
J. Chem. Phys. 153, 164105 (2020); https://doi.org/10.1063/5.0022244 153, 164105

© 2020 Author(s).

Notes on density matrix perturbation
theory
Cite as: J. Chem. Phys. 153, 164105 (2020); https://doi.org/10.1063/5.0022244
Submitted: 20 July 2020 . Accepted: 25 September 2020 . Published Online: 23 October 2020

 Lionel A. Truflandier, Rivo M. Dianzinga, and  David R. Bowler

ARTICLES YOU MAY BE INTERESTED IN

A self-consistent field formulation of excited state mean field theory
The Journal of Chemical Physics 153, 164108 (2020); https://doi.org/10.1063/5.0019557

Electronic structure software
The Journal of Chemical Physics 153, 070401 (2020); https://doi.org/10.1063/5.0023185

Quadratically convergent self-consistent field of projected Hartree–Fock
The Journal of Chemical Physics 153, 164103 (2020); https://doi.org/10.1063/5.0025280

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=520068618&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ef8cbc4e6c7bdea76ed070ff9a0f40a647457a8b&location=
https://doi.org/10.1063/5.0022244
https://doi.org/10.1063/5.0022244
http://orcid.org/0000-0002-3348-3569
https://aip.scitation.org/author/Truflandier%2C+Lionel+A
https://aip.scitation.org/author/Dianzinga%2C+Rivo+M
http://orcid.org/0000-0001-7853-1520
https://aip.scitation.org/author/Bowler%2C+David+R
https://doi.org/10.1063/5.0022244
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0022244
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0022244&domain=aip.scitation.org&date_stamp=2020-10-23
https://aip.scitation.org/doi/10.1063/5.0019557
https://doi.org/10.1063/5.0019557
https://aip.scitation.org/doi/10.1063/5.0023185
https://doi.org/10.1063/5.0023185
https://aip.scitation.org/doi/10.1063/5.0025280
https://doi.org/10.1063/5.0025280


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Notes on density matrix perturbation theory

Cite as: J. Chem. Phys. 153, 164105 (2020); doi: 10.1063/5.0022244
Submitted: 20 July 2020 • Accepted: 25 September 2020 •
Published Online: 23 October 2020

Lionel A. Truflandier,1,a) Rivo M. Dianzinga,1 and David R. Bowler2,3

AFFILIATIONS
1 Institut des Sciences Moléculaires (ISM), Université Bordeaux, CNRS UMR 5255, 351 cours de la Libération,
33405 Talence Cedex, France

2London Centre for Nanotechnology, UCL, 17-19 Gordon St., LondonWC1H 0AH, United Kingdom
and Department of Physics and Astronomy, UCL, Gower St., LondonWC1E 6BT, United Kingdom

3International Centre for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS),
1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

a)Author to whom correspondence should be addressed: lionel.truflandier@u-bordeaux.fr

ABSTRACT
Density matrix perturbation theory (DMPT) is known as a promising alternative to the Rayleigh–Schrödinger perturbation theory, in which
the sum-over-states (SOS) is replaced by algorithms with perturbed density matrices as the input variables. In this article, we formulate and
discuss three types of DMPT, with two of them based only on density matrices: the approach of Kussmann and Ochsenfeld [J. Chem. Phys.
127, 054103 (2007)] is reformulated via the Sylvester equation and the recursive DMPT of Niklasson and Challacombe [Phys. Rev. Lett. 92,
193001 (2004)] is extended to the hole-particle canonical purification (HPCP) from Truflandier et al. [J. Chem. Phys. 144, 091102 (2016)]. A
comparison of the computational performances shows that the aforementioned methods outperform the standard SOS. The HPCP-DMPT
demonstrates stable convergence profiles but at a higher computational cost when compared to the original recursive polynomial method.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022244., s

I. INTRODUCTION

Traditionally, analytical evaluation of the response of a system
to a perturbation is based on the Rayleigh–Schrödinger perturba-
tion theory (RSPT), taking the form of a sum-over-states (SOS) that
requires knowledge of the full set of eigenstates. Recent emerging
developments have seen the SOS replaced with the response equa-
tion, resolved using density matrices as the working variables along
with matrix–matrix multiplication-rich recursion algorithms such
as kernel polynomials.1 Working directly with density matrices is
of great interest since we can exploit their natural property of spar-
sity, which is the key point in designing linear scaling approaches
(though we leave the application of sparsity to this work to a future
publication). Another advantage is found in the fact that matrix–
matrix multiplication can be efficiently parallelized using message
passing interface (MPI) or optimized on graphical processing units
(GPUs).

The first applications of the RSPT to molecular-orbital (MO)
wave function-based self-consistent-field (SCF) methods were intro-
duced during the 1960s for the computation of molecular proper-
ties such as magnetic susceptibility,2 static polarizabilities, and force

constants,3,4 which are all related to second-order energy deriva-
tives through the calculation of the first-order change of the wave
functions with respect to the perturbation. Similar to the unper-
turbed case, variational solutions of the perturbed MOs are obtained
by solving the so-called coupled-perturbed self-consistent field
(CPSCF) equations.5–7 These early developments based on either
the perturbed molecular-orbitals or the mixed perturbed atomic-
orbitals/molecular-orbitals (AOs/MOs) were well known to involve
cumbersome, especially at that time, matrix transformations.8,9 In
1962, McWeeny had already introduced the elegant formalism of
the density matrix perturbation theory (DMPT)10,11, extended to
the CPSCF equations resolution by Diercksen and McWeeny12 for
the evaluation of π-electron polarizabilities using the Pariser–Parr–
Pople model.13–15 Note that the DMPT formulation of McWeeny
still required a SOS and, thus, the knowledge of the eigenstates. This
work has first inspired Moccia to generalize the McWeeny-CPSCF
equation resolution to the non-orthogonal basis.16,17 Perturbation-
dependent non-orthogonal basis implementation was then pro-
posed by Dodds, McWeeny, Sadlej, and Wolinski18–20 for the cal-
culation of atomic (hyper)-polarizabilities using the Hartree–Fock
method in conjunction with the Gaussian-type orbital basis sets. The
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advantages of McWeeny’s approach over AOs/MOs-CPSCF have
been clearly outlined, for instance, in the seminal article of Wolin-
ski, Hinton, and Pulay21 dealing with the calculation of magnetic
shieldings.

In comparison to the RSPT-SOS, density matrix based meth-
ods were introduced more recently, around the year 2000. Ochsen-
feld and Head-Gordon first reformulated the CPSCF equations in
terms of the density matrix only22 (referred to as D-CPSCF by
the authors) starting from the Li–Nunes–Vanderbilt (LNV) uncon-
strained energy functional,23 where the McWeeny purification poly-
nomial24,25 is used as the input density matrix. Later, Kussmann
and Ochsenfeld recognized the important deficiencies in this ini-
tial version, which were corrected for in the alternative derivation
in Refs. 26 and 27. Within the same spirit, Larsen et al.28 followed
by Coriani et al.29 have derived and implemented, respectively,
the response equations using the asymmetric Baker–Campbell–
Hausdorff expansion30 for the auxiliary density matrix. Within the
field of density matrix purifications, Niklasson, Weber, and Challa-
combe have introduced a recursive variant of the DMPT31–33 based
on the purification spectral projection method detailed in Ref. 34.
Whereas their theoretical framework is general, that is, any recursive
polynomial expansion respecting constraints imposed by the den-
sity matrix properties may be considered, only performances of the
second-order polynomial trace-correcting purification34 (TC2)—
also referred to as second-order spectral projection35,36—have been
investigated.37,38

Recently, we had introduced a Lagrangian formulation for the
constrained minimization of the N-representable density matrix39

based on the McWeeny idempotency error functional.24 Within
the canonical ensemble (NVT), this gave rise to a unique trace-
conserving recursive polynomial purification that can be recast in
terms of the hole-particle duality condition. The closed-form of this
hole-particle canonical purification (HPCP) makes it self-consistent,
that is, heuristic adjustment of the polynomial during the course
of the purification is not required. Moreover, providing an ade-
quate initial guess, the HPCP is variational and monotonically
convergent.39

Following the pioneer work of Niklasson and Challacombe,31

our current aim is to develop a robust and performant purifica-
tion based DMPT using the HPCP. In this paper, we are mainly
concerned to (i) review the SOS-McWeeny-DMPT, the Kuss-
mann and Ochsenfeld formulation of DMPT (later referred to
as Sylvester-DMPT, vide infra), and the purification-DMPT, (ii)
derive DMPT equations based on the HPCP density matrix ker-
nel using an orthogonal representation, and (iii) perform a fair
comparison of the computational efficiency of the aforementioned
methods.

