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Abstract 
Computational brain models use machine learning algorithms and statistical 

models to harness big data for delivering disease-specific diagnosis or 

prognosis for individuals. They are intended to support clinical decision making 

and are widely available. However, their translation into clinical practice remains 

weak despite efforts to improve implementation such as through training 

clinicians and clinical staff in their use and benefits. In this paper, we argue that 

it is necessary to go beyond existing implementation efforts to understand and 

meaningfully integrate the clinician's perspective and tacit knowledge for 
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translating computational brain models in neurological practice. The empirical 

research draws on our collective seven-year engagement with the Human Brain 

Project as researchers of its 'Ethics and Society' subproject and includes 

analysis of published and grey literature, participant observation at workshops 

and conferences, and interviews with data scientists, neuroscientists, and 

neurologists in the UK and Europe developing computational tools for 

neurology. Our findings show that building trust in the relationships between 

clinicians and researchers (modelers, data scientists) through meaningful 

upstream collaboration, greater model transparency and integration of tacit 

knowledge play a salient role in translation processes with meaningful benefit for 

patients. 

 
 

1.  Introduction 
 

At the 2018 Annual Summit meeting of the Human Brain Project (HBP), the 

chair of the short-lived Clinical Advisory Board pointed out that,  

 

 when you go see your doctor, you must feel confident in their diagnostics, 
 be reassured, trust them. The paradox is, currently doctors don’t or can’t, 
 capitalise on the previous hundreds of patients them and their colleagues 
 may have seen, who may have displayed similar symptoms. 

 
At the same time, the chair urged researchers to remember that when 

developing even the most wonderful of medical tools to fix this problem with the 

use of big data analytics, it is mandatory, always, to develop “the human side of 

these tools”. Where data-intensive algorithms for brain disorders are concerned, 

this 'human side' represents a triangle of trust relationships: between patients 

and researchers1, between patients and clinicians, and between clinicians and 

researchers. In this article, we explore questions of trust between patients and 

clinicians and between clinicians and researchers. As we shall see, these 

questions have implications for the use of diagnostic technologies based on 

computational modelling and machine learning techniques for the analysis of the 

                                            
1 In this paper, 'researchers' refer to modelers and data scientists involved with the development 

of computational models and data analysis tools. 
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large quantities of patient data gathered by hospitals, through clinical research 

and elsewhere.  

  

In the HBP, work is underway to analyse large clinical and research datasets, 

using algorithms and machine learning. The aim is to search for patterns in data 

that can individuate the neurobiological correlates of a disorder in ways that 

could be used to aid diagnosis, to target treatments and hence to improve 

prognosis. Computational models are one among many types of approaches 

currently under development to integrate Artificial Intelligence (AI), broadly 

construed, in healthcare. In turn, these computational models draw on the vast 

amount of personal health data now available to develop disease-specific 

machine learning algorithms and statistical models that are expected to assist 

clinical decision making when offering a 'personalised' diagnosis or prognosis 

for individuals. 

 

Recent surveys and mappings of the ethical and social questions raised by the 

use of AI in healthcare2 place overwhelming emphasis on issues of public trust, 

hinged on questions of bias and explainability of algorithms (Watson et al. 

2019), as well as transparent, fair, secure and equitable use of health data 

(Future Advocacy 2018; Joshi and Morley 2019). Epistemic concerns with AI 

applications for healthcare remain mostly related to evidence as inconclusive, 

inscrutable or misguided (Morley et al. 2020; Wessler et al. 2017). Stake holders 

engaged with improving implementation (and thus uptake) of AI applications 

remain focused on training as a key tool for overcoming clinician's assumed 

distrust (Liberati et al. 2017) of and reluctance to learn novel techniques (Future 

Advocacy 2018; Joshi and Morley 2019; Nuffield Council on Bioethics 2018). 

 

Yet, this focus on issues of public trust, evidence, and training misses and 

obscures the salient role of tacit knowledge in clinical diagnosis (Allegaert, 

Smits, and Johannes 2012) emblematic of the long, and ongoing, struggle of 

clinical practice to establish its epistemic value on firm and widely accepted 

grounds (Khushf 2013; Malterud 1995; Leblond 2013; Engel 2008). This 

                                            
2 Covering all areas of use from process optimisation to patient-facing applications and notably 

applications integrated in clinical pathways, which encompass among other techniques 
machine learning and data-driven computational models. 
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struggle is inseparable from clinician and clinical staff's fears of job loss 

contingent on perceived threats to autonomy, authority and expertise, loosened 

relations with patients, deskilling, jobs displacement (Greenhalgh et al. 2017; 

Simonite 2016; Rockoff 2016). We suggest understanding and integrating these 

entangled and contingent complexities of the clinician's perspective and the 

contribution of tacit knowledge towards building meaningful relationships of trust 

between clinicians and researchers as a first step in efforts to routinise 

computational brain models in neurological practice (see Figure 1). For patients 

(and thereby publics) need to trust clinicians as the custodians of their welfare, 

and by and large do so. Thus we argue that inadequate attention to the salience 

of clinician's trust in computational models risks weakening efforts to (re)gain 

public trust in AI-driven healthcare. 

