefits of using

an additive predictor are that various types of covariate effects can be dealt with, and that such

effects can be flexibly determined without making strong parametric a priori assumptions about

their functional forms. However, additivity here implies that not all the interaction terms among

the covariates may be included in ηi. There are many textbooks on the subject and we refer the

reader to Wood (2017) for a thorough discussion. An additive predictor can be defined as

ηi = β0 +
K
∑

k=1

sk(zki), i = 1, . . . , n, (3)

where β0 ∈ R is an overall intercept, zki denotes the kth sub-vector of the complete vector zi

and the K functions sk(zki) denote effects which are chosen according to the type of covariate(s)

considered. Each sk(zki) can be represented as a linear combination of Jk basis functions bkjk(zki)

and coefficients fkjk(βkjk), that is

Jk
∑

jk=1

fkjk(βkjk)bkjk(zki). (4)

The above formulation implies that the vector of evaluations {sk(zk1), . . . , sk(zkn)}T can be writ-

ten as Zkfk(βk) with fk(βk) = (fk1(βk1), . . . , fkJk(βkJk))
T and design matrix Zk[i, jk] = bkjk(zki).
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This allows the predictor in equation (3) to be written as

η = β01n + Z1f1(β1) + . . .+ ZKfK(βK), (5)

where 1n is an n-dimensional vector made up of ones. Equation (5) can also be written in a more

compact way as η = Zf(β), where Z = (1n,Z1, . . . ,ZK) and f(β) = (β0, f1(β1)
T, . . . , fK(βK)

T)T.

Recall that f(β) serves to impose a monotonicity constraint when evaluating the baseline smooth

function of time. In fact, the fk vector functions will all be set to the identity function except for

the one related to the baseline which is specified in Section 3. Each βk has an associated quadratic

penalty λkβ
T

k Dkβk, used in fitting, whose role is to enforce specific properties on the kth function,

such as smoothness. Note that each matrix Dk only depends on the choice of the basis functions.

Smoothing parameter λk ∈ [0,∞) controls the trade-off between fit and smoothness, and plays

a crucial role in determining the shape of ŝk(zki). The overall penalty can be defined as βTSβ,

where S = diag(0, λ1D1, . . . , λKDK). Recall that smooth functions are typically subject to center-

ing (identifiability) constraints. Depending on the types of covariate effects one wishes to model

(e.g., non-linear, random, spatial), several definitions of basis functions and penalty terms are pos-

sible and we refer the reader to Wood (2017) for all the options available. The spline definition and

penalty employed for the baseline smooth function of time are discussed in the second paragraph

of Section 3.

In equation (2), quantity ∂ηi(ti, xi; f(β))/∂ti is required. The results of the previous paragraph

allow us to re-write ηi(ti, xi; f(β)) as Zi(ti, xi)
Tf(β), where Zi(ti, xi) denotes the ith row of the Z

matrix (that is based on covariates and the time variable, as pointed out earlier). The derivative

of interest can then be obtained as lim
ε→0

{

Zi(ti+ε,xi)−Zi(ti−ε,xi)
2ε

}T

f(β) = Z′T
i f(β), where, depending

on the type of spline basis employed, Z′
i can be calculated either by a finite-difference method or

analytically.

Following, e.g., Royston & Parmar (2002), the link-based additive survival model can be writ-

ten as

g {S(ti|xi)} = g {S0(ti)}+
K
∑

k=2

sk(xki), (6)
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where S0(ti) is a baseline survival function. If we replace g {S0(ti)} with s0(ti) then the RHS of

(6) becomes notationally consistent with (3), which also shows that s0(ti) is effectively modelling

a transformation of the baseline survival function. The use of s0(ti) as a predictor leads, as stated

above, to a semi-parametric baseline hazard.

The choice for g determines the scale of the analysis (e.g., Liu et al., 2018). For instance,

model (6) yields the proportional hazards model when choosing the log-log link, i.e.

log {H(ti|xi)} = log {H0(ti)}+
K
∑

k=2

sk(xki), (7)

where H(ti|xi) = − log {S(ti|xi)}, and H0(ti) = − log {S0(ti)} is the baseline cumulative hazard

function. Important benefits of modelling on the log-cumulative hazard scale are that the corre-

sponding function is computationally more stable than the log-hazard function, that quantities

such as h(ti|xi) and S(ti|xi) can be directly obtained without the need for numerical integration,

and that time-dependent effects can be easily incorporated in the model using terms like sk(ti)xki.

When the RHS of (7) contains time-dependent effects, the model loses the proportional hazards

interpretation. Model (6) yields the proportional odds model when the -logit link is chosen. Fi-

nally, note that time-varying covariates can be incorporated as usual by representing data in time

intervals. For example, a subject with three measurements for a covariate will contribute with

three time intervals, the first two of which will be associated with right-censoring.

