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In recent years, it has become possible to calculate binding affinities of
compounds bound to proteins via rapid, accurate, precise and reproducible
free energy calculations. This is imperative in drug discovery as well as
personalized medicine. This approach is based on molecular dynamics
(MD) simulations and draws on sequence and structural information of
the protein and compound concerned. Free energies are determined by
ensemble averages of many MD replicas, each of which requires hundreds
of cores and/or GPU accelerators, which are now available on commodity
cloud computing platforms; there are also requirements for initial model
building and subsequent data analysis stages. To automate the process,
we have developed a workflow known as the binding affinity calculator.
In this paper, we focus on the software infrastructure and interfaces that
we have developed to automate the overall workflow and execute it on
commodity cloud platforms, in order to reliably predict their binding affi-
nities on time scales relevant to the domains of application, and illustrate
its application to two free energy methods.
1. Introduction
The accurate prediction of the binding affinities of ligands to proteins is a major
goal in drug discovery and personalized medicine. A wide range of techniques
are available to compute binding affinities (also known as binding free energies)
from atomistic simulation. One of the most popular and accurate approaches is
alchemical methods. They employ molecular simulations—molecular dynamics
(MD) or Monte Carlo (MC)—of unphysical, alchemical intermediate states that
attenuate the interactions of the small molecule with its environment [1].

The large changes which need to be accounted for in calculating absolute
binding free energies (the ‘appearance’ or ‘disappearance’ of a ligand) are
often slow to converge and consequently extremely computationally expensive.
In order for simulations to have an impact in industrial or clinical decision
making processes calculations must not only be accurate, precise and reliable
but also complete in a short period of time. An attractive alternative to absolute
calculations is thus the calculation of the difference in binding affinity between
two systems (known as the relative binding free energy). In this paper, we
employ ensemble MD-based thermodynamic integration with enhanced
sampling (TIES) protocols [2] to produce rapid and reliable calculations of rela-
tive binding free energies, and present the binding affinity calculator (BAC),1 a
system to manage such simulations.

Large-scale computing resources, both clouds and supercomputers, are
revolutionizing the scientific investigations that can be performed in silico.
The sheer computing power available to researchers makes new scientific inves-
tigations possible. Efforts to simply scale a single monolithic code linearly to the
full production partiton of a supercomputer unnecessarily limits the range of
problems that can be tackled to a very small set of algorithms with appropriate
scalability characteristics, and effectively excludes cloud resources made up of
losely coupled compute node. However, both clouds and supercomputers can
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be fully exploited by hybrid applications, for instance com-
posed of ensembles of tightly coupled simulations running
at smaller core counts.

The purpose of the present paper is to describe the
software and associated computing environments necessary
to perform rapid, accurate, precise and reproducible ligand–
protein binding free energy calculations in an easy to use
manner. In the past few years, we have shown how this
may be done based on ensemble averaging of a sufficient
number of independent classical MD simulations. Our
approach uses two protocols known as ‘TIES’ and ‘enhanced
sampling of MD with approximation of continuum solvent’
(ESMACS) [3]. ESMACS [4] is centred on the molecular mech-
anics Poisson–Boltzmann surface area (MMPBSA) method,
while TIES is built around thermodynamic integration.

The protocols are complementary in that ESMACS is
an absolute free energy method able to estimate binding affi-
nities for highly diverse ligands of varying charges, whereas
TIES is particularly suitable for estimating relative free energies
of pairs of similar (congeneric) compounds and/or mutated
protein sequences.

Knowledge of the free energy of binding of a molecule (a
ligand) with a target protein, the binding affinity, is of central
importance in drug discovery and drug design, as well as per-
sonalized medicine. Within the pharmaceutical industry, the
binding affinity is the single most important quantity in the
early stages of drug discovery, and is repeatedly required in
later stages of drug design and optimization. In the more for-
ward looking field of personalized medicine, drug treatment
will increasingly be based on selecting the appropriate drug
for a patient based on his or her genotypic and phenotypic pro-
files. In these situations, it is necessary to be able to discriminate
the binding of ligands with sequence-specific variants of the
same protein. Not only must such binding affinity predictions
be made accurately, the protocols used must be reproducible
if they are to confer the level of reliability required to be
adopted within industry and by regulatory authorities con-
cerned with public healthcare. The speed at which such
calculations are made is also of the essence to ensure that the
predictions are actionable in the former case to direct exper-
imental drug discovery programmes, and in the latter to
ensure treatments are timely.