 

Figure I: Trust Relationships in Clinical Translation of CPMs 

 

We focus here not on trust from patients or publics, but on a different, but we 

suggest, an equally important dimension - the clinician's trust; a key factor in 

research-practice partnerships vital to the translation of machine learning and 

algorithm driven technologies. We reflect on the role of clinicians both as 

custodians of patient trust and welfare, and as end-users of computational 

models. In turn, this highlights the challenges and barriers to the responsible 

and successful adoption of such technologies; the clash between epistemic 

cultures and professional practices of data science and medicine; and the 

implications these have for how data is gathered and interpreted. Overcoming 

such challenges, we suggest, will depend on the trust of clinicians that their 

tacit, experiential, clinical knowledge is respected and integrated into data-

driven technologies and that these technologies will meaningfully benefit 

patients.  
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We begin by briefly discussing some definitional aspects of trust in the context 

of the 'patient-clinician' relationship before considering the ways that clinician’s 

trust in computational models in neurology shapes, and is shaped by, their 

traditional interpersonal trust relationship with patients. This is followed by an 

analysis of the implications of clinician's relationship with researchers. This line 

of inquiry extends scholarship in healthcare and biomedicine around 

methodological concerns such as data anonymisation (Watson et al. 2019), 

consent (Larson 2013), platform standardisation (Shah, 2018) etc. At the same 

time, our inquiry provides a unique qualitative understanding of the ways in 

which trust relationships shape (or weaken) patient trust (Hall et al 2002; 

Fiscella et al. 2004; Thom 2001; Thorpe et al 2020; Klein et al. 2016). The 

empirical research for this article is grounded in our collective seven-year 

engagement with HBP as researchers of its 'Ethics and Society' subproject and 

includes analysis of published and grey literature, participant observation at 

workshops and conferences, and interviews with data scientists, neuroscientists, 

and neurologists in the UK and Europe developing computational tools for 

neurology.  

 

2. Background 
2.1 Traditional clinician-patient trust relationship 

Trust in science, medicine and experts in general has been the subject of much 

academic and popular debate since at least the 1960s, although a general 

definition of trust remains elusive and contested (see exhaustive discussion in 

Mcknight and Chervany 1996). In contrast, specific 'trust' relationships like the 

patient-clinician trust relationship have been widely studied (Hall et al 2002; 

Fiscella et al. 2004; Thom 2001; Thorpe et al 2020; Klein et al. 2016).  However, 

most studies have used large-scale survey data to identify objective measurable 

conditions that erode or enhance patient trust such as "perceived clinician 

financial conflicts of interest" has been shown to erode trust (Klein et al. 2016). 

While patient beliefs of clinician's honesty and competence to "act in their [the 

patient's] best interest, and preserve their confidentiality" (Fiscella et al. 2004), 

clinician's efforts to understand patient experiences and share power (Thom 

2001) etc. have been found to enhance patient trust in clinicians.  
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Yet, whether measuring the erosion or enhancement of trust, these studies - 

perhaps more than anything else - implicitly emphasise the enduring nature of 

the interpersonal relationship of trust that patients have with clinicians as 

custodians of their welfare. A key reason for this, according to 70 percent 

respondents of a nationwide survey of 3014 US adults by Pew Research, was 

because clinicians were "the central resource for information or support [for 

patients, carers and family] during serious episodes” and at other times (Fox 

and Duggan, 2013). As to “why do individuals trust their doctors the most?”, the 

answer (according to another large survey conducted by 

PricewaterhouseCoopers 2012) was "human relationships". Hence, when novel 

clinical technologies are introduced, patient's (and thereby publics) decisions to 

adopt or reject them are overwhelmingly informed and guided by advice from 

clinicians. This is because "[patients (and publics)] want to trust and connect 

with the people providing [them] the care. ...it’s easier to trust a person than an 

organization ...[and clinicians] have the ability to form human relationships and 

connections with their patients, which ultimately leads to increased trust” 

(Kathryn Armstrong, senior producer of web communications at Lehigh Valley 

Health Network, USA in PricewaterhouseCoopers 2012, 17). Indeed, the 

salience of this trust relationship is highlighted by PricewaterhouseCoopers' 

(2012, 17) survey of patient behaviors (aimed at understanding the nuances of 

health technology adoption) which concluded on a cautionary note that "to 

establish trust and credibility with consumers ...healthcare companies need[ed] 

to reconsider their approach to these [clinician-patient] relationships.”  

