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Abstract

Progressive diseases worsen over time
and are characterised by monotonic
change in features that track disease
progression. Here we connect ideas
from two formerly separate methodolo-
gies – event-based and hidden Markov
modelling – to derive a new genera-
tive model of disease progression. Our
model can uniquely infer the most
likely group-level sequence and timing
of events (natural history) from lim-
ited datasets. Moreover, it can infer
and predict individual-level trajectories
(prognosis) even when data are miss-
ing, giving it high clinical utility. Here
we derive the model and provide an in-
ference scheme based on the expecta-
tion maximisation algorithm. We use
clinical, imaging and biofluid data from
the Alzheimer’s Disease Neuroimaging
Initiative to demonstrate the validity
and utility of our model. First, we
train our model to uncover a new group-
level sequence of feature changes in
Alzheimer’s disease over a period of
∼17.3 years. Next, we demonstrate that
our model provides improved utility
over a continuous time hidden Markov
model by area under the receiver op-
erator characteristic curve ∼0.23. Fi-
nally, we demonstrate that our model
maintains predictive accuracy with up
to 50% missing data. These results sup-
port the clinical validity of our model
and its broader utility in resource-
limited medical applications.

1. Introduction

Progressive diseases such as Alzheimer’s dis-
ease (AD) are characterised by monotonic
deterioration in functional, cognitive and
physical abilities over a period of years to
decades Masters et al. (2015). AD has a long
prodromal phase before symptoms become
manifest (∼20 years), which presents an op-
portunity for therapeutic intervention if indi-
viduals can be identified at an early stage in
their disease trajectory Dubois et al. (2016).
Clinical trials for disease-modifying therapies
in AD would also benefit from methods that
can stratify participants, both in terms of
individual-level disease stage and rate of pro-
gression Cummings et al. (2019).

Data-driven models of disease progression
can be used to learn hidden information,
such as individual-level stage, from observed
data Oxtoby and Alexander (2017). In this
paper we address the problem of how to learn
transition times in event sequences of dis-
ease progression, which is a long-standing
problem in the methods community Huang
and Alexander (2012); Fonteijn et al. (2012).
The solution to this problem also has clin-
ical demand, as it provides the basis for
an interpretable timeline of disease progres-
sion events that can be used for prognosis.
We connect ideas from two formerly sepa-
rate methodologies – event-based and hidden
Markov modelling – to derive a new genera-
tive event-based hidden Markov model (EB-
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Event-Based Hidden Markov Modelling

HMM) of disease progression. As such, this
paper has three main novelties:

1. it generalises a formerly cross-sectional
model (the EBM: event-based model
Fonteijn et al. (2012)), allowing it to ac-
commodate longitudinal data;

2. it defines a Bayesian ‘event-based’
framework to inject prior information
into structured inference from longitudi-
nal data, allowing us to learn from lim-
ited datasets;

3. it uses EB-HMM to learn a new clini-
cally interpretable sequence and timing
of events in Alzheimer’s disease (natural
history), and to predict individual-level
trajectories (prognoses).

EB-HMM has strong clinical utility, as it pro-
vides an interpretable group-level model of
how features of disease progression (biomark-
ers) change over time. Such a model for AD
was first hypothesised by Jack and Holtz-
man (2013), but EB-HMM is the first to
provide a single, unified methodology for
learning data-driven sequences and timing
of events in progressive diseases. Moreover,
EB-HMM naturally handles missing data;
both in terms of partially missing data (when
an individual does not have measurements
for every feature) and completely missing
data (when an individual is not observed at a
given time-point). This capability gives EB-
HMM broad utility in clinical practice, par-
ticularly in resource-limited scenarios (e.g.,
small hospitals) where medical practition-
ers may not have access to a complete set
of measurements. Finally, EB-HMM also
advances on AI-driven clinical trial design,
where model-derived information could be
used to inform biomarker and cohort selec-
tion criteria Dorsey et al. (2015).

2. Methods

2.1. Event-Based Hidden Markov
Model

To formulate EB-HMM, we make three as-
sumptions, namely i) monotonic biomarker
change; ii) a consistent event sequence, S,
across the whole sample; and iii) Markov
(memoryless) stage transitions. The model
likelihood is:

P (Y |θ, S) =

J∏
j=1

 N∑
k=0

P (kj,t=0)

Tj∏
t=1

P (kj,t|kj,t−1)

Tj∏
t=0

kj,t∏
i=1

P (Yi,j,t|kj,t, θpi , S)

I∏
i=kj,t+1

P (Yi,j,t|kj,t, θci , S)

 .
(1)