Computational biomedicine [5] is one field successfully
exploiting the potential offered by hybrid applications running
on large-scale computational resources. Computational bio-
medicine uses computer-based simulation of biological
systems to support, for example, the drug discovery and selec-
tion process. The apotheosis of such approaches is
personalized medicine, which seeks to develop a new medical
approach, in which data obtained from a patient, such as geno-
mic information, are used to customize health management.

The natural variations in human genes are known to
influence the risks of developing many diseases, and the
response to a particular treatment. At clinical level, a disease
usually appears to be of a single type, whereas at a molecular
level, it could be classified as one of several sub-types, based
on distinctive signatures of gene sequences, expressions and
pathways. The treatment of a disease can then be tailored
for the individual patient, based on the molecular classifi-
cation made. The individual treatment of many cancers, for
example, usually uses targeted radiotherapy to kill malignant
cells, and/or tumour-growth inhibitors in an attempt to
selectively target and kill tumour cells. This often involves
a scheme called ‘targeted therapy’, where anti-cancer drugs
are directed against cancer-specific molecules and signalling
pathways. These are designed to interfere with a specific
molecular target, usually a protein that plays a crucial role
in tumour cell growth and proliferation.

Such approaches are also applicable to the drug discovery
process where, given sufficient computational resources,
potentially thousands of compounds can be screened against
a target pathogen. Simulation offers the possibility to assess
the effectiveness of certain courses of treatment before they
are administered using a patient-specific model, in order to
choose the best. This can be done only at a fully molecular
level, based on the sequence and structure of the protein,
drug(s) and the molecular inhibitors.
2. Existing approaches
There are several software tools which attempt to automate the
free energy calculationmethod(s) based on atomistic MD simu-
lations. Among them FESetup [6] and free energy workflow
(FEW) [7] automate the set-up of alchemical relative free
energy method thermodynamic integration (TI) [8] and end-
point methods MMPBSA [9] and linear interaction energy
(LIE) [10]. On the other hand, free energy perturbation/replica
exchange with solute temporing (FEP/REST) [11] attempts to
enhance the free energy perturbation (FEP) method, another
alchemical relative free energy method [12]. Forcefields used
include AMBER [13] and OPLS [14]. A common feature of all
these approaches is the use of the traditional one-off simulation
technique to sample the phase space irrespective of the method
used for the calculation of free energy. This limits them all to
unreliable free energy predictions unlike BAC, since each indi-
vidual simulation in fact behaves as a random process, and is
not reproducible [15]. In particular, FESetup does not comple-
tely support alchemical codes with the dual topology scheme,
while the time frame for performing TI calculations using
FEW is of the order of several days.
3. Binding affinity calculator workflows
The BAC workflow comprises a number of distinct com-
ponents which offer a great deal of flexibility in how they
are deployed on a high-performance or cloud computing
infrastructure. For a full discussion of the steps required to
prepare a simulation using BAC, the reader is directed to
[16], but briefly they are described below.

For a particular ligand–protein combination, BAC initially
runs a set of job set-up scripts to create the necessary input
files for a set of simulations, by taking a model manually
prepared by a researcher and customizing it.

Next, these model data are staged to an appropriate com-
putational resource and an MD code is used to run a number
of equilibration steps to prepare the model, followed by a
number of nanoseconds of simulation and free energy calcu-
lation, which in reality take several hours of wall-clock time
per simulation. In order to be able to bound errors effectively,
often hundreds of such simulations are run in parallel. Once
the simulation and free energy calculation chain is complete,
the output data (measured in giga- to terabytes) are post-
processed to extract the parameters of interest. Typically,
this workflow needs to be run in its entirety several times
(once for each of the compounds and/or sequence-specific
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proteins involved) in order to generate a ranking of the bind-
ing affinities obtained.

To run this workflow in an automated fashion, a compre-
hensive software and hardware infrastructure is required,
which takes care not only of executing the necessary compu-
tations but also managing and staging the data pertaining to
the ligand–protein system and simulation output data. Infra-
structure components required include systems to store and
manage the data, and computational platforms to execute
the calculations and analyse the data arising.