II. THEORETICAL BACKGROUND
A. The one-electron density matrix

We consider an ensemble of fermions at the thermodynamical
equilibrium in the external potential created by the nuclei. Given a
set of N occupied states, whose wave function is written in the form
of a single determinant, the general expression for the spinless one-
particle density operator is

D̂ =∑
i
ρi∣ψi⟩⟨ψi∣, (1)

where {ρi} are the occupation numbers associated with the one-
electron states {ψi|⟨ψi|ψj⟩ = δij}, the latter being, for instance, eigen-
vectors of any one-electron model Hamiltonian in a tight-binding
approach or the Fock operator when dealing with a self-consistent
field method as found in the Hartree–Fock or Kohn–Sham mean-
field approximation. Hereafter, it shall be denoted by Ĥ, irrespective
of the approach. Given Ĥ for D̂ to describe a stationary state within
the NVT ensemble, the necessary and sufficient conditions are

[Ĥ, D̂] = 0, subject to (2a)

D̂ = D̂†, (2b)

0 ≤ ρi ≤ 1, (2c)

∑
i
ρi = N, (2d)

where [⋅, ⋅] is the usual symbol for the commutator of two opera-
tors. Note that the hermicity constraint in (2b) is already enforced
by definition (1). However, if we are interested in solving D̂ directly,
without the support of the eigenstates, this condition will have to be
imposed at the beginning and during the iterative resolution. As a
result, Eq. (2) mainly expresses that Ĥ and D̂ must share the same
eigenstates subject to the N-representability constraints, which are:
(i) no more than two electron can occupy a given state, assuming
spin paired electrons, (ii) the total number of electrons (2N) is fixed.
If now, we want to guarantee that D̂ corresponds to the ground
state, i.e., the lowest energy states are filled up to the Fermi level (ϵf)
and allows for fractional occupation around ϵf, we should combine
conditions (2) with the Fermi–Dirac (FD) distribution

D̂ = (I + eβ(Ĥ−μI)
)
−1

, (3)

where β = (kBT)−1 is the inverse electron temperature and the
chemical potential, μ, is chosen to conserve the number of elec-
trons. Note that definition (3) is a substitute for Eq. (1) if we want
to circumvent the explicit calculation of the eigenstates. The FD dis-
tribution also demonstrates that, for non-degenerate systems, there
exists a correspondence between the density and the Hamiltonian
operator. Unfortunately, its nonlinear character prevents a direct
resolution of D̂ in terms of Ĥ. This has motivated the introduction
of the density matrix polynomial expansion in the 1990s to resolve D̂
recursively with Ĥ as the input.40,41 In this work, we shall reduce the
theoretical framework to pure states where the occupation numbers
of the eigenstates are either 0 or 1. This leads to

D̂ = ∑
i∈occ
∣ψi⟩⟨ψi∣, (4)

where, compared to Eq. (1), the subset of occupied states is sufficient
to fully determine the one-particle density matrix. In that case, the
N-representability conditions of Eqs. (2c)–(2d) can be recast as

D̂ = D̂2, (5a)

Tr{D̂} = N, (5b)
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that is, the density matrix of the pure state is idempotent. The corre-
sponding ground-state is determined by the zero temperature limit
of Eq. (3),

D̂ = Θ(μI − Ĥ) with lim
T→0

μ = ϵf, (6)

with Θ the Heaviside step function. If we now consider a separa-
ble Hilbert space of dimension M (≥N) that admits an orthonormal
basis {ϕμ ∈ L2

∣⟨ϕμ∣ϕν⟩ = δμν}M
μ=1, the one-particle density operator of

Eq. (4) has the following matrix representation:

D = ∑
i∈occ

Pi with Pi = ci ⊗ ci, (7)

where {ci ∈ RM×1
∣c†i cj = δij}

N
i=1 are the column vectors con-

taining the expansion coefficients such that {∣ψi⟩ = ∑
M
μ cμi∣ϕμ⟩∣cμi

= ⟨ϕμ∣ψi⟩}
N
i=1, and {Pi ∈ RM×M

∣PiPj = Piδij, Tr{Pi} = 1}N
i=1 is the set

of N orthonormal projectors belonging to the subset of the occupied
states. At this stage, we shall introduce the one-hole density matrix
built from the subspace of the N̄ virtual (unoccupied) states,

D̄ = ∑
i∈virt

P̄i with P̄i = c̄i ⊗ c̄i, (8)

such that M = N̄ + N. Throughout the paper, quantities related
to those states will be indicated by a bar accent. Stationary one-
particle and one-hole density matrices must obey the two following
identities:

D + D̄ = I, (9)

DD̄ = 0, (10)

with I the identity matrix. As a result, it can be easily demonstrated
that the one-hole density matrix for a pure state obeys the same
properties as its one-particle equivalent, e.g., the idempotency and
trace conservation of Eq. (5).

B. One-electron density matrix perturbation theory
Let us now consider the perturbed one-particle density and the

Hamiltonian matrix Dλ and Hλ, respectively, where λ stands for any
time-independent perturbation. At the zero electronic temperature
limit, for Dλ to describe the perturbed stationary state corresponding
to the unperturbed ground state D, it must also obey the following
rules:

[Hλ, Dλ] = 0, subject to (11a)

Dλ = D†
λ , (11b)

Dλ = D2
λ, (11c)

Tr{Dλ} = N, (11d)

where Eqs. (11c) and (11d) stand for the N-representability con-
ditions. Note that (11b) will be enforced by construction (vide
infra). We shall expand the perturbed density and the Hamiltonian
matrix in a power series with respect to a perturbation parameter
(0 < λ ≤ 1),

Dλ = D(0) + λD(1) + λ2D(2) +⋯ + λkD(k), (12a)

Hλ = H(0) + λH(1) + λ2H(2) +⋯ + λkH(k), (12b)

where X(k) represents the kth-order change of the quantity X with
respect to λ; D(0)

≡ D and H(0)
≡ H are the unperturbed density and

the Hamiltonian matrix, respectively. Inserting expansion (12a) into
the N-representability constraints of Eqs. (11c) and (11d), and by
equating the perturbation orders, yields

D2
= D

subject to Tr{D} = N, (13a)

DD(1) + D(1)D = D(1)

subject to Tr{D(1)} = 0, (13b)

DD(2) + (D(1))2 + D(2)D = D(2),

subject to Tr{D(2)} = 0, (13c)

DD(3) + D(1)D(2) + D(2)D(1) + D(3)D = D(3)

subject to Tr{D(3)} = 0, (13d)

⋮

k

∑
l=0

D(l)D(k−l)
= D(k)

subject to Tr{D(k)} = 0. (13e)

Further repeating the perturbation identification by introducing
Eqs. (12a) and (12b) in the commutator of Eq. (11a), we obtain

[H, D] = 0, (14a)

[H, D(1)] + [H(1), D] = 0, (14b)

[H, D(2)] + [H(1), D(1)] + [H(2), D] = 0, (14c)

[H, D(3)] + [H(1), D(2)] + [H(2), D(1)] + [H(3), D] = 0, (14d)

⋮

k

∑
l=0
[H(l), D(k−l)

] = 0. (14e)

The generalized idempotency constraint of Eq. (13e) and the sta-
tionary condition of Eq. (14e) constitute the working equations for
developing the various forms of the density matrix perturbation
theory (DMPT), which are described in Secs. II C–II E.

