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The impact of emergent pathogens

Since the 1970s, more than 1,500 new pathogens have been discovered, and many of these

have had major impacts on public health [1]. Healthcare-associated infections (HAIs) account

for 37,000 deaths in Europe and 99,000 deaths in the United States of America annually and

are associated with a financial loss of €7 billion in the EU and US$ 6.5 billion in the US [2].

Many of these deaths are attributed to multiple drug-resistant (MDR) pathogens, which

evolved due to the overuse of antimicrobial drugs. Consequently, MDR pathogens are now

considered a global threat to public health [3,4]. Historically, MDR infections have been noso-

comial, but since the early 2000s, there has been a rise in community-acquired pathogens such

as meticillin-resistant Staphylococcus aureus (MRSA), which are now detected in public areas

such as public transport, airports, and daycare facilities [5–7].

The recent emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV),

Zaire ebolavirus, and Zika virus led many experts to believe that a pandemic was inevitable

and to warn that we were ill-prepared [1]. Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2), the agent responsible for the current Coronavirus Disease 2019 (COVID-19)

pandemic, is, together with MERS-CoV, Ebolavirus, and Zika, a zoonotic disease. Although

the true social and economic impact of the current pandemic is not yet known, it has clearly

had a major effect on day-to-day life around the world and on the global economy. Given

humanity’s interference with and encroachment into the natural world, COVID-19 is unlikely

to be the last zoonosis or pandemic to challenge the world, and the surge in antimicrobial

resistance (AMR), predicted following the increase in invasive procedures and antibiotic pre-

scription during the current pandemic, is another cause for alarm [1–4,8,9].

It is widely accepted that new or repurposed antivirals are needed to treat COVID-19 dis-

ease and that a safe and effective vaccine is essential for mitigating disease severity and control-

ling the spread of infection [10]. However, both these processes are lengthy and complex and

can require years of research to ensure quality, safety, and efficacy. In stark contrast, antimi-

crobial surfaces are already available and offer a nonspecific and therefore broad spectrum

intervention targeting all pathogens, irrespective of type, through multiple pathways [11,12].

For these reasons, antimicrobial surfaces may contribute to outbreak control, whilst other

interventions, including social distancing measures, pathogen-specific drugs, and vaccines, are

established. As most of the world prepares to move out of COVID-19 lockdown, the deploy-

ment of antimicrobial surfaces as a precautionary public health measure against future out-

breaks is attractive and warrants serious consideration. However, we will argue in this article
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that indiscriminate use of such surfaces is not without risk and potentially counterproductive.

To ensure that antimicrobial surfaces are purely advantageous, we argue that they must

undergo a thorough investigation of their potential to induce AMR, that the application of

antimicrobial surfaces in the home should be carefully considered, and that a system of ‘stew-

ardship’ is a prerequisite for application in healthcare.

Pathogen transmission and the nature of antimicrobial surfaces

Whilst direct person-to-person contact is clearly important in pathogen transmission, the

spread of pathogens via contaminated surfaces is also significant [13,14]. Touch surfaces may

permit the survival and multiplication of bacterial pathogens and the transmission of both bac-

terial and viral pathogens between hosts [15,16]. Whilst thorough cleaning can help reduce the

pathogen load on surfaces, cleaning protocols often fail to completely decontaminate surfaces

[17–20]. One study done across 27 intensive care units using a fluorescent tracer found that a

basic cleaning protocol resulted in disinfection of only 48.1% of all surfaces, with common

touch surfaces, such as room doorknobs (25%) and bathroom light switches (26%), even less

clean [18]. Thus, even after cleaning, there remains a risk of transmission particularly for path-

ogens with a low infective dose. Tables 1 and 2 show survival times of pathogens on various

surfaces [15]. It is worth noting here that pathogen detectability does not necessarily equate to

infection risk since there is likely to be a gradual decline in pathogen numbers over time on

most surfaces, and the numbers ‘detectable’ at these time points may not constitute an infective

dose. These data could be significant for some pathogens; however, if we consider that, for

example, London is served by 6 international airports, and pre-crisis, handled a total of

485,000 passengers daily [21]. The majority of these passengers will go on to interact, directly

or through contaminated surfaces, with some of the capital’s commuters who together com-

plete 10.9 million journeys daily [22]. Whilst reducing the frequency of direct interaction

between people is a strategy being employed in the current pandemic, the use of antimicrobial

surfaces is also likely to impact transmission rates by reducing these indirect interactions.

Table 2. Persistence of viral pathogens on common dry inanimate surfaces (e.g., plastics, stainless steel, or flooring).