Our ESMACS and TIES approaches decompose the work-
flow of a complete calculation into three main components: (a)
preparation of a bimolecular model, which includes generation
of force field parameters if needed, and a simulation-ready mol-
ecularmodel, (b) theMDcalculation,which consists of ensemble
MD runs, and (c) the post-processing analysis of the model
through which the binding affinity predictions are calculated.
Theworkflow consists of a sequence of connected steps, includ-
ing performing the three individual components and data
transferring between various computational resources. The
whole process can be performed automatically by a single com-
mand, or the discrete tasks can be executed separately, on
various computational resources. A series of scripting com-
mands, which together constitute the BAC builder, are used to
set up anMD simulation and create the necessary input datasets
to run MD simulations on a supercomputer, to post-process the
simulation trajectories and produce results and to transfer the
data between various resources.

To have rapid, accurate, precise and reproducible prediction
of ligand–protein binding free energy, a protocol has been devel-
oped inwhich an ensemble ofMDsimulations areperformed for
each protein inhibitor (also known as a complex). Our previous
studies have shown that an ensemble of 25 replica simulations of
4 ns length each are required for each ligand–protein complex,
and a free energy calculation is performed at uniformly chosen
snapshots from each simulation trajectory. This leads on to the
order of a thousand snapshots generated and analysed for
each system. The BAC workflow automates the complexity of
running and marshalling these simulations, and collecting and
analysingdata. BACdepends on the ability to performhundreds
of separate parallel simulations on a high-performance comput-
ing (HPC) platform, each of which might require 32–500 cores
depending on the system.
4. Requirements
On a present-day high-performance or cloud computing
platform with many thousands of cores, in the time it takes
to run one calculation, we can do as many ensembles as are
required, meaning there is no need for extended wall-clock
time; hence the ability to predict on a clinical time scale is
now entirely possible, given sufficient resources. The problem
is the availability of such resources. Typically, access to the
largest scales of HPC is available primarily to academic
researchers via a competitive grant proposal process, or to
government-funded institutions. Furthermore, in normal set-
tings of this kind jobs are scheduled through a batch queuing
process, meaning that no guarantee can be given as to when
any individual job will be run.

The nature of BAC workflows means that the compu-
tations can be decomposed into ensembles of smaller MD
simulations. While each simulation requires typically 32–64
tightly interconnected compute cores, the overall ensemble
of simulations behaves like an ‘embarrassingly parallel’ job,
with no requirement for inter-process communication. As
such, these types of ensembles map very closely to the archi-
tectures of commercially available compute clouds, which
make available single compute nodes of up to 128 CPU
cores and nodes with multiple GPUs. The on-demand
nature of commodity cloud means that such resources can
be called up when required and only the resources used are
paid for.

The BAC workflow automates much of the complexity of
running and marshalling these simulations, and collecting
and analysing data. Even though we have taken steps to auto-
mate model building, execution and analysis of binding
affinity calculations, the process of running a BAC simulation
manually is necessarily complicated. For that reason, we have
developed the ufBAC system, where ‘uf’ stands for ‘user
friendly’ and takes a cloud-first approach.

ufBAC has been developed to satisfy two broad use cases:

(i) The end user from academia/industry who wants to use
ufBAC as a black box, to generate results from a pre-built
model, having those results presented in the form of an
emailed/downloaded report. The user needs to be able
to monitor their simulations and share results with
others. The click of a button should be all that is required
to build, execute and analyse the user’s chosen model.
Once the simulation/study has completely executed the
user is notified/sent a report summarizing the results.

(ii) The power user who has the same requirements as the
regular user, but with finer-grained control over all
aspects of the simulation building and execution process.
Additionally, the power user requires access to individual
simulation output files and statistical packages to process
output results.

In turn, these use cases have driven the development of the
ufBAC system as a web-based tool that groups of researchers
canuse to collaborate on thedevelopmentandexecutionofbind-
ing affinity models, which exploit significant HPC power by
spawning multiple simulation replicas to generate the statistics
required to ensure the results are accurate and reliable.

ufBAC is a web portal-based interface to the BAC, which
allows a user to build models of molecule–compound bind-
ing, and execute and analyse multi-replica MD simulations
using the model. The binding affinity may be calculated by
ESMACS and TIES methods.