 

Within this complex interpersonal patient-clinician trust relationship, influenced 

to some extent by patient's institutional trust of the hospital or clinic where the 

clinician is embedded and from where they receive health(care) services (Gray 

1997), computational models hope to gain a foothold as a trusted member of the 

clinician's diagnostic toolkit alongside stethoscopes and blood pressure 

monitors. Next we turn to the case of neurology where these models are being 

developed to aid neurologists to understand the challenges of how 

computational tools can gain a foothold - in other words, gain the clinician's 

trust. 
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2.2 Neuro-Diagnosis 

Neurology has a long history of attempts to codify the diagnostic process but 

with limited success, especially around the interpretation of medical imaging, 

and formalising it in standard and computerised programmes (Doi 2007). 

Enormous research efforts over several decades, involving genetic, scanning 

and other advanced neurotechnologies attempted to identify neurological 

‘biomarkers’ for any of the current diagnostic categories used in clinical practice, 

for example those embodied in the successive editions of the American 

Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders 

(Rose 2013). However, with the exception of some forms of dementia, these 

attempts failed to identify clinically useful neurobiological or genetic biomarkers 

for diagnostic precision or treatment choice in the area of mental health. This led 

many psychiatric researchers, notably at the US National Institutes of Mental 

Health, to argue for a shift away from research based on diagnostic categories 

towards developing new approaches that would diagnose disorders on the basis 

of their biology.   

 

The hope was that novel techniques using machine learning when used in the 

analysis of large data sets (containing information from genetic tests, brain 

scans and other physiological markers, together with data on clinical 

presentation, symptomatology, treatment and prognosis) might reveal previously 

hidden relations between neurobiology, symptomatology and treatment success. 

Computational models are emblematic of such attempts to formalise and 

standardise the diagnostic process. By codifying the range of data now available 

for neurodiagnosis from various sources (fMRI, MRI, PET, CT, EEG, MEG), 

models aim to develop 'objective' diagnoses, rather than person-driven analyses 

dependent on the interpretive skills of different clinicians. Currently, such 

approaches are being tried across a number of areas, to analyse case records, 

clinical and physiological data, test results and images from scans and link 

these to diagnosis and prognosis – in some cases producing results that are 

more accurate and reliable than those of even the most skilled diagnostician 

(Nuffield Council on Bioethics 2018). Not surprisingly, computational brain 

models have become an area of considerable commercial investment, bolstered 
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to some extent - as in the United States - by the hope of automating clinical 

decisionmaking to reduce diagnostic errors held responsible for the rising cost of 

medical malpractice settlements 3. 
 

2.3 Tacit Knowledge 

For many scholars, the challenge lies in trusting the 'reading' of data produced 

by these computational models. For instance, many have recognized that 

images (medical imaging data) do not speak for themselves, are not mere 

extensions of the naked eye and can only assist, not replace, expert opinion 

(Stone et al 2016). As clinicians such as Barry F Saunders (2008) 

demonstrated, the 'craft' practices involved in “learning to read” radiological 

images such as CT scans encapsulate complex institutional and hierarchical 

context within which doctors are trained to develop ‘tacit knowledge’ (see 

detailed discussion in Mahfoud, 2014). Anthropologist Andreas Roepstorff 

(2007) called this “skilled vision” - or ways of knowing that cannot easily be 

described, explained or put into words, but which enable us to do what we do 

(Polanyi 2009) – in this case to draw conclusions from visual and other evidence 

to make a diagnosis that will lead to a decision about action.  

 

Unlike, earlier neurologists such as Kurt Goldstein (1878-1965) who had access 

only to the brains of deceased patients, and thus diagnosed living patients using 

case records and visual technologies such as films (Goldstein (1995[1939])  

neurologists today have access to the living brain via a range of imaging 

technologies for diagnostic purposes - CT, PET, MRI, fMRI, EEG, etc. (Rose 

and Gainty, 2019). These images are generated by sophisticated technology 

and statistical procedures whose details are often unknown to those who make 

use of them. For instance, magnetic resonance imaging (MRI) uses magnetic 

field gradients that act upon certain atoms to generate detectable radio 

waves that are then processed using sophisticated algorithms to generate data 

on the distribution of water and fat in the body and then further processed to 

generate images of organs. However, these images embody many 

assumptions. For example, the hypothesis built into fMRI is that an increase in 

                                            
3 see analysis by researchers at Johns Hopkins 

https://www.hopkinsmedicine.org/news/media/releases/diagnostic_errors_more_common_co
stly_and_harmful_than_treatment_mistakes 
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blood flow is a marker of an increase in brain activity. This assumption is 

embedded in the software embedded in the fMRI scanner that produces the 

images and despite longstanding critical evaluation, it is seldom questioned in 

the practices that utilise fMRI for research or diagnosis (Logothetis 2008). 