The derivation of the expressions for the observable quantities
induced by perturbations as energy contributions in the power series
expansion Eλ = E(0) + λE(1) + λ2E(2) + ⋯ + λkE(k) can be found in
many text books and references.42,43 In the case of the tight-binding
method, the unperturbed one-electron energy (E(0)

≡ E) is simply

E = 2Tr{HD}. (15)
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By stopping at the first-order in the Hamiltonian expansion of
Eq. (12b), it can be shown that the corresponding energy corrections
for k > 0 are given by31

E(k+1)
=

2
k

Tr{H(1)D(k)}. (16)

Consequently, energy derivatives up to the order (k + 1) involves
knowledge of the density matrices up to the order k. A more pop-
ular approach,27,44–48 for computing energy derivatives for k > 2,
relies on the (2k + 1) Wigner rule, which states that E(2k+1) can be
obtained from the kth-order perturbed wave functions.42 It is note-
worthy that McWeeny et al.,10,12,18,19 later reported by Niklasson
et al.,31–33 have adapted the (2k + 1)th theorem to perturbed density
matrices as inputs, up to order 4 with respect to the energy, without
any support of the wave functions.

C. SOS-McWeeny-DMPT
The DMPT equations proposed by McWeeny involve the par-

titioning of D(k) into four distinct contributions and their resolu-
tions.10 Using the closure relation of Eq. (9), any matrix representa-
tion of the operator Ô can be expressed into the following projected
components:

O = Ooo + Oov + Ovo + Ovv (17)

with
Ooo = DOD

Ovv = D̄OD̄

Oov = DOD̄

Ovo = D̄OD.

The subscripts oo and vv designate the occupied–occupied and
virtual–virtual diagonal contributions, whereas ov and vo stand for
the non-diagonal occupied–virtual and virtual–occupied transition
terms. To the first order of perturbation, on applying the projection
decomposition of Eq. (17) to both sides of Eq. (13b),10 we obtain

2D(1)oo + D(1)ov + D(1)vo = D(1)oo + D(1)ov + D(1)vo + D(1)vv , (18)

where, by comparing terms of the left-hand and right-hand sides
(abbreviated as lhs and rhs, respectively, in the rest of the text), it
can be easily deduced that

D(1)oo = 0, D(1)vv = 0. (19)

As a result, the first-order perturbed density matrix is fully deter-
mined by the occupied–virtual transition matrix, such that

D(1) = D(1)ov + D(1)vo = D(1)ov + (D(1)ov )
† (20)

Resolving H(1) into four components using Eq. (17), we can search
for D(1)ov through Eq. (14b). After simplification, the following work-
ing equations are found:

H(1)ov = [H, D(1)ov ] and H(1)vo = [D
(1)
vo , H]. (21)

On recalling the Hermitian property of the unperturbed and per-
turbed Hamiltonian matrices, the lhs of Eq. (21) is found to be the

conjugate transpose of the rhs; then solving one of the two equations
is sufficient to evaluate the perturbed density matrix of Eq. (20).

The common Rayleigh–Schrödinger sum-over-states (SOS) is
recovered from Eq. (21), by applying the spectral resolution for the
non-perturbed Hamiltonian matrix according to

H = ∑
i∈occ

ϵiPi + ∑
j∈virt

ϵ̄jP̄j, (22)

where indices i and j run over the energy-weighted projectors for
the occupied and unoccupied space, respectively. On substitution of
Eq. (22) into Eq. (21), using the following identity:

Oov = ∑
i∈occ
∑

j∈virt
PiOP̄j, (23)

we obtain
∑

i∈occ
∑

j∈virt
(D(1)ov,ij(ϵi − ϵ̄j) −H(1)ov,ij) = 0, (24a)

with: D(1)ov,ij ∶= (PiD(1)P̄j) ∈ RM×M , (24b)

H(1)ov,ij ∶= (PiH(1)P̄j) ∈ RM×M . (24c)

This equation can be recast into the following SOS form:

D(1)ov = ∑
i∈occ
∑

j∈virt

H(1)ov,ij

ϵi − ϵ̄j
. (25)

Using definitions of the one-electron and one-hole projector,
Eqs. (7) and (8) respectively, the usual expression of the first-order
linear-response of the density matrix is recovered.12,16,18–21 In the
operator form, it gives

D̂(1) = ∑
i∈occ
∑

j∈virt

⟨ψi∣Ĥ(1)∣ψ̄j⟩

ϵi − ϵ̄j
∣ψi⟩⟨ψ̄j∣

+ conjugate transpose. (26)

Assuming that the sets of non-perturbed eigenvectors, {ψi}
N
i=1

and {ψ̄j}
N̄
j=1, are properly orthonormalized, then the fact that

Tr{∣ψi⟩⟨ψ̄j∣} = ⟨ψ̄j∣ψi⟩ = 0 ∀(i, j) guarantees the N-representability
conditions of Eqs. (13a) and (13b).

Derivation for the second- and third-order linear responses is
given in Appendix A. From here, we shall briefly review the gen-
eralized working equations needed for solving the density matrix
response at any order k > 1. The off-diagonal contributions are given
by

D(k)ov = ∑
i∈occ
∑

j∈virt

H(k)ov,ij −∑
k−1
l=1 [H

(l), D(k−l)
]ov,ij

ϵi − ϵ̄j
, (27)

=
k

∑
l=1
∑

i∈occ
∑

j∈virt

[D(k−l), H(l)]ov,ij

ϵi − ϵ̄j
. (28)

In the operator form, it gives

D̂(k)ov =
k

∑
l=1
∑

i∈occ
∑

j∈virt

⟨ψi∣[D̂(k−l), Ĥ(l)]∣ψ̄j⟩

ϵi − ϵ̄j
∣ψi⟩⟨ψ̄j∣. (29)
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The diagonal terms are given by

D(k)oo = −D(
k−1

∑
l=1

D(l)D(k−l)
)D, (30)

D(k)vv = +D̄(
k−1

∑
l=1

D(l)D(k−l)
)D̄. (31)

Again here, given a set of orthonormalized non-perturbed eigen-
vectors, it is easy to show that Tr{D(k)ov } = 0 = Tr{D(k)oo + D(k)vv },
ensuring the respect of the generalized perturbed N-representability
conditions of Eq. (13e). Note that for a Hamiltonian perturbation
expansion up to the first order in Eq. (12b), only the commutator
[D(k−1), H(1)] survives in the∑l of Eq. (28).

Although McWeeny’s formulation of DMPT is based on the
density matrix, it still requires the knowledge of the unperturbed
eigenstates, which means that at least one Hamiltonian diagonaliza-
tion must be performed prior entering the DMPT resolution. As it
shall be shown below, there exist alternative solutions that allow us
to circumvent the expensive diagonalization step.

