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Abstract—In this paper, we address the problem of spectroscopic redshift estimation in Astronomy. Due to the expansion of the
Universe, galaxies recede from each other on average. This movement causes the emitted electromagnetic waves to shift from the blue
part of the spectrum to the red part, due to the Doppler effect. Redshift is one of the most important observables in Astronomy, allowing
the measurement of galaxy distances. Several sources of noise render the estimation process far from trivial, especially in the low
signal-to-noise regime of many astrophysical observations. In recent years, new approaches for a reliable and automated estimation
methodology have been sought out, in order to minimize our reliance on currently popular techniques that heavily involve human
intervention. The fulfilment of this task has evolved into a grave necessity, in conjunction with the insatiable generation of immense
amounts of astronomical data. In our work, we introduce a novel approach based on Deep Convolutional Neural Networks. The
proposed methodology is extensively evaluated on a spectroscopic dataset of full spectral energy galaxy distributions, modelled after
the upcoming Euclid satellite galaxy survey. Experimental analysis on observations of idealistic and realistic conditions demonstrate
the potent capabilities of the proposed scheme.
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F

1 INTRODUCTION

MODERN cosmological and astrophysical research seeks
answers to questions like “what is the distribution of

dark matter and dark energy in the Universe?” [1], [2], or
“how can we quantify transient phenomena, like exoplanets
orbiting distant stars?” [3]. To answer such questions, a
large number of deep space observation platforms have
been deployed. Spaceborne instruments, such as the Planck
Satellite1 [4], the Kepler Space Observatory2 [5] and the up-
coming Euclid mission3 [6], seek to address these questions
with unprecedented accuracy, since they avoid the deleteri-
ous effects of Earth’s atmosphere, a strong limiting factor to
all their observational strategies. Meanwhile, ground-based
telescopes like the LSST4 [7] will be able to acquire massive
amounts of data through high frequency full-sky surveys,
providing complementary observations. The number and
capabilities of cutting-edge scientific instruments in these
and other cases have led to the emergence of the concept
of Big Data [8], mandating the need for new approaches
on massive data processing and management. The analysis
of huge numbers of observations from various sources has

1. http://www.esa.int/Our Activities/Space Science/Planck
2. http://kepler.nasa.gov/
3. http://sci.esa.int/euclid/
4. https://www.lsst.org

opened new horizons in scientific research, and astronomy
is an indicative scenario where observations propel the data-
driven scientific research [9].

One particular long-standing problem in astrophysics is
the ability to derive precise estimates to galaxy redshifts.
According to the Big Bang model, due to the expansion of
the Universe and its statistical homogeneity and isotropy,
galaxies move away from each other and any given observa-
tion point. A result of this motion is that light emitted from
galaxies is shifted towards larger wavelengths through the
Doppler effect, a process termed redshifting. Redshift estima-
tion has been an integral part of observational cosmology,
since it is the principal way in which we can measure
galaxies’ radial distances and hence their 3-dimensional
position in the Universe. This information is fundamental
for several observational probes in cosmology, such as the
rate of expansion of the Universe and the gravitational
lensing of light by the matter distribution - which is used to
infer the total dark matter density - among other methods
[10], [11].

The Euclid satellite aims to measure the global prop-
erties of the Universe to an unprecedented accuracy, with
emphasis on a better understanding of the nature of Dark
Energy. It will collect photometric data with broadband op-
tical and near-infrared filters and spectroscopic data with a
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(a) Clean Rest-Frame Spectral Profile (b) Clean (Randomly) Redshifted Equiva-
lent

(c) Noisy Redshifted Equivalent

Fig. 1. Examples of the data used. From the initial rest-frame samples, we produce random redshifted samples in clean and noisy forms. The
y-axis corresponds to the spectral density flux value, in a normalized form.

near-infrared slitless spectrograph. The latter will be one of
the biggest upcoming spectroscopic surveys, and will help
us determine the details of cosmic acceleration through mea-
surements of the distribution of matter in cosmic structures.
In particular, it will measure the characteristic distance scale
imprinted by primordial plasma oscillations in the galaxy
distribution. The projected launch date is set for 2022 and
throughout its 6-year mission, Euclid will gather of the order
of 50 million galaxy spectral profiles, originating from wide
and deep sub-surveys. A top-priority issue associated with
Euclid is the efficient processing and management of these
enormous amounts of data, with scientific specialists from
both astrophysical and engineering backgrounds contribut-
ing to the ongoing research. To successfully achieve this
purpose, we need to ensure that realistically simulated data
will be available, strictly modeled after the real observa-
tions coming from Euclid in terms of quality, veracity and
volume.

Estimation of redshift from spectroscopic observations
is far from straightforward. There are several sources of
astrophysical and instrumental errors, such as readout noise
from CCDs, contaminating light from dust enveloping our
own galaxy, Poisson noise from photon counts, and more.
Furthermore, due to the need of obtaining large amounts
of spectra, astronomers are forced to limit the time of
integration for any given galaxy, resulting in low signal-to-
noise measurements. As a consequence, not only it becomes
difficult to confidently measure specific spectral features
for secure redshift estimation, but we also incur the risk
of misidentifying features - e.g. confusing a hydrogen line
for an oxygen line - which results in so-called catastrophic
outliers. Human evaluation mitigates a lot of these problems
with current - relatively small - data sets. However, Euclid
observations will be particularly challenging, working in
very low signal-to-noise regimes and obtaining a massive
amount of spectra, which will force us to develop auto-
mated methods capable of high accuracy and necessitating
minimal human intervention.

Meanwhile, the rise of the “golden age” of Deep Learn-
ing [12] has fundamentally changed the way we handle
and apprehend raw, unprocessed data. While the existing
machine learning models heavily rely on the development

of efficient feature extractors, a task non-trivial and very
challenging, Deep Learning architectures are able to single-
handedly derive important characteristics from the data by
learning intermediate representations and by structuring
different levels of abstraction, essentially modelling the way
the human brain works. The monumental success of Deep
Learning networks in recent years, has been strongly en-
hanced by their interminable capacity to harness the power
of Big Data and fully exploit emerging, cutting-edge hard-
ware technologies, constituting one of the currently most
widely used paradigms in numerous applications and in
various scientific research fields.

One such a network subsists in Convolutional Neural
Networks (CNNs) [13], a sequential model structured with
a combination of Convolutional & Non-Linear Layers. The
inspiration behind Convolutional Neural Networks resides
in the concept of visual receptive fields [14], i.e. the region
in the visual sensory periphery where stimuli can modify
the response of a neuron. This is the main reason that
CNNs initially found application in image classification, by
learning to recognize images by experience, in the same
perception where a human being can gradually learn to
distinguish different image stimuli from one another. Today,
CNNs are administered in the use of various types of data,
with more or less complicated dimensional structures, with
the key property of maintaining their spatial correlations
without the need to collapse higher dimensional matrices
into flattened vectors.