For a full derivation of Equation 1 and de-
scriptions of each variable see Appendix A.1.
We then make the usual Markov assumptions
to obtain the form of the N ×N dimensional
transition generator matrix Qa,b:

exp(∆Q)a,b = P (kj,t = a|kj,t−1 = b,∆). (2)

Here we have assumed a homogeneous
continuous-time process τ , and that the state
duration ∆ = τt − τt−1 is (matrix) expo-
nentially distributed, ∆ ∼ exp(∆), between
states a, b. The former follows from our orig-
inal assumption that the sequence S (and
hence Q) is independent of time, and the lat-
ter is a solution to the rate equation. The
N dimensional initial state probability vec-
tor πa is defined as:

πa = P (kj,t=0 = a). (3)

Finally, the expected duration of each state
(sojourn time), ∆k, is given by Rabiner
(1989):

∆k =
∞∑

∆=1

∆pk(∆) =
1

1− qkk
. (4)
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Here pk(∆) is the probability density func-
tion of ∆ in state k, and qkk are the diagonal
elements of the transition matrix Qa,b.

2.2. Inference

We aim to learn the sequence S, initial prob-
ability πa, and transition matrix Qa,b, that
maximise the complete data log likelihood,
L(S, π,Q) = logP (Y |S, π,Q; θ). The overall
inference scheme is shown in Appendix A.2.

2.3. Staging

After fitting S, πa andQa,b, we infer the most
likely Markov chain (i.e., trajectory) for each
individual using the standard Viterbi algo-
rithm Rabiner (1989). We can also use EB-
HMM to predict individual-level future stage
by multiplying the transition matrix, Qa,b,
with the posterior probability for the indi-
vidual at time t, and selecting the maximum
likelihood stage:

arg maxkP (Yt+1|kb;S) =

arg maxkP (Yt|ka;S) ·Qa,b.
(5)

3. Results

3.1. Alzheimer’s disease timeline

We use EB-HMM to infer the group-level se-
quence of events and the time between them
in the ADNI cohort. Figure 1 shows the
corresponding order and timeline of events,
and baseline and predicted stages estimated
by EB-HMM for two representative patients.
For descriptions of the data and the model
training scheme see Appendix A.3 and A.4.
This timeline is the first of its type in the
field of AD progression modelling, and re-
veals a chain of observable events occurring
over a period of ∼17.3 years. The order-
ing largely agrees with previous model-based
analyses Young et al. (2014); Oxtoby et al.
(2018), and EB-HMM provides additional in-
formation on the time between events. Early

changes in biofluid measures (ABETA, TAU,
PTAU) over a short timescale have been pro-
posed in a recent hypothetical model of AD
biomarker trajectories Jack and Holtzman
(2013). Early observable change in the brain
(represented here by the ventricles) is also re-
ported, followed by a chain of cognitive and
structural changes, with change in the whole
brain volume occurring last.

3.2. Comparative model performance

We train EB-HMM and a continuous-time
hidden Markov model (CT-HMM) to infer
individual-level stage sequences and hence
compare predictive accuracy on a common
task. Specifically, we use baseline stage as a
predictor of conversion from CN to MCI, or
MCI to AD, over a period of two years. Here
predicted converters are defined as people
with a stage greater than a threshold stage,
which is iterated across all possible stages.
We calculate the area under receiver operat-
ing characteristic curve (AU-ROC), and per-
form 5-fold cross-validation. Table 1 shows
that EB-HMM performs substantially better
than CT-HMM in both the full (including in-
dividuals with missing data) and subset data
(only individuals with complete data).

Table 1: EB-HMM and CT-HMM perfor-
mance for the task of predicting
conversion, using either the full or
subset data.

Model AU-ROC

EB-HMM (full) 0.804± 0.07
EB-HMM (subset) 0.737± 0.09
CT-HMM (subset) 0.579± 0.12

3.3. Performance with missing data

Finally, we demonstrate the ability of EB-
HMM to handle missing data. We randomly
discard 25%, 50%, and 75% of the feature
data from each individual in the subset data
and re-train EB-HMM. As in Section 3.2,
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Figure 1: AD timeline inferred by EB-HMM. The order of events on the horizontal axis is
given by S, and the time between events is calculated from Q. Baseline stage
(solid arrow) and predicted next stage (shaded arrow) estimated by EB-HMM
for two example patients are shown, chosen from the MCI and AD sub-groups.

we use prediction of conversion as the task
and 5-fold cross-validation to obtain out-of-
sample estimates of the AU-ROC. Table 2
shows that EB-HMM maintains consistent
performance up to 50% missing data, and
drops off only moderately for 75%.

Table 2: EB-HMM performance for the task
of predicting conversion with miss-
ing data.