Indeed the standard fMRI paradigms have become controversial with the 

increasing recognition that measures of changes in blood oxygenation levels 

neglect the key role of highly distributed neural activity – known as the ‘resting 

state’ - that is necessary for task performance, but is usually ‘subtracted’ from 

fMRI outputs as a result of the algorithms that are used to create the images 

(Gusnard and Raichle 2001).  

 

These emerging data-driven technologies are thus far more than an aid to 

vision; they render some things visible at the expense of others, and frequently 

do so in ways that are ‘black boxed’ and not known or fully understood by those 

who use the results (Caruana et al 2020; Holzinger et al 2017). These issues 

are further complicated when large volumes of data produced by these 

technologies in many different clinics and research projects, using different 

research protocols, are linked using statistical devices to make them 

commensurable, and then analysed using machine learning to generate 

algorithms that are not known, let alone fully understood by potential users (the 

clinicians) who would have to decide whether and when to make use of the 

information provided in order to make a medical diagnosis.   

 

Thus, many argue that as in previous diagnostic practices, 'reading' these 

images require the intervention of the trained eye of the expert (Mahfoud 2014), 

specifically trained in tacit practices typically taught outside of formalised 

education via apprenticeships (revealed in interviews with neurologists; see also 

Shah et al. 2018). As a result, the interpretive skills developed by 

neuroscientists (e.g. to interpret fMRI brain scans) involve both formal and 

informal education - one is required to know in order to see (Roepstorff 2007). In 

the clinical practice of neurology, 'knowing' (in order to read images) crucially 

draws on clinician's tacit knowledge of individual patient's physiologies and 

pathologies gained through interpersonal clinician-patient trust relationships. 

Indeed, the foundational salience of tacit knowledge in psychiatry is revealed by 
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a recent survey of 791 psychiatrists across 22 countries (representing North and 

South America, Europe and Asia-Pacific) where a mere 3.8 percent "felt it was 

likely that future technology would make their jobs obsolete and only 17 % felt 

that future AI/ML was likely to replace a human clinician for providing empathetic 

care" (Doraiswamy, Blease and Bodner 2020) (see also Miner et al 2019). As 

Ferdinand Velasco, Texas Health’s chief medical information officer (op. cit 27) 

emphasises, 

 There is a lot of patient data—clinical and soon genomics as well. But 
what is really happening in our patients’ lives is missing to us and their 
record— what’s happening in their lives is happening in the social 
space. ...If we understand the life factors that impact when and who they 
select for care and what challenges they face after receiving care, there 
is a lot of potential for merging analytics with the clinical side and 
improving care. The lack of access to various facets of human suffering 
that lies underneath the bare data is particularly acute for organisations 
and institutions engaged in translational research where researchers 
traditionally have no direct interaction with patients except during clinical 
trials (PricewaterhouseCoopers 2012, 17). 

 
Thus, many argue that engagement is crucial between researchers and 

clinicians early on in technology development to bridge the widening “chasm in 

the understanding of end-users [clinicians] between [researcher's] imagination 

of a future user and users’ lived experiences” (Datta 2018, 354) (see also 

Epstein 1996; Smith et al. 2017). Without this early engagement, the 

expectation that once a technology is developed it will be readily adopted by 

clinicians (and patients) - at the researchers’ word of its power to improve their 

lives - is challenging. While engagement efforts after a technology is developed 

is widely considered a meaningless tick-box approach that is "largely ineffective 

in rebuilding public trust” (Wynne 2006, 217). Thus, from the clinician's 

perspective, the computations involved in producing these images in order to 

‘read’ and analyse brain scans hold little practical interest. However, as we shall 

see, clinicians do need to have confidence and trust in the process that has led 

from the initial data to the images that they have to interpret and utilise in clinical 

practice.  