Our main motivation lies in the use of a state-of-the-art
model, such as Convolutional Neural Networks, for an auto-
mated and reliable solution of the problem of spectroscopic
redshift estimation. Estimating galaxy redshifts is perceived
as a regression procedure, still a classification approach can
be formulated without the loss of essential information.
The robustness of the proposed model will be examined in
two different data variations, as depicted in the example of
Figure 1. In the first case (b), we deploy randomly redshifted
variations of the original rest-frame spectral profiles of the
dataset used, substantially constituting linear translations
of the rest-frame, in logarithmic scale. This is considered
an idealistic scenario, as it ignores the interference of noise
or presumes the existence of a reliable denoising technique.
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On the other hand, a more realistic case (c) is studied, with
the available redshifted observations subjected to noise of
realistic conditions.

The main contributions of our work are referenced be-
low:

• We use a Deep Learning architecture for the case
of spectroscopic redshift estimation, never used
before for the issue at hand. To achieve that we
need to convert the problem from a regression task,
as engaged in general, to a classification task, as
encountered in this novel approach.

• We utilize Big Data and evaluate the impact of a
significant increase of the employed observations
in the overall performance of the proposed
methodology. The dataset used is modelled after one
of the biggest upcoming spectroscopic surveys, the
Euclid Mission [6].

The outline of this paper is structured as follows. In
Section 2, we overview the related work in redshift esti-
mation and Convolutional Neural Networks in general. In
Section 3, we describe 1-Dimensional CNNs and we analyse
the formulated methodology. In Section 4, we mainly focus
on the dataset used and describe its properties. In Section
5, we present the experimental results, with accompanying
discussion. Conclusions and future work are engaged in
Section 6.

2 RELATED WORK

Photometric observations have been extensively utilized in
redshift estimation due to the fact that photometric analysis
is substantially less costly and time-consuming, contrary
to the spectroscopic case. Popular methods for this kind
of estimation include Bayesian estimation with predefined
spectral templates [15], or alternatively some widely used
machine-learning models, adapted for this kind of prob-
lem, like the Multilayer Perceptron [16], [17] and Boosted
Decision Trees [17], [18]. However, the limited wavelength
resolution of photometry, compared to spectroscopy, intro-
duces a higher level of uncertainty to the given procedures.
In spectroscopy, by observing the full Spectral Energy Dis-
tribution (SED) of a galaxy, one can easily detect distinctive
emission and absorption lines that can lead to a judicious
redshift estimation, by measuring the wavelength shift of
these spectral characteristics from the rest frame. Due to
noisy observations, the main redshift estimation methods
involve cross-correlating the SED with predefined spec-
tral templates [19] or PCA decompisitions of a template
library. Noisy conditions and potential errors due to the
choice of templates are the main reason that most reliable
spectroscopic redshift estimation methods heavily depend
on human judgment and experience to validate automated
results.

The existing Deep Learning models (i.e. Deep Artificial
Neural Networks - DANNs) have largely benefited from
the dawn of the Big Data era, being able to produce im-
pressive results, that can match, or even exceed, human
performance [20]. Despite the fact that training a DANN

can be fairly computationally demanding, even more so
while we increase its complexity and the data it needs to
process, nevertheless, the rapid advancements on computa-
tional means and memory storage capacity have rendered
feasible such a task. At the same time, and in contrast to
the training process, the evaluation phase for a test dataset
can be exceptionally fast, with a negligible execution time,
regardless of its size. Currently, Deep Learning is considered
to be the state-of-the-art in many research fields, such as im-
age classification, natural language processing and robotic
control, with models like Convolutional Neural Networks
[13], Long-Short Term Memory (LSTM) networks [21], and
Recurrent Neural Networks [22], dominating the research
field.

The main idea behind Convolutional Neural Networks
materialized for the first time with the concept of “Neocog-
nitron”, a hierarchical neural network capable of visual
pattern recognition [23], and evolved into LeNet-5, by Yann
LeCun et al. [13], in the following years. The massive
breakthrough of CNNs (and Deep Learning in general)
transpired in 2012, in the ImageNet competition [24], where
the CNN of Alex Krizhevsky et al. [25], managed to re-
duce the classification error record by ~10%, an astounding
improvement at the time. CNNs have been considered
in numerous applications, including image classification
[25] [26] & processing [27], video analytics [28] [29], spec-
tral imaging [30] and remote sensing [31] [32], confirming
their dominance and ubiquity in contemporary scientific
research. In recent years, the practice of CNNs in astro-
physical data analysis has led to new breakthroughs, among
others, in the study of galaxy morphological measurements
and structural profiling through their surface’s brightness
[33] [34], the classification of radio galaxies [35], astrophys-
ical transients [36] and star-galaxy separation [37], and the
statistical analysis of matter distribution for the detection
of massive galaxy clusters, known as strong gravitational
lenses [38] [39]. The exponential increase of incoming data,
for future and ongoing surveys, has led to a compelling need
for the deployment of automated methods for large-scale
galaxy decomposition and feature extraction, negating the
commitment on human visual inspection and hand-made
user-defined parameter setup.

3 PROPOSED METHODOLOGY

In this work, we study the problem of accurate redshift
estimation from realistic spectroscopic observations, mod-
elled after Euclid. Redshift estimation is considered to be a
regression task, given the fact that a galaxy redshift (z) can
be measured as a non-negative real valued number (with
zero corresponding to the rest-frame). Given the specific
characteristics of Euclid, we can focus our study in its
redshift range of detectable galaxies. Subsequently, we can
restrict the precision of each of our estimations to match
the resolution of the spectroscopic instrument, meaning that
we can split the chosen redshift range into evenly sized
slots equal to Euclid’s required resolution. Hence, we can
transform the problem at hand from a regression task to
a classification task, using a set of ordinal classes, with
each class corresponding to a different slot, and accordingly
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Fig. 2. Simple 1-Dimensional CNN. The input vector v is convolved with a trainable filter h (with a stride equal to 1), resulting in an output vector of
size M = N − 2. Subsequently, a non-linear transfer function (typically ReLU) is applied element-wise on the output vector preserving its original
size. Finally, a fully-connected, supervised layer is used for the task of classification. The number of the output neurons (C) is equal to to the number
of the distinct classes of the formulated problem (800 classes in our case).

we can utilize a classification model (Convolutional Neural
Networks in our case) instead of a regression algorithm.

3.1 Convolutional Neural Networks
A Convolutional Neural Network is a particular type of
Artificial Neural Network, which comprises of inputs, out-
puts and intermediate neurons, along with their respective
connections, that encode the learnable weights of the net-
work. One of the key differences between CNNs and other
neural architectures, like Multilayer Perceptron [40], is that
in typical neural networks, each neuron of any given layer
connects with every neuron of its respective previous and
following layers (fully-connected layers). On the contrary,
CNNs are structured in a locally-connected manner, exhibit-
ing the spatial correlations of the given input, under the
assumption that neighboring regions of each observation
are more likely to be related than regions that are farther
away. By reducing the number of total connections, CNNs
can successfully manage to drastically decrease the number
of trainable parameters, rendering the network less prone to
overfitting.