% missing AU-ROC

25% 0.722± 0.09
50% 0.719± 0.13
75% 0.669± 0.15

4. Discussion

Future work on EB-HMM will be focused on
relaxing its assumptions1, namely i) mono-
tonic biomarker change; ii) a consistent
event sequence across the whole sample;

1. While the requirement of a control sample for fit-
ting the EB-HMM mixture model distributions
could be deemed a limitation, it is arguably a
strength as it allows us to informatively leverage
control data; a key issue that was highlighted by
Wang et al. (2014).

and iii) Markov (memoryless) stage tran-
sitions. Assumption i) is both a limita-
tion and a strength: it allows us to sim-
plify our model at the expense of requir-
ing monotonic biomarker change; as shown
here, for truly monotonic clinical, imaging
and biofluid markers it only provides ben-
efits. However for non-monotonic markers
– such as heart rate – either the model or
data would need to be adapted. Assumptions
ii) and iii) could be relaxed by combining
our EB-HMM framework with (for example)
subtype modelling Young et al. (2018) and
semi-Markov modelling Alaa and van der
Schaar (2018), respectively. In particular,
EB-HMM can be directly integrated into the
subtyping and staging framework proposed
by Young et al. (2018), which would allow
us to capture the well-reported heterogeneity
in AD and produce timelines such as Figure
1 for separate subtypes. This opens up the
prospect of developing a probabilistic model
that can infer interpretable longitudinal sub-
types from limited datasets.
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Appendix A. Appendix

A.1. Event-Based Hidden Markov
Model

We can write the EB-HMM joint distribution
over all variables in a hierarchical Bayesian
framework:

P (S, θ, k, Y ) = P (S) · P (θ|S)

·P (k|θ, S) · P (Y |k, θ, S).
(6)

Here S is the hidden sequence of events, θ are
the distribution parameters generating the
data, k is the hidden disease state, and Y are

the observed data. Graphical models of CT-
HMM and EB-HMM are shown in Figure 2.
Note that we have assumed conditional inde-
pendence of S from k; that is, the complete
set of disease progression states is indepen-
dent of the time of observation. Assum-

(a) CT-HMM (b) EB-HMM

Figure 2: Graphical models for (a) CT-
HMM and (b) EB-HMM. Hidden
variables are denoted by circles,
observations by squares. S: se-
quence of events; θ: distribution
parameters; k: disease state; Y :
observed data; T : observed time.

ing independence between observed features
i = 1, ..., I, if a patient j = 1, ..., J is at la-
tent state kj,t = 0, ..., N at time t = 1, ..., Tj
in the progression model, the likelihood of
their data Yj,t is given by:

P (Yj,t|kj,t, θ, S) =
I∏

i=1

P (Yi,j,t|kj,t, θi, S).

(7)

Here θi are the distribution parameters for
feature i, defined by a hidden sequence
of events S = (s(1), ..., S(N)). Following
Fonteijn et al. (2012), we enforce the mono-
tonicity hypothesis by requiring S to be or-
dered, meaning individuals at stage kj,t can-
not revert back to an earlier stage. This
assumption is necessary to allow snapshots
from different individuals to inform on the
full event ordering. Next, we assume a
Markov jump process between discrete time-
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points:

P (Yj |kj , θ, S) = P (kj,t=0)

Tj∏
t=1

P (kj,t|kj,t−1)

Tj∏
t=0

I∏
i=1

P (Yi,j,t|kj,t, θi, S).

(8)

To obtain an event-based model, we now de-
fine prior values for the distribution parame-
ters θ for each state k in sequence S. Follow-
ing Fonteijn et al. (2012) we choose a two-
component Gaussian mixture model to de-
scribe the data likelihood:

I∏
i=1

P (Yi,j,t|kj,t, θi, S) =

kj,t∏
i=1

P (Yi,j,t|kj,t, θpi , S)

I∏
i=kj,t+1

P (Yi,j,t|kj,t, θci , S)

(9)

Here θpi = [µpi , σ
p
i , w

p
i ] and θci = [µci , σ

c
i , w

c
i ]

are the mean, µ, standard deviation, σ, and
mixture weights, w, for the patient and con-
trol distributions, respectively. Note that
these distributions are fit prior to inference,
which requires our data to contain labels for
patients and controls; however, once θpi and
θci have been fit, the model can infer S with-
out any labels. One of the strengths of the
mixture model approach is that when feature
data are missing, the two probabilities on the
RHS of Equation 9 can simply be set equal.