Porting the workflow to commodity cloud platforms man-
dates a further requirement: that the application is portable.
This means that the port of the BAC workflow from HPC to
cloud systems must be done in such a way that it can be run
on any commodity cloud with minimal changes. The impli-
cation of this is that the platform-specific offerings of a
particular cloud cannot be heavily used, to avoid vendor lock-in.
5. Architecture
Selecting a cloud computing platform involves a trade-off
between flexibility and vendor lock-in. While the basic com-
mercial offering of the major cloud vendors is broadly
similar, each vender offers its own value-added services on
top of the basic platform. The more of these services that are
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used, the closer you are tied to a particular cloud vendor and
the harder it is to switch platforms. We have taken an approach
to limit the possibility of vendor lock-in by building on a
common set of components that allow us to easily port our
applications between clouds, namely Docker and Kubernetes.

In order to keep the BAC workflow components portable
between cloud platforms, ufBAC wraps each component of
the workflow inside a Docker container. Docker is a system
widely supported on commodity compute clouds that
creates a lightweight Linux virtual machine with an externa-
lized kernel. This allows each component to be executed in a
controlled environment that does not depend on installing
the required packages on each target compute cloud. Differ-
ent components of the BAC system are decomposed and
wrapped in Docker containers, allowing them to be run
independently. A full ESMACS workflow, for example, con-
sists of running all of the ESMACS components in order. If
parts of the workflow are performed manually (such as
model building), then running the corresponding Docker
container can be omitted.

Each Docker container wrapping an application contains
all of the libraries and software tools required to run the
application. The Docker containers are stored in a Docker
registry, from which they can be downloaded and run.

In order to run Docker containers, a Kubernetes cluster
must be provisioned on the target cloud platform. This clus-
ter is somewhat like a loosely coupled HPC cluster,
comprising nodes of a specific type. Kubernetes is able to
download and run instances of a Docker container from a
Docker repository, relieving the user of the need to manually
provision cloud resources, as shown in figure 1. Kubernetes is
available as a managed service on all the major cloud plat-
forms, meaning a Kubernetes cluster can be deployed
trivially and scaled as required on Azure, AWS and Google
Cloud Platform. Doing so also takes care of configuring
requisite network connections and access patterns. Costs are
incurred as long as a Kubernetes cluster is provisioned,
whether any applications are running or not. For this
reason, ufBAC provisions Kubernetes clusters on demand,
and when the compute is complete the associated cluster is
deleted. This removes all components of the cluster that
have been automatically created, so they are not billed for.

Each run on the BAC workflow requires a storage container
to be created, to contain the input and output data generated
by the different stages of the workflow. This is the only
cloud-specific service used by a BAC deployment, using
Azure Blob Storage when deployed on Azure for example.

The nature of Docker means that containers can be built
upon other containers. This assists us in keeping the core
application components generic, for deployment on any com-
modity cloud, then building cloud-specific containers for
each target platform, based on the generic containers,
which include code required to access the storage services
of the specific cloud in question.

The process of manually running a BAC workflow on
Azure cloud follows the pattern:
(i) Create a Blob Storage container,
(ii) Upload tarball containing a PDB and associated files,
(iii) Deploy a kubernetes cluster,
(iv) Run the builder,
(v) Run a sanity check to test no zero length files are

created,
(vi) Run NAMD with or without MMPBSA,
(vii) Optionally run NMODE,
(viii) Run analysis to gather results.
ufBAC enables BAC to be run via a Software as a Service
model, hiding from the user the complexities of the command
line tools and API calls used to build models, executing them
on HPC resources, and analysing the results. ufBAC is
intended to plug in to a range of computational back ends,
with a cloud-first approach preferred.
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ufBAC seeks to unify the different components of the
BAC workflow required to build models, execute them and
analyse the results, into a single unified system with a
single interface. In order to do this, it implements a multi-
layered architecture, shown in figure 2. The first is the client
layer, a user portal developed using Google Web Toolkit
(GWT) [17]. The user interacts with the BAC system via
their web browser. The use of GWT provides a mechanism
to develop high-performance, low-overhead web interfaces
developed using Java which are compiled into separate
JavaScript/HTML and Java byte code components, with the
former running inside the user’s browser (reducing server
overheads) and interacting with the latter running inside a
web application container such as Tomcat. It also means
that new interfaces (designed for mobile devices for example)
can easily be constructed, which make use of the common
functionality provided by the server side part of the client.