Remark 1. For certain smooth functions, such as those modelling the effects of continuous covari-

ates, quantity Jk in (4) has to be set to some value to make the computation feasible. This implies

the well known fact that the unknown sk(zki) may not have an exact representation as given in

(4). In practice, Jk is set to a typically large arbitrary value that allows for “enough” flexibility in

estimating the smooth term. This is not problematic since the coefficients of the spline basis are

penalised in the estimation process such that the smooth term’s complexity that is not supported

by the data is suppressed (e.g., Wood, 2017).

Remark 2. For left- and right-censored observations (call them li and ri), as well as exact obser-

vations, the additive predictor is uniquely defined since there is only one relevant time-to-event
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datum ti for each individual. Specifically, ti = li for left-censored observations, ti = ri for right-

censored observations and ti = li = ri for exact observations, where li and ri are realisations of

the respective random variables Li and Ri. However, in the case of interval-censoring, the model

formulation is slightly more involved due to the need to account for the information contained

in both the lower and upper bounds of the censoring interval. This means that interval-censored

observations require the set-up of two distinct design matrices, hence additive predictors, based on

li and ri. Ultimately, all the baseline covariates are the same and only one vector of parameters β

will be estimated, but the predictor itself is a function of time and, as such, will take on different

values depending on whether it is evaluated at li or ri. If the ith observation is interval-censored

then we need to define ηi(li, xi; f(β)) and ηi(ri, xi; f(β)) which can be expressed as Z1i(li, xi)
Tf(β)

and Z2i(ri, xi)
Tf(β), where Z1i(li, xi) and Z2i(ri, xi) are identical except for the time variables.

3 Parameter estimation

For each individual i, let Ti denote the true event time. Due to censoring, Ti may not be recorded

exactly, in which case the random variable is only known to lie within the interval (Li, Ri), where

Li and Ri are left and right censoring times. If Li = 0 then the observation is defined as "left-

censored", if Ri = ∞ then the observation is classified as "right-censored", and if Li and Ri

take on finite distinct non-zero values then the observation is classified as “interval-censored”.

Exact observations correspond to the case Li = Ri. The censoring type for the ith observation is

represented by the indicator functions δLi, δRi, δIi and δUi.

Let us assume that a random i.i.d. sample {(li, ri, δUi, δLi, δRi, δIi, xi)}ni=1 is available, where

n represents the sample size, that there are no competing risks and that censoring is independent

and non-informative conditional on xi. The log-likelihood function can be written as

ℓ(β) =
n

∑

i=1

δUi log

[

−∂G {ηi(li)}
∂ηi(li)

∂ηi(li)

∂li

]

+ δLi log [1− S {ηi(li)}]

+ δRi log [S {ηi(ri)}] + δIi log [S {ηi(li)} − S {ηi(ri)}] ,
(8)

Note that, in the case of exact observations, li and ri are interchangeable. The proposed model
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allows for a high degree of flexibility, which is why penalised estimation of β is advisable. In

order to prevent over-fitting we maximise the penalised log-likelihood

ℓp(β) = ℓ(β)− 1

2
βTSβ. (9)

To ensure that the estimated survival function is monotonically decreasing or equivalently that

the hazard function is positive (achieved if ∂ηi(li)/∂li is positive), we model the time effects

using the monotonic P-spline approach, which is explained using a simplified notation for the

sake of simplicity. Let s(ti) =
∑J

j=1 fj(βj)bj(ti), where the bj are B-spline basis functions

of at least second order built over the interval [a, b], based on equally spaced knots, and the

fj(βj) are spline coefficients. A sufficient condition for s′(ti) ≥ 0 over [a, b] is that fj(βj) ≥

fj(βj−1) ∀j (e.g., Leitenstorfer & Tutz, 2007). Such condition can be imposed by defining f(β) =

Σ {β1, exp(β2), . . . , exp(βJ)}T, where Σ[ι1, ι2] = 0 if ι1 < ι2 and Σ[ι1, ι2] = 1 if ι1 ≥ ι2, with

ι1 and ι2 denoting the row and column entries of Σ. (Note that, in practice, Σ is absorbed into

the design matrix containing the B-spline basis functions.) When setting up the penalty term we

penalise the squared differences between adjacent βj , starting from β2, using D = D∗TD∗ where

D∗ is a (J − 2) × J matrix made up of zeros except that D∗[ι, ι + 1] = −D∗[ι, ι + 2] = 1 for

ι = 1, ..., J − 2 (Pya & Wood, 2015).

Following Marra & Radice (2020a), estimation of β and λ is achieved using a two-stage algo-

rithm whose main ingredients are the analytical score vector and Hessian matrix (see Appendix A).

