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ABSTRACT
Genetic improvement (GI) uses automated search to find improved
versions of existing software. If originally GI directly evolved pop-
ulations of software, most GI work nowadays use a solution repre-
sentation based on a list of mutations. This representation however
has some limitations, notably in how genetic material can be re-
combined. We introduce a novel stack-based representation and
discuss its possible benefits.
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1 INTRODUCTION
Genetic improvement (GI) [8] uses automated search to find im-
proved versions of existing software. The earliest GI work used
genetic programming (GP) [4] to directly evolve populations of
software [2]. Representation of software variants however quickly
changed to a more convenient intermediary representation that
most GI work nowadays prefer. This intermediary representation is
based on the modifications between the original software and the
mutated variant, usually through the sequence of mutations that
are to be applied. One of its main advantages is that it is much more
compact that the software itself, focusing on the changes at a level
much closer to human understanding and thus ultimately mak-
ing the changes more likely to be adapted into development [11].
However, it also has some limitations, notably in terms of genetic
material recombination [6].

Stack-oriented programming is a powerful, but very rarely used
paradigm. Used, for example, in the Forth, Push, or Postscript pro-
gramming languages, this paradigm provides the main computation
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procedure with stacks to store data or code and retrieve them later
in reverse order. The most popular use of stacks is probably the
reverse Polish notation, which was at some point used in many
hand-held calculators. Stacks have been used in general GP sys-
tems [7], and particularly efficiently in the PushGP [10] system for
autoconstructive evolution.

In this paper, we introduce a novel representation for GI sys-
tems, based on new types of edits and the use of stacks. We aim to
propose a representation that keeps the simplicity of the usual rep-
resentation, includes the recombination flexibility of a decoupled
representation [6], while providing many other possible advantages.

2 GENETIC IMPROVEMENT SETUP
The usual GI setup involves computing for the target software a list
of possible modification points, either based on physical representa-
tion (e.g., lines of code) or syntactical data (e.g., using the software’s
abstract syntax tree—AST). Using this list of modification points, a
software variant is then described using a sequence of edits, within
which the most common are the deletion, the replacement, and the
insertion of pieces of software.

Delete(l) removes the code currently at location l;
Replace(l1, l2) replaces the code currently at location l1

by the code originally at location l2;
Insert(l1, l2) inserts, before or after location l1, the code

originally at location l2.

For fitness evaluation, the actual software variant is obtained by
successively applying to the original software every mutation in
order. This intermediary representation enables very quick mutant
generation as well as efficient mutations and crossovers between
software variants. In particular, individual edits can very easily be
added or removed to software variants while maintaining most of
their original semantic.

A downside of such a representation is that it only facilitates
manipulation of coupled genetic material (here, the type of edits and
the location of modification points). Data composing edit sequences
can be decoupled into three sub-spaces [5] (namely operator, fault,
and fix spaces), leading to new types ofmutations and crossovers [6].
However, the complexity of the induced representation makes it
much harder to use, despite its benefits.

3 PROPOSAL
We propose a novel GI software variant representation, based on a
new set of edits. The main difference with the usual representation
is the use of one or more stacks when the edit sequence is used to
obtain the actual mutated software.
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3.1 New Edits
The usual set of edits (deletion, replacement, insertions) are replaced
by a set of new operations, that rely on the addition to the edit a
sequence of stacks, which will contain locations of mutation points.
We describe here the most basic case in which a single stack is used;
the use of multiple stacks is discussed later. We define three new
types of edits: copy, cut, and paste.

Copy(l) puts the location l on top of the stack;
Cut(l) deletes the code currently at location l and then puts

the location l on top of the stack;
Paste(l) retrieves the location at the top of the stack and uses

it to replace the code at location l.
Similarly to the two versions of the insertion edit (insertion be-

fore or after), three versions of the paste edit can be defined: to
replace at position l, or to insert before or after position l. Addi-
tionally, it might also be interesting to reuse the deletion edit.

When evaluating the edit sequence to obtain the mutated soft-
ware, it may happen than some of the operations require data from
an empty stack. We propose three options. (1) It is possible to sim-
ply and safely ignore such operations; this means keeping in the
representation inactive genetic material that could possibly be re-
activated later through crossover or further mutation. (2) These
operations can also be easily discarded, as are invalid genes [6]. (3)
Finally, the empty stack can still produce some data, for example
by returning a default value (e.g., an empty line/statement) or by
keeping track of the last value retrieved from the stack.

The differences to the usual edit sequence representation may
seem minimal. The usual four types of edits have been traded to
either five or six operations, and obtaining the mutated software
now requires the use of a stack. Edit sequences are necessarily
at least slightly longer than beforehand, with replacements and
insertions requiring both a copy and a paste operation. However, it
is clear that this new representation is as least as expressive, as it
can easily be converted back to the original one.

3.2 Decoupling and Recombination
One subtle difference between the two sets of edits is that the copy,
cut, and paste (and possibly delete) edits all use a single argument.
Using a decoupled representation [5] this would mean only two sub-
spaces instead of three: the operator one, and a merged fault and
fix one, inducing two sequences that will necessarily always have
the same length. This consistent arity greatly simplifies decoupled
mutations and crossovers [6] while avoiding any additional step to
repair or discard invalid genes. In particular, any subset of operators
could be recombined with any similar-sized subset of locations and
necessarily result in a valid edit sequence.

3.3 Type-Based Stacks
Push [10] is a family of programming languages in which each data
type (including code itself) is associated with a different stack. Our
new representation can very easily benefit from such a scheme.

Indeed, modification points are intrinsically associated with
pieces of software, e.g., lines of code, Boolean operators, or in
general any sub-tree associated to the software AST. When all mod-
ifications points are homogeneous, e.g., only program statements
or program conditions, then the GI system can ensure reasonable

syntactic validity. In contrast, when multiple granularity levels are
considered (e.g., simultaneous evolution of program statements
and conditions [9]) operations—e.g., replacement, insertion; or here,
paste—have to be consistent so to not result in invalid mutated
software (e.g., an if condition being replaced by a full statement).
While it is easy to generate consistent edits, maintaining validity
after decoupling quickly becomes cumbersome as location types
need to be taken in consideration. By using a different stack for
each location types and enforcing that edits only use the stack as-
sociated to the type of their single argument, then operations are
ensured to always use coherent data.

3.4 Content-Based Approaches
In addition or replacement to locations, edits in GI approaches may
also directly include content data (e.g., [1, 3]). In that case, our
stack-based representation can easily accommodate being modified
to use additional stacks for content or mixed data.

4 CONCLUSION
Most GI work use edit sequences as solution representation for soft-
ware variants. While very simple and easy to mutate and crossover,
it has limitations in how genetic material can be recombined [6].

We presented a slightly modified solution representations, based
on a set of new edits and the use of stacks. We expect this new stack-
based solution representation to be straightforward to implement
and at least as expressive and effective as the standard one, while
keeping its simplicity and avoiding some of its current limitations.
Lastly, we intend to challenge our claims through empirical analysis.
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