D. Sylvester-DMPT
As in the unperturbed case, to completely bypass the calculation

of the eigenstates when solving the DMPT equations, an objective
functional with perturbed density matrices as the degree of freedom
has to be defined and minimized without the support of the spectral
decomposition (22). In this respect, Ochsenfeld and Head-Gordon
have proposed to extend the LNV functional23 minimization prin-
ciple to DMPT.22 Later, Kussmann and Ochsenfeld reformulated
the working equations to cure for numerical instabilities.26,49 The
approach relies on solving Eq. (14e) subject to commuting with the
unperturbed density matrix. For instance, at the first order of per-
turbation, on multiplying Eq. (14b) from the left and from the right
by D separately, and substracting, we obtain50

[H, [D, D(1)]] + [D(1), [D, H]] + [D, [H(1), D]] = 0. (32)

Since we assume that the exact zero-order density matrix is known,
the second term in Eq. (32) vanishes. By noting that

[D, [H(1), D]] = 2DH(1)D − {D2, H(1)}, (33)

with {⋅, ⋅} the symbol for the anticommutator of two operators, then
Eq. (32) simplifies to

[H, [D, D(1)]] = {D, H(1)} − 2DH(1)D. (34)

A practical form for solving Eq. (34) is obtained by expanding the
commutators of the lhs. Using the identity of Eq. (13b) yields

(2HD −H)D(1) + D(1)(2DH −H) = {D, H(1)} − 2DH(1)D, (35)

which can be identified as being a Sylvester-like equation of the kind
AX + XB = C,51,52 where B ∶= At , and X ∶= D(1) is the unknown to
solve for.53 It is worthwhile to note that on multiplying Eq. (34) from
the left by D, from the right by D̄, and conversely by D̄ on the left
and D on the right, Eq. (21) is recovered. By induction, the DMPT

Eq. (35) can be generalized to any order k > 1, with the kth-order
transition matrix D(k) solution of

[H, [D, D(k)]] = {D, H(k)} − 2DH(k)D

+
k−1

∑
l=1
[D, [D(k−l), H(l)]]. (36)

As for the first order, by expanding the commutators and using the
identity of Eq. (13e), we found

(2HD −H)D(k) + D(k)(2DH −H)

= {D, H(k)} − 2DH(k)D +
k−1

∑
l=1
[D, [D(k−l), H(l)]]

− {D(l)D(k−l), H}. (37)

Assuming that all the lower order (up to k − 1) perturbed density
matrices are known on the rhs of the equation, then D(k) on the lhs
can be found by solving the Sylvester equation

AX + XAt
= C, (38)

where (A, X, C) ∈ RM×M are the square matrices. The fixed matrix
A corresponds to (2HD − H) and the fixed matrix C is given by the
rhs of Eq. (37). In this work, the algorithm of Bartels and Stewart54

(BS) shall be used to solve Eq. (38). Alternatives to the BS algo-
rithm are envisageable by vectorizing Eq. (38), which transforms the
Sylvester equation to a standard linear system of equations. Among
the numerous iterative methods developed for solving the linear
system of equations,55 the conjugate-gradient (CG) minimization
is one the most efficient,56 especially for large scale problems pre-
senting a sparsity pattern. After a set of trials on model systems (cf.
Sec. III), we found that the BS algorithm was more efficient than CG
minimization.

Note that the CG method is also a popular alternative to iter-
ative diagonalizations, e.g., the Davidson method,57 when it is suf-
ficient to access the partial set of the M̃ lowest energy eigenstates,
with N ≤ M̃ < M, as, for instance, for the non-vanishing band
gap system, where only the subset of occupied states are required
to build D in Eq. (4). This fact is exploited by iterative diagonal-
izations when the number of basis functions exceeds by far N, the
typical case being the plane wave (PW) basis set. For insulators, the
approximate first N lowest eigenstates in some Krylov subspace of H
suffices to achieve the desired accuracy.58,59 In this context, band-
by-band (also called state-by-state) CG algorithms (BB-CG),59–62

which basically perform sequential CG minimizations under some
orthonormalization constraints, have also proved to be a valuable
alternative.63

The BB-CG method is one of the ingredients of the PW-based
(density functional) perturbation theory.64–67 In contrast to the
McWeeny-DMPT, which requires the knowledge of the full eigen-
spectrum of H, it is possible to compute any of the kth-order den-
sity matrix, using the sole information available from the occupied
eigenstates. This constitutes the framework of the high-order DMPT
introduced by Lazzeri and Mauri.68,69 The strong overlap existing
between this approach, the McWeeny- and the Sylvester-DMPT is
discussed in Appendix B.
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E. Purification-DMPT
A powerful alternative to the McWeeny- and Sylvester-DMPT

resides in the density matrix purification method,70 which, at
the zero order, given the unperturbed Hamiltonian matrix, con-
sists of finding the corresponding ground state density matrix by
approaching the Heaviside step function of Eq. (6) using a polyno-
mial recursion. Within the canonical ensemble, it can be formally
expressed as

D0 =LP(H;{N, . . .}), (39a)

Dn+1 =FP(Dn;{N, . . .}), (39b)

such that D∞ = lim
n→∞

Dn, (39c)

where D0, Dn+1, and D∞ designate the initial, the (n + 1)-iterate, and
the converged density matrix, respectively. The polynomial recur-
sive sequence is initiated by a linear mapping (39a), where the func-
tion LP rescales, shifts, and reverses the eigenspectrum of H into the
proper interval for occupation numbers, i.e., ∀ i: ρi ∈ [0, 1]. In that
case, the initial guess, D0, represents some ground state in the sense
of Eq. (1). Then, by applying recursively the polynomial function,
FP, the degenerate sets of N and N̄ eigenvalues of Dn associated
with the occupied and virtual subspaces are progressively brought
toward 1 and 0, respectively. These subsets will be symbolized by
{o} ≡ {ρi∣ limn→∞ ρi = 1}N

i=1 and{v} ≡ {ρi∣ limn→∞ ρi = 0}M
i=N+1.

At convergence, D = D∞ such that D fulfills the N-representability
conditions (5) and the ground-state occupation (6) at T = 0, without
prior knowledge of the chemical potential.

In this work, we have considered two different purification
schemes, the second-order trace-correcting (TC2) purification,34

later rebaptized the second-order spectral projection,35 and the
trace-conserving hole-particle canonical purification (HPCP)39. The
original TC2 recursive polynomial32,34 is given by

FTC2(Dn;{N}) = Dn + 2(Θ(ΔNn) −
1
2
)DnD̄n, (40a)

with ΔNn = N − Tr{Dn}

such that lim
n→∞

ΔNn = 0 (40b)

and Θ(x) = {
0 if x ≤ 0
1 if x > 0,

(40c)

along with the following initialization mapping:

LTC2(H) =
ϵ̃maxI −H
ϵ̃max − ϵ̃min

. (41)

In the above equation,(ϵ̃min, ϵ̃max) are the approximated values of the
lower and upper bounds of the Hamiltonian matrix eigenspectrum
(ϵmin, ϵmax), respectively. They can be easily estimated, i.e., without
the support of iterative diagonalization, from the Geršgorin’s disk
theorem71 with the following convenient properties: ϵ̃min < ϵmin
andϵ̃max > ϵmax. It should be emphasized that the initial guess gen-
erated from Eq. (41) is not N-representable since Tr{D0} is not con-
strained to be equal to N, indeed it must not be. As evidenced by
Eq. (40c), the TC2 purification is to be regarded as a discontinuous
self-mapping of Dn, where the sign72 of the deviation of Tr{Dn} with

respect to N dictates the polynomial to apply at iteration n + 1. If at
the current state, Tr{Dn} < N, all the occupation numbers, but those
already trapped at the fixed points 0 and 1, will be moved (at dif-
ferent rates; the closer to 1/2 the faster) toward the turning point xp
= 1. Conversely, for Tr{Dn} > N, the occupation numbers are moved
toward xp̄ = 0. In principle, the recursive sequence should be ter-
minated when |ΔNn| or/and another relevant convergence criteria
is/are below some threshold value,70 e.g., ∥DnD̄n∥. As a matter of
fact, the Heaviside singularity, especially for vanishing-gap systems,
may pose some difficulties in achieving proper convergence, since in
definition (40c) there is no fixed midpoint for Θ(x = 0). It is likely
the cause of numerical instabilities when approaching convergence.
In this respect, to cure the possible issues of the TC2 purification,
several refinements of Eq. (40b), and the expression of the stop-
ping criteria, have been proposed.35,36,70 These refinements, which
are more substantial when sparse linear algebra is applied,32,33,38 can
lead to a significant increase of the algorithmic complexity.73,74