 

2.4 Computational Brain Models  

In contrast, from the perspective of the researchers seeking to interpret the 

range of information potentially available for diagnosis, machine learning 
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promises to solve the problem of the masses of data from different sources now 

available - fMRI, MRI, PET, CT, EEG, MEG… - that are extremely difficult for 

human beings to integrate and analyse together. The hope is that machine 

learning tools can be used to analyse these large amounts of data from different 

sources, and further, that these computer-driven methods will be more objective 

than person-driven analyses, because they do not depend on the interpretive 

skills of different clinicians. Thus many argue that the digitization of data from 

patients’ clinical records and medical images combined with advanced data 

analytics can enable AI technologies such as machine learning and machine 

vision to distinguish between different potential diagnoses in a clinically 

meaningful way that can enable clinicians to target specific treatments (Luo, et 

al. 2016). Data-driven technologies aimed at assisting healthcare practitioners in 

diagnostic processes have been approved by the US Food and Drug 

Administration (FDA) in recent years (Future Advocacy 2018). For example, the 

smartphone application ‘Viz.AI’ analyses CT images of the brains of patients 

admitted to hospitals with symptoms of stroke, identifies vessel blockages 

through these images, and sends this analysis via text to neurovascular 

specialists. This software was approved by the FDA as a “clinical decision 

support software” based on evidence submitted by the developers which 

demonstrated through a clinical trial that the software application more quickly 

identified the vessel blockages. 4  Development of several other software 

applications are underway (although not yet approved by the FDA), such as the 

collaboration between DeepMind Health and Moorfields Eye Hospital, London 

which uses neural networks to diagnose Age-related Macular Degeneration 

(AMD) through the analysis of Optical Coherence Tomography (OCT) (De Fauw 

et al. 2018). 

 

In psychiatry, much of the research still begins from or utilises diagnoses 

according to current diagnostic categories despite the problems that many have 

identified with such classification (discussed earlier). Thus a collaboration 

between IBM and the University of Alberta uses neural networks to diagnose 

schizophrenia through an analysis of fMRI scans while patients undertake an 

audio-based exercise. The researchers claim to have identified “combinations of 

                                            
4 https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596575.htm  
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statistical features extracted from the data that can serve as reliable statistical 

(bio)markers of the disease, capable of accurately discriminating between 

schizophrenic patients and controls” (Gheiratmand 2017). These ‘bio-markers’ 

included an “abnormal” increase of connectivity between the thalamus and the 

primary motor/primary sensor cortex as well as ”hyperconnectivity” in the fronto-

parietal  network. While the model was relatively successful at predicting a 

clinical diagnosis of schizophrenia (at above 70%), this research has not yet 

undergone the clinical trials needed for software regulation and approval.  

Further, it is being undertaken at a time when the very categories such as 

schizophrenia are contested by many experts in the field (Murray 2017). There 

is a widespread recognition that, across the whole spectrum of mental disorders, 

and particularly in relation to psychoses, similar symptomatology may result 

from very different neurobiological pathways. There is thus a certain unhelpful 

circularity in seeking brain based biomarkers that correlate with symptom based 

diagnoses that are themselves contested and considered to lump together a 

variety of conditions that are developmentally, neurobiologically and 

prognostically distinct (Nature Biotechnology 2012). 

 

Some six years ago, an Editorial in Nature Biotechnology (2012) entitled “What 

happened to personalized medicine?” reflected on the slow progress and 

unrealized hopes of those who predicted a revolution in medical diagnosis and 

treatment targeting based on biomarkers.  The barriers they identified were less 

biological than social: a need “to broaden the concept of personalized medicine 

from the genetically reductionist version to one that includes other types of 

markers”; a need for more long term studies “linking specimens, sequence and 

other biomarker information to clinical outcomes”, a need for patients to be 

encouraged to share their data for research purposes, and a need to educate 

physicians ”about the new diagnostics and how to integrate them with existing 

clinical information” which will require not only better education but also “the 

development of robust point-of-care devices and data-sharing technology and 

the establishment of trusted sources (e.g., medical association position 

statements on tests or the National Institutes of Health’s genetic testing 

registry). What perhaps stands out most in the editorial, is its emphasis on the 

salience of trust. For if clinicians and patients do not have legitimate trust in the 
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accuracy, validity and utility of biomarkers, and that certainly includes brain 

based biomarkers, whatever the hopes of those who develop them, they will not 

‘translate’ into clinical practice.   

 

3.  Gaining the clinician's trust 
So far, the literature on the dynamics of gaining the clinician's trust in clinical 

translation mostly derive from research focussed on other issues such as 

studies of computational technology adoption rates among clinical staff 

(Garland, Plemmons, and Koontz 2006), or critical scholarship identifying 

barriers to effective research-practice partnerships for better clinical -translation 

or -data collection  (Mittelstadt and Floridi 2016). In turn, scholarship on barriers 

to the adoption of computational models draws on these views of resistance to 

change in research-practice relationships to implicate this lack of trust as one 

among several 'technical and methodological' issues such as calibration, risk-

sensitivity, data quality (Shah et al. 2018) and so forth. However some research 

does acknowledge the need to contextualise these understandings within the 

imperatives of big-data processing (Mittelstadt and Floridi 2016, 2-3].  