Given the structure of (8), deriving such quantities has been somewhat tedious, especially because

of the non-linear dependence of f(β) on β which gave rise to terms like ∂2ηi(ti, xi; f(β))/∂ti∂β =

z′Ti E and ∂ηi(ti, xi; f(β))/∂β = zTi E, where E is a vector such that E[kjk] = 1 if fkjk(βkjk) = βkjk

and exp(βkjk) otherwise. However, the computational benefits of avoiding approximations justi-

fied the effort. The algorithm can be summarised as follows:

• Trust region step: holding λ fixed at a vector of values and for a given β[a], where a is an
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iteration index, maximise equation (9) using

β[a+1] = β[a] + arg min
e:‖e‖≤∆[a]

ℓ̆p(β
[a]), (10)

where ℓ̆p(β
[a]) = −

{

ℓp(β
[a]) + eTgp(β

[a]) + 1
2
eTHp(β

[a])e
}

, gp(β
[a]) = g(β[a]) − Sβ[a]

and Hp(β
[a]) = H(β[a]) − S. Vector g(β[a]) is given by ∂ℓ(β)/∂β|β=β[a] , matrix H(β[a])

by

∂2ℓ(β)/∂β∂βT|β=β[a] ,

‖ · ‖ denotes the Euclidean norm, and ∆[a] is the radius of the trust region which is adjusted

through the iterations. Equation (10) uses a quadratic approximation of −ℓp about β[a]

(the so-called model function) in order to choose the best e[a+1] within the ball centered

in β[a] of radius ∆[a], the trust-region. Throughout the iterations, a proposed solution is

accepted or rejected and the trust region adjusted (i.e., expanded or shrunken) based on the

ratio between the improvement in the objective function when going from β[a] to β[a+1] and

that predicted by the approximation. Note that, near the solution, the trust region method

typically behaves as a classic Newton-Raphson unconstrained algorithm. For more details

see (e.g., Nocedal & Wright, 2006, Chapter 4).

• Smoothing step: holding the model’s parameter vector value fixed at β[a+1], solve problem

λ[a+1] = arg min
λ

‖M[a+1] − A[a+1]M[a+1]‖2 − n+ 2tr(A[a+1]), (11)

where, dropping the iteration index for simplicity, M = µM + ǫ, µM =
√
−Hβ, ǫ =

√
−H

−1
g and A =

√
−H (−H + S)−1 √−H . It can be proved that (11) is approximately

equivalent to the Akaike information criterion (AIC). This means that λ is estimated by

minimising what is effectively the AIC with number of parameters given by tr(A). The

above step is implemented adapting to the current context the routine by Wood (2004),

which is based on Newton’s method and can evaluate in an efficient and stable way the
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components in (11) and their first and second derivatives with respect to log(λ) (since the

smoothing parameters can only take positive values).

The two steps are iterated until the algorithm satisfies the criterion
|ℓ(β[a+1])−ℓ(β[a])|
0.1+|ℓ(β[a+1])| < 1e− 07, and

convergence is assessed by checking that the maximum of the absolute value of the score vector is

numerically equivalent to 0 and that the observed Information matrix is positive definite. Reliable

starting values are obtained by combining the use of the stable and efficient shape constrained

smoothing approach of Pya & Wood (2015), implemented through the scam R package, with the

procedure detailed in Section 2.3.1 of Liu et al. (2018).

We would like to point out that preliminary experimentation using, for instance, classical quasi-

Newton and Newton methods revealed that estimation performance and convergence are not often

satisfactory. As an example, we found that the Hessian is poorly approximated by numerical

differentiation techniques, which was not surprising given the definition of (8). Trust region algo-

rithms are generally more stable and faster compared to in-line search methods. The latter use the

quadratic model of the objective function to find a search direction and suitable step lengths along

such direction, whereas the former search the step that minimises the objective function within

a previously defined region around the current iterate. If a function exhibits long plateaus and

the current iterate is in that region, line search methods may search the next step far away from

the current iterate in which case it may be possible that the evaluation of the log likelihood will

not be finite. Instead, trust region methods define a maximum distance based on the trust region

before evaluating the objective function. This is convenient because the new iterate will not lie

too far away from the current one, and in the case of a non-definite evaluation, the proposed step

will not be accepted. If a candidate which minimises the quadratic model and that also lies in the

trust region does not improve the function sufficiently or gives a non-definite evaluation, the trust

region will shrink and the algorithm will move back to the previous step. If the improvement is

large enough, the trust region will expand in the next iteration.

As mentioned earlier, the non-linear dependence of f(β) on β makes the estimation problem

more challenging which could in turn lead to numerical instabilities. Another potential issue is

that the smoothing step neglects the dependence of the Hessian on the smoothing parameter vec-
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tor; this will vanish asymptotically, but at finite sample sizes it may not be non-negligible. A

smoothing approach addressing the latter issue has been proposed by Wood et al. (2016), however

it requires computing the third and fourth order derivatives; this is daunting in the current context

and generally such derivatives have to be implemented very carefully to avoid numerical instabili-

ties. We found the estimation framework detailed in this section to work well in our simulation and

case studies. Adaptations of the same framework have also been successfully utilised in different

survival contexts (e.g., Dettoni et al., 2020; Marra & Radice, 2020a).