Instead of applying a global upward or downward shift to all
the non-converged {ρi}, one can seek to simultaneously operate on
{o} and {v} during the polynomial recursion. The easiest way is to
increase the polynomial degree from 2 to 3, in order to introduce
an inflexion point, xflex ∈ ]0, 1[ , separating the two subsets. For
instance, assuming a symmetric model, when half of the available
states are occupied, i.e., the filling factor θ = N/M equals 1/2, and the
chemical potential is at the midpoint of [ϵmin, ϵmax], xflex = 1/2 is the
optimal position. In this case, all the ρi ∈ {o} verifying ρi > xflex are
pushed toward 1, whereas at the same time, all the ρi ∈ {v} verifying
ρi < xflex are pushed toward 0. By recognizing the constant 1/2 in
Eq. (40a) as xflex, and on substituting Θ by D in the same equation,
it is intuitively easy enough to see that the resulting polynomial of
degree 3 fulfills the requirements stated above. When compared to
the TC2 polynomial, both xp and xp̄ are now stable fixed points, and
more importantly, the iterative mapping is continuous. Actually, it
does correspond to the well-known McWeeny recursive sequence,24

FMcW(Dn) = Dn + 2(Dn −
1
2

I)DnD̄n

= 3D2
n − 2D3

n. (42)

Unfortunately, in the general case, unconstrained application of
Eq. (42) is likely to deliver D∞ verifying Eq. (2c) but with Tr{D∞}
≠ N, especially when θ is far from 1/2. Given any (H, N, M), if we
search for generalizations of the McWeeny purification, two dif-
ficulties must be addressed: (i) how to dynamically adapt xflex to
non-symmetric {ρi} distributions while maintaining the two stable
(un)fixed points (nearby) at 0 and 1; (ii) how to ensure that the con-
verged density matrix is N-representable? Although they are not all
mandatory, we can consider three constraints under which the prob-
lem shall be solved: (a) no a priori information on the structure of H
eigenspectrum nor on some of the interior eigenvalues is required,
(b) the highest polynomial degree is 3, and (c) the recursive mapping
must remain continuous. A first solution was brought by Palser and
Manolopoulos (PM) in their NVT version of the McWeeny purifi-
cation.75 Recently, by solving a constrained optimization problem
dealing with the idempotency error minimization of D,39 we found
that the PM polynomial could be significantly simplified and acceler-
ated through the hole-particle duality.76 The resulting hole-particle
canonical purification (HPCP) polynomial39 is given by
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FHPCP(Dn) = Dn + 2(Dn − cnI)DnD̄n, (43a)

with cn =
Tr{D2

nD̄n}

Tr{DnD̄n}
(43b)

such that lim
n→∞

cn =
1
2

, (43c)

with the linear mapping function

LHPCP(H;{N, M,α}) = (αβmin + (1 − α)βmax)

×(μ̃F −H) + θF, (44a)

with μ̃ =
Tr{H}

M
, (44b)

βmin = min(
θ

ϵ̃max − μ̃
,

1 − θ
μ̃ − ϵ̃min

), (44c)

βmax = max(
θ

ϵ̃max − μ̃
,

1 − θ
μ̃ − ϵ̃min

), (44d)

where α is the mixing parameter that can be optimized with respect
to θ.39 For the numerical experiments presented in Sec. III, α
shall be fixed to 1/2. As in the original McWeeny purification, the
HPCP polynomial presents an unstable fixed point, cn, which in
the present case, modulates the position of xflex and enforces the
correction term on the rhs of Eq. (43) to be traceless. Provided a
N-representable D0 using Eq. (44), the HPCP is capable of con-
verging self-consistently to the ground-state density matrix while
verifying the N-representability conditions throughout the purifica-
tion process. Note that when approaching convergence, it can be
shown75 that cn → 1/2. Nevertheless, in this regime, the numera-
tor and denominator of Eq. (43c) tend to zero. As a result, to avoid
numerical instabilities related to floating-point round-off, it is safer
to fix cn to 1/2 at the very late stage of the purification.

It must be stressed that the TC2 and HPCP methods are very
distinct in their NVT minimization principle. For the HPCP, N is
kept fixed while T is implicitly minimized, to zero for non-vanishing
band-gap system, whereas for the TC2 purification, T is implicitly
fixed to zero, and N is perturbatively optimized around the target
value, resulting in very different convergence profiles regarding, for
instance, monotonicity and variational properties (vide infra).

It is rather remarkable that the perturbed density matrices
involved in the power series of Dλ can also be determined by a
straight application of the polynomial recursive sequence (39) with
Hλ as the input.31 The perturbed analog of Eq. (39) is formally
written as

initialisation:

⎛
⎜
⎜
⎜
⎜
⎝

D(0)0
D(1)0
⋮

D(k)0

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

L
(0)

P (H(0))
L
(1)

P (H(1))
⋮

L
(k)

P (H(k))

⎞
⎟
⎟
⎟
⎟
⎠

, (45a)

recursion:

⎛
⎜
⎜
⎜
⎜
⎝

D(0)n+1
D(1)n+1
⋮

D(k)n+1

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

F
(0)

P (D(0)n )

F
(1)

P (D(0)n , D(1)n )

⋮

F
(k)

P (D(0)n , D(1)n , . . .D(k)n )

⎞
⎟
⎟
⎟
⎟
⎠

, (45b)

such that: :

D∞, D(1)∞ , . . . , D(k)∞ ∶= lim
n→∞
(Dn, D(1)n , . . . , D(k)n ), (45c)

where L
(0)

P and F
(0)

P correspond to the unperturbed linear map-
ping and recursive polynomial as introduced in Eqs. (39a) and (39b),
respectively. Equation (45) outlines that, provided some set of 0-to-
k order Hamiltonian matrices to initialize the 0-to-k order density
matrices, repeated application of the k-perturbed recursive sequence
delivers better estimates of the (k + 1) input quantities by propa-
gating the perturbed purification. Note that the evaluation of the
higher order perturbed term does not involve prior exact knowledge
of the lower orders, not even the exact unperturbed density matrix;
instead, all the orders are resolved on-the-fly. Compared to the stan-
dard approaches, e.g., the McWeeny- and Sylvester-DMPT that are
based on solving order-by-order (k + 1)-sets of linear equations with
D(k) as unknown, the purification-DMPT performs the resolution of
one unique nonlinear equation with (k + 1) unknowns. In order to
avoid heavy notations, the (k + 1)-dimension of the inputs and out-
puts in Eq. (45) will be simplified by retaining only the k-order term
in the function argument and value, respectively.

By substituting Eq. (12b) into Eq. (41) and Eq. (12a) into Eq.
(40a), equating the perturbation orders, the k-perturbed component
of the TC2 recursive sequence37 is written as

L
(k>0)

TC2 (H
(k)
) = −

H(k)

ϵ̃max − ϵ̃min
, (46a)

F
(k)

TC2(D
(k)
n ;{N}) = D(k)n + 2(Θ(ΔNn) −

1
2
)

k

∑
l=0

D(l)n D̄(k−l)
n . (46b)

By referring to Eq. (13), it is easily seen that the sum over the per-
turbed hole-particle density matrix product appearing on the rhs of
Eq. (46b) corresponds to the error in the idempotency (noted ΔD(k)

below). On remembering that D̄(0) = I −D(0) and D̄(k>0)
= −D(k>0),

such that, at iterate n,

ΔD(0)n = Dn −D2
n, (47a)

ΔD(1)n = D(1)n − (DnD(1)n + D(1)n Dn), (47b)

ΔD(2)n = D(2)n − (DnD(2)n + (D(1)n )
2 + D(2)n Dn), (47c)

⋮

ΔD(k)n = D(k)n −
k

∑
l=0

D(l)n D(k−l)
n , (47d)

we obtain the more compact TC2 perturbed recursion formula

D(k)n+1
TC2
= D(k)n + 2(Θ(ΔNn) −

1
2
)ΔD(k)n . (48)

By proceeding the same way with the hole-particle canonical purifi-
cation initialization and recursive polynomial [Eqs. (44) and (43),
respectively], the k-perturbed component of the HPCP recursive
sequence is written as

L
(k>0)

HPCP (H
(k);{N}) = −(αβmin + (1 − α)βmax)H(k), (49a)
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F
(k)

HPCP(D
(k)
n ) = D(k)n + 2

k

∑
l=0

×(
l

∑
m=0

D(m)n D(l−m)
n − cnD(l)n )D̄(k−l)

n . (49b)

Using definition (47), after some rearrangement, we find

D(k)n+1
HPCP
= D(k)n + 2(Dn − cnI)ΔD(k)n + 2

k−1

∑
l=0

D(k−l)
n ΔD(l)n . (50)

It should be stressed that since the unstable fixed-point in Eq. (50)
depends on the unperturbed density matrix, resolving D(k) order-
by-order is not possible with the current formalism. A full decou-
pling of the perturbed purification would require to establish and
solve a constrained optimization problem as in Ref. 39, with the k-
order perturbed idempotency relations (13) as the main ingredient
for the quadratic functional form to minimize. This possibility shall
be addressed in a further study.