 

3.1 Upstream clinician collaboration 

Our research shows that collaborations with clinicians in the upstream research 

conceptualisation phase of technology development was crucial for gaining the 

clinicians’ trust, as it provided the time and space to forge an interpersonal 

researcher-clinician trust relationship necessary to create bridges across the 

researcher-clinician divide. Typically, the relationship between clinicians and 

computational neuroscientists is based on give and take - clinic(ians) send 

researchers anonymised patient data, researchers perform analyses using this 

data in computational models under development and send back the results of 

the analyses to clinic(ians). However, our interviews revealed that trust was a 

defining element in this relationship between clinicians and researchers, 

particularly around data bias, model transparency and different epistemological 

traditions in neurology, the neurosciences, and computer sciences. 

 

Importantly, researcher-developers of neuro-diagnostic tools highlighted the 

significance of close collaborations between clinicians, or “domain experts”, and 
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data analysts, not just for the sharing of medical data but more importantly for 

defining the research questions pursued. Computer scientists stated that 

research questions should be defined by clinicians, and only then can machine 

learning tools or methods be selected and decisions made about which types of 

data are needed. Similarly, there was acknowledgement among modellers that 

“domain-specific” training would be desirable to collaborate with clinicians, 

beyond the generalist traditions of computer science that require computational 

tools be developed for general-purpose and then adapted to specific use-cases. 

In reality, while some modellers do develop expertise in specific fields (such as 

neuroscience, or oncology), it is more common for computer scientists and 

engineers to move between biological domains of expertise. 

 

Clinicians and biologists, on the other hand, found it concerning that modellers 

did not understand the biology and physiology of the conditions being explored, 

which they deemed necessary to develop clinically useful models. At the same 

time, researchers found it concerning that clinicians did not understand the 

modelling frameworks used - specifically the assumptions of the statistical, 

machine learning and other data analysis methods. Computational modellers 

suggested that future educational programmes for clinicians needs to include 

training in computational methods in order to adapt to changing clinical contexts 

where machine learning and other computational tools are likely to become 

more common place.  

 

3.2 Greater model transparency 

For clinicians, model transparency played a considerable role in deciding the 

extent of their trust in using a machine-learning based diagnostic tool. Some 

researchers argue for shorter-term technical solutions such as making machine 

learning tools more interpretable for clinicians by building in the ability for 

clinicians to trace back the way an algorithm has come to a certain conclusion, 

thus rendering the decision-making ‘transparent’. Indeed, transparency is one of 

the key ethical principles in discussions around accountability in artificial 

intelligence (Mittelstadt and Floridi 2016). An association of researchers in 

Microsoft, Google, and others have, for example, proposed the principles of 

“Fairness, Accountability, and Transparency in Machine Learning” to address 
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the “potentially discriminatory impact of machine learning” as well as the 

“dangers of inadvertently encoding bias into automated decisions”.5 Interviews 

with computational modellers suggested that to adhere to the principle of 

transparency, the use of supervised and semi-supervised learning algorithms 

was preferable to relying on unsupervised learning algorithms. This is because 

supervised and semi-supervised classification algorithms can be represented as 

decision-trees, which are more interpretable to collaborating clinicians than the 

‘black box’ through which unsupervised learning algorithms produce their 

results. 

 

Transparency and open science are core values of responsibility in scientific 

research and innovation (Von Schomberg 2013). These issues have become 

prominent in debates over algorithmics, with the demand for explainability and 

accountability of inscrutable systems getting stronger. This demand is gaining 

traction as it is increasingly believed to be a crucial, perhaps inescapable, step 

towards safety and trustworthiness of AI and machine learning systems, and it is 

seen as integral to ethically aligned design principles. Unsupervised learning 

algorithms, which aim is to discover inherent structures in data without using 

pre-existing categories, are under special examination for being inscrutable 

even to their designers. In this context, any proposals to use such unsupervised 

machine learning to discover ‘brain signatures’ that could bring about a 

complete revision of the classification of mental disorders appears highly 

problematic. 

 

3.3 Integrating tacit knowledge  

Even if algorithms can become less opaque, there remain other epistemological 

obstacles – that is to say, clashes of epistemologies - to collaborations between 

clinicians and researchers. Clinicians we interviewed talked about the 

importance of clinician-patient interaction for diagnosis. For example, in the 

diagnosis and treatment of epilepsy, clinicians carry the patients through from 

diagnosis to pre-surgical screening, surgery, and post-surgical rehabilitation. 