4 Further details

The number of effective degrees of freedom (edf ) for a model containing only unpenalised terms

is equal to say w, the dimension of β, since in this case tr(A) = tr(I). The edf for a penalised

model is tr(A) which can also be written as w − tr
{

(−H + S)−1
S
}

. The latter shows the role of

λ contained in S; if λ → 0 then tr(A) → w and if λ → ∞ then tr(A) → w − ζ , where ζ is the

total number of model’s parameters subject to penalisation. When 0 < λ < ∞, the model’s edf

is equal to a value in the range [w − ζ, w]. The edf of a single smooth or penalised term is given

by the sum of the corresponding trace elements and has a value smaller than or equal to Jk.

As for the construction of intervals, it is convenient to take a Bayesian view of the model

and employ at convergence the result β
·∼ N (β̂,Vβ), where Vβ = −Hp(β̂)

−1 (Wood et al.,

2016). Intervals constructed using this approach exhibit close-to-nominal frequentist coverage

probabilities since they account for both sampling variability and smoothing bias, an aspect that

is particularly relevant at finite sample sizes. Since the evaluation of the additive predictor (as de-

fined, for instance, by equation (5)) and the quantities that rely on it (e.g., equation (2)) depend on

f(β), it makes sense to obtain the relevant distribution, which, following Pya & Wood (2015), is

f(β)
·∼ N (f(β̂),Vf(β)), where Vf(β) = diag (E)Vβ diag (E). This is worked out by using a Taylor

series expansion of f(β), i.e. f(β) − f(β̂) ≈ diag (E)
(

β − β̂
)

, which shows that f(β) − f(β̂)

is approximately a linear function of β. Recalling that linear functions of normally distributed

random variables follow normal distributions, the result follows. P-values for the smooth compo-

nents in the model are derived by adapting the results discussed in Wood (2017) and using Vf(β)
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as covariance matrix.

Intervals for linear functions of the model’s coefficients (such as smooth components) are ob-

tained using the above result for f(β). Intervals for non-linear functions of the model’s coefficients

can instead be conveniently obtained by posterior simulation, hence avoiding computationally ex-

pensive parametric bootstrap or frequentist approximations. As an example, if we are interested in

obtaining intervals for (2) then we need to obtain a number of simulated vectors for f(β) and for

each of them evaluate (2). These evaluations are then used to construct intervals.

5 Simulation study

This section provides evidence on the empirical effectiveness of the proposed methodology in

recovering true covariate effects and baseline functions, in the presence of all types of censoring

and of linear and non-linear effects. The data generating process (DGP) described below has

been designed to mimic some of the features of the results of the case study discussed in the next

section. For instance, the chosen baseline function, values for β1 and β2, and shape and magnitude

of one of the two smooth functions are in line with the empirical findings. In the DGP, however,

we included an extra smooth function to make the estimation problem more challenging. We have

not considered potential competitors in our study because, to the best of our knowledge, there are

no alternative implementations capable of handling mixed censoring, of flexibly estimating the

(linear or non-linear) shapes of the baseline function and covariate effects, and based on a fast and

stable automatic multiple smoothing parameter selection approach.

The exact survival time Ti was generated from a proportional hazard model defined, on the

survival function scale, as log [− log S0(ti)] + β1z1i + β2z2i + s1(z3i) + s2(z4i), where S0(ti) =

0.7 exp(−0.03t1.8i ) + 0.3 exp(−0.3t2.5i ), β1 = 1.3, β2 = 0.5, s1(x) = −0.075 exp(3.2x) and

s2(x) = sin(2πx). A very similar definition of S0(ti) has previously been adopted by Liu et al.

(2018) on the basis of biological plausibility of the underlying distribution. Correlated covariates

were generated using a multivariate standard Gaussian with correlation parameters set at 0.5 and

then transformed using the distribution function of a standard Gaussian (e.g., Marra & Radice,

2020a). Covariates z1i and z2i were dichotomised by simply rounding them. Observations were
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generated using the Brent’s univariate root-finding method. The values of Li and Ri were deter-

mined through a visit process. Let U denote the uniform distribution. Two visits were simulated

such that V1 ∼ U [0, 2] and V2 = V1 + U [0, 6]. Then observations for which Ti < V1 were left-

censored (with Li = 0 and Ri = V1), observations for which Ti > V2 were right-censored (with

Li = V2 and Ri = ∞), and observations for which V1 < Ti < V2 were interval-censored (with

Li = V1 and Ri = V2). Uncensored observations were generated by randomly assigning (with

probability equal to 0.2) to left and interval censored observations the respective observed survival

times. The sample size was set to 700 (in line with the size of the data-set used in the case study)

and the number of replicates to 1000. To assess the effect that several proportions of censoring

types have on the estimation results, we tried different simulation settings; the performance of the

estimation method was very similar to that discussed in this section.