Viral Pathogens Initial Inoculation Period of Detectability (Source) Associated Disease

Influenza Approximately 1 × 104 TCID50
� 2 days [26] Influenza

Norovirus Approximately 2 × 105 TCID50
� 7 days [27] Gastroenteritis

Rhinovirus Approximately 1 × 104 TCID50
� 4 days [28] Common cold

SARS-CoV-2 Approximately 105 TCID50
� 3 days [29] COVID-19

�TCID50, 50% tissue-culture infectious dose.

COVID-19, Coronavirus Disease 2019; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.ppat.1008880.t002

Table 1. Persistence of bacterial pathogens on dry common inanimate surfaces (e.g., plastics, stainless steel, or flooring).

Bacterial Pathogens Initial Inoculation Period of Detectability (Source) Associated Sickness

Clostridium difficile (spores) Approximately 1 × 106 CFU� 5 months [23] Bowel infection, diarrhea

Escherichia coli Approximately 1 × 105 CFU� 36 days [24] Kidney failure, bloody diarrhea, vomiting

Klebsiella spp. Approximately 1 × 105 CFU� 32 days [24] Pneumonia, septicemia, meningitis

Saphylococcus aureus Approximately 4 × 105 CFU� >90 days [25] Pneumonia, septicemia

�CFU, colony-forming units.

https://doi.org/10.1371/journal.ppat.1008880.t001
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There are two broadly different, but not mutually exclusive, strategies used in developing

antimicrobial surfaces: biocidal surfaces that kill microbes, and anti-biofouling surfaces that

reduce microbial adhesion and prevent subsequent biofilm formation (Fig 1). Many commer-

cial antimicrobial surfaces are nanocomposites (bulk materials that incorporate nanomater-

ials), such as polymers that incorporate silver nanoparticles to confer antimicrobial properties.

These nanocomposites are currently being marketed as capable of killing both gram-positive

and gram-negative bacteria, as well as inhibiting the H1N1 influenza (swine flu) virus [30,31].

However, silver is an expensive raw material, and the antimicrobial properties of these nano-

composites are largely due to the release of silver ions, meaning that the antimicrobial activity

is finite. More recently, nanocomposites are being produced that use the catalytic properties of

nanomaterials to drive chemical reactions that produce antimicrobial reagents and are there-

fore, in theory, self-regenerating [32,33].

In a similar manner to solar cells, semiconducting nanocomposites can use light-driven

reactions to produce reactive oxygen species (ROS). However, due to the material band gaps,

many antimicrobial semiconducting nanocomposites require UV light or high-intensity white

light to reach the excited state needed to produce the ROS required for antimicrobial proper-

ties. Recently, a polymer containing crystal violet dye and gold nanoclusters was shown to pro-

duce ROS at low flux levels of white light [32]. Through the production of hydrogen peroxide,

the surface was bactericidal for both gram-positive and gram-negative bacteria (approximately

5-log reduction in bacterial numbers). Although still under investigation, as hydrogen perox-

ide is known to be highly effective against both viruses and fungi, this surface is expected to

show efficacy against all the major classes of pathogen. Whilst the use of gold and a vivid dye

may limit the commercial applications of this product, dye-sensitised nanocomposites offer

promise as a persistent antimicrobial surface.

Nanostructured surfaces have also been shown to kill both gram-positive and gram-nega-

tive bacteria, including endospores, due to their nanotopography [34,35]. However, the nano-

topography of surfaces, such as black silicon, are generally produced using expensive

techniques like reactive-ion beam etching which reduces their commercial viability because of

increased production cost and time.

With much of the world beginning to exit COVID-19 lockdown, there is an urgent need to

test all existing antimicrobial surfaces against SARS-Cov-2 and develop new ones for rapid

implementation in appropriate settings. At this juncture, given the importance of the human

Fig 1. Antimicrobial surfaces operate through a number of mechanisms. (A) Anti-biofouling surfaces use specific surface energies to stop microbial adhesion by

deterring adsorption to the surface or by forming a protective layer [36]. (B) Biocidal nanocomposites release incorporated biocidal species or act as a catalyst to produce

biocidal species [32,37]. (C) Nanostructured surfaces are capable of physically rupturing bacterial cells; however, further research is required to understand the impact of

nanostructured surfaces on virions [35]. ROS, reactive oxygen species.

https://doi.org/10.1371/journal.ppat.1008880.g001
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microbiota for health and the role that environmental microbes play in developing and main-

taining that microbiota together with the potential impact of antimicrobial surfaces on AMR,

the judicial use of these surfaces is an important consideration.

The rise of autoimmune disorders and allergies in a world of

common infectious disease decline

Whilst there are clearly perceived benefits in using antimicrobial surfaces, questions remain

about whether reducing exposure to certain microbes may be detrimental to the development

and proper function of the human immune system. Over the last century, the rates of

immune-related diseases have risen sharply in developed countries [38]. Interestingly, the

trends in developed countries have been mirrored by a simultaneous decline in the prevalence

of some infectious diseases, such as hepatitis A, measles, mumps, and tuberculosis. The

‘hygiene hypothesis’, first proposed in 1989, provided a tentative explanation for the shift from

infectious diseases to allergies [39]. The idea of being ‘too clean’ was quickly accepted by many

and considered to be the underlying cause for the rise in both allergies and immune-mediated

diseases. Despite this theory remaining popular with some, subsequent studies have cast a

shadow over the original hypothesis.