This is seen by some as already a highly personalised treatment since each 

patient is unique in terms of the symptoms exhibited and surgical treatment 

                                            
5 http://www.fatml.org/ 
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needed. Such ‘holistic’ treatment of the individual - common in neurology - is 

seen by computational neuroscientists as dependent on “subjective” and 

“biased” elements that need to be removed or reduced from clinical settings 

described as “low validity environments” with some citing psychologist Daniel 

Kahneman’s (2013) work on decision-making: "to maximize predictive 

accuracy... decisions should be left to algorithms in low validity environments" 

for support. 

 

Despite such criticisms, ‘tacit knowledge’ of clinicians remains crucial in 

diagnostic processes. For example, it is clinicians who must use their formal and 

informal craft skills to interpret the various data sets from the patients to decide 

which part of the brain to remove during surgery or where to place SEEG 

(stereo electro encephalography) electrodes for an epileptic patient. In response 

to a question about the receptivity among clinicians of computational brain 

modelling approaches for the diagnosis and treatment of neurological 

conditions, an engineer at a neuroscience laboratory in France said:  

 

Clinicians do not explicitly state the idea behind why brain areas generate 
seizures, for example – it is an implicit model. I call it a model. It is what 
you learn when you study epileptology. Clinicians reason by saying that if 
this area affects this one, then if l remove this it will stop seizures. It is a 
model because it is a set of rules, but it is not entirely quantitative. There 
is a lot of experience needed to know, to have intuition. The goal of our 
quantitative model is to take into account the clinician's opinion but also 
other data to come up with results that bring those things together, 
hopefully in a robust fashion. The clinicians we work with are interested in 
having tools that will help them resolve the pathology for their patients in 
cases where they have no idea…They will try [the data analysis] out 
because they are curious, but will ignore the result. But as they get 
experience with tool, assuming it is good enough, it will become part of 
the workflow and part of their analysis.  

 

For this researcher as well as others who we interviewed, such tacit or 

experiential knowledge is an implicit model as it involves a series of steps that 

result in a decision, or solution; they thus expressed concern that these steps 

were not made explicit. On the other hand, clinicians defended this ‘intuition’ as 

the result of years of diagnostic experience and surgical interventions that 

become internalised in their judgement processes. Clinicians insist that just 

because these were not fully articulated, or perhaps even capable of full 
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articulation, does not mean they were not valid. While they did not use the term, 

it was clear here that clinicians considered that a 'skilled clinician' was one who 

had fully embodied the results of years of experience and immersion in a 

community of experts into the tacit knowledge that guided their decisions. 

 

Not surprisingly, this epistemological conflict between the ‘subjective’ knowledge 

of the clinicians and the so-called ‘objective’ knowledge of the data analysis 

finds its way into discussions around data bias. Data scientists need what they 

call “good data distribution”, standardised data, and comprehensive meta-data. 

As one computer scientist noted:  

There are different cultures of how clinicians diagnose and treat – 
different clinicians with different expertise and knowledge can label 
patients differently. And many scores – like the Montreal Cognitive 
Assessment (MoCA) – are arbitrary, on a scale of one to five or 
something. This kind of noise can be compensated for if you have large 
amounts of physicians involved who can make sure the data is 
distributed well and can check the quality of measurements, missing 
data.  

 

On the one hand, this suggests that including clinician's tacit knowledge 

meaningfully in upstream technology development processes - rather than as 

part of a box-ticking exercise in post-development processes - is important for 

meaningful technology adaptation and its eventual adoption (Wong, Turner, and 

Yee 2008). This is consistent with Sullivan et al.'s (2005) conclusion in the 

domain of psychiatry research and practice, that a "bottom-up" approach in 

which services researchers assist frontline clinicians in testing interventions that 

clinicians themselves have devised …[will] result in interventions that are more 

likely to be sustained over time.” For instance, recent work on 'automatic speech 

recognition for psychotherapy' - whereby nuances of patient's speech in 

datasets used to develop a model vary significantly from patient populations it 

hopes to serve - highlight the acute need for clinician engagement in designing 

and guiding model development (Miner et al 2020) to reduce clinical bias in 

existing data and better reflect variability’s in race, ethnicity, sex, gender, age 

etc. (Schwartz and Blankenship 2014). 
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On the other hand, modellers and clinicians alike acknowledge that clinicians do 

not have the required training to critically analyse the results of these new data 

analytics tools, and their distrust of these results may be caused by a lack of 

understanding of the models and the ways algorithms reach decisions. While 

unsupervised learning has been successful in diagnosis, especially in relation to 

the analysis of medical images (e.g. by Google DeepMind in De Fauw et 

al. 2018), these are far less interpretable than other machine learning methods. 