To obtain the total data likelihood, we
marginalize over the hidden state k and as-
sume independence between measurements
from different individuals j (dropping indices

j, t in the sum for notational simplicity):

P (Y |θ, S) =
J∏

j=1

 N∑
k=0

P (kj,t=0)

Tj∏
t=1

P (kj,t|kj,t−1)

Tj∏
t=0

kj,t∏
i=1

P (Yi,j,t|kj,t, θpi , S)

I∏
i=kj,t+1

P (Yi,j,t|kj,t, θci , S)

 .
(10)

We can now use Bayes’ theorem to obtain the
posterior distribution over S. We note that
Equation 10 is the time generalisation of the
model presented by (Fonteijn et al., 2012),
and for Tj = 1 it reduces to that model. We
further note that Equation 8 looks like a CT-
HMM Ghahramani (2001). The mathemat-
ical innovation of our work is to reformulate
the EBM in a CT-HMM framework2. To our
knowledge this is the first such model of its
type.

A.2. Inference scheme

We use a nested inference scheme based on
iteratively optimising the sequence S, and
fitting the initial probability πa and transi-
tion matrix Qa,b, to find a local maximum
via a nested application of the Expectation-
Maximisation (EM) algorithm. At the first
EM step, S is optimised for the current val-
ues of the initial probability π′a and transi-
tion matrix Q′a,b, by permuting the position
of every event separately while keeping the
others fixed. At the second step, πa and
Qa,b are fitted for the current sequence S′

using the standard forward-backward algo-
rithm Rabiner (1989). Here we apply only a
single pass, as iterative updating of πa and
Qa,b while keeping S (and hence θi) fixed
effectively turns the optimisation problem

2. Or conversely, the CT-HMM in an event-based
framework.

7



Event-Based Hidden Markov Modelling

into repeated scaling of the posterior, which
causes over-fitting of πa and Qa,b.

Algorithm 1: EB-HMM inference

Input : Y
Output: S, π, Q
Initialise S;
while not S converged do

// E-step of sequence

optimisation

while not every event permuted do
Initialise π, Q;
// E-step of transition and

initial probability

optimisation

Compute
γa,t = P (kt = a|Y, S = S′;π,Q);

Compute ξa,b,t = P (kt =
a, kt+1 = b|Y, S = S′;Q);
// M-step of transition and

initial probability

optimisation

Update πa ← γa,0;

Update Qa,b ←
∑

t=1 ξa,b,t∑
t=1 γa,t−1

;

Compute
L(S) = logP (Y |S;π′, Q′);

end
// M-step of sequence

optimisation

Update S ← arg maxSL(S);

end

A.3. Alzheimer’s disease data

We use data from the ADNI study, a lon-
gitudinal multi-centre observational study of
AD Mueller et al. (2005). We select 468 par-
ticipants (119 CN: cognitively normal; 297
MCI: mild cognitive impairment; 29 AD:
manifest AD; 23 NA: not available), and
three time-points per participant (baseline
and follow-ups at 12 and 24 months). In-
dividuals were allowed to have missing data
at any time-point. Note that we use a sub-

set of 368 individuals with no missing data
in Sections 3.2 and 3.3. We train on a
mix of 12 clinical, imaging and biofluid fea-
tures. The clinical data are three cognitive
markers: ADAS-13, Rey Auditory Verbal
Learning Test (RAVLT) and Mini-Mental
State Examination (MMSE). The imaging
data are T1-weighted 3T structural mag-
netic resonance imaging (MRI) scans, post-
processed to produce regional volumes using
the GIF software tool Cardoso et al. (2015).
We select a subset of sub-cortical and corti-
cal regional volumes with reported sensitiv-
ity to AD pathology, namely the hippocam-
pus, ventricles, entorhinal, mid-temporal,
and fusiform, and the whole brain Frisoni
et al. (2010). The biofluid data are three
cerebrospinal fluid markers: amyloid-β1−42

(ABETA), phosphorylated tau (PTAU) and
total tau (TAU). The TADPOLE challenge
dataset Marinescu et al. (2020) used in this
paper is freely available upon registering
with an ADNI account.

A.4. Model training

We compare EB-HMM and CT-HMM algo-
rithms. To ensure fair comparison, we im-
pose a constraint on both models by plac-
ing a 2nd order forward-backward prior on
the transition matrix. For EB-HMM, we fit
Gaussian mixture models to the distributions
of AD (patients) and CN (controls) sub-
groups prior to running Algorithm 1. For
CT-HMM, we apply the standard forward-
backward algorithm and iterate the likeli-
hood to convergence within 10−2 of the to-
tal model likelihood. We initialise the CT-
HMM prior mean and covariance matrices
from the training data, using standard k-
means and the feature covariance, respec-
tively. EB-HMM is implemented and par-
allelised in Python; open-source code will be
provided upon full journal publication at the
author’s repository: https://github.com/

pawij/tebm.
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