The models were fitted using function gamlss() in GJRM described in Appendix B. The

smooth components of the continuous covariates were represented using the default penalised low

rank thin plate splines with second order penalty and 10 bases (Wood, 2017). Note that we could

have employed different spline definitions and related penalties (e.g., cubic regression splines and

P-splines which are available in the package). As explained in Wood (2017), for uni-dimensional

smooths of continuous covariates, the specific choice of spline definition will not have an impact

on the estimated curve(s) as long as a reliable smoothing method is available for model fitting. As

for the number of basis functions, the chosen value of 10 is arbitrary and based on the fact that

it generally offers enough modelling flexibility in applications. However, a sensitivity analysis

using more bases was attempted; there was no virtual change in the results but, as expected, the

computing time increased. Regarding the smooth function of the time variable, we employed the

monotonic penalised B-spline approach detailed in Section 3. For each replicate, curve estimates

were constructed using 200 equally spaced fixed values in the (0, 6) range for the monotonic

function and (0, 1) otherwise.

Figure 1 summarises the results. Considering the small sample size and complexity of the

model, the true functions and linear effects are overall recovered well by the proposed estimation

method. As the sample size increases (results not shown here) the estimates improve and their
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variability decreases. Computing time for fitting the model was on average 5 seconds.
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Figure 1: Smooth function and linear coefficient estimates obtained by applying gamlss() in GJRM to survival

simulated data in the presence of all types of censoring. True functions are represented by black solid lines, mean

estimates by dashed lines and point-wise ranges resulting from 5% and 95% quantiles by shaded areas. In the lower

left plot, circles indicate mean estimates while gray bars represent the estimates’ ranges resulting from 5% and 95%

quantiles. True values are indicated by dashed horizontal lines. The first three (top) plots refer to the survival, hazard

and cumulative hazard functions.

We also considered an alternative definition for s2, namely s2(x) = 0.2x11(10(1 − x))6 +

10(10x)3(1 − x)10. As far as the baseline smooth function of time, s1 and the parametric com-

ponents are concerned, we virtually obtained the same results as those in Figure 1. As for s2,

the result is reported in Figure 4, in Appendix C, which shows that overall the true function is

recovered well by the estimation method.

6 Hospital-related risk assessment in cirrhotic patients

Our data example is about risk of in-hospital infection or death for cirrhotic patients not under-

going major surgery or at clear risk at admission. A retrospective study was conducted at the
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Policlinico Umberto I hospital in Rome, reviewing data about patients admitted between January

2009 and March 2017. A total of n = 678 patients satisfy our inclusion criteria of (i) having a

diagnosis of cirrhosis prior to hospitalisation, (ii) not having an infection or taking antibiotics at

admission, (iii) not being hospitalised for major surgery (including, clearly, liver transplantation).

The endpoint of interest is composite; an event is defined as the occurrence of an infection

or death before hospital discharge. We have 573 patients who were safely admitted, treated and

discharged, therefore giving rise to right censored times. We also have 96 interval censored times

for patients that have developed an infection during the hospital stay (whose precise onset is clearly

impossible to measure), and 9 in-hospital deaths which give rise to uncensored events.

Follow-up times (before event or hospital discharge) range between 1 and 89 days, with a

median of 7 days. Patients are on average 60.8±11.8 years old, 76% are males, 84 are staying

in an extra bed, 138 recovered from an infection within the month prior to admission, and 361

have a history of alcohol abuse. The extra bed patients are those who are admitted without the

availability of a bed in the ward, and hence hospitalised in the emergency room, or in a temporary

bed set up in the corridors of the ward. During the hospital stay (for most patients within 48 hours

of admission) 206 patients received a paracentesis procedure, 133 catheterisation of some sort, and

61 both procedures. Paracentesis is a procedure in which a needle is inserted into the peritoneal

cavity to obtain ascitic fluid for diagnostic or therapeutic purposes, while catheterisation (usually

at the level of the hepatic vein for these patients) involves the insertion of a catheter into a blood

vessel. Both are routine procedures, whose associated risks in this patients’ population should be

carefully assessed. Finally, the patient status is summasized through the MELD score, ranging

from 1 to 40 in our data, with a mean of 13.34 and a standard deviation of 5.21. MELD evaluates

the severity of chronic liver disease and is also used to prioritize waiting lists for transplantation

(where usually a MELD larger than fifteen points is an indication for entry into the waiting list).

Given that risk associated with MELD is well established in the literature, we estimate a model

with two additive predictors for baseline assessment: s(MELD) and s(ti). For the smooth func-

tion of time we also consider the option s(log(ti)). This typically helps producing a smoother

fitted function which in turn reduces the chance of potential artifacts in the estimated hazard func-
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tion, which may be especially relevant at low sample sizes (e.g., Royston & Parmar, 2002). Im-

portantly, for outcomes characterised by marked changes in the values close to zero, employing

the log transformation will considerably help modelling such patterns. Generally, we found that

the log transform is often preferred in empirical applications. The chosen link function is PH.