The discovery and improved understanding of T cell subpopulations, such as regulatory T

(Treg) cells, in addition to a better knowledge of other immune system components, have led

to a greater insight into how the immune system is regulated and how it ‘learns’ to respond

appropriately to pathogenic and nonpathogenic microbes and self-antigens [40,41]. Despite

reductions in rates of some infectious diseases globally, good hygiene is still regarded as being

the first line of defence against recurrent variable pathogens [42,43]. The ‘old friends’ and the

‘disappearing microbes’ hypotheses have superseded the hygiene hypothesis as an explanation

for the apparent rise in immune disorders [44,45]. Although providing different perspectives,

both theories describe how the human immune system has coevolved with microorganisms,

regardless of whether they are commensal, symbiotic, or pathogenic. Loss of these organisms,

rather than levels of hygiene, is thought to result in immune system dysfunction, leading to a

range of human conditions including immune-mediated diseases, allergy, and even forms of

cancer.

The microbiome, consequences of lifestyle and environment, and

links to immune-mediated diseases and host protection

The human microbiome, which comprises all of the bacteria, fungi, viruses, and protozoa that

live on and within the human body, plays an important role in human health, starting prior to

birth and continuing throughout life. Beginning in utero, humans accumulate microbiota as

they interact with the world around them, developing an immune system that takes cues from

each encounter [46]. Treg cells suppress the induction of other immune cells, ensuring toler-

ance to self-, food-, and microbial-antigens, preventing the development of autoimmunity,

allergies, and immune-mediated diseases [47]. Lack of exposure to a diverse set of microbes

can result in a naïve underdeveloped immune system [44]. Radical changes in hygiene, sanita-

tion, diet, and habitat over the last century are thought to be responsible for impaired immune

development. The use of antibiotics, despite their critical role in the fight against pathogenic

bacteria, is known to result in long-term disruption to the microbiome [48]. Microbiomes of

individuals in developed countries consist of up to 30% fewer species compared to developing

countries [49–51]. Consequently, this reduction in microbiota diversity, especially early on in

life, has been linked to a rapid rise in allergies and immune-mediated diseases [52]. Studies

have demonstrated that both the gut and oral microbiomes of individuals are strongly
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influenced by cohabitation with genetic ancestry playing no identifiable role [53,54]. The way

we live and how we manage our environment through the indiscriminate use of antimicrobial

surfaces and reagents could directly impact on our microbiome composition and immune

development and inadvertently result in an elevation in the incidence of immune-mediated

diseases [52].

The microbiome also has a more direct and active role in host–pathogen interactions, espe-

cially viruses. S. aureus within the respiratory tract has been found to stimulate the immune

system and dampen influenza-mediated acute lung injury [55]. Viruses can also exploit the

microbiota to promote infectivity. Several naturally occurring gut bacteria have been found to

bind multiple versions of norovirus facilitating viral entry [56]. Based on these findings, it

could be suggested that the key to a healthy microbiome is not necessarily one with as many

microbes as possible but instead a balanced and finely tuned flora beneficial to the host (Fig 2).

The potential impact on AMR

In addition to a potential impact of antimicrobial surfaces on immune function and micro-

biome development, another consideration is the risk that selection pressure exerted by anti-

microbial surfaces may drive the evolution and spread of AMR. AMR can be intrinsic (for

example, in biofilm formed on a surface), or it can be acquired by two principal genetic mecha-

nisms: random mutation or horizontal gene transfer that confer resistance by reducing either

the intracellular concentration of the antimicrobial agent, alteration or protection of the

molecular target of the antimicrobial or enzymatic inactivation of the antimicrobial agent.

Irrespective of mechanism, the end result is that in the sustained presence of an antimicrobial,

the resistant subpopulation outcompetes the susceptible population and thus predominates.

With regard to antimicrobial surfaces, the risk is not simply that resistance might develop to

the specific antimicrobial present in the material but that cross-resistance or co-resistance

could occur. Cross-resistance is where one molecular mechanism mediates resistance to more

than one antimicrobial—that is, a resistance mechanism induced by the presence of an antimi-

crobial surface coincidentally imparts resistance to another antimicrobial agent. Co-resistance

is a second phenomenon in which the genetic determinants of different resistance mechanisms

reside on the same genetic element, thus the selective pressure conferred by the presence of

one antimicrobial co-selects for the other. If a determinant for copper resistance, for example,

was carried on a plasmid carrying multiple resistance genes specific for different classes of

drug, a copper-containing antimicrobial surface has potential to drive the plasmid (and hence

multidrug resistance) through a population. A recent article by Pietsch and colleagues [57]

reviews studies that indicate a risk of antimicrobial surfaces promoting AMR and considers

the evidence in the context of healthcare-related environments.