Comparing Eq. (50) to Eq. (48), it is clear that the perturbed
HPCP approach involves additional correction terms in the poly-
nomial expansion, increasing its computational complexity with
respect to the perturbed TC2. Looking at the most computationally
demanding task,77 i.e., the number of matrix multiplications (MMs),
which in both cases increases linearly with the perturbation order, it
is found that the perturbed HPCP requires nearly three times more
MMs than the perturbed TC2.78 This is balanced out by the rate of
convergence, which, as in the unperturbed case, is linear for the TC2,
but quadratic for the HPCP.

III. EXAMPLES AND PERFORMANCES
To illustrate the perturbation-based DMPT, we have consid-

ered two examples taken from the π-bonding perturbation in Hückel
theory.79 Our aim here is to test the purification approaches, in
terms of both stability and convergence. The first one consists of
decomposing the Hückel matrix of the benzene molecule into (i)
a non-perturbed Hamiltonian containing the matrix elements of
the butadiene and ethylene subunits and (ii) a first-order perturbed
Hamiltonian associated with their coupling. The decomposition is
explicitly given as

Hλ(benzene) = H(0) + λH(1)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α β 0 0 0 0
β α β 0 0 0
0 β α β 0 0
0 0 β α 0 0
0 0 0 0 α β
0 0 0 0 β α

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ λ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 β
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 β 0
0 0 0 β 0 0
β 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where α and β are the usual symbols for the carbon Coulomb and
resonance integrals, respectively. We note that in this example the
perturbation matrix is purely non-diagonal. For the second exam-
ple, we have chosen the Hückel matrix of the pyridine molecule for
which one of the sp2-C in benzene is substituted by a sp2-N atom.
Considering the benzene Hückel matrix as the zero-order Hamilto-
nian, the perturbation matrix contains the variation of the Coulomb
(Δα) and resonance (Δβ) integrals related to the nitrogen/carbon

substitution. The corresponding total Hamiltonian is written as

Hλ(pyridine) = H(0) + λH(1)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α β 0 0 0 β
β α β 0 0 0
0 β α β 0 0
0 0 β α β 0
0 0 0 β α β
β 0 0 0 β α

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ λ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Δα Δβ 0 0 0 Δβ
Δβ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Δβ 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with, for nitrogen, the following parameters: Δα = β/2 and Δβ
= −0.2β. For numerical experiments, we set α and β to −11.400 and
−2.568 eV, respectively. Stopping criteria for purification was based
on the norm of the unperturbed density matrix iterates such that
the purification process was stopped for∥Dn+1 − Dn∥F < 10−12. Fur-
ther tests were performed on the Frobenius norms and traces of all
the perturbed density matrices to ensure full convergence at all the
orders.

In both examples, the perturbation series is expected to con-
verge such that, by setting λ = 1, the sum over the perturbed den-
sities in Eq. (12a) converges toward the exact density matrix Dλ as
obtained from the full Hamiltonian Hλ; obtained, for instance, by
diagonalizing Hλ and summing over the N occupied states as in
Eq. (4). The same way, the sum over the perturbed energies, Epert

= ∑kE(k), computed from Eq. (16) must converge toward the exact
reference value, Eexact = 2Tr{HλDλ}. This is demonstrated for ben-
zene and pyridine in Figs. 1(a) and 2(a), respectively, where Eexact −

Epert are plotted as a function of the number of perturbation terms
entering in∑kE(k), up to k = 20. For benzene, we note that for sym-
metry reason, only even orders contribute to Epert. At k = 20, for
benzene, we found that Epert is converged to within 5 meV for Eexact
= −88.9440 eV, compared to a much faster convergence for pyri-
dine with the same level of convergence reach at k = 3, with Eexact
= −85.1005 eV. On the same figures (y-right axis) are also reported
the norms of the density matrices ∥D(k)∞ ∥ as a function of k, which
confirm the faster convergence of the π-bonding perturbation in
pyridine.

We emphasize that identical results were obtained with the ref-
erence McWeeny- and Sylvester-DMPT. Considering the benzene
perturbation series at higher order, reliability of the purification-
based DMPT starts to degrade for k > 55 using HPCP compared to
k > 17 for TC2. This trend has been confirmed for other systems
and π-bonding perturbations (not shown here), indicating that the
HPCP purification is more stable than TC2 when increasing the per-
turbation order. This could be related to the ill-definition of the
stopping criteria of TC2, becoming a very sensitive parameter in the
extreme conditions of very high perturbation order. Nevertheless,
this has a weak interest in practical applications since they generally
do not require a perturbed density matrix higher than order 3.

Evolution of the density matrices (up to order 3) during the
purification process is plotted in Figs. 1 and 2, panels (b) for the
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FIG. 1. Perturbation series for π-bonding in benzene using perturbed Hückel matrices (see text for details). (a) Convergence of the perturbed energy and Frobenius norm
of the corresponding perturbed density matrices using purification-DMPT. The convergence of the unperturbed and the first three perturbed density matrices during the
purification cycles are presented in terms of their traces (b) and their norms (c), for both the TC2 and HPCP polynomials.

trace and (c) for the norm. First, in both cases, the convergence
of the HPCP-DMPT is achieved in fewer iterations compared to
TC2 as expected from the convergence profile of the two poly-
nomials (quadratic vs linear, respectively). The property of trace-
conservation of the zero-order density matrix fulfilled by the HPCP

is apparent from these figures. In this respect, the TC2 polyno-
mial demonstrates an erratic behavior with strong oscillations at the
beginning of the purification. These oscillations remain present at
higher order, especially when looking to the pyridine case. We note
that the zero-trace conservation of D(1) and D(3) observed with both

FIG. 2. Perturbation series for π-bonding in pyridine (see text for details). (a) Convergence of the perturbed energy and the Frobenius norm of the corresponding perturbed
density matrices using purification-DMPT. The convergence of the unperturbed and the first three perturbed density matrices during the purification cycles are presented in
terms of their traces (b) and their norms (c), for both the TC2 and HPCP polynomials.
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polynomials for the case of benzene should not be overinterpreted
since they are merely related to the symmetry of the system. As a
matter of fact, for the more general case of pyridine, such property of
zero-trace conservation is not observed. We notice that the conver-
gence behavior of the HPCP polynomials is more smooth than TC2
with, after the first few steps a quasi-systematic monotonic approach
of the converged perturbed density matrix.