Yet, whether interpretable or not, clinicians we interviewed for this study 

suggested that if the computational models recommended a different diagnosis 

or different conclusions than their medical opinion, they were almost always 

likely to trust and pursue their own opinion. 

 

For computational diagnostics tools aiming to become a part of the neurologist's 

toolkit, there is a need to move away from the negative 'quantitative' view that 

‘subjectivity’ of clinicians’ assessments are inherently ‘biased’ and acknowledge 

the value of experiential and tacit knowledge in clinical reasoning that remains 

foundational to the relationships of trust between patients and clinicians. 

Incorporating Roepstorff's 'skilled vision' within algorithms (Roepstorff 2007) is 

the first step towards overcoming the difficulties of AI routinisation into practice 

for only those technologies that are perceived to add value to clinical reasoning 

rather than competing with it (like the new generation of AI-integrated or 'smart' 

computation diagnostics tools) are more likely to win clinician's trust.  

 

Following this, the next step, as recent work in psychiatry suggests, is the need 

for careful research into the qualitative nuances (human impacts) of deploying 

"AI delivered, human [clinician]' supervised' psychotherapy" (Bhugra et al. 2017; 

Miner at al, 2019; Patel et al, 2019). A priority for  such deployments of AI-

enabled care must be to avoid situations where patient loss of trust in AI 

adversely reflects on patient trust in clinicians and in care provisioning (Miner at 

al, 2019) (see also Bhugra et al. 2017; Patel et al, 2019). This is especially likely 

if ever higher "expectations of benefit [from ever more sophisticated AI]" cause 

patients to "transition from feeling let down to feeling betrayed [by clinicians and 

by the systems of 'care']" (Miner et al 2019).  
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3.4. From clinician's trust to investor trust  

For private investment to support the long process of clinical translation to the 

market, the technology end-user's (here the clinician) trust in and willingness to 

adopt the new technology is crucial (Greenhalgh et al. 2017). For instance, 

research shows that having clinicians in management positions with 

computational skills is positively correlated with "long-term commitment to the 

use of IT [in health care]" (Ingebrigtsen et al. 2014). The reverse - clinical 

leadership lacking a commitment to IT-enabled healthcare weakens adoptability 

(or end-user uptake) (Wong, Turner, and Yee. 2008) and ultimately investor 

confidence. Greenhalgh et al (2017) goes further to argue that when "the value 

proposition of the technology [is] unclear, in terms of a viable business venture 

for its developer [e.g. historical low CPM adoption rates] or in terms of a clear 

benefit for patients and an affordable real-world service model", the result is 

technology 'nonadoption and abandonment'. Our interviews with researchers 

reiterate this view that better research-practice collaborations based on trust and 

transparency encourage sustained use of computational models and private 

investment. This is particularly crucial for the successful clinical translation of 

computational models developed by small and medium developers or public 

research institutions. For both need to build robust investor or public-funder's 

confidence in the commercial viability (end-user uptake) of their innovation to 

attract the substantial capital resources and regulatory expertise necessary to 

fund and drive the clinical evidence generation, evaluation, verification and 

validation processes needed to reach the market. At the same time, there is a 

need for stakeholders to acknowledge that widespread adoption of 

computational models should only be envisaged with particular attention to the 

risks of algorithmic bias - whereby AI applications normed on certain patient 

populations (e.g. whose data is easily available and widely used) may not be 

readily usable (without considerable adaptation, if at all) for diverse populations 

(see e.g. Miner et al 2020; Schwatrz and Blankenship 2014).   

 

4. Conclusion 
In this paper, we have shown that the road from bench to bedside for 

computational brain models needs remains grounded in building better 
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researcher-clinician trust relationships based on meaningful upstream 

collaboration that integrate model transparency and tacit knowledge. On the one 

hand, greater clinician trust contributes to the robustness of investor or public-

funder's confidence in the viability (end-user uptake) of an innovation to reach 

and succeed in the market and increases the translation of computational brain 

models. On the other hand, the clinician, both as custodian of patient trust and 

welfare, and as the end-user of computational models, is uniquely placed to 

evaluate the patient benefit of allocating scarce time and capital resources to 

computational models instead of in other areas of patient care which may 

include low-tech investments such as employing more clinicans, updating aging 

equipment etc. Thus policies encouraging greater clinician engagement in 

deciding 'if a computational models is worth it?' will not only act as a check 

against faulty analytics but also lead to responsible adoption of computational 

models that do not merely encourage technology adoption for the sake of 

technological progress but for meaningful benefit to patient care.  
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