3.1.1 Typical Architecture of a 1-Dimensional CNN
A typical 1D CNN (Figure 2) is structured in a sequential
manner, layer by layer, using a variety of different layer
types. The foundational layer of a CNN is the Convolutional
Layer. Given an input vector of size 1 × N and a trainable
filter (1 × K), the convolution of the two entities will
result in a new output vector with a size (1 × M ), where
M = N − K + 1. The value of M may vary based on the
stride of the operation of convolution, with bigger strides
leading to smaller outputs. In the entirety of this paper, we
assume the generic case of a stride value equal to 1.

The trainable parameters of the network (incorporated
in the filter) are initialized randomly [41] and, therefore,
are totally unreliable, but as the training of the network
advances, through the process of backpropagation [42], they
are essentially optimized and are able to capture interesting

features from the given inputs. The parameters (i.e. weights)
of a certain filter are considered to be shared [43], in the
aspect that the same weights can be used throughout the
convolution of the entirety of the input. This, can con-
sequently lead to a drastical decrease in the number of
weights, enhancing the ability of the network to generalize
and adding to its total robustness against overfitting. To
ensure that all different possible features can be captured,
more than one filters can be actually utilized.

When addressing challenging problems, the use of shal-
low CNN architectures is insufficient, given their limited
capacity to form deeper and complex representations of
the input data. The development of deeper models, able
to derive informative and detailed features, can become a
necessity. The claim that an effective expansion of the CNN
can be achieved by introducing more convolutional layers,
one on top of another, is actually invalid. Given the lin-
ear property of the convolutional operation, the sequential
stacking of all these convolutional layers could actually be
accounted for as one merged linear transformation over
the input data, thus rendering the formed architecture as
shallow. To be able to effectively form deeper, more complex
CNN models, a non-linearity needs to be introduced directly
after each convolutional layer, enabling the network to act as
a universal function approximator [44]. Typical choices for
the non-linear function (known as activation or transfer func-
tion) include the logistic (sigmoid) function, the hyperbolic
tangent (tanh) and the Rectified Linear Unit (ReLU). The
most common choice in CNNs is ReLU (f(x) = max(0, x))
and its variations [45]. Compared to the cases of the sigmoid
and hyperbolic tangent functions, the rectifier possesses the
advantage that it is easier to compute (as well as its gradient)
and is resistant to saturation conditions [25], rendering the
training process much faster and less likely to suffer from
the problem of vanishing gradients [46].

Finally, one or more Fully-Connected Layers are typically
introduced as the final layers of the CNN, committed to
the task of the supervised classification. A Fully-Connected
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Layer is the typical type of layer met in Multilayer Per-
ceptron and as the name implies, all its neuronal nodes
are connected with all the neurons of the previous layer,
leading to a dense connectivity. Given the fact that the
output neurons of the CNN correspond to the unique classes
of the selected problem, each of these neurons must have a
complete view of the highest-order features extracted by the
deepest Convolutional Layer, meaning that they must be
necessarily associated with each of these features.

The final classification step is performed using the multi-
class generalization of Logistic Regression known as Softmax
Regression. Softmax Regression is based on the exploitation
of the probabilistic characteristics of the normalized expo-
nential (softmax) function below:

hθ(x)j =
eθ

T
j x∑W

k=1 e
θTk x

, (1)

where x is the input of the Fully-Connected Layer, θj are the
parameters that correspond to a certain classwj and W is the
total number of the distinct classes related to the problem at
hand. It is fairly obvious that the softmax function reflects
an estimation of the normalized probability of each class
wj , to be predicted as the correct class. As deduced from
the previous equation, each of these probabilities can take
values in the range of [0,1] and, at the same time, they all
need to add-up to the value of 1. This probabilistic approach
composes a considerable reason for the transformation of
the examined problem to a classification task, rendering
possible to quantify the level of confidence for each es-
timation and providing a clearer view on what has been
misconstrued in the case of misclassification.

The use of Pooling Layers has been excluded from
the pipeline, given the fact that pooling is considered,
among others, a great method of rendering the network
invariant to small changes of the initial input. This is a very
important property in image classification, but in our case
these translations of the original rest-frame SEDs almost
define the different redshifted states. By using pooling, we
suppress these transformations, “crippling” the network’s
ability to identify each different redshift.

3.1.2 Regularizing Techniques
In very complex models, like ANNs, there is always the
risk of overfitting the training data, meaning that the net-
work produces over-optimistic predictions throughout the
training process, but fails to generalize well on new data,
subsequently leading to a decaying performance. The local
neuronal connectivity that is employed in Convolutional
Neural Networks and the concept of weight sharing, re-
ported in previous paragraphs, cannot suffice in our case,
given the fact that the single, final Fully-Connected Layer
(which contains the majority of the parameters) will consist
of hundreds of neurons. One way to address the problem
of the network’s high variance exists in the use of Big Data,
with a theoretical total negation of the effects of overfitting,
when the number of training observations tends to infinity.
We will thoroughly examine the impact of the use on Big
Data, on clean and noisy observations, in our experimental
scenarios.

Dropout [47] and Batch Normalization [48] are, also, two
very popular techniques in CNNs that can help narrow
down the consequences of overfitting. In Dropout, the
following simple, yet very powerful trick can be used to
temporarily decrease the total parameters of the network
at each training iteration. All the neurons in the network
are associated with a probability value p (subject to hyper-
parameter tuning) and each neuron, independently from
the others, can be temporarily dropped from the network
(along with all incoming and outgoing connections) with
that probability. This is an iterative process, meaning that for
each training sample of a training batch, a random portion
of the entirety of the original network is dropped, leading
to “thinner” and more degenerated variations of its initial
structure as the value of the probability p grows bigger. Each
layer can be associated with a different p value, meaning
that Dropout can be considered as a per-layer operation,
with some layers discarding neurons in a higher percentage,
while others dropping neurons in a lower rate or not at
all. During inference, the entirety of the network is used,
meaning that Dropout is not applied at all.

Batch Normalization, on the other hand, can be ac-
counted for more as a normalizer, but previous studies [48]
have shown that it can work very effectively as a regularizer
as well. Batch Normalization is, in fact, a local (per layer)
normalizer that operates on the neuronal activations in a
way similar to the initial normalizing technique applied to
the input data in the pre-processing step. The primary goal
is to enforce a zero mean and a standard deviation of one
for all activations of the given layer and for each mini-batch.
The main intuition behind Batch Normalization lies in the
fact that as the neural network deepens, it becomes more
probable that the neuronal activations of intermediate layers
might diverge significantly from desirable values and might
tend towards saturation. This is known as Internal Covariate
Shift [48] and Batch Normalization can play a crucial role
on mitigating its effects. Consequently, it can actuate the
gradient descent operation to a faster convergence [48], but
it can also lead to an overall highest accuracy [48] and, as
stated before, render the network stronger and more robust
against overfitting.