The purpose of the ufBAC system, and the portal in par-
ticular, is to make the process of running complicated
simulation workflows that rely heavily on HPC as simple
as possible, improving usability by moving the user
away from the command line towards a user-friendly
cloud-style application. The ufBAC web portal follows a
conventional design. The left-hand side of the interface con-
tains a menu bar that allows the user to access the various
features of the application. The top bar of the website
displays user notifications (for example that a set of simu-
lations have finished running). The main content panel
gives access to the features of the application and allows
users to control running simulations, create and execute
new models and analyse data.

The server layer comprises the server components of the
user portal, which are responsible for user login, state
management and presentation. This layer either uses a cloud
platform provided RESTAPI to set up and control the required
Kubernetes infrastructure or, where BAC is run on local, non-
cloud resources, builds on an application hosting environment
(AHE) [18]. AHE is designed to hide much of the complexity
of dealing with HPC resources from users of such systems,
allowing them to interact with applications rather than
machines. The nature of AHE means that it can be used as a
single interface to a wide variety of resources, ranging from
those provided at a departmental or institutional level,
through regional and national, to international federated
cyberinfrastructures of supercomputers. AHE is used to
manage the execution of BAC layer components.

The third layer of the architecture, the BAC layer, wraps
around existing BAC workflow services. These comprise the
BAC Builder, a tool to construct a simulation model, BAC
Execute, a set of scripts used to generate simulation replicas,
stage data and execute models and free energy calculations,
and the statistical analysis component used to analyse simu-
lation output data and automatically generate figures and
results tables.
6. ufBAC in practice: ROS1
ROS1 is a transmembrane receptor protein tyrosine kinase
which has been identified as playing an important role in a
range of pathologies (including glioblastoma, colorectal
cancer, ovarian cancer and non-small cell lung cancer). This
has led to the kinase domain becoming a promising target
for drug discovery. Janssen provided a dataset of 21 neutral
congeneric ligands designed to target ROS1. In this study,
we selected 17 pairs of ligands for use in evaluating the



Figure 3. Crystal structure of the ROS1 tyrosine kinase (shown in cartoon
representation) bound to JNJ-54192398 (depicted in chemical representation).
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ability of TIES-based relative binding free energy calcula-
tions to reproduce experimental ranking between the
compounds. All the work was executed on the Microsoft
Azure cloud, using the cloud deployed BAC described in
the previous sections.

A structural model of the ROS1 kinase domain bound to
compound JNJ-54192398 was provided by Janssen for the
project based on an X-ray structure determined in-house at
2.64 Å resolution (figure 3). A loop region in the sequence,
Lys2117–Gly2121, was not resolved in this crystal and was
extracted from a non-disclosed in-house ROS X-ray structure
and merged with the main structure.
7. Simulation methodology
TI is well known in the literature [19]. The relative binding
affinity of two ligands L1 and L2 is calculated by considering
an alchemical transformation between them connected
through intermediate states defined by introducing a coup-
ling parameter λ, such that at λ = 0 the system corresponds
to ligand L1 (initial state) and at λ = 1 the system corresponds
to ligand L2 (final state). The total energy of the system is
taken to be its potential energy (V). The energy of the
system can be defined as

V(l, x) ¼ (1� l)V1(l, x)þ lV2(l, x), (7:1)

where V1 and V2 are the potential energies of ligands L1 and
L2 calculated using a chosen molecular mechanics force field.

In this paper, we use the TIES method [2] to calculate the
absolute or relative free energy corresponding to an alchem-
ical transformation (ΔGalch). We denote the alchemical
coupling parameter as λ. ΔGalch is given by the equation

DGalch ¼
ð1
0

@V(l, x)
@l

� �
l

dl, (7:2)
where 〈…〉λ denotes an ensemble average in state λ and
〈∂V(λ, x)/∂λ〉 is the derivative of the hybrid potential
function. For 〈∂V/∂λ〉 to be calculated, an ensemble of MD
simulations is run at each window corresponding to an
intermediate value of λ. We evaluate equation (7.2) using a
stochastic integration method because the integrand com-
prises points that are Gaussian random processes. In TIES
analysis, the integral in equation (7.2) is treated as a stochas-
tic integral, and the associated uncertainty is calculated
accordingly, as described by Bhati et al. [2].