Future considerations

Analogous to the impact of the antibiotic era in enabling rapid and significant improvements

in human health, the potential of antimicrobial surfaces to help control future outbreaks of

infectious disease is enormous. However, just as the antibiotic era has been marred by antibi-

otic-resistant infections arising from overenthusiastic antibiotic use, it is important that we

exert caution in introducing antimicrobial surfaces, and ensure that their use is appropriate.

Whilst the benefits of antimicrobial surfaces in high-traffic and high-risk areas, such as trans-

port hubs and healthcare facilities, may seem obvious, it must be borne in mind that exposure

to microorganisms from the environment is crucial for microbiome development which, in

turn, is needed for proper immune function. Given this knowledge, it would seem appropriate

that a system of stewardship is established, at least for clinical application of antimicrobial
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surfaces, comparable to that recommended for traditional antimicrobials by the National Insti-

tute for Health and Care Excellence (NICE) [58]. This system would ensure selection of the

most appropriate antimicrobial mechanism, appropriate location, efficacy, durability, stake-

holder education, and end-user acceptance. It would also be prudent to consider that introduc-

ing antimicrobial surfaces into the healthcare setting may have unpredictable adverse effects.

Firstly, regular contact could affect the skin microbiome of the hands of healthcare workers.

Products of the normal skin flora—including fatty acids—can be bactericidal and reduce the

Fig 2. A balanced immune system is one that is both efficient against pathogens and safe to the host. An underactive or weakened immune system increases

susceptibility to infectious diseases with the human body unable to fend off pathogenic microorganisms. An overactive or hyperresponsive immune system may react to

normally harmless substances in the environment, such as with allergies. Even worse, an overactive immune system may recognise host tissue as foreign and begin to

attack the body, such is the case with MS. Whereas exposure to too many pathogens may overwhelm the human body, accumulation and maintenance of a sufficiently

diverse microbiota throughout life ensures that the immune system is ‘trained’ to respond appropriately, able to tolerate self- and non-harmful antigens. IBD,

inflammatory bowel disease; MS, multiple sclerosis.

https://doi.org/10.1371/journal.ppat.1008880.g002
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survival of ‘transient’ opportunist pathogens that may be inadvertently passed between patients

on the hands of healthcare workers. Ablation of this skin microbiota may, theoretically, result

in persistent colonisation of hands with an abnormal flora. Secondly, surfaces with allergenic

potential could result in dermatitis with implications for healthcare workers’ health and prac-

tices. Skin affected by dermatitis is prone to colonisation by S. aureus, an important overt

healthcare pathogen. Thirdly, an overreliance on antimicrobial surfaces may induce a false

sense of security in the healthcare setting; it is essential that standard hand hygiene practices

are maintained. These and other considerations should be addressed in a programme of

stewardship.

‘Antimicrobial stewardship’ for traditional antimicrobial agents is now a critical component

of modern healthcare and should be the paradigm for policies designed to inform and control

the application of antimicrobial surfaces.

Recognising the importance of the human microbiome to health and the need to protect

against pathogens whilst enabling exposure to beneficial microbes, the Royal Society for Public

Health proposed the concept of ‘targeted hygiene’, whereby cleaning and disinfection is

focused exclusively on areas in the home most likely to transmit pathogens, for example, food

preparation surfaces such as chopping boards and utensils, sinks, and taps [59]. Integration of

antimicrobial surfaces with this type of approach would seem ideal installing them, for exam-

ple, in food preparation areas and bathrooms but not more generally in floor covering, walls,

or furniture.

Manufacturers of antimicrobial surfaces also have a regulatory role to play in ensuring

appropriate use. Both concepts of stewardship and targeted hygiene need to be recognised by

manufacturers of antimicrobial surfaces to ensure that they are marketed responsibly and

installed only where they are likely to impact on infection transmission and not more

generally.

In conclusion, the authors call upon industry, national and international policy makers,

healthcare professionals, and healthcare agencies (including those responsible for commission-

ing services and estates management) to recognise that (1) early phase research must address

the potential impact of antimicrobial surfaces on AMR before they are widely employed; (2)

there is a need for stewardship of antimicrobial surfaces intended for the healthcare setting;

and (3) the broader exploitation of antimicrobial surfaces in domestic, industrial, commercial,

and transport settings must not be undertaken lightly and requires oversight. With strict regu-

lation and sensible governance, antimicrobial surfaces should become an important and long-

lasting addition to the public health armamentarium currently available to control the trans-

mission of infection.
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