3.2 System Overview
In this subsection, we analyse the pipeline of our approach.
Initially, we operate on clean rest-frame spectral profiles,
each consisting of 3750 bins. These wavelength-related bins
correspond to the spectral density flux value of each ob-
servation, for that certain wavelength range (∆λ = 5Å, λ
= [1252.5, 20002.5]Å ). Our first goal is to create valid red-
shifted variations using the formula:

log(1 + z) = log(λobs) − log(λemit)⇔ 1 + z =
λobs
λemit

, (2)

where λemit is the original rest-frame wavelength, z is the
redshift we want to apply and λobs is the wavelength that
will ultimately be observed for the given redshift value. This
formula is linear on logarithmic scale. For the conduction
of our experiments, we work on the redshift range of z =
[1, 1.8), which is very similar to what Euclid is expected to
detect. Also, to avoid redundant operations and to establish
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a simpler and a faster neural network we use a subset of the
wavelength range of each redshifted example (instead of the
entirety of the available spectrum), based on Euclid’s spec-
troscopic specifications (1.1 − 2.0µm ⇔ 11000 − 20000Å).
That means that all the training and testing observations
will be of equal size 20000−11000

∆λ = 1800 bins.
For the “Regression to Classification” transition our

working redshift range of [1, 1.8) must be split into 800 non-
overlapping, equally-sized slots resulting in a resolution of
0.001, consistent with Euclid expectations. Each slot will
correspond to the related ordinal class (from 0 to 799), which
in turn must be converted into the 1-Hot Encoding format
to match the final predictions procured by the final Softmax
Layer of the CNN. A certain real-valued redshift of a given
spectral profile will be essentially transformed into the ordi-
nal class that corresponds to the redshift slot it belongs to.
Finally, for the predictions, shallower and deeper variations
of a Convolutional Neural Network will be trained, with
1,2 & 3 Convolutional (+ ReLU) Layers, along with a Fully-
Connected Layer as the final Classification Layer.

4 A DEEPER PERSPECTIVE ON THE DATA

The simulated dataset used is modeled after the upcoming
Euclid satellite galaxy survey [6]. When generating a large,
realistic, simulated spectroscopic dataset, we need to ensure
that it is representative of the expected quality of the Euclid
data. A first requirement is to have a realistic distribution of
galaxies in several photometric observational parameters.
We want the simulated data to follow representative red-
shift, color, magnitude and spectral type distributions. These
quantities depend on each other in intricate ways, and cor-
rectly capturing the correlations is important if we want to
have a realistic assessment of the accuracy of our proposed
method. To that end, we define a master catalog for the
analyses with the COSMOSSNAP simulation pipeline [49],
which calibrates property distributions with real data from
the COSMOS survey [50]. The generated COSMOS mock
Catalog (CMC) is based on the 30-band COSMOS photomet-
ric redshift catalogue with magnitudes, colors, shapes and
photometric redshifts for 538.000 galaxies on an effective
area of 1.24 deg2 in the sky, down to an i-band magnitude
of ∼ 24.5 [51]. The idea behind the simulation is to convert
these real properties into simulated properties. Based on
the fluxes of each galaxy, it is possible to select the best-
matching SED from a library of predefined spectroscopic
templates. With a “true” redshift and an SED associated
to each galaxy, any of their observational properties can
then be forward-simulated, ensuring that their properties
correspond to what is observed in the real Universe.

For the specific purposes of this analysis, we require re-
alistic SEDs and emission line strengths. Euclid will observe
approximately 50 million spectra in the wavelength range
11000 − 20000 Å with a mean resolution R = 250, where
R = λ

∆λ . To obtain realistic spectral templates, we start by
selecting a 50% random subset of the galaxies that are below
redshift z = 1 with Hα flux above 10−16 erg cm−2 s−1, and
bring them to rest-frame values (z = 0). We then resample
and integrate the flux of the best-fit SEDs at a resolution
of ∆λ = 5Å. This corresponds to R = λ

∆λ = 250 at

TABLE 1
Comparison of CPU & GPU training running time, in 3 different

benchmark experiments. In the 1st and the 2nd experiment, we utilize
40,000 and 400,000 training observations, of the idealistic case, in a
CNN with 1 Convolutional Layer. In the 3rd case, we deploy 40,000

realistic training examples for the training of a CNN with 3
Convolutional Layers.

Experiment # CPU Time (per epoch) GPU Time (per epoch)
1 75 sec. 11 sec.
2 735 sec. 107 sec.
3 158 sec. 20 sec.

an observed wavelength of 11000 Å, if interpreted in rest-
frame wavelength at z = 2. For the purpose of our analysis,
we will retain this choice, even though it implies higher
resolution at larger wavelengths. Lastly, we redshift the
SEDs to the expected Euclid range. In the particular case
where we wish to vary the number of training samples,
we generate more than one copy per rest-frame SED at
different random redshifts. We will refer to the resampled,
integrated, redshifted SEDs as “clean spectra” for the rest of
the analysis.

For each clean spectrum above, we generate a matched
noisy SED. The required sensitivity of the observations is de-
fined in terms of the significance of the detection of the Hα
Balmer transition line: an unresolved (i.e. sub-resolution)
Hα line of spectral density flux 3 × 10−16erg cm−2s−1 is
to be detected at 3.5σ above the noise in the measurement.
We create the noisy dataset by adding white Gaussian noise
such that the significance of the faintest detectable Hα
line, according to the criteria above, is 1σ. This does not
include all potential source of noise and contamination in
Euclid observations, such as dust emission from the galaxy
and line confusion from overlapping objects. We do not
include these effects as they depend on sky position and
galaxy clustering, which are not relevant to the assessment
of the efficiency and accuracy of redshift estimation. Our

Fig. 3. Accuracy plot for the Training & Cross-Validation Sets, for 1,2
& 3 Convolutional Layers. The x-axis corresponds to the number of
executed epochs. In all cases we used the same 400,000 Training
Examples.
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Fig. 4. Classification accuracy achieved by a CNN with one (left) and three (right) Convolutional Layers. The given scatter plots illustrate points in 2D
space that correspond to the true class for each testing observation versus the predicted outcome of the corresponding classifier for that observation.

choice of Gaussian noise models other realistic effects of
the observations, including noise from sources such as the
detector read-out, photon counts and intrinsic galaxy flux
variations.

5 EXPERIMENTAL ANALYSIS AND DISCUSSION

We implemented our Deep Learning model with the help of
TensorFlow [52] and Keras [53] libraries, in Python code.
TensorFlow is an open-source, general-purpose Machine
Learning framework for numerical computations, using
data flow graphs, developed by Google. Keras is a higher
level Deep Learning-specific library, capable of utilizing
TensorFlow as a backend engine, with support and frequent
updates on most state-of-the-art Deep Learning models
and algorithms. Both TensorFlow and Keras have the sig-
nificant advantage that they can run calculations on the
GPU, dramatically decreasing the computational time of the
network’s training, as depicted in Table 1. For the purpose
of our experiments we used NVIDIA’s GPU model, GeForce
GTX 750 Ti.