In order to compare the computational performances of the
purification, McWeeny and Sylvester DMPT, we have performed a
set of calculations on systems of increasing sizes. As for the pyridine
case, unperturbed Hückel matrices for aromatic hydrocarbons with
increasing ring size were generated along with first-order perturbed
Hamiltonians describing the substitution of one of the carbons by
a nitrogen atom. In Fig. 3, the central processing unit (CPU) time
spent to obtain the unperturbed and first-order perturbed density
matrices with respect to the size of the Hückel matrix is plotted. The
same tolerance parameter of ∥Dn+1 − Dn∥F < 10−12 was used for
purifications. We emphasize here that the McWeeny and Sylvester-
DMPT are direct methods such that provided the eigenstates (or
only the unperturbed density matrix for Sylvester-DMPT), the num-
ber of FLOPS to solve the DMPT equations is fixed by the size of
the problem M, whereas for purification-based methods the solu-
tions are found iteratively. In this case, the number of iterations
depends on the band-gap of the system,34,80 and for HPCP, to a lesser
extent, on the filling factor θ.39 In our example, ideal conditions
are fulfilled to minimize the number of purifications with θ = 1/2
and a large HOMO–LUMO gap when compared to the range of the
full eigenspectrum. Note that the size of the N-substituted aromatic
hydrocarbons does not impact the HOMO–LUMO gap, for which
we found, as for pyridine, that the density matrices are converged
after 9 and 17 purifications for HPCP and TC2, respectively, inde-
pendently of M. From Fig. 3, we note that the exact diagonalization
is more efficient than the purification methods to obtain the unper-
turbed density matrix. However, once we consider the perturbed
state, we observe a net benefit to solve the Sylvester-DMPT equations

FIG. 3. Scaling performance for the various methods to obtain D(0) and D(1) using
a benchmark of Hückel matrices of increasing size. Nonlinear fits of equation t
= αMβ are plotted with solid lines.

using the Bartels–Stewart algorithm compared to the sum-over-
states approach of McWeeny, which is expected to scale as O(M4)
and O(M3), respectively. Note that the effective scaling reported in
Fig. 3 is in good agreement with these expectations. If we now con-
sider purification methods, which also scales as O(M3), the compu-
tational performances are further improved. We stress that for very
low band gaps, these performances are expected to degrade with a
CPU time multiplied by a factor 5 at worst.39 Finally, it should be
mentioned that for purification-DMPT, the plots of Fig. 3 incorpo-
rate the calculation time for both D(0) and D(1) (since they cannot
be decoupled), whereas for direct methods the former has not been
included, increasing the interest for the TC2/HPCP DMPT. Com-
parison of the TC2 and HPCP shows that despite the more rapid
convergence of HPCP, TC2 presents better performances due to its
lower number of MMs, which is always (independently of the pertur-
bation order) more than twice less than the one of HPCP. Typically,
in our example, TC2 requires two MMs per iteration compared to
five for HPCP. However, HPCP requires twice less iterations.

IV. CONCLUSIONS AND PERSPECTIVES
In this work, we have reviewed three types of density matrix

perturbation theory with, for two of them, a resolution of the
perturbed density matrices without the support of the unper-
turbed eigenstates. These two methods, namely, the Sylvester- and
purification-DMPT, clearly demonstrate better computational per-
formances compared to the standard sum-over-states approach.
This indicates that the current response equation solver as imple-
mented in quantum chemistry codes can be significantly accelerated
using those two methods. We have also successfully extended the
recursive DMPT proposed by Niklasson and Challacombe to the
HPCP polynomial. Compared to TC2, the HPCP-DMPT shows a
better stability when approaching convergence, but remains more
expensive in terms of computational performance. We emphasize
that, under favorable conditions, i.e., for insulators with a filling
factor around 1/2, the TCP/HPCP-DMPT clearly outperforms the
other approaches. In the near future, we plan to implement the
Sylvester- and purification-DMPT using non-orthogonal and per-
turbation dependent basis set.32,33 Within the framework of lin-
ear scaling density functional theory as implemented in the CON-
QUEST code,81 this will allow for application to electric and mag-
netic response calculations at a linear scaling computational cost.

APPENDIX A: SOS-McWEENY DMPT: SECOND AND
THIRD ORDERS

The second-order equation can be derived by applying the res-
olution of identity to both side of Eq. (13c). Conserving notations of
Eq. (17), we obtain

2D(2)oo + D(2)ov + D(2)vo + (D(1)D(1))oo + (D(1)D(1))vv⋯

+ (D(1)D(1))ov + (D(1)D(1))vo

= D(2)oo + D(2)ov + D(2)vo + D(2)vv . (A1)

By resolving the product of first-order perturbed density matrices
according to
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D(1)D(1) = D(1)ID(1)

= D(1)(D + D̄)D(1)

= D(1)(D2 + D̄2
)D(1),

we obtain
(D(1)D(1))oo = D(1)oo D(1)oo + D(1)ov D(1)vo , (A2a)

(D(1)D(1))vv = D(1)vv D(1)vv + D(1)vo D(1)ov , (A2b)

(D(1)D(1))ov = D(1)ov D(1)vv + D(1)oo D(1)ov , (A2c)

(D(1)D(1))vo = D(1)vo D(1)oo + D(1)vv D(1)vo . (A2d)

On inserting the rhs of Eq. (A2) into (A1), and using the properties
of Eq. (19), we have

2D(2)oo + D(2)ov + D(2)vo + D(1)ov D(1)vo + D(1)vo D(1)ov

= D(2)oo + D(2)ov + D(2)vo + D(2)vv . (A3)

Therefore, we find
D(2)oo = −D(1)ov D(1)vo , (A4a)

D(2)vv = +D(1)vo D(1)ov . (A4b)

Unlike the first-order perturbation, the diagonal components of the
second-order perturbed density matrix are likely to be non-zero
and can be computed from the first-order perturbed density matrix.
Relying furthermore on the symmetry of the perturbed density, it
leaves only the occupied–virtual coupling block matrix to evaluate.
On resolving the second-order perturbed Hamiltonian matrix using
Eq. (14c), we obtain

H(2)ov = [H, D(2)ov ] + [H(1), D(1)]ov . (A5)

Using the spectral resolution of the non-perturbed Hamiltonian
matrix and the perturbed density matrix, Eq. (A5) transforms as

H(2)ov =∑
i,j
(D(2)ov,ij(ϵi − ϵ̄j) + [H(1), D(1)]ov,ij), (A6)

which leads to

D(2)ov =∑
i,j
(ϵi − ϵ̄j)

−1
(H(2)ov − [H

(1), D(1)]ov)
ij
. (A7)

The final second-order perturbed density matrix is obtained by sum-
ming over D(2)ov , its conjugate-transposed and the block-diagonal
contributions of Eq. (A4).

Using the same route, the third-order response equation can be
derived from Eq. (13d). This yields

2D(3)oo + D(3)ov + D(3)vo + (D(1)D(2))oo + (D(1)D(2))vv⋯

+ (D(1)D(2))ov + (D(1)D(2))vo⋯

+ (D(2)D(1))oo + (D(2)D(1))vv⋯

+ (D(2)D(1))ov + (D(2)D(1))vo

= D(3)oo + D(3)ov + D(3)vo + D(3)vv , (A8)

where
(D(1)D(2))oo = D(1)oo D(2)oo + D(1)ov D(2)vo , (A9a)

(D(1)D(2))vv = D(1)vv D(2)vv + D(1)vo D(2)ov , (A9b)

(D(1)D(2))ov = D(1)ov D(2)vv + D(1)oo D(2)ov , (A9c)

(D(1)D(2))vo = D(1)vo D(2)oo + D(1)vv D(2)vo , (A9d)

(D(2)D(1))oo = D(2)oo D(1)oo + D(2)ov D(1)vo , (A9e)

(D(2)D(1))vv = D(2)vv D(1)vv + D(2)vo D(1)ov , (A9f)

(D(2)D(1))ov = D(2)ov D(1)vv + D(2)oo D(1)ov , (A9g)

(D(2)D(1))vo = D(2)vo D(1)oo + D(2)vv D(1)vo . (A9h)

From Eqs. (19), (A4) and (A9), Eq. (A8) simplifies to

2D(3)oo + D(3)ov + D(3)vo + D(1)ov D(2)vo + D(2)ov D(1)vo ⋯

+ D(1)vo D(2)ov + D(2)vo D(1)ov

= D(3)oo + D(3)ov + D(3)vo + D(3)vv . (A10)

On identifying the lhs and rhs terms, it follows that

D(3)oo = −(D
(1)
ov D(2)vo + D(2)ov D(1)vo ), (A11a)

D(3)vv = +(D(1)vo D(2)ov + D(2)vo D(1)ov ). (A11b)

Again, the last equation shows that the diagonal components are
computed with the first and second-order perturbed density matri-
ces. At this point, we emphasize that only the occupied–virtual
transition matrix needs to be evaluated since the perturbed density
matrix is Hermitian.