The log-transformation is preferred with a BIC of 1034.2 versus a BIC of 1059.9 for the identity

transformation (using the AIC led to the same conclusion). The results of the chosen model are

summarised in the upper panel of Figure 2, which clearly shows a non-linear effect of MELD (this

will commented in more detail below). The number of basis functions for the smooth components

was set to the default value of 10; increasing this value did not change the results. Overall we have

p-values smaller than 5% for both additive terms.

We then build models with three predictors: the two additive components (one for MELD, one

for time) from the base model, and each of the additional variables considered in the study. The

estimated coefficient, standard error and p-value for each extra regressor in the model are reported

in the left panel of Table 2.

Var Coef SE p-value Coef SE p-value

Age 0.002 0.008 0.771

Gender -0.202 0.226 0.372

Paracentesis 0.578 0.206 0.005 0.415 0.209 0.047

Extra bed 1.408 0.229 < 0.001 1.288 0.229 < 0.001
Catheter 0.701 0.209 0.001 0.439 0.214 0.040

History 0.114 0.244 0.640

Alcohol -0.167 0.204 0.413

Table 2: Cirrhotic patients data. Left panel: Estimated coefficient, standard error and p-value for the each regressor

included in the base model (that includes a smoothed baseline risk and smoothed MELD). Right panel: Estimated

coefficients, standard errors and p-values for linear effects included in the final multivariate model.

Finally, we select a multivariate model in a forward stepwise fashion. The final model in-

cludes additive components for the baseline risk and MELD, and linear effects of the indicator

variables for paracentesis, overcrowding (extra bed) and catheterisation. (The same model is actu-

ally obtained through a different backward or stepwise selection algorithm.) Results are reported

in the right panel of Table 2. In the lower panel of Figure 2, we report the estimated effects for

the baseline hazard and MELD. The baseline hazard is slightly non-linear even on a log scale, in-

creasing steeply at the beginning of follow-up but with a small but noticeable leveling up at around
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Figure 2: Cirrhotic patients data. Baseline risk and smoothed effect of MELD when used as the only predictors (upper

panel), and in a multivariate model with additional linear effects for overcrowding, catheterisation, and paracentesis

(lower panel). The 95% point-wise intervals are obtained as described in Section 4. The rug plot, at the bottom of each

graph, shows the variables’ values. The number in brackets in the y-axis caption represents the edf of the respective

smooth curve.

exp(2) ∼= 7 days. This holds both when conditioning only on MELD (upper panel) and when ad-

ditionally adjusting for important linear effects (lower panel). We can, therefore, conclude that

the risk of events increases sharply during the hospital stay (as expected) but that the first week

seems to be the most critical. The effect of MELD is also non-linear, but much smoother when

the model adjusts for overcrowding and risky procedures. The sample size is comparatively high

given our inclusion criteria, but still too small to draw strong conclusions. Nevertheless, it can

be seen that for a MELD of up to around 15/20 points there is no risk differential, while after a

certain threshold a sharp increase in risk is observed. This supports the use of MELD thresholds
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for inclusion in waiting lists for liver transplantation, where 15 is clearly a good choice given that

MELD will likely increase while in the waiting list. Finally, after non-parametrically adjusting for

baseline risk and patient status (summarised by MELD), the variables overcrowding, paracente-

sis and catheterisation are found to be risk factors for the new onset of infections or death. The

rationale for paracentesis and catheterisation is clear and might be also connected to a not per-

fect implementation of the procedure, while the high effect on risk of overcrowding is most likely

linked to increased contacts among patients, and between patients and visitors.
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Figure 3: Cirrhotic patients data. Estimated hazard for a patient that underwent catheterisation, with a MELD equal

to fifteen at admission. The 95% intervals have been obtained via posterior simulation using the approach described

in Section 4.

To further illustrate the capabilities of our method, Figure 3 shows the estimated hazard for a

patient having undergone catheterisation, with a MELD equal to fifteen at admission. As expected,

the risk peaks within the first few days, it then flattens out, and subsequently slowly increases.

Similar predictions can be carried out for different profiles.
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Model BIC

AFT-Weibull 1340.25

AFT-log-Normal 1336.01

Biased Cox 1091.04

Biased Cox-GAM 1099.31

PO 1013.05

Probit 1012.03

PH 995.74

Table 3: Cirrhotic patients data. BIC values obtained using the final multivariate specification when employing

different modelling approaches: AFT (based on Weibull and log-Normal), a biased Cox regression, a biased Cox-

GAM model, and the proposed approach based on PO, probit and PH links.