The thermodynamic cycle approach is employed to calcu-
late the relative binding affinities ΔΔG between these two
ligands associating with a protein using the following
equation:

DDG ¼ DG1 � DG2 ¼ DGaq
alch � DGbound

alch , (7:3)

where ΔG1 and ΔG1 are the binding free energies of ligands
L1 and L2, respectively. DGaq

alch and DGbound
alch are the free

energy differences associated with the alchemical transform-
ation of ligand L1 into L2 in free and bound states,
respectively.
7.1. Model building
The simulations for each protein–ligand pair are initiated
from the provided ROS1 crystal structure with the co-
crystallized compound replaced with the appropriate
hybrid ligand description. For each ligand pair, a hybrid top-
ology must be created from independent topologies created
for each ligand. Starting coordinates for each ligand are gen-
erated through the use of the Template CoMFA flexible
alignment tool with the co-crystallized compound as a refer-
ence. This tool assigns ligand torsion angles with the value
found for the matching torsion angles in the reference
ligand. If no matching torsion is found, topomeric folding
rules are applied. The single ligand parameterizations were
created using the standard BAC protocol [16]. This procedure
involves the optimization of the provided structure via
Gaussian 98 using the Hartree–Fock method and 6-31G**
basis functions. The partial atomic charges were then
assigned using the restrained electrostatic potential (RESP)
procedure, which is part of the AMBERTools package.
The remaining force field parameters were described using
the general AMBER force field (GAFF) [20]. The TIES
approach relies upon the creation of hybrid ligand topologies
that combine a common core with ‘disappearing’ and
‘appearing’ regions which contain the unique elements of
the initial and final ligands in the alchemical transformation.
The creation of the hybrid ligands in this study was per-
formed using a recently developed extension to the BAC
based on the maximum common substructure (MCS) func-
tionality of the RDKit library (www.rdkit.org). Initial and
final ligand geometries, connectivity and charges are taken
from the AMBER parameterizations as used in ESMACS.
The hybrid topology generator (github.com/dww100/ties_
hybrid_topology_creator) first identifies the common chemi-
cal elements of the ligands excluding any incomplete rings,
then further atoms (and rings of which they are part) are
removed if the partial charge differs by more than a set toler-
ance (0.1 in the present study) between initial and final
topologies. For atoms in which the charge difference is
below this tolerance an average of the values for the two
original ligands is used.

http://www.rdkit.org
https://github.com/dww100/ties_hybrid_topology_creator
https://github.com/dww100/ties_hybrid_topology_creator
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7.2. Thermodynamic integration with enhanced
sampling protocol

We apply the TIES protocol as described in detail in Bhati
et al. [2] The Amber package [21] was used for the set-up of
the systems and analyses of the results, and the MD package
NAMD2 [22] was used throughout the equilibration and pro-
duction runs of all simulations, including the metadynamics.

In the currentTIES study, the alchemical couplingparameter,
λ, assumes the values 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95, 1.0. Van der Waals contributions were scaled linearly
varying with λ across the full range (0 to 1). A soft core potential
was used for the van der Waals interactions of all atoms in the
alchemical space to avoid divergent potential energy due to
the sudden appearance of atoms close to the end-points of the
alchemical transformation, often called ‘endpoint catastrophes’
[23]. Moreover, the electrostatic interactions of the disappearing
atoms were linearly decoupled from the simulations between λ
values of 0 and 0.55 and completely turned off beyond that,
whereas those of the appearing atoms were linearly coupled to
the simulations from λ values of 0.45 to 1 and completely extin-
guished otherwise. For each λ value, five replica simulations are
executed, resulting in 65 simulations being run for each ligand
pair (the same protocol was employed for the ligand in both
protein-bound and aqueous environments).