As initial pre-experiments have shown, desirable values
for the network’s different hyperparameters are a kernel size
of 8, a number of filters equal to 16 (per convolutional layer)
and a stride equal to 1. Additionally, the Adagrad optimizer
[54] has been employed for training, a Gradient Descent-
based algorithm with an adaptable learning rate capability.
The utilization of Adagrad can grant the network a bigger
flexibility in the learning process, while at the same time it
can become exempt from adjusting to an extra hyperparam-
eter. Finally, in both idealistic and realistic cases, a simple
normalization method has been used on all spectral profiles,
to ensure their numerical compatibility with the CNN, while
preserving their initial structure and integrity. The method
is depicted in Equation 3, where Xmax corresponds to the
maximum spectral density flux value encountered in all

examples (in absolute terms, given the noisy case), and
Xoriginal is the initial value for each feature:

Xnormalized =
Xoriginal

2×Xmax
(3)

5.1 Idealistic observations

5.1.1 Impact of the Network’s Depth

Our initial experiments revolve around the depth of the
Convolutional Neural Network. We have used a fixed num-
ber of 400,000 training examples, 10,000 validation and
10,000 testing examples. Our aim is to examine the impact
of increasing the depth of the model, on the final predictive
outcome. Specifically, we have trained and evaluated CNNs
with 1,2 & 3 Convolutional Layers. In all cases, a final Fully-
Connected Layer with 800 output neurons has been used
for classification.

The metric of accuracy (correctly classified samples over
the total number of samples) is the conventional way to
measure the performance of a trained classifier during and
after the training process. As the training goes by, we expect
that the parameters of the network will start to adapt to
the problem at hand, thus decreasing the total loss defined
by the cost function with a consequent improvement on the
accuracy percentage. In Figure 3, we support this presump-
tion by demonstrating the accuracy’s rate of change over the
number of training epochs. It can be easily derived that as
a CNN becomes deeper, it is clearly more capable to form a
reliable solution. Both 2 and 3-layered networks converge
very fast and very close to the optimal case, with the
latter narrowly resulting in the best accuracy. On the other
hand, the shallowest network is very slow and significantly
underperforms compared to the deeper architectures.

More information can be deduced in Figure 4, where we
compare for the shallowest and for the deepest case, and per
testing example, the predicted redshift value outputed by
the trained classifier versus the state-of-nature. Ideally, we
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Fig. 5. Training & Cross-Validation accuracy, for 1,2 & 3 Convolutional
Layers, using a significantly decreased amount of training observations
(40,000). Overfitting is introduced, to various extents, based on each
case.

Fig. 6. The effects of regularization in a case where overfitting is
introduced. For a dataset with 40,000 training observations and a CNN
with 3 Convolutional Layers, we illustrate a best-case training accuracy
(purple), that can eventually reach a 100%, versus the Cross-Validation
performance with or without the utilization of a regularizer.

want all the green dots depicted in each plot to fall upon the
diagonal red line that splits the plane in half, meaning that
all predicted outcomes coincide with the true values. As the
green dots move farther away from the diagonal, the impact
of the faulty predictions become more significant leading
to the so called catastrophic outliers. A good estimator is
characterized, not only by its ability to procure the best
accuracy, but also by its capacity to diminish such extreme
irregularities.

5.1.2 Data-Driven Analysis

In this setting, we will explore the significance of broad
data availability in the overall performance of the proposed
model. As mentioned before, Big Data have revolutionized
the way Artificial Neural Networks perform [20], serving as
the main fuel for their conspicuous achievements. Figure 5

illustrates the behavior of the same network variations as
in previous experiments (1, 2 and 3 Convolutional Layers),
using this time a notably more constrained, in size, training
set of observations compared to the previous case. Specif-
ically, we have lowered the number of training examples
from 400,000 to 40,000, namely to one-tenth. Compared to
the results we have previously examined in Figure 3, we
can evidently identify a huge gap between the performance
of identical architectures trained with copious versus more
limited amounts of data. It is adequately obvious that in
all three cases overfitting is introduced, to various extents,
leading to overoptimistic models that perform well in the
training set, but with a decaying performance on the valida-
tion and the testing examples.

Figure 6 demonstrates a characteristic scenario where the
impact of the utilized regularizers is evaluated. Given that
the deepest architecture with the 3 Convolutional Layers
suffers the most from the effects of overfitting, we choose
to present a best-case training accuracy for the 3-layered
case, and for 40,000 training examples, versus the validation
accuracy of the same architecture with and without the
adoption of a regularizer. Even though both Batch Normal-
ization and Dropout significantly improve the performance
of the model, converging at the same time on proximal
solutions, still, they fail to achieve a flawless performance
compared to the training best-case. Regarding the Dropout
parameter p, extensive experiments have shown that an
approximate value of 0.5 resulted in the best performance.
The contribution of lower values of p is less drastic, given
that the decreased percentage of dropped neuronal units
entails a smaller impact on the decrease of the network’s
total number of parameters. On the other hand, higher
values of p (> 0.7) have the exact opposite effect, leading to
an excessive elimination of units and parameters, rendering
the network less effective in the end.

As a final step, we want to preserve the network’s
structural and hyperparametric characteristics immutable,
whereas altering the amount of training observations uti-
lized in each experimental recurrence. We have deployed a

Fig. 7. Validation performance of a 3-layered network, using larger and
more limited in size datasets. In all cases the training accuracy (not
depicted here) can asymptotically reach 100% accuracy, after enough
epochs.
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Fig. 8. Performance of a 3-Layered network trained with 400,000 training
examples. In the first plot, we compare the cases where the redshift
estimation problem is transformed into a classification task, with the use
of 800 versus 1600 classes. In the second plot, we present the scatter
plot of the predicted result versus the state-of-nature of the testing
samples, only for the case of 1600 total classes.

scaling number of training examples beginning from 40,000
observations, then to 100,000 and finally to 200,000 and
400,000 observations and we have used them to train a 3-
layered CNN (3 Convolutional + 1 Fully-Connected Layers)
without regularization, in all cases. As shown in Figure 7,
while we increase the exploited amount of data, the curve
of the validation accuracy also increases in a smoother
and steeper pace until convergence. On the contrary, when
we use less data, the line becomes more unstable with a
delayed convergence and a poorer final performance. It
is very important to state, that despite the fact that the
training accuracy can asymptotically reach, in all cases,
100% accuracy after enough epochs, the same doesn’t apply
for the validation accuracy (and respectively for the testing
accuracy) with the phenomenon of overfitting taking its toll,
mostly in the cases where the volume of the training data is
not enough to handle the complexity of the network, failing
to generalize in the long term.

5.1.3 Tolerance on Extreme Cases
Before advancing to noise-afflicted spectral profiles it is
worthsome to investigate some extreme cases, concerning

two astrophysical-related aspects of the data. As previously
presented, one of our main novelties lies in the realization of
the redshift estimation task as a classification task, guided
by the specific redshift resolution that Euclid can achieve,
and leading to the categorization of all possible detectable
redshifts into 1 of 800 possible classes. As a first approach,
we want to extend our working resolution to a double
precision (from 0.001 to 0.0005), meaning that the existing
redshift range of [1, 1.8) will be split into 1600 classes instead
of 800.