Finally, we compare the goodness of fit of our proposed model with that obtained using alter-

native and more classical approaches. Specifically, we considered parametric AFT models based

on both the Weibull and log-Normal assumptions and that can handle mixed censoring, a (biased)

Cox regression model that treats interval censored data as uncensored at Ri, and a similar biased

Cox-GAM model which includes a non-parameteric additive effect of MELD. We also considered

using different link function specifications for our proposed model. A further alternative is a (for-

mally correct) Cox regression models in which interval censored data are treated as right censored

at Li. These are anyway not feasible with our data due to the presence of only nine deaths (un-

censored events). Even after using a Firth’s penalised likelihood, results are not credible for this

specification. Table 3 reports the BIC for each approach, and our proposal with PH specification is

clearly preferred. As a further consideration, treating the baseline risk semi-parametrically seems

to be particularly important.

7 Concluding remarks

In many survival studies. mixed censoring (a situation where uncensored and left, right and inter-

val censored observations mix together) may arise. There is, therefore, a strong need for theoreti-

cally founded, flexible and computationally efficient statistical methods for fitting survival models

for this type of data. In this paper, we contributed in this direction by introducing link-based

survival additive models under mixed censoring that can be fitted using a stable and efficient esti-

mation approach. A clearly added value is the availability of analytic score and Hessian functions,
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to estimate the model’s coefficients and smoothing parameters, which make our implementation

very convenient from a computational point of view. The inferential procedure is implemented in

the accompanying GJRM R package.

The proposed approach performed well in simulation and has also been applied to an original

data example on time to first hospital infection or in-hospital death in cirrhotic patients, show-

ing that in real data scenarios ignoring the mixed nature of censoring or smooth non-linear effects

might lead to lack of fit and bias. Code and data can be found at https://github.com/afarcome/GJRM.

Future research will focus on extending the modelling framework to the cases of: left trunca-

tion, excess hazard, multivariate response variables, complex survival outcomes including com-

peting risks, multiple-events per subjects, and ultimately multi-state models. Joint modelling of

survival and longitudinal outcomes should be a possible useful extension of our method. It would

also be interesting to compare the performance of the proposed method versus the approach of

Fauvernier et al. (2019) in the presence of time-dependent effects. In a similar vein as Liu et al.

(2018), we also plan on extending the plotting function of the GJRM R package to include more

conditional post-estimators based, for instance, on contrasts and various types of standardisations.
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Appendix A: Score and Hessian

This section contains the analytical expressions of the score and Hessian of the model’s log-

likelihood. Recall that the structure of equation (8) implies the presence of four main components,
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that is

ℓ(β) =
n

∑

i=1

δUiℓUi
+ δLiℓLi

+ δRiℓRi
+ δIiℓIi .

Exploiting this fact, the gradient and Hessian are reported according to the type of censoring con-

sidered to ease their readability. To simplify the notation, we use S ′
N {ηi(ti)} = ∂SN {ηi(ti)} /∂ηi(ti),

S ′′
N {ηi(ti)} = ∂2SN {ηi(ti)} /∂ηi(ti)2 and S ′′′

N {ηi(ti)} = ∂3SN {ηi(ti)} /∂ηi(ti)3, where ti is

adopted whenever the equality holds both for ri as for li. To simplify the notation further, we also

present the results for a single ith observation.

Score

• Uncensored:

∂

∂β
ℓUi

(β) = δUi

[

S ′
N {ηi(li)}

∂ηi(li)

∂li

]−1 [

S ′′
N {ηi(li)}

∂ηi(li)

∂β

∂ηi(li)

∂li
+ S ′

N {ηi(li)}
∂2ηi(li)

∂β∂li

]

.

• Left censoring:

∂

∂β
ℓLi

(β) = −δLi
[1− SN {ηi(li)}]−1 S ′

N {ηi(li)}
∂ηi(li)

∂β
.

• Right censoring:

∂

∂β
ℓRi

(β) = δRi
[SN {ηi(li)}]−1 S ′

N {ηi(li)}
∂ηi(li)

∂β
.

• Interval censoring:

∂

∂β
ℓIi(β) = δIi [SN {ηi(li)} − SN {ηi(ri)}]−1

[

S ′
N {ηi(li)}

∂ηi(li)

∂β
− S ′

N {ηi(ri)}
∂ηi(ri)

∂β

]

.
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Hessian

• Uncensored:

∂2

∂β∂βT
ℓ(β)Ui

=

δUi
[−S ′

N {ηi(li)}]−2

[

S ′′
N {ηi(li)}2

∂ηi(li)

∂β

{

∂ηi(li)

∂β

}T

− S ′
N {ηi(li)}S ′′′

N {ηi(li)}
∂ηi(li)

∂β

{

∂ηi(li)

∂β

}T
]

+ δUi
[S ′

N {ηi(li)}]−1
S ′′
N {ηi(li)}

∂2ηi(li)

∂β∂βT

+ δUi

[

−∂ηi(li)

∂li

]−2
∂2ηi(li)

∂β∂li

{

∂2ηi(li)

∂β∂li

}T

+ δUi

[

∂ηi(li)

∂li

]−1
∂3ηi(li)

∂β2∂li
.