Relying on the spectral resolution, the third-order perturbed
Hamiltonian matrix is given by

H(3)ov = [H, D(3)ov ] + [H(1), D(2)]ov + [H(2)D(1)]ov , (A12a)

=∑
i,j

D(3)ov,ij(ϵi − ϵ̄j)

×([H(1), D(2)]ov + [H(2)D(1)]ov)
ij
, (A12b)

which leads to

D(3)ov =∑
i,j
(ϵi − ϵ̄j)

−1

× (H(3)ov − [H
(1), D(2)]ov − [H(2), D(1)]ov)

ij
. (A13)

By summing over contributions of Eqs. (A11) and (A13) and its
conjugate-transposed, we obtain the third-order perturbed density
matrix. It is worth mentioning that the direct resolutions of the sec-
ond or third-order perturbed quantities implies prior knowledge of
the lower orders (first and second, respectively), in such a way that,
whatever is the order to be resolved, i.e., Eqs. (A11) and (A13) on
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one side or Eqs. (A4)–(A7) on the other side, both cases are involved
to solve for the linear-response of the order (k − 1) to obtain the per-
turbed quantities at the order k. Eventually, by mathematical induc-
tion, it is straightforward to generalize these working equations to
any order k, as introduced in Eqs. (27)–(31).

APPENDIX B: ALTERNATIVE FORMULATION OF DMPT
In this appendix, we shall show that the plane wave-based

DMPT introduced by Lazzeri and Mauri69 is closely related to the
atomic-orbital based DMPT method of Kussmann and Ochsen-
feld26,27 (and by extension the Sylvester-DMPT), both relying on the
CG minimization. Hereafter, they will be referred to as PW-DMPT
and AO-DMPT, respectively.

As discussed in Sec. II D, employing a PW basis set with
MPW ≫ N constrains us to use iterative diagonalization, where,
for an insulator, the N first (lowest) eigenstates, {ϵi,ψi}

N
i∈occ, nec-

essary and sufficient to obtain the unperturbed ground-state, can
be determined with a satisfying accuracy. Here, we will assume the
linear-DMPT regime: in order to determine the kth-order perturbed
density, all the preceding orders, up to (k − 1), are known. As a
result, for a PW basis set, at the zero order, the unperturbed den-
sity matrix, D(0)

≡ D, can be resolved in terms of the occupied
states following Eq. (4), and knowing only the occupied eigenstates,
the unperturbed Hamiltonian matrix, H(0)

≡ H, can be formally
expressed as

H = ∑
i∈occ
∣ψi⟩ϵi⟨ψi∣ + D̄HD̄, (B1)

recalling that, from the closure relation of Eq. (9), D̄ = I − D.
Within the framework of the AO-DMPT method, the k-order per-
turbed density matrix, D(k), is found as a solution of the following
equation:

[D,
k

∑
l=0
[H(l), D(k−l)

]] = 0. (B2)

It must be emphasized that, in comparison to the McWeeny-DMPT
and Eq. (22), or the PW-DMPT and Eq. (B1), the resolution of the
AO-DMPT equation is free of any intermediate spectral resolution
of the unperturbed Hamiltonian matrix. Indeed, the PW-DMPT
may be viewed as an intermediate strategy between the former and
the later, where Eq. (B2) is decomposed to perform an occupied-
perturbed state-by-state resolution.69 For instance, by applying to
Eq. (B2) the identity [D, O] = DOD̄ − D̄OD, and projecting to the
right on |ψi⟩ with i ∈ occ, we find

D̄
k

∑
l=0
[H(l), D(k−l)

]∣ψi⟩ = 0. (B3)

By extracting the terms containing the kth-order density matrix
from the sum, and by reordering, it appears

(D̄HD(k) − D̄D(k)H)∣ψi⟩ = −
k

∑
l=1

D̄[H(l), D(k−l)
]∣ψi⟩. (B4)

On substitution of the expression of H from Eq. (B1) into Eq. (B4),
and recalling that, at the zero temperature limit, the converged
ground-state one-electron and one-hole density matrices must

respect the idempotency and the stationary conditions of Eqs. (13a)
and (14a), respectively, we arrive at

(HD̄D(k) − D̄D(k)ϵi)∣ψi⟩ = −
k

∑
l=1

D̄[H(l), D(k−l)
]∣ψi⟩. (B5)

Complying with the notations of Ref. 69 by introducing

∣η(k)i ⟩ = D̄D(k)∣ψi⟩, (B6a)

such that D(k)vo = ∑
i∈occ
∣η(k)i ⟩⟨ψi∣, (B6b)

we recover Eq. (13) of the article, that is,

(H − Iϵi)∣η(k)i ⟩ = −
k

∑
l=1

D̄[H(l), D(k−l)
]∣ψi⟩. (B7)

In the interests of completeness, the SOS Eq. (29) can be found back
by further resolving the full spectrum of H. By using Eq. (22), along
with the resolution of identity (9), the rhs of Eq. (B7) transforms as

(H − ϵiI)∣η(k)i ⟩ = ∑
i′∈occ
∣ψi′⟩(ϵi′ − ϵi)⟨ψi′ ∣η(k)i ⟩

+ ∑
j′∈virt
∣ψ̄j′⟩(ϵ̄j′ − ϵi)⟨ψ̄j′ ∣η(k)i ⟩. (B8)

By remarking that (i) ⟨ψi′ ∣η(k)i ⟩ = 0 ∀i′ and (ii)⟨ψ̄j′ ∣η(k)i ⟩

= ⟨ψ̄j′ ∣D(k)∣ψi⟩, we found that Eq. (B8) simplifies to

(H − ϵiI)∣η(k)i ⟩ = ∑
j∈virt
∣ψ̄j⟩(ϵ̄j − ϵi)⟨ψ̄j∣D(k)∣ψi⟩. (B9)

Inserting the above on the lhs of Eq. (B7) and resolving the one-hole
density matrix of the rhs, we have

∑
j∈virt
(ϵ̄j − ϵi)∣ψ̄j⟩⟨ψ̄j∣D(k)∣ψi⟩

=
k

∑
l=1
∑

j∈virt
∣ψ̄j⟩⟨ψ̄j∣[D(k−l), H(l)]∣ψi⟩, (B10)

which further gives the analytical expression of ∣η(k)i ⟩with respect to
the lower order perturbed density matrices,

∣η(k)i ⟩ =
k

∑
l=1
∑

j∈virt

⟨ψ̄j∣[D(k−l), H(l)]∣ψi⟩

ϵ̄j − ϵi
∣ψ̄j⟩. (B11)

Following definitions (B6), by summing over the N perturbed pro-
jectors, this yields the kth virtual–occupied transition matrix

D(k)vo =
k

∑
l=1
∑

i∈occ
∑

j∈virt

⟨ψ̄j∣[D(k−l), H(l)]∣ψi⟩

ϵ̄j − ϵi
∣ψ̄j⟩⟨ψi∣, (B12)

which is the conjugate transpose of the McWeeny Eq. (29). Note
that, for k > 1, the remaining occupied–occupied and virtual–
virtual components necessary to build the full kth-order matrix, i.e.,
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D(k) = D(k)ov + D(k)vo + D(k)oo + D(k)vv , can be easily computed from the
lowest orders using Eqs. (30) and (31).
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