As observed in Figure 8, doubling the total number of
possible classes has a non-critical impact in the predictive
capabilities of our approach, given the fact that at conver-
gence, the model results in a similar outcome for the two
cases. Despite the fact that doubling the classes leads to
a slower convergence, a behavior that can be attributed
to the drastical increase of the parameters of the fully-
connected layer, the network is still adequate enough to
estimate successfully, in the long term, the redshift of new
observations. Furthermore, as depicted in the scatter plot of
the same figure, we can deduce that increasing the predic-
tive resolution of the CNN, can lead to an increase in the
total robustness of the model against catastrophic outliers,
given the fact that none of the misclassified observations in
the testing set, exists far from the diagonal red line, namely
the optimal error-free case.

In our second approach, we want to challenge the net-
work’s predictive capabilities, when presented with lower-
dimensional data, and to essentially define which is the
turning point where the abstraction of information becomes
more of a strain, rather than a benefit. Having to deal with
data that exist in high-dimensional spaces (like in the case
of Euclid) can become more of a burden, rather than a
blessing, as described by Richard Bellman [55] with the
introduction of the very well-known term of the “curse
of dimensionality”. In our case, data dimensionality can
be derived by splitting the operating wavelength of the
deployed instrument into bins, where each bin corresponds
to the spectral density flux value of the wavelength range it

Fig. 9. Validation performance of a 3-Layered network trained with
400,000 training examples. We want to examine the behavior of the
model, when trained with data of reduced dimensionalities.
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Fig. 10. Comparison of the model’s performance, trained with clean and
with noisy data (400,000 in both cases). The 3-layered neural network
utilizes the same hyperparameters in both cases, without any form of
regularization.

describes. Euclid operates in the range of 1.1− 2.0µm with
a bin size of ∆λ = 5Å, which implies 1800 different bins
per observation. To reduce that number, we need to increase
the wavelength range per bin by merging it with neighbor-
ing cells, namely by adding together their corresponding
spectral density flux values. Essentially, we can assert that
by lowering the dimensionality of data in this way, we can
accomplish to concentrate existing information in cells of
compressed knowledge, rather than discarding redundant
information.

Figure 9, actually supports our claim, leading to the
conclusion, that when dealing with clean data, cutting down
the number of total wavelength bins into more manageable
numbers can result not only in an congruent performance
with the initial model, but also into a faster convergence. On
the other hand, oversimplifying the model can be deemed
inefficacious, if we take into account the decline of the
achieved accuracy in the three lower-dimensional cases. A
moderate decline in the performance becomes visible in the
case of 225 bins, with a more aggressive degeneration of the
model in the rest of the cases.

5.2 Realistic observations

Having to deal with idealistic data presumes the ambitious
scenario of a reliable denoising technique for the spectra,
prior the estimation phase. Although successful methods
have been developed in the past [56], [57], our main aim
is to integrate implicitly the denoising operation in the
training of the CNN, meaning that the network should learn
to distinguish the noise from the relevant information by
itself, without depending on a third party. This way, an
autonomous system can be established with a considerable
robustness against noise, a strong feature extractor and,
essentially, a reliable predictive competence. To that end, we
have directly used noisy observations (described in Section
4) as the training input of the deployed CNNs.

A comparison between the idealistic and the realistic
scenarios constitutes the first step that will lead to an initial

realization of the difficulty of our newly set objective. In the
illustrated Figure 10, we observe that training a noise-based
model with a number of observations that has proven to be
sufficient in the clean-based case, leads to an exaggerated
performance during the training process, that doesn’t ap-
ply to newly observed spectra, thus leading to overfitting.
Clean data are notably simpler in structure than their noisy
counterparts, which in their turn are excessively diverge,
meaning that generalization in the latter case is seemingly
more difficult. The main intuition to battle this phenomenon
lies in drastically increasing the spectral observations used
in training. Feeding the network with bigger volumes of
data can mitigate the effects of overfitting, given the fact
that, despite it creates a specialized solution fitted for the
set of observed spectra, this set tends to become so large
that it befits the general case. This intuition is strongly
supported by Figure 11, where we compare the performance
of identical models when trained with different-sized sets.
Preserving constant hyperparameters and not utilizing any
form of regularization, we can derive that just by increasing
in bulk the total amount of data, the network’s general-
ization capabilities also increase in a scalable way. Finally,
the new difficulties established by the noisy scenario, also
become highly apparent while observing the results of Fig-
ure 12. The drastical increase in the number of misclassified
samples is more than obvious, subsequently leading to an
abrupt rise in the amount and variety of the different catas-
trophic outliers. Nevertheless, the faulty predictions that lie
approximate to the corresponding ground truths constitute
the majority of the mispredictions, as verified by the highly
populated green mass around the diagonal red line in the
scatter plots, and the highest bar column bordering the zero
value in the case of the histograms.

5.2.1 Impact of Regularization
The effects of regularization are illustrated in Figure 13, in
two different settings, one with a Training Set of 400,000
examples and another with a Training Set of 4,000,000 exam-
ples. For Batch Normalization, we inserted an extra Batch-
Normalization Layer after each Convolutional Layer (and

Fig. 11. Accuracy on the Validation Set for different sizes of the Training
Set (realistic case). No regularization has been used.
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Fig. 12. Classification scatter plots and histograms for the realistic case, for 3-layered networks trained with 400,000 Training Examples (column a)
and 4,000,000 Training Examples (column b). The depicted histograms represent the actual difference in distance (positive or negative) between
misclassified estimated redshifts and their corresponding ground truth value versus the frequency of occurrence, in logarithmic scale, for each case.

after ReLU). Although in literature [48], the use of Batch
Normalization is proposed before the non-linearity, in our
case extensive experimental results suggested otherwise.
The operation of Dropout was utilized only in the Fully-
Connected Layer. It is important to note that it can be also
included in the Convolutional Layers, but our experimen-
tal efforts did not demonstrate a mentionable change in
the final performance of the network when Dropout was
introduced in all of its layers. Given that the vast majority
of the network’s trainable parameters is concentrated in the
Fully-Connected Layer, it is expected that the employment
of Dropout in this layer will be of a significantly greater
impact compared to its adoption in the Convolutional
Layers. Moreover, regarding the Dropout parameter p, an
intermediate value of 0.5 appeared to yield the optimal
solution compared to lower or larger values, in accordance
with the elaborated intuition presented in Section 5.1.2 for
the idealistic case.

