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ABSTRACT
Genetic improvement has proved to be a successful technique in
optimising various software properties, such as bug fixing, runtime
improvement etc. It uses automated search to find improved pro-
gram variants. Usually the evaluation of each mutated program
involves running a test suite, and then calculating the fitness based
on Boolean test case result. This, however, creates plateaus in the
fitness landscape that are hard for search to efficiently traverse.
Therefore, we propose to consider a more fine-grained fitness func-
tion that takes the output of test case assertions into account.
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1 INTRODUCTION
With the release of GenProg [5], the first scalable automated pro-
gram repair (APR) tool, the field of APR has blossomed. There are
currently over 30 tools in the field1. The technique since has been
adapted to improve other software properties, such as runtime or
energy or memory consumption, and the field of genetic improve-
ment (GI) has emerged [7]. It uses metaheuristic search to improve
software. Regardless of the properties of choice for improvement,
in GI-based approaches, a set of test cases is used to evaluate a
candidate software variant. The result of running these tests is
then used to estimate how ‘good’ a software variant is. In the au-
tomated program repair field this amounts to the number of test
cases passed.

Using Boolean test cases in fitness evaluation in search-based
APR approaches may lead to fitness landscapes with very large
1http://program-repair.org/tools.html
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plateaus. Indeed, many software modifications have by themselves
very little impact on the overall software [3, 8] thus leaving the
fitness unchanged. These plateaus make guidance over the search
space very difficult, especially when a repair involves multiple
simultaneous modifications.

Therefore, we propose to change how test cases are evaluated,
by taking the output of test cases into account at the fitness eval-
uation stage. More specifically, we propose to evaluate fitness by
calculating the differences between the expected and the actual
results.

2 MOTIVATING EXAMPLE
We present a motivating example in which a buggy piece of soft-
ware is to be fixed following a provided test suite, though the
technique can be applied to any genetic improvement framework.
The QuixBugs benchmark suite2 [6, 9] provides many simple buggy
programs together with associated test cases. We focus on the
buggy version of the greatest common divisor (GCD) Java pro-
gram, presented in Listing 1. Note that the arguments order in the
recursive call to gcd() is wrong and should be reversed. Table 1
presents the six test cases provided by the QuixBugs benchmark
suite, together with the output results on the buggy code and the
expected output. While the buggy code correctly passes the first
test case, it induces an infinite loop in each of the following five.
Under the usual Boolean fitness evaluation assumption, this would,
for example, mean a fitness value of five, to be minimised.

Listing 1: Buggy GCD.java program.
public class GCD {

public static int gcd(int a, int b) {

if (b == 0) {

return a;

} else {

return gcd(a % b, b); // fix: (b, a % b)

}

}

}

Suppose now that our APR framework operates at the level of
abstract syntax tree (AST) nodes and that amongmutation operators
we have a replacement operator. In the generate-and-validate APR
(and GI in general) this is a common setup [7]. Suppose that during
search the second argument of the recursive call, b, is replaced with
a % b. The output of this mutant on the test suite is shown in
Table 2. In particular, while the first output is unchanged, the five

2https://jkoppel.github.io/QuixBugs/
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infinite loops have been replaced by wrong outputs. Again, using
Boolean fitness evaluation the fitness of this mutant would be the
same as the original program, albeit it being much closer to the
intended solution.

Table 1: Test cases for GCD, with outputs from Listing 1.

Inputs (a,b) Output on Buggy Code Expected Output

17, 0 17 17
13, 13 infinite loop 13
37, 600 infinite loop 1
20, 100 infinite loop 20

624129, 2061517 infinite loop 18913
3, 12 infinite loop 3

Table 2: Test cases for GCD with outputs for mutant gcd(a %
b, b) -> gcd(a % b, a % b).

Inputs (a,b) Output on Buggy Code Expected Output

17, 0 17 17
13, 13 0 13
37, 600 0 1
20, 100 0 20

624129, 2061517 0 18913
3, 12 0 3

Therefore, we propose to have a two-step fitness function. At first
mutants are compared using the usual Boolean fitness evaluation:
mutants with more passing test cases should always be preferred.
However, when two mutants have the same Boolean fitness then a
more fine-grained fitness is used, based on the distance between
individual expected and actual outputs. Essentially, this allows
consideration of more rugged fitness landscapes thus enabling more
guidance in the search space of APR and GI approaches, which
otherwise have to deal with very flat landscapes.

The tests that lead to a crash, infinite loops etc. (essentially any
behaviour that does not produce an output) would contribute the
maximum penalty to the fitness function. On the other hand, the
tests that yield an inaccurate output would be assigned a penalty
that is based on some distance metric. For example, in our case of
GCD this could simply be a difference between integers. In this
case the fitness value based on outputs in Table 1 could be 5 ∗

(MAX_INT ), while the fitness value based on outputs in Table 2
could be 13+ 1+ 20+ 18913+ 3 = 18950. Therefore, it is the second
variant that would be preferred and selected for mutation, thus
increasing the chances of the second mutation (that replaces the
first a % b with b) to take place that leads to the required solution.
Note that otherwise search would have had to find the two changes
simultaneously, essentially by chance, as it has no guidance that
the first mutation b -> a % b is a step towards finding the right
solution.

3 TECHNICAL ASPECTS
Modification of the fitness function in existing generate-and-validate
APR and GI frameworks should be straightforward. For example,
the Gin [1] genetic improvement framework has a UnitTestResult
class that allows for automatic extraction of the expected and ac-
tual test result. This is achieved with the following two methods:
getAssertionExpectedValue()& getAssertionActualValue().
For numeric values, one could calculate the sum (as in the case of
the motivating example) or the maximum of the differences of the
expected and actual test case outputs. For strings one could use
Hamming distance, or any other distance metric of choice.

4 RELATEDWORK
More fine-grained fitness functions have been proposed by Souza et
al. [2], where they propose to exploit intermediate program states
(called checkpoints). However, the technique involves instrument-
ing source code and there’s an additional overhead of collecting
and using checkpoints.

Jang et al. [4] propose a fitness function that, additionally to test
case failure, records the number of modification points that have
been touched buy those tests. The modification points have been
previously calculated, using coverage and fault localisation criteria.
This is a more lightweight approach than that of Souze et al., but it
does not take the test case output itself into consideration.

5 CONCLUSIONS AND FUTUREWORK
In this paper we propose to use a new fine-grained fitness function
for improvement of software properties such as bug fixing. We
presented a motivating example from the QuixBugs program repair
benchmark suite and discussed technical aspects of our proposed
approach. We pose that in the generate-and-validate automated
software improvement approaches by employing a fitness function
that takes into account the differences between actual and expected
output values of test cases we will be able to guide the search
towards effective solutions. Therefore, we intend to implement the
proposed approach and conduct an empirical study to verify this
claim in our future work.
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