• Left censoring:

∂2

∂β∂βT
ℓ(β)Li

= −δLi
[1− SN {ηi(li)}]−2 [S ′

N {ηi(li)}]2
∂ηi(li)

∂β

{

∂ηi(li)

∂β

}T

− δLi
[1− SN {ηi(li)}]−1 S ′′

N {ηi(li)}
∂ηi(li)

∂β

{

∂ηi(li)

∂β

}T

+ δLi
[1− SN {ηi(li)}]−1 S ′

N {ηi(li)}
{

∂2ηi(li)

∂β∂βT

}T

.

• Right censoring:

∂2

∂β∂βT
ℓ(β)Ri

= −δRi
[SN {ηi(li)}]−2 [S ′

N {ηi(li)}]2
∂ηi(li)

∂β

{

∂ηi(li)

∂β

}T

+ δRi
[SN {ηi(li)}]−1 S ′′

N {ηi(li)}
∂ηi(li)

∂β

{

∂ηi(li)

∂β

}T

+ δRi
[SN {ηi(li)}]−1 S ′

N {ηi(li)}
{

∂2ηi(li)

∂β∂βT

}T

.

24



• Interval censoring:

∂2

∂β∂βT
ℓ(β)Ii = −δIi [SN {ηi(li)} − SN {ηi(ri)}]−2

·
[

[S ′
N {ηi(li)}]2

∂ηi(li)

∂β

{

∂ηi(li)

∂β

}T

+ [S ′
N {ηi(ri)}]2

∂ηi(ri)

∂β

{

∂ηi(ri)

∂β

}T

− S ′
N {ηi(li)}S ′

N {ηi(ri)}
[

∂ηi(li)

∂β

{

∂ηi(ri)

∂β

}T

+
∂ηi(ri)

∂β

{

∂ηi(li)

∂β

}T
]

]

+ δIi [SN {ηi(li)} − SN {ηi(ri)}]−1

·
[

S ′′
N {ηi(li)}

∂ηi(li)

∂β

{

∂ηi(li)

∂β

}T

+ S ′
N {ηi(li)}

{

∂2ηi(li)

∂β∂βT

}T

− S ′′
N {ηi(ri)}

∂ηi(ri)

∂β

{

∂ηi(ri)

∂β

}T

− S ′
N {ηi(ri)}

{

∂2ηi(ri)

∂β∂βT

}T ]

.

Appendix B: The R GJRM package

Link-based additive survival models with mixed censoring can be fitted using function gamlss()

in the GJRM R package (Marra & Radice, 2020b). The gamlss() function is generally very

easy to use, especially if the user is already familiar with the syntax of (generalised) linear and

additive models in R. An example of call is

eq <- list(t ~ s(log(t), bs = "mpi") + z1 + s(z2))

out <- gamlss(eq, data = dataset, surv = TRUE, margin = "PH",

cens = cens, type.cens = "mixed", upperB = "t2")

where t is a survival variable with censoring mixed indicator cens (made up of four possible

categories: I which stands for interval, L for left, R for right, and U for uncensored), and z1

and z2 are (e.g., binary and continuous) covariates. Variable t2 is only used when interval cen-

sored observations are present in the dataset; in this case the intervals’ upper bound values

are required and the variable name of the upper bound has to be provided via argument upperB.

Argument surv must be set to TRUE in order to employ a survival model. Argument margin of

gamlss() in GJRM allows the user to employ the desired link function and the possible choices

are given in Table 1; for example, margin = "PH" returns a proportional hazards model. Given
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the modularity of our implementation, other link function specifications, such as those belonging

to the Aranda-Ordaz family as described by Royston & Parmar (2002), can be considered. eq

contains the equation of interest. Symbol s() stands for smooth function. As in mgcv, the de-

fault spline basis is bs = "tp" (penalised low rank thin plate spline) with k = 10 (number of

basis functions) and m = 2 (order of derivatives). However, argument bs can also be set to, for

example, cr (penalised cubic regression spline), ps (P-spline) and mrf (Markov random field),

to name but a few. It is important to note that bs must be set to mpi (monotonic P-spline) for the

baseline smooth of time. Model summary() and plot() functions work in a similar fashion

as those of generalised linear and additive models, and AIC() and BIC() can be used in the

usual manner. Function hazsurv.plot() allows the user to produce, post-estimation, hazard

and survival plots. More details and options can be found in the documentation of the GJRM R

package.
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Appendix C: Further simulation results
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Figure 4: Results from the experiment that uses an alternative definition for s2. The true function is represented by

the black solid line, the mean estimate by the dashed line and poin-twise ranges resulting from 5% and 95% quantiles

by the shaded area.
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