As depicted in both examined plots of Figure 13,
Dropout (p = 0.5) can moderately help enhance the net-
work’s performance in the validation set, leading to an
increase in the accuracy by ~1.5% in the best case and ~0.5%
in the worst case, compared to the scenario where no regu-
larization is used. On the other hand, Batch Normalization
appears to have a bigger regularizing effect in improving the
accuracy of the employed model, resulting in a notable in-
crease by almost 10% in the validation set when trained with
400,000 training examples, but also in a significantly lower
gain of ~2% when the training observations are 4,000,000. In
the latter case, even though Batch Normalization still leads
to the best performance, its difference compared to Dropout
has clearly diminished. Finally, we can observe that as the
number of initial training examples increases, the impact of
the utilization of a regularizing technique is mitigated. Even
though, most of the times, a carefully chosen regularizer can
meaningfully help battle the phenomenon of overfitting, an
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Fig. 13. Impact of regularization in the validation performance, in regard
with the size of the employed training set. In the upper plot, a network
trained with 400,000 observations is illustrated, while in the lower plot
4,000,000 training examples have been utilized. In all examined cases,
the training accuracy (not depicted here) can asymptotically reach 100%
accuracy in less than 50 epochs.

abundant increase in the number of training examples is a
necessity if we want the testing performance to approach
the ideal 100% accuracy.

5.3 Comparison With Other Classifiers

In this subsection, we present a comparison between the
best-case performance of the proposed CNN and the per-
formance of other popular classifiers, namely k Nearest
Neighbours (kNN) [58], Random Forests [59] and Support
Vector Machines (SVM) [60]. The bar plots in Figure 14
corroborate the claim that Convolutional Neural Networks
reign supreme as the most effective algorithm for the issue
at hand, in all the cases that have been examined.

Starting with kNN, a best-case choice for the hyperpa-
rameter of k materialized in the case of k = 1. Greater
values for k (≥ 3) resulted in a noteworthy decrease in
the performance, for both idealistic and realistic cases, all
leading to similar accuracies. Furthermore, it is important
to state that the utilization of typical distance functions
such as the Euclidean and the Manhattan, resulted in an

inferior performance compared to the optimal and reported
choice of the Chebyshev distance (max

i
(|xi − yi|), where

x, y are different galaxy spectral profiles). This behavior
can be clearly attributed to the fact that for the distinction
between two different redshift states, we exclusively care
about the relative bin position of the characteristic emission
and absorption lines (most importantly the Hα line) of
two spectra, potentially ignoring the flux values of bins
that do not encode peaks for neither spectra. Given that in
Chebyshev we preserve only the maximum of distances be-
tween corresponding bin values of pairs of observations, we
expect that observations of equivalent redshifts will consist
of peaks in concurring wavelength bins leading, essentially,
to small maxima. On the other hand, for spectral profiles
with different redshifts, the existence of a peak for one of the
spectra implies the absence of a peak in the same bin for the
other, resulting in a high-valued distance associated with the
bin and, ultimately, in a larger maximum. Finally, the abrupt
decrease in the performance of kNN in the case of realistic
examples can be potentially justified by taking into account

Fig. 14. Comparison bar plots for the k Nearest Neighbours, Random
Forests, Support Vector Machines and Convolutional Neural Networks
algorithms. For each classifier, we present the best-case performance
on the test set, in both idealistic and realistic cases, when trained with a
limited and with an increased amount of training data.
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(a) Clean Redshifted Spectral Profile (b) Activation of 1st Conv. Layer (c) Activation of 3rd Conv. Layer

Fig. 15. A random Testing Example (clean case) and the corresponding activations of the 1st and the 3rd Convolutional Layers.

(a) Noisy Redshifted Spectral Profile (b) Activation of 1st Conv. Layer (c) Activation of 3rd Conv. Layer

Fig. 16. A random Testing Example (noisy case) and the corresponding activations of the 1st and the 3rd Convolutional Layers.

the diversity of the noise-afflicted spectra. The concealment
of the significant emission and absorption lines due to the
noise, in conjunction with the lack of a feature extractor, can
consequently lead to severe under-performance issues.

In the case of Random Forests, our experimental findings
unveiled an approximate value of 100 to be the optimal
choice for the number of trained estimators. Larger values
resulted in a significant increase in the computational time-
complexity of the model without an additional increase
in its accuracy. On the other hand, considerably smaller
values were proved to be insufficient leading to a fairly
poorer performance. Another significant observation, that
can be deduced from the results in Figure 14, lies in the sur-
prisingly underachieving overall performance of Random
Forests in both realistic and idealistic scenarios. By default,
the algorithm of Decision Trees [61], and by extension that of
the Random Forests, constructs its decision choices based on
the values of the different attributes. This is an undesirable
property in the case of redshift estimation, given that the
categorization of each galaxy profile in its respective redshift
class is not based on the sheer amplitude of the different
attribute values (i.e. the values of each bin) per se, but on
the relative values between neighboring wavelength bins,
in such a manner, that will conclude to the presence of
peaks. The existence of such a peak, in a wavelength bin
with a certain flux value for a spectral observation might
not necessarily imply the existence of another peak, in the
same bin for a different observation with an equivalent flux

value.
Lastly, the main competitor of Convolutional Neural

Networks in both idealistic and realistic scenarios stands
in the case of the Support Vector Machines. SVMs are
considered to be highly performing and computationally
efficient classifiers, which however, are mostly suited for
binary classification problems or in cases where the total
amount of distinct classes is limited. Regarding the prob-
lem of spectroscopic redshift estimation, even though the
adopted best-case SVM can conclude to rather satisfying
results, the proposed utilization of 800 different redshift
classes renders its use as computationally inexpedient. With
such an overwhelming amount of possible classes to predict,
either techniques of “one-vs-rest” [62] and “one-vs-one”
multi-class classification require the need of training 800
and (800 × 799 / 2) = 319,600 individual classifiers respec-
tively, leading to a computational time-complexity that is
considerably greater compared to that of the proposed CNN
(which, at the same time, performs better than the SVM). As
a final note, exhaustive tuning for the different hyperparam-
eters of SVM suggested the utilization of a Gaussian Radial
Basis Function (RBF) kernel, in combination with a penalty
parameter C of 108 and a kernel coefficient γ of 10−1.

5.4 Intermediate Representations

In this section, we will briefly examine the undergoing
transformation of the input data, as they flow deeper into
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Fig. 17. The different levels of confidence associated with each prediction (and derived by softmax) on the Testing Set. The middle plot depicts
the cumulative occurrences per level of confidence, for the idealistic and the realistic case. For example, the y-axis value that corresponds to the
x-value of 0.4 represents the number of testing observations that obtain a predictive output for the dominant class, which is less than or equal to
a probability of 0.4. The dominant class refers to the class with the highest probability output and might not necessarily be the ground-truth class.
Additionally, the left (idealistic case) and right (realistic case) histograms exhibit a similar scenario, but not in a cumulative form and in a logarithmic
scale for the number of occurrences.

the network. As discussed in previous sections, Convo-
lutional Neural Networks are excellent feature extractors,
able to distill significant knowledge from raw input data
even when partially afflicted with different levels of noise.
The hierarchical intermediate representations that a well-
trained CNN can construct are able to capture complex
and important spatial correlations of the given input. The
information extracted by the convolutional operations can,
then, be furtherly processed and examined in the Fully-
Connected Layer and in association with the anticipated
target class, which in the case of training is the state-of-
nature.