For each ligand pair, at each λ value, an ensemble simu-
lation was performed with identical atomic coordinates for
all replicas (for both the protein-bound and aqueous environ-
ments). Energy minimizations were first performed with
heavy protein atoms restrained at their initial positions. The
initial velocities were then generated independently from a
Maxwell–Boltzmann distribution at 50 K, and the systems
were heated up to and kept at 300 K within 60 ps. From this
point, all systems were maintained at a temperature of 300 K
and a pressure of 1 bar in anNPT (isobaric–isothermic) ensem-
ble using the standard NAMD protocol of Langevin dynamics
(with a damping coefficient of 5 ps−1) and a Berendsen baro-
stat (compressibility of 4.57 × 10−5 bar−1 and relaxation time
of 100 fs). A series of equilibration runs, totalling 2 ns, were
conducted, while the restraints on heavy atoms were gradu-
ally reduced. Finally, 4 ns production simulations were run
for each replica with five replicas used for each pair of ligands.
Previous studies [24–26] have shown that the combination of
the simulation length and the size of the ensemble provides
a trade-off between computational cost and precision.
8. Results
We obtained reasonable agreement between the TIES calcu-
lated values (ΔΔGcalc) and experimental values (ΔΔGexpt) with
Pearson correlation, r, of 0.64 (Spearman, rs of 0.59) (figure 4).

This level of performance is lower than previous studies
using TIES (which typically achieve r > 0.7) and is reflected in
MSE of 1.65 kcal mol−1 (and a RMSE of 1.28 kcalmol−1). While
this could be a result of the high plasticity of kinase active sites
[27], ligand-specific reasons can be found for some of the results
obtained. The worse performing pair is 5425 0638 to 5419 0110,
in which an azetidine is replaced with an azinidine.

Small ‘ring’moieties such as these can be inaccurately para-
meterized and our hybrid ligand creator does not have specific
rules to handle this transform. The two transformations
with errors of greater than 0.5 kcal mol−1 both involve the
compound 54410707, suggesting that system-specific details
playa significant role. Further investigation is required to ident-
ify the specific algorithmic and parameterization changes
which may improve results in a way translatable to other sys-
tems. Our recent work in this area suggests that simple
extensions of sampling (including those using enhanced
sampling techniques employed in commercial solutions such
as FEP+) will be insufficient [12]; see also [28].
9. Conclusion
Our system has been widely deployed and used to perform
accurate, reproducible ligand–protein binding calculations.
In the research setting, this has only been possible because
of easy access to the large-scale computational resources
required to perform the volume of calculations needed to
generate accurate results. It has also been made possible
because we have developed a software infrastructure to
allow scientists to easily manage and access the simulation
workflows, so that they can focus on the generation of results.

Our initial motivation for this work was to support patient-
specific decision making, ensuring the approach is rapid, accu-
rate and reliable. More recently, it has become clear that the
methods can play a role in drug discovery too. However, the
large-scale ‘community’ resources widely used in academia
are not commonly available to commercial organizations,
which has motivated the porting of the BAC to commodity
cloud platforms, adopting a flexible architecture that avoids,
as far as possible, lock-in to a particular vendor. The availability
of ourufBACplatform, backedbyelastic cloud computing infra-
structure, has resulted in interest in the TIES and ESMACS
approaches by several pharmaceutical companies, and a series
of pilot projects with companies interested in using the tech-
niques to speed up different aspects of their drug discovery
process, one of which we have reported in this paper.

The flexibility of our approach, being able to deploy on a
cloudorHPCinfrastructuredependingon the resourcesavailable
while providing a consistent view of both types of infrastructure
via our ufBAC interface,makes the execution of such studies very
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straightforward. The implementation described herein uses the
data security and networking features provided out of the box
by cloud providers such as Azure. Further workwill be required
to assess the security requirements of prospective users and
ensure that sufficient security controls are put in place.

While the workflow system we have presented has
necessarily been tailored to the free energy methodologies
and related tools that are of interest to our research, the mod-
ular approach can be applied to other methods and tools with
some effort. In order to do so, engineering effort would need
to be invested in the development of BAC scripts to set up the
necessary input filesets and Dockerfiles to containerize the
required applications, as well as modifications to the interface
to present the results.
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CCS/BAC2; the BAC container code is available at https://github.
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