In essence, a galaxy spectral profile can be inherently
modeled as the combination of three fundamental compo-
nents, emission and absorption lines (peaks), the spectral
continuum and noise. The line information can be further
decomposed taking into account their unique characteris-
tics, such as shapes, heights and grouping. Excluding the
noise component, which is later introduced in the case
of the realistic scenario, we can clearly observe in the
illustrated Figure 15 that the salient effect of randomly
chosen filters of the adopted network’s initial and latter
Convolutional Layers is the gradual removal of the spectral
continuum. The elimination of the continuum is a key step
in most existing spectroscopic redshift analyses [19], [56],
[63], [64], given that distinguishing the various emission
and absorption lines, their magnitudes and their relative
positions, constitutes a stronger constraint for the task at
hand, compared to identifying the shape of the continuum.
By preserving the aformentioned characteristics, the con-
volutional feature extractor of the CNN can pave the way
for the Fully-Connected Layer to process and exploit only
the significant information encapsulated in the initial input,
minus the distraction caused by irrelevant features. The
introduction of mirror amplitudes in the depicted Figure
15, that usually extend to the negative half-plane in the
case of the final Convolutional Layer, cannot be deemed of
significant importance given their immediate attenuation, or
even complete nullification, by the succeeding ReLU.

With the inclusion of the noise scenario, we are engaged

with new intricate challenges, given that the majority of
the characteristic spectral lines of a galaxy profile can be
obscured by the added noise or, in a worse case, false noise
lines can be introduced. Thus, the emergence of high levels
of noise can prevent the detection of existing true features
or, on the other hand, it can lead to an identification of
noise features, mistaken for true spectral lines. In an attempt
to address this phenomena and try to separate the wheat
from the chaff, we can observe in the depicted Figure 16,
that even though the outright removal of the interfering
noise may not be easily achievable, given the low signal-
to-noise ratio of the observed spectrum, nevertheless, the
adopted CNN is able to perform a partial denoising of the
examined spectral profile, gradually isolating the desired
true peaks from the faulty discontinuities. As the number
of the identified peaks improves and the mitigation of noise
leads to a progressive increase in the network’s certainty
that they are not a fabrication of the contamination of noise,
all the more we can ascertain that its predicted estimations
will eventually become more credible.

5.5 Levels of Confidence
The transformation of the redshift estimation problem from
a regression to a classification procedure, apart from en-
abling the utilization of a potent deep learning classifier,
it also provides the benefit of associating each estimation
with a level of confidence of the network’s certainty that the
predicted outcome corresponds to the true redshift value.
In an ideal case, not only the network would deduce all
the correct predictions during inference, but it would do
so with a 100% probability output for the state-of-nature of
each testing observation, versus a 0% for the remainder of
the classes. In a more tangible scenario, we would expect
that the network would suffer from an inconsequential
amount of faulty predictions and, at the same time, it would
associate strong and confident probabilities with the correct,
congruent to the ground-truth, predictions and negligible
probabilities with the remaining classes.

A characteristic example of the derived levels of confi-
dence for the best-case CNNs in the idealistic and realis-
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tic scenarios is illustrated in Figure 17. It is important to
note that the reported results correspond to the predicted
dominant class for each testing observation, with the term
dominant referring to the class with the highest probability
output, not necessarily being the ground-truth class. In the
idealistic case, we can observe that the employed CNN is
highly confident about the validity of its predictions leading
to a very steep cumulative curve in the transition from
the 90% probability to 100%. As also verified by the cor-
responding histogram, most predictions are associated with
a very high probability that lies in the range of [0.9, 1], with
a significantly decreased frequency of occurrences as the
levels of confidence drop. This is a very desirable property,
given the fact that we want the network to be certain about
its designated choice, leading to concrete estimations that
are not subject to dispute. Considering that the best-case
CNN can achieve an accuracy percentage of 99.8% in the
Testing Set, which in turn consists of 10,000 samples, we can
infer that in the low-confidence domain of [0, 0.5) mostly lie
the cases where the model misclassifies (as also verified by
manual inspection).

The addition of noise in the realistic scenario can un-
doubtedly complicate the efforts for reliable and confident
predictions, given the transition from clear and easily dis-
tinguishable features, to obscured physical lines and falsely
introduced peaks. Figure 17 validates the assumption of
an expected significant decrease in the confidence of the
adopted network, but nevertheless, we can ascertain that
the predicted probabilities that lie in the high confidence
domain of [0.5, 1] still remain dominant in quantity com-
pared to the less confident examples. Given the test ac-
curacy percentage of 81.3% of the best-case CNN, we can
safely infer that the majority of tentative predictions mainly
corresponds to misclassified low-SNR observations where
a reliable distinction between true physical lines and their
spurious noisy counterparts is fairly improbable, despite the
attempts of the network to extract relevant representations.
On the other hand, predictions that lie in the intermediate
or the highest confidence domains account for adequately
denoised spectral observations where the mitigation of noise
has resulted in a, more or less, reliable discrimination be-
tween significant and counterfeit features, in accordance to
what has already been discussed in Section 5.4.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed an alternative solution for the
task of spectroscopic redshift estimation with its transfor-
mation from a regression to a classification problem. We
adopted a variation of the typical architecture of an Artificial
Neural Network, commonly known as a Convolutional
Neural Network, and we thoroughly examined its estimat-
ing capabilities for the issue at hand in various settings. We
did so, using big volumes of training observations that fall
into the category of the so called Big Data. Experimental
results unveiled the great potential of this radically new
approach in the field of spectroscopic redshift analysis and
triggered the need for a deeper study concerning Euclid and
other spectroscopic surveys.

To that end, our future work will be concentrated in the
following research efforts. In the case of Euclid observations,

some new noise patterns can be introduced that will com-
plement the existing realistic noise-scenario. Additionally,
a multimodal architecture can be established [65], able to
derive aggregated knowledge from both photometric (im-
ages) and spectroscopic (spectral profiles) modalities of the
different Euclid instruments. Moreover, newly developed
and advanced deep learning architectures can be adopted
(e.g. DenseNet [66]), customized for the 1-Dimensional case.
Our end and foremost goal is the development of a pre-
trained robust predictive model, built with a vast amount of
simulated realistic observations. Subsequently, the extracted
knowledge from this massive dataset can be reused and
enhanced, by exploiting a significantly smaller dataset of
real Euclid-collected labeled observations for the re-training
and fine-tuning of the pre-trained model. Eventually, this
optimized model can be employed as an automated means
to effectively address the task of redshift estimation on
future incoming and unlabeled Euclid observations. As a
final note, another potential avenue of applications involves
other spectroscopic surveys. The Dark Energy Spectroscopic
Instrument (DESI) [67] is one of the major upcoming cosmo-
logical surveys currently under construction and installation
in Kitt Peak, Arizona. It will operate in different wave-
lengths and under different observational and instrumental
conditions compared to Euclid, and consequently will be
able to detect galaxies with different